E1 245: Online Prediction & Learning

Fall 2015

Scribe: Mohammadi Zaki

Lecture 4 — August 13

Lecturer: Dr. Aditya Gopalan

4.1 Recap- 1 Bit Prediction Problem

4.1.1 Weighted-Majority Algorithm [Littlestone & Warmuth, '94]

Algorithm : WT-MAJ (ϵ)

- 1. Set parameter $\epsilon \in [0, 1]$ (fixed).
- 2. Initialize $W_{i,1} = 1, \forall i = [N]$.
- 3. At each time t = 1, 2, 3, ...

$$Predict = \begin{cases} 1 & \text{if } \sum_{i;f_{i,t}=1} W_{i,t} \ge \sum_{i;f_{i,t}=0} W_{i,t} \\ 0 & \text{if } otherwise. \end{cases}$$

4. Update $\forall i$,

$$W_{i,t+1} = W_{i,t}(1-\epsilon)^{\mathbf{1}[f_{i,t}\neq y_t]}$$

4.2 Mistake Bound for Weighted-Majority Algorithm (WT-MAJ (ϵ))

Theorem 4.1. (Mistake Bound for WT-MAJ)

$$M_T(WT - MAJ((\epsilon)) \le \frac{\left(\min_{i \in [N]} M_T(i)\right)\left(\log\left(\frac{1}{1-\epsilon}\right)\right) + \log N}{\log\left(\frac{1}{1-\frac{\epsilon}{2}}\right)} \tag{4.1}$$

In particular, if $\epsilon \leq \frac{1}{2}$,

$$M_T(WT - MAJ((\epsilon)) \le 2(1+\epsilon)(M_T(i^*)) + \frac{2\log N}{\epsilon}$$

 $\approx aM_T(\epsilon^*) + b\log N.$

Proof: Let's define a POTENTIAL FUNCTION at time t as $\Phi_T = \sum_{i \in [N]} W_{i,t}$, and let i^* be the best expert, i.e., $i^* = argmin_{i \in [N]} M_T(i)$.

At the beginning,

$$\Phi_1 = N. \tag{4.2}$$

At the end,

$$\Phi_{T} = \sum_{i,T} W_{i,T}
\geq W_{i^{*},T}
= W_{i,1} (1 - \epsilon)^{M_{T}(i^{*})}
= (1 - \epsilon)^{M_{T}(i^{*})}.$$

If the algorithm makes a wrong prediction at time t,

 \Rightarrow At least half the total weight goes down by a factor $(1 - \epsilon)$.

$$\Phi_{t+1} \leq \frac{1}{2}\Phi_t + \frac{1}{2}\Phi_t(1 - \epsilon) = \Phi_t(1 - \frac{\epsilon}{2}).$$

$$\leq \Phi_t(1 - \frac{\epsilon}{2})^{\mathbf{1}[\hat{y}_t \neq y_t]}$$

$$\leq \Phi_1(1 - \frac{\epsilon}{2})^{M_T(WT - MAJ)}$$

$$= N(1 - \frac{\epsilon}{2})^{M_T(WT - MAJ)}.$$

$$\Rightarrow N(1 - \frac{\epsilon}{2})^{M_T(WTMAJ)} \geq (1 - \epsilon)^{M_T(i^*)}$$

$$(4.3)$$

$$\Rightarrow M_T(WTMAJ) \le \frac{M_T(i^*)\log(\frac{1}{1-\epsilon}) + \log N}{\log(\frac{1}{1-\frac{\epsilon}{2}})}.$$
(4.4)

4.2.1 Some notes on WT-MAJ

1. WT-MAJ mistake bound implies that $\forall (y_1, y_2, \dots, y_t)$, and $\forall (f_{i,t})_{i,t}$, and $\epsilon \leq \frac{1}{2}$

$$M_T(WT - MAJ(\epsilon)) - M_T(i^*) \le (1 + 2\epsilon)M_T(i^*) + \frac{2\log N}{\epsilon}.$$
 (4.5)

- 2. R.H.S. can be "large" if $M_T(i^*)$ is large.
- 3. This kind of dependence is *unavoidable* due to "mistake penalty being discontinuous" and under any deterministic algorithm.

4.3 General Case - Prediction With Expert's Advice

In general, for any problem of prediction given some expert's advice at each time, we can model the problem given the following,

- Decision Space \mathcal{D} .
- Outcome Space Y.
- Loss Function $l: \mathcal{D} \times \mathcal{Y} \to \mathbb{R}^+$.
- Experts : \mathcal{E}

Algorithm: General strategy

- 1. At each round t = 1, 2, 3, ..., Environment picks $y_t \in \mathcal{Y}$.
- 2. Experts give advice $f_{i,t} \in \mathcal{D}, \forall i \in \mathcal{E}$.
- 3. Decision maker chooses $\hat{p_t} \in \mathcal{D}$ (based on current and past advice and outcomes).
- 4. Then decision maker sees y_t , suffers loss $l(\hat{p_t}, y_t)$.

4.3.1 Examples

1. 1-Bit Prediction

$$\mathcal{D}=\{0,1\}=\mathcal{Y}.$$
 $l(p,y)=\infty[p\neq y],$ ("0-1" loss).
 $\mathcal{E}=$ "Always predict zero", "Always predict one", or any other more complex rules, etc..

2. "Online Linear Regression"

$$\mathcal{D} = \{ f : \mathbb{R}^d \to \mathbb{R}, f(x) = \langle \mathbf{w}, \mathbf{x} \rangle, \|\mathbf{w}\|_2 \le 1 \}.$$

$$\mathcal{E} = \mathcal{D} = \{ f : \mathbb{R}^d \to \mathbb{R}, f(x) = \langle \mathbf{w}, \mathbf{x} \rangle, \|\mathbf{w}\|_2 \le 1 \}.$$

$$\mathcal{Y} = \mathbb{R}$$

$$\mathcal{X} = \mathbb{R}^d.$$

$$l(\mathbf{p}, y; \mathbf{x}) = (\langle \mathbf{p}, \mathbf{x} \rangle - y)^2.$$

GOAL: Minimize REGRET (relative to the best performing expert) regardless of outcomes/advice.

Definition [**REGRET**]: For time horizon T and an expert $i \in \mathcal{E}$, the *REGRET* of a decision making algorithm \mathcal{A} w.r.t. i upto time T is,

$$R_{i,T}(\mathcal{A}) \equiv R_{i,T} = \sup_{\{y_t\}_t, \{f_{i,t}\}_{i \in [N]}, t \in [T]} \left[\sum_{t=1}^{T} l((\hat{p_t}, y_t)) - \sum_{t=1}^{T} l(f_{i,t}, y_t) \right].$$

Regret:
$$R_T(\mathcal{A}) = \sup_{\{y_t\}_t, \{f_{i,t}\}_{i \in [N]}} [\sum_{t=1}^T l((\hat{p_t}, y_t)) - \inf_{i \in \mathcal{E}} \sum_{t=1}^T l(f_{i,t}, y_t)].$$

4.3.2 Notes

1. Regret is the *worst case* measure of performance. Alternatively, if $\{y_t\}_t$ and $\{f_{i,t}\}_{i\in[N],t\in[T]}$, were stochastic, we could consider AVERAGE-CASE regret, i.e.,

$$\mathbb{E}[(\sum_{t=1}^{T} \mathbf{1} \{ \hat{y}_t \neq y_t \} - \inf_{i \in \mathcal{E}} \sum_{t=1}^{T} \mathbf{1} \{ f_{i,t} \neq y_t \})].$$

- 2. *CRITICISM*: WORST-CASE performance measures are too pessimistic! (i.e., worry about all sequences!).
- 3. Linearly growing regret with "T" is "BAD" (e.g. 1-bit prediction, $\mathcal{E} = \{$ "Always predict zero", "Always predict one", ... $\}$). Sub-linear regret is "GOOD".

4.3.3 For the next lecture

Can we obtain sub-linear regret by applying some reasonable constraints on the structure of our prediction problem?