E1 245: Online Prediction & Learning Fall 2015
Lecture 4 — August 13
Lecturer: Dr. Aditya Gopalan Scribe: Mohammadi Zaki

4.1 Recap- 1 Bit Prediction Problem

4.1.1 Weighted-Majority Algorithm [ Littlestone & Warmuth, *94]

Algorithm : WT-MAJ (¢)

1. Set parameter € € [0, 1] (fixed).
2. Initialize W;; = 1,Vi = [N].
3. Ateachtimet =1,2,3,...

0 if otherwise.

Predict = { 1 if Zi;fi,tZI VVU > Zi;fi,t=0 Wi,t
4. Update V1,

m,t—i-l - Wii(l — €>1[fz‘,t7éyz]

4.2 Mistake Bound for Weighted-Majority Algorithm (WT-MAJ(¢))
Theorem 4.1. (Mistake Bound for WT-MA.J)

(min;epn) Mr(i))(log(1)) + log N
log(12=)

Mp(WT — MAJ((e)) < 4.1)

VIR

In particular, if e < %,

~ aMr(€") + blog N.
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Proof: Let’s define a POTENTIAL FUNCTION at time ¢t as &7 = ) ie[N] Wi+, and let * be the
best expert, i.e., i* = argmin;cin)Mr (7).
At the beginning,
®; = N. (4.2)
At the end,
Or=> Wi

> Wit

= Wi (1 — )M

=(1- 6)A47(i*).

If the algorithm makes a wrong prediction at time ¢,
= At least half the total weight goes down by a factor (1 — ¢).

1 1 €
Cr1 < 5@+ 51— ) = Bl - 3). (4.3)

< (I)t(l _ E)l[y};éy,«,}

- 2
<3y (1— %)MT(WT—MAJ)
— N(1-— %)MT(WTfMAJ).

= N(1— %)MT(WTMAJ) > (1— 6)MT(z'*)

My (i*)log(:£) + log N

= Mp(WTMAJ) < < (4.4)
109(175)
L]
4.2.1 Some notes on WI-MA]J
1. WT-MAJ mistake bound implies that V(y1, ya, ..., y:), and V(fi ), and € < %
2log N
My(WT — MAJ(€)) — Mp(i*) < (1+ 2¢) Mop(i*) + Of . 4.5)

2. R.H.S. can be "large” if Mp(i*) is large.

3. This kind of dependence is unavoidable due to mistake penalty being discontinuous” and
under any deterministic algorithm.
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4.3 General Case - Prediction With Expert’s Advice

In general, for any problem of prediction given some expert’s advice at each time, we can model
the problem given the following,

Decision Space D.

Outcome Space ) .

Loss Function! : D x Y — R™T.

Experts : £

Algorithm : General strategy

1. Ateachroundt =1,2,3,...,
Environment picks y; € ).

2. Experts give advice f;, € D, Vi € £.
3. Decision maker chooses p; € D (based on current and past advice and outcomes).

4. Then decision maker sees vy, suffers loss I(p;, y;).

4.3.1 Examples

1. 1-Bit Prediction

D = {O, ]_} = y.
l(p,y) = oo[p # yl, ("0-1” loss).
&€ ="Always predict zero”, ”Always predict one”, or any other more complex rules, etc..

2. ”Online Linear Regression”

={fR'= R, f(x) = (w,x), [w]> < 1}.
Igz {f R =R, f(z) = (w,x),[[w]> < 1}.
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GOAL : Minimize REGRET (relative to the best performing expert) regardless of outcomes/advice.

Definition [REGRET] : For time horizon 7" and an expert © € &, the REGRET of a decision
making algorithm A w.r.t. ¢ upto time 7' is,

T

Rin(A) = RZ}T = sup [Z l((ﬁt; yt)) - Z l(fi,t7 yt)]
{yete{fitbocy t€lT] 1= t=1
T T

Regret: Rp(A) = sup > 1(Bey) —inf > 1(fir ).
et dfitlieny =1 ict t=1

4.3.2 Notes

1. Regret is the worst case measure of performance.
Alternatively, if {y;}; and {fi+}ic(n)c[r), Were stochastic, we could consider AVERAGE-
CASE regret, i.e.,

T

E[(Z {ge # w} — %ggz {fix # ve})]-

t=1

2. CRITICISM : WORST-CASE performance measures are too pessimistic ! (i.e., worry about
all sequences !).

3. Linearly growing regret with ”T” is "BAD” (e.g. 1-bit prediction, £ = {”Always predict
zero”, ” Always predict one”, ...} ).
Sub-linear regret is "GOOD”.

4.3.3 For the next lecture

Can we obtain sub-linear regret by applying some reasonable constraints on the structure of our
prediction problem?
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