
E1 245: Online Prediction & Learning Fall 2015

Lecture 10 — September 3
Lecturer: Aditya Gopalan Scribe: Prakash Barman

10.1 RECAP: Tracking regret in the actions game (continued)
Goal:

To build an efficient Learning algorithm for low regret w.r.t any sequence of actions ( ∈ Em) with a
bounded number of switches (m)

REXPWTS over [N]T :

Initialize: set weight w1(i1, ...., iT )≥ 0; ∀(i1, ...., iT ) ∈ [N]T .
At all time t ≥ 1 ,

(1) Compute current weight of each compound expert w′t(i1, ....iT ) = w′1(i1, ...., iT )e
−η

t−1
∑

s=1
l(is,ys)

∀(i1, ...., iT ) ∈ [N]T

(2) Play Action It with distribution:

Pr(It = i) =
w′i,t
W ′t

; where w′i,t = ∑
(i1,..it−1,it+1,..,iT )

w′t(i1, .., it−1, i, it+1, .., iT ) & W ′t = ∑
j∈[N]

w′j,t

Consider the following algorithm that is efficient (maintain only N weights).

10.2 Fixed Share Algorithm [Herbster and Warmuth (‘98)]

Algorithm Fixed Share Algorithm
1: INPUT:

Parameter η > 0; 0≤ α ≤ 1. Here α can be viewed as rate of shifting.

2: INITIALIZE:
set initial weights to all experts wi,1 =

1
N ; ∀i ∈ [N]T
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Algorithm Fixed Share Algorithm (continued)
3: At round t=1,2,3,4,....

Play action It ∈ [N] according to the distribution {wi,t}i∈[N]

Observe yt and compute vi,t = wi,te−η l(i,yt); ∀i
Update weight: wi,t+1 = α

wt
N +(1−α)vi,t ; here, wt = ∑

j∈[N]
v j,t

4: END

Note: α = 0⇒ FSA ≡ REXPWTS algo over [N]

Next theorem states the equivalance of FSA(α) with REXPWTS over [N]T .

Theorem 10.1. For any α ∈ [0,1], any sequence of outcomes (y1, ....,yT ;any 1≤ t ≤ T ); the dis-
tribution of action I′t played by REXPWTS with α prior is same as the distribution of action It
played by FSA(α)

Proof: Consider the REXPWTS Algorithm over [N]T with initial weight given by

w′1(i1, ...., iT ) =
1
N

(
α

N

)#(i1,....iT )(
1−α +

α

N

)T−1−(#(i1,....,iT ))
;

where #(i1, ...., iT ) = Total number of switches =
T−1
∑

s=1
1{is+1 6= is}

It’s enough to show wi,t=w′i,t by induction over t ≥ 1 ; ∀i ∈ [N], and ∀t ≤ T , i.e.

wi,t w′i,t

FSA(α)

OO

REXPWT S with α prior

hh

Base Case: For t = 1, w′i,1= 1
N = wi,1, ∀i ∈ [N]. So base case is satisfied.

Induction Hypothesis: Assume that w′i,s=wi,s, ∀i ∈ [N] and ∀s < t

w′i,t = ∑
i1,..,it−1,it+1,..,iT

w′t(i1, .., it−1, i, it+1, .., iT )

= ∑
i1,..,it−1,it+1,..,iT

w′1(i1, .., it−1, i, it+1, .., iT )e
−η

t−1
∑

s=1
l(is,ys)

= ∑
i1,..,it−1

w′1(i1, .., it−1, i)e
−η

t−1
∑

s=1
l(is,ys)
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= ∑
i1,..,it−1

e
−η

t−1
∑

s=1
l(is,ys)

{w′1(i1, .., it−1, i)}

= ∑
i1,..,it−1

e
−η

t−1
∑

s=1
l(is,ys)

w′1(i1, .., it−1)
(

α

N
+(1−α) 1{is+1 = is}

)

=

[
∑
it−1

(
α

N
+(1−α) 1{is+1 = is}

)
e−η l(it−1,yt−1)

] ∑
i1,..,it−2

w′1(i1, .., it−1)e
−η

t−2
∑

s=1
l(is,ys)


=

[
∑
it−1

(
α

N
+(1−α) 1{is+1 = is}

)
e−η l(it−1,yt−1)

]
wit−1,t−1

(wit−1,t−1 = total weight of compound actions suggesting it−1 action at time (t-1))

= ∑
it−1

(
α

N
+(1−α) 1{is+1 = is}

)
vit−1,t−1

=
α

N ∑
it−1

vit−1,t−1 +(1−α)vi,t−1

= wi,t (by definiion of FSA(α))

�

10.3 Tracking Regret Bound for FSA(α)
Lemma 10.2. Consider running REXPWTS(η) over N experts with initial weights:

w11,w21, ....,wN1 ≥ 0 ;
N
∑

i=1
wi,1 = 1. Assume that l : A ×Y → [0,1], Then

E

[
T

∑
t=1

l(it ,yt)

]
≤ 1

η
log

1
WT+1

+
ηT
8

where WT+1 :=
N
∑

i=1
wi,1e

−η
T
∑

t=1
l(i,yt)

Proof: Home-work.
�

Theorem 10.3. For every (i1, ...., iT )∈ [N]T under FSA(α) with s=#(i1, ...., iT )= number of switches

E

[
T

∑
t=1

l(it ,yt)

]
−

T

∑
t=1

l(it ,yt)≤
s+1

η
logN +

1
η

log
1

α(s)(1−α)(T−1−s)
+

ηT
8
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Proof: For FSA(α), FSA(α) ≡ REXPWTS (α).
Using Lemma 10.2 we have

E

[
T

∑
t=1

l(iFSA/REXPWT S
t ,yt)

]
≤ 1

η
log

1
W ′T

+
ηT
8

≤ 1
η

log
1

W ′T (i1, ...., iT )
+

ηT
8

=
1
η

log
1

1
N

(
α

N

)(s) (1−α + α

N

)(T−1−s) e
−η

T
∑

t=1
l(it ,yt)

+
ηT
8

=
T

∑
t=1

l(it ,yt)+
s+1

η
logN +

1
η

log
1

α(s)(1−α)(T−1−s)
+

ηT
8

i.e.,

E

[
T

∑
t=1

l(it ,yt)

]
−

T

∑
t=1

l(it ,yt)≤
s+1

η
logN +

1
η

log
1

α(s)(1−α)(T−1−s)
+

ηT
8

�

Corollary 10.4. Let m≤ T−1
2 ( infact much lower). Then, running FSA (α = m

T−1 ) gives regret:

E
[
∑
t

l(iFt SA,yt)

]
− min

i1,..,iT∈E (m)
∑
t

l(it ,yt)≤
m+1

η
logN +

T −1
η

H(
m

T −1
)+

ηT
8

Proof: ∀(i1, ...., iT ) with switches #(i1, ...., iT ) = s≤ m, we know from theorem 10.3 that

Regret(i1, ...., iT )≤
s+1

η
logN +

1
η

log
1

α(s)(1−α)(T−1−s)
+

ηT
8

=
s+1

η
logN +

T −1
η

[
s

T −1
log

1
α
+(1− s

T −1
) log

1
1−α

]
+

ηT
8

=
m+1

η
logN +

T −1
η

[
m

T −1
log

1
α
+(1− m

T −1
) log

1
1−α

]
+

ηT
8

=
m+1

η
logN +

T −1
η

[
q log

1
α
+(1−q) log

1
1−α

]
+

ηT
8

(q= m
T−1 ≤

1
2 )

≤ m+1
η

logN +
T −1

η
H(

m
T −1

)+
ηT
8

(at α = q)

�
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Moreover, for optimal η ⇒ Regret(E (m)) ≤
√

T
2

[
(m+1) logN +(T −1)H( m

T−1)
]
. In the last

inequality of the proof of Corollary 10.4, we have used the below lemma.

Lemma 10.5. If q≤ α ≤ 1
2 , Then − [q logα +(1−q) log(1−α)]≤ H(α) at α = q.
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