E1 245: Online Prediction & Learning Fall 2015
Lecture 10 — September 3
Lecturer: Aditya Gopalan Scribe: Prakash Barman

10.1 RECAP: Tracking regret in the actions game (continued)

Goal:

To build an efficient Learning algorithm for low regret w.r.t any sequence of actions ( € &;,) with a
bounded number of switches (m)

REXPWTS over [N]”:

Initialize: set weight wy (iy,....,ir) > 0; ¥(i1, ....,ir) € [N]T .
Atall timet > 1,

t—1
. . . . . —n Yy l(isvys)
(1) Compute current weight of each compound expert w; (i, ....ir) = W/ (i1,....,ir)e 5=

V(il,....,iT) € [N]T

(2) Play Action I; with distribution:

Pr(l, = i) = < ; where w;, = y Wity ooyl 1505041, -ir) & W = ¥ w'jJ

W R .
! (l],..l,,171[+174.,l7‘) jE[N]

Consider the following algorithm that is efficient (maintain only N weights).

10.2 Fixed Share Algorithm [Herbster and Warmuth (‘98)]

Algorithm Fixed Share Algorithm
1: INPUT:

Parameter 1 > 0; 0 < o < 1. Here & can be viewed as rate of shifting.
2: INITIALIZE:

set initial weights to all experts w; | = 1%/; vie [N|T
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Algorithm Fixed Share Algorithm (continued)
3: Atround t=1,2,34,....

Play action /; € [N] according to the distribution {w;};cv

Observe y, and compute v;, = w; e~ 11030); Vi

Update weight: w;; 1 = afr + (1 — a)vis; here, w, = Y vj,
JEIN]

4: END

Note: @ =0 = FSA = REXPWTS algo over [N]

Next theorem states the equivalance of FSA(a) with REXPWTS over [N].

Theorem 10.1. For any a € [0, 1], any sequence of outcomes (yy, ....,yr;any 1 <t < T); the dis-
tribution of action I} played by REXPWTS with a prior is same as the distribution of action I,
played by FSA(o)

Proof: Consider the REXPWTS Algorithm over [N]” with initial weight given by

Wi (i1 onnyir) = ]lv <%>#(i17wir) (1 s ]%>T—l—(#(i1,..l.,ir));

T—1
where #(iy, ....,ir) = Total number of switches = ¥ 1{is1 # is}
s=1

It’s enough to show w;,=w/ , by induction over 7 > 1 ; Vi € [N], and V¢ < T, i.e.

Wit W;,l \
FSA(a) REXPWTS with a prior

Base Case: Forr =1, w! 1=]%, =wj 1, Vi € [N]. So base case is satisfied.
Induction Hypothesis: Assume that w! =w;, Vi € [N] and Vs <t

/ e . .. .
Wiy = Z Wt(llv"7llflalalt+17"7lT)
ilv'witflaitﬁ»]y"viT

t—1
7 /. . .. . -nx l(i‘v’ys)
= Z Wi (i1 ey b1, 00t 1, 07 )E 5=1
ilr'vitfl7il~‘r17“7i7w

=1
-n Z l(lS7ys)

= Y wi(itii—rsi)e

i17"7i171
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= e =1 wh (i1, . ir—1,0)}

S . .
=) e & wi (i1, .- 0—1) <N+ (1—a) {1 = ls})
i1>"7i171

- - =2
7” 21 l(lS7yS)

= Z (%—f—(l—a) ]]_{is_|_1 :ly}> e_nl(itihytil) Z Wll(il7"7il—1)e =

_it_l ila"aif—z

(04 . . —nl(i
= Z (]V + (1 - OC) ]l{ls—l—l = ls}> ¢ i) Wi _11—-1
Lir—1

(wj,_, +—1 = total weight of compound actions suggesting i, 1 action at time (t-1))

= Z (% +(l—a) 1{iz4 = is}) Vi 111

i1
a
=N Y vi—1+ (1= a)vig—
i1

= wis (by definiion of FSA(ar))

O

10.3 Tracking Regret Bound for FSA (o)

Lemma 10.2. Consider running REXPWTS(n ) over N experts with initial weights:

N
W1, W21, W1 > 05 Y wi g = 1. Assume thatl : o/ x % — [0,1], Then
i=1

where Wr1:= ) w;je =
i=1

Proof: Home-work.
O

Theorem 10.3. Forevery (i1, ....,ir) € [N]T under FSA(a) with s=#(iy, ...., it )= number of switches

Ui, ye) | = ) Ui, yr) < ——logN+—lo Ik
t:Zi (ir t)] t; (i, 1) n g n ga(s)(l_a)(T—l—s) 8

E
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Proof: For FSA(x), FSA(a) = REXPWTS ().
Using Lemma 10.2 we have

o i l(l.FSA/REXPWTS’ NE 1 I nT

yi)| = —log 7 + ==
ﬁll n “w;, 8
<—lo 4+ =
N EW (i ir) |8
1 1 T
:ﬁlog _ +%
_o =N XY )
JLV(I%])(S) (I—OC—|—]%)(T 1—s) R
T
_[:Zil(lz,)’t)-i- logN + —log (1 =) 5t g
1.e.,
T T s+ 1 . o7
— < _ at
E ;l(ltyyt)] t;l(lt,yz)_ - logN 4 — log T ) gt %

Corollary 10.4. Letm < % (infact much lower). Then, running FSA (o0 = 775) gives regret:

1 T-1 T
E[Zl(ifSA,y,}— min Zl it, 1) :’_ logN—i—TH( m )—f—n—
t

l],,lTGéD T_l 8
Proof: V(iy,....,ir) with switches #(i,....,ir) = s < m, we know from theorem 10.3 that
: . s+1 1 1 nT
< — —
Regret (iy,....,it) < 10gN+T[logoc(s)(l—oc)(T_‘—S)+ g
s+1 T-1 s 1 s 1 nT
= logN+—— log — + (1 — 1 a4
gt [T—loga+< T—I)Ogl—a]+ 8
m+1 T—1| m 1 m nT
T togN+— |- log—+(1— 1 e
BN ¥ {T—l gy T=gy)leqz }Jr 8
m+1 — 1 T
= 10gN+—[qlog—+(1—Q)10g1_ ]Jr% (@= 72 < 3)
1 T-1 T
<;1 N—l——H(%)—F% (at ¢ = q)
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Moreover, for optimal 1 = Regret(&(m)) < \/% [(m+1)logN+ (T — 1)H(72;)]. In the last

inequality of the proof of Corollary 10.4, we have used the below lemma.

Lemma 10.5. Ifg < a < % , Then —[qloga+ (1 —¢g)log(1 —a)] <H(a) at o = q.

10-5



References

[1] Nicolo Cesa-Bianchi and Gabor Lugosi, “Prediction, Learning and Games”, Cambridge Uni-
versity Press, 2006.

[2] Gabor Bartok, David Pal, Csaba Szepesvari, and Istvan Szita, “Online learning - CMPUT
654", Course Notes. 2011.



