
E1 245: Online Prediction and Learning Fall 2015

Lecture 13 — September 15
Lecturer: Aditya Gopalan Scribe: Sindhu P R

13.1 Introduction to Online Convex Optimization
We look at a generalized framework for Online Learning problems which utilizes convex optimiza-
tion tools. Online learning problems can be analyzed based on the following model:

Algorithm Online Convex Optimization (OCO)
Input: Decision space: K, Convex set and K⊆Rd

Loss function ft : K→R,

For each round t = 1,2, . . .

- Predict (or play) wt ∈K
- Receive convex function ft
- Suffer loss ft(wt)

End

The objective is to minimize the total loss
T
∑

t=1
ft(wt), which is equivalent to minimizing the

Regret RT . Regret is considered with respect to the best fixed point in K. That is,

RT =
T

∑
t=1

ft(wt)−min
w∈K

T

∑
t=1

ft(w)

Next, we look at certain problems which can be formulated as an online convex optimization
problem.

13.1.1 Examples
1. Prediction with expert advice (N experts):

The decision space K is the N-dimensional simplex and ft(wt) = l
(

N
∑

i=1
wti fi,t ,yt

)
. ft is con-

trolled by changing yt and fi,t , 1≤ i≤N. In the expected regret setup, ft(wt)=
N
∑

i=1
wtil( fi,t ,yt).
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2. Online Shortest Paths:
Consider a graph G = (V,E) which has designated source(s) and destination(d) nodes. The
edge set is non-empty and an edge between two nodes i and j has a loss function associated
with it, which is denoted as l(i, j). The loss function can represent the “delay” on the edge,
its flow value or the “congestion” on that edge. These graphs typically model Transport
networks and communication networks. The loss functions on the edges change with time.
The objective is to choose the least-loss path from source to destination. Any algorithm for
this setting does the following:
At each round t = 1,2, . . .

- Algorithm chooses an s-d path Pt

- Algorithm sees lt(i, j), ∀(i, j) ∈ E

- Loss suffered: ∑
(i, j)∈Pt

lt(i, j)

The regret over T rounds (RT ) is given as :

RT =
T

∑
t=1

∑
(i, j)∈Pt

lt(i, j)− min
s-d paths P

T

∑
t=1

∑
(i, j)∈P

lt(i, j)

This game can be converted to an experts’ game where the set of experts is precisely the set
of all s-d paths. However, if the graph is very large, then the number of such paths may be
too large in number. An alternative is to try and frame this as an OCO problem.

3. Sequential Investment Application:
The decision set K is the m-dimensional simplex where m is the number of stocks avail-
able. If xt represents the vector of price relatives of the stocks, then the loss function
ft =− log〈wt ,xt〉.

4. Standard Convex Optimization:
The standard optimization problem is to minimize a function f (x) such that x ∈ K. This can
be framed as an OCO problem, wherein ft ≡ f (x), ∀t

13.2 Follow the leader (FTL) Strategy
One approach to online convex optimization problem is to use the point w ∈ K which minimizes

the losses upto the current time , i.e., at time t, we choose argmin
w∈K

t−1
∑

s=1
fs(w). For example, consider

K= [−1,1] and { fs}= wzs. Here, zs is the sth element of the sequence Z =−0.5,1,−1,1,−1, . . ..
With the decision space and loss function as assumed, the FTL choice and loss suffered for rounds
t = 1,2,3, . . . is as shown below:
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Round FTL Choice Loss zt
1 w ∈ [−1,1] 0 -0.5
2 1 1 1
3 -1 1 -1
...

...
...

...

Clearly, cumulative loss of FTL strategy for T rounds is ≈ T whereas if we choose w = 0, then
cumulative loss is zero. Thus in this setting, the regret of FTL, RFT L(T ) ≥ T . Following this, we
give a bound for the Regret of FTL.

13.2.1 General FTL Regret Bound
Lemma 13.1. The decision space, loss function be as given in 13.1. Suppose the FTL algorithm
is run for T rounds. Then,

T

∑
t=1

ft(wt)−
T

∑
t=1

ft(u)≤
T

∑
t=1

[ ft(wt)− ft(wt+1)] , ∀u ∈K

Proof: We show that
T

∑
t=1

ft(wt+1)≤
T

∑
t=1

ft(u). (13.1)

For T = 1, f1(w2) ≤ f1(u), since w2 is a minimizer of f1,∀u. Assume 13.1 holds for T = τ − 1
and ∀u. Hence,

τ−1

∑
t=1

ft(wt+1)≤
τ−1

∑
t=1

ft(u). (13.2)

Add fτ(wt +1) to both sides of 13.2. wτ+1 = argminz∈K
τ

∑
t=1

fs(z) .

τ

∑
t=1

ft(wt+1)≤
τ−1

∑
t=1

ft(u)+ fτ(wτ+1). (13.3)

Let u = wτ+1.
τ

∑
t=1

ft(wt+1)≤
τ−1

∑
t=1

ft(wτ+1)+ fτ(wτ+1)

≤
τ

∑
t=1

ft(wτ+1)

= min
v∈K

τ

∑
t=1

ft(v)

≤
τ

∑
t=1

ft(u) ∀u ∈K

�
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13.2.2 Application of FTL: “Dartboard Game”
Consider a convex set K. The selection of a point wt ∈ K can be interpreted as the point where a
“dart” hits K. The adversary picks point zt and the loss ft(wt) =

||zt−wt ||2
2 . Regret RT is given as:

RT =
T

∑
t=1

||zt−wt ||2

2
−min

w∈K

T

∑
t=1

||zt−w||2

2
.

In this game, based on z1,z2, . . . ,zt−1, FTL predicts wt to be the centroid of z1,z2, . . . ,zt−1. Thus,

wt =
1

t−1

t−1

∑
s=1

zs

=
t−1

t
wt +

zt

t

RFT L
T ≤ 1

2

T

∑
t=1

(
||wt− zt ||2−||wt+1− zt ||2

)
=

1
2

T

∑
t=1

[
||wt− zt ||2−||wt

(
1− 1

t

)
+

zt

t
− zt ||2

]
=

1
2

T

∑
t=1

(
1−

(
1−
(

1
t

)2
))
||wt− zt ||2

≤
T

∑
t=1

1
t
||wt− zt ||2

≤ (2max
z∈K
||z||)2

T

∑
t=1

1
t

The term
T
∑

t=1

1
t is in O(logT ). If (2max

z∈K
||z||)2 is L, then RFT L

T = L logT , which implies that FTL

enjoys logarithmic regret when losses are quadratic.
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