E1 245: Online Prediction and Learning Fall 2015
Lecture 13 — September 15

Lecturer: Aditya Gopalan Scribe: Sindhu P R

13.1 Introduction to Online Convex Optimization

We look at a generalized framework for Online Learning problems which utilizes convex optimiza-
tion tools. Online learning problems can be analyzed based on the following model:

Algorithm Online Convex Optimization (OCO)

Input: Decision space: K, Convex set and K C R
Loss function f; : K — R,

For eachroundr =1,2,...
- Predict (or play) w; € K
- Receive convex function f;
- Suffer loss f;(wy)

End

T
The objective is to minimize the total loss Y f;(w;), which is equivalent to minimizing the
=1
Regret R7. Regret is considered with respect to the best fixed point in K. That is,

T T
Ry = th(w,) —minZﬁ(w)
t=1 wek =

Next, we look at certain problems which can be formulated as an online convex optimization
problem.

13.1.1 Examples

1. Prediction with expert advice (N experts):

N
The decision space K is the N-dimensional simplex and f; (w;) = ( Y wefis y,) . ft is con-
i=1

N
trolled by changing y, and f;;, 1 <i <N. In the expected regret setup, f;(w;) = Y. wi,l(fis,y1)-
i=1
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2. Online Shortest Paths:

Consider a graph G = (V,E) which has designated source(s) and destination(d) nodes. The
edge set is non-empty and an edge between two nodes i and j has a loss function associated
with it, which is denoted as (i, j). The loss function can represent the “delay” on the edge,
its flow value or the “congestion” on that edge. These graphs typically model Transport
networks and communication networks. The loss functions on the edges change with time.
The objective is to choose the least-loss path from source to destination. Any algorithm for
this setting does the following:

Ateachroundt =1,2,...

- Algorithm chooses an s-d path P,

- Algorithm sees (i, j), V(i,j) € E

- Loss suffered: Y. (i, ])
(i.J)eR

The regret over T rounds (R7) is given as :

T

RT:Z Z lt(l] sdrll;gtrlisPZ Z

=1 (i.)eh (i.J)EP

This game can be converted to an experts’ game where the set of experts is precisely the set
of all s-d paths. However, if the graph is very large, then the number of such paths may be
too large in number. An alternative is to try and frame this as an OCO problem.

3. Sequential Investment Application:
The decision set K is the m-dimensional simplex where m is the number of stocks avail-
able. If x; represents the vector of price relatives of the stocks, then the loss function

fi = —log(wy, x;).

4. Standard Convex Optimization:
The standard optimization problem is to minimize a function f(x) such that x € K. This can
be framed as an OCO problem, wherein f; = f(x), Vt

13.2 Follow the leader (FTL) Strategy

One approach to online convex optimization problem is to use the point w € K which minimizes
-1

the losses upto the current time , i.e., at time 7, we choose argmin Y f;(w). For example, consider
weK s=1

K = [~1,1] and {f;} = wz. Here, z; is the s element of the sequence Z = —0.5,1,—1,1,—1,....
With the decision space and loss function as assumed, the FTL choice and loss suffered for rounds
t=1,2,3,...1is as shown below:
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Round | FTL Choice | Loss | z
1 we [—1,1] 0 -0.5
2 1 1 1
3 -1 1 -1

Clearly, cumulative loss of FTL strategy for T rounds is ~ 7" whereas if we choose w = 0, then
cumulative loss is zero. Thus in this setting, the regret of FTL, RFTL (T) > T. Following this, we
give a bound for the Regret of FTL.

13.2.1 General FTL Regret Bound

Lemma 13.1. The decision space, loss function be as given in 13.1. Suppose the FTL algorithm
is run for T rounds. Then,

th W)

Proof: We show that

HMH

T
Z [filwe) = filweg1)], VueK
=1

T
ZﬁWHISZ (13.1)

For T =1, fi(w2) < fi(u), since wy is a minimizer of f1,Vu. Assume 13.1 holds for T =7 — 1
and Vu. Hence,

7—1 7—1
Y fiwi) < Y filw). (13.2)
=1 =1
T
Add fz(w;+ 1) to both sides of 13.2. wey = argmin i ¥ fi(z) .
=1
T

T—1
Y fiwen) <Y fi(w) + fe(wer). (13.3)
t=1

=1

Letu=wgy.
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13.2.2 Application of FTL: “Dartboard Game”

Consider a convex set K. The selection of a point w; € K can be interpreted as the point where a

) — ||z —we|P?

“dart” hits K. The adversary picks point z; and the loss f;(w; > Regret Ry is given as:

ZH&\MF mmzua\w

WEK

In this game, based on z1,27,...,2—-1, FTL predicts w; to be the centroid of z1,z3,...,z:—1. Thus,

t—lzzs

t_l It
= Wl+_
t t
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The term Y % is in O(logT). If (2m¥||z||) is L, then RETL = Llog T, which implies that FTL
=1 ze

=
enjoys logarithmic regret when losses are quadratic.
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