
E1 245: Online Prediction & Learning Fall 2014

Lecture 16 — September 1
Lecturer: Aditya Gopalan Scribe: Shreyas S

16.1 Another view of FTRL
This lecture we take a look at a difficult view of Follow-The-Regularized-Leader(FTRL) referred
as “Dual Space” view or the “Mirror Decent” framework. Recall from the previous lecture that the
FTRL prediction for t + 1 round for linear loss functions over convex set K ∈ Rd and regularizer
R : Rd ← R which is a convex function is given by

wt+1 = argmin
w∈K

(
t

∑
s=1
〈zs,w〉+R(w)

)

= argmin
w∈K

(〈z1,t ,w〉+R(w)) where z1,t =
t

∑
s=1

zs

= argmax
w∈K

(〈−z1,t ,w〉−R(w))

Define h : Rd ← K

h(θ) = argmax
w∈K

(〈θ ,w〉−R(w))

FTRL can be written as

1. θ1 = 0 ∈ Rd .

2. For t = 1,2,3, · · ·

(a) wt = h(θt) [PREDICTION].

(b) θt+1 = θt− zt [UPDATE].

The space where θ updates and iterates occur is referred as Dual space and K is called as
Prediction/Decision space. The above algorithm has the following interpretation while θt is being
updated in Dual space and actual decision wt is “MIRRORED/LINKED” to K via the link function
h(θt) which maps θs from Dual space to K.
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16.2 Why focus on Linear losses
Suppose we have and Online Convex Optimization algorithm that works with linear loss func-
tions, then we can apply the same algorithm to work with general convex losses without incurring
additional regret. Let the sequence of convex loss functions be f1, f2, · · · , fT then for t = 1,2, · · · ,T

1. Play wt ∈ K.

2. Get to see ft .

3. Feed f ′t : Rd←R to the O.C.O algorithm for Linear losses given by f ′t (x) = 〈∇ ft(wt),x〉 and
obtain the prediction wt+1 for next round.

The Regret with respect to u ∈ Rd is given by

T

∑
t=1
{ ft(wt)− ft(u)} ≤

T

∑
t=1
{〈∇ ft(wt),wt〉−〈∇ ft(wt),u〉}

The above equation is got by using the following property of convex functions { ft(u)≥ ft(wt)+
〈∇ ft(wt),u−wt〉}. So in essence we concentrate only on linear losses because of

1. Linear losses are the “hardest” to play against i.e., they are same as playing against general
convex function.

2. It gives clean regret bounds.

In general for any sequence of convex functions f1, f2, · · · , fT , MIRROR descent is given by

1. θ1 = 0 ∈ Rd .

2. For t = 1,2,3, · · ·

(a) wt = h(θt) [PREDICTION].
(b) θt+1 = θt−∇ ft(wt) [UPDATE].

16.3 Dual View of FTRL
Let the regularizer R : Rd ← R be such that R is strictly convex. The Fenchen Dual of R is R∗ :
Rd ← R and ∀θ ∈ Rd is given by

R∗(θ) = sup
x∈Rd

[〈x,θ〉−R(x)]

The above definition holds even if R is not convex. The R∗ is always convex and if R is convex
then (R∗)∗ = R. So in general for any regularizer (R∗)∗ = “ convex closure of R” (i.e., the tightest
convex fit to R) or in other words

(R∗)∗ = sup
[
convex functions f : f (x)≤ R(x) , ∀x ∈ Rd

]
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16.3.1 Properties of Fenchen Dual function
We now discuss some important properties of Frenchen Dual function.

1. Fenchen-Young Dual inequality:

∀θ , ∀x : R∗(θ)+R(x)≥ 〈x,θ〉

The equality holds if x = ∇R∗(θ) or if θ = ∇R(x).

2.
∇R∗(θ) = argmax

x
[〈x,θ〉−R(x)] .

3. θ = ∇R(x∗) or θ = ∇R(∇R∗(θ)) (got from above property); equivalently we say that inverse
of ∇R is ∇R∗ i.e., (∇R)−1 = ∇R∗.

4.
R(x) = sup

θ

[〈x,θ〉−R∗(θ)] .

5.
∇R(x) = argmax

w∈K
[〈x,θ〉−R∗(θ)] .

Recall Mirror descent over K = Rd is given by

h(θ) = argmax
w∈K

(〈θ ,w〉−R(w)) = ∇R∗(θ).
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Table 16.1: A table giving R(w) and corresponding R∗(θ)

R(w) R∗(θ)

1
2 ||w||

2
2

1
2 ||θ ||

2
2

1
2 ||w||

2
p

1
2 ||θ ||

2
q

where 1
p +

1
q = 1 and 0≤ p,q≤ 1

∑
d
i=1 wi (logwi−1) ∑

d
i=1 expθi

∑
d
i=1 wi logwi log

(
∑

d
i=1 expθi

)
where w ∈ ∆d

1
η

R(x) 1
η

R∗(ηθ)
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