E1 245: Online Prediction & Learning Fall 2015
Lecture 17 — October 1

Lecturer: Aditya Gopalan Scribe: Prakash Barman

17.1 Recap:

Recall FTRL with linear loss function (Z;) over K c R =0, =0 c R4Vt =1,2,3,....

Predict: w; = h(6;)

Update: 6,1 = 6, — Vfi(w;) ; 6 is updated in “Dual” space, actual decision w; is mirrored/linked
to K via h.

17.2 Fenchel dual

Definition 17.2.1. Legendre function: Let K C R be a convex set. A function R : K — R is said
to be Legendre function if (i) R is strictly convex with continuous gradients over K and (ii) any
sequence x approaching the boundary of K ( §K) satisfies lim,_,sx||VR(x)|| = +oo

Define the “dual space” of K (with respect to the function R) to be K* = {VR(x) : x € K}
Definition 17.2.2. Fenchel dual: The Fenchel dual of RisR* : K* — R ;

R*(8) = sup{(x,6) — R(x)}

xeK

Properties of Fenchel Dual:

(1) If R is Legendre, (R*)* =R

() R(x) = supgcg-{ (. 6) — R*(8)}

(3) Fenchel-Young inequality: V0 € K*,Vx € K : R*(0) + R(x) > (x,0) , with equality if x =
VR*(6) or 6 = VR(x).

Note:

(*)VO € K*,V(VR*(0)) =0
(*)Vx € K, VR*(V(R(x)) = x i.e.
VR*(0)
6cK'____xek
VR(x)
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Examples:

Here are few examples of some convex functions and their Fenchel duals.
(a) Euclidean squared norm is its own dual. More generally, %||x||%1 > %||x||2; where p,g > 1 and

1 1 _
lyl=

d d d
(b) ¥ x;logxi— Y x; <> (z e9f>
=1 i=1

i i=1

N

d
(c) The Fenchel dual of negative entropy is ) x;logx; <+ log ( Yy e
i=1 i=1

17.3 Bregman Divergence

Definition 17.3.1. Bregman Divergence: Let R : K — R be a Legendre function. The Bregman
Divergence corresponding to R, Vx,y € K is defined as Dg(x,y) = R(x) —R(y) — (VR(y), (x —y))

Examples:

(a) R(x) = %||x||% = Dg(x,y) = %||x—y||% ; In this case it’s symmetric.
(b) R(x) =Y xi(logx;— 1) = Dg(x,y) = Y x; log(’yif) — ¥ (x; —yi); i.e. The unnormalized Kullback-
B l 1 B

l l
Leibler divergence is the Bregman divergence induced by the unnormalized negative entropy.

Properties of Bregman Divergences:

(1) Dr > 0 ( Dp, is the difference between function value R at x and the linear approximation of R
around point y evaluated at point x. Since R is convex, the difference is always non-negative.)
(2) For R and S convex and differentiable = Dgs(x,y) = Dg(x,y) + Ds(x,y)
(3) “3-point inequality” = Yu,v,w: Dg(u,v) + Dg(v,w) = Dg(u,w) + ((u—v),VR(w) — VR(v))
(4) [Projection] Bregman projection onto a convex set A exists and is unique. R being Legendre,
Vw, w' = argmin Dg (v, w) is unique.
vEA
(5) “Generalized Pythagorean theorem™ : Let, w' = argminDg(v,w); then VYu € A, Dg(u,w) >
vEA
DR(M,W/) +DR(W,7W)
(6) Yu,v, R Legendre = Dg(u,v) = Dg+(VR(v),VR(u)); R* is the Fenchel dual of R.
(7) Vx[Dr(x,y)] = VR(x) — VR(y)
(8) If f is linear, then Dy = 0 = Dg, r = Dg
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17.4 Equivalence of FTRL [constrained optimization = uncon-
strained optimization + Bregman projection ]

i—1
Lemma 17.1. Let ¢:(x) = ¥ I;(x)+R(x); R is Legendre function. and Let, [y, x(x) := argmin Dy, (v, x)
s=1 vek

be the Bregman projection of x onto K. Then argmin ¢ (w) = [Ty, x | argmin ¢;(w)
wekK / weRd

Proof: Let,

W, 1= argmin ¢ (w)

weRd
w; 1= argmin ¢; (w)
wek
Wy 1= H(W;);wé €K
¢t7K

So we require w, = w;
".* wy is the minimizer of ¢, , So by definition, we have

O (we) < @ (wy) (17.1)

*.* W, is the unconstrained minimizer of ¢;, we have V¢, (1;) =0
Do, (w, ) = ¢ (w) — ¢ (Wr); Yw
By definition of wy,

Dy, (wy, ;) < Dy, (wr, ;)

& (wy) — & (W) < @ (wr) — ¢ (1)
& (wr) < o (wy) (17.2)

By 17.1 and 17.2, we have ¢,(w}) = ¢;(w;) = milr(l o (w)
we

Mirror Descent form of FTRL:

Recall: Mirror Descent form of FTRL with linear losses (Z;) over K CR? = 0; =0 ¢ RY vt =
1,2,3, ...

Predict: w, = h(6;) = argmax[(w, 6;) — R(w)]
weK = S————
¢ (w)
Update: 6,41 =6, —Z7; ;
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h(6;) =Ilgx | argmax[(w, 6;) — R(w)]
weRd ﬁf—’
So V¢, W, satisfies:
-1
Y Z;+VR(W) =0

s=1

t
Y Z;+VR(W41) =0

s=1
VR(VT/'[+1) - VR(Wt) _Zt
VT}[_|_1 - VR* [VR(W;) _Zl]

wir1 = [[[VR*VR(W) — Z]
RK

VR

VR*

Project

Figure 17.1. Mirror Descent form of FTRL

The figure above illustrates the online mirror descent form of FTRL. The iteration begins with
the unconstrained (in R?) optimizer 1w, of the loss function. , is mapped to the dual space via
VR(W;) and gradient step is taken in the dual space obtaining VR(W;). Then it’s mapped back
to W, using inverse mapping VR* (W, ). Finally the Bregman projection of W, onto K gives

Wi+1.
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