

## Lecture 17 — October 1

Lecturer: Aditya Gopalan

Scribe: Prakash Barman

## 17.1 Recap:

Recall FTRL with linear loss function  $\langle Z_t \rangle$  over  $K \in \mathbb{R}^d \equiv \theta_1 = 0 \in \mathbb{R}^d \forall t = 1, 2, 3, \dots$

Predict:  $w_t = h(\theta_t)$

Update:  $\theta_{t+1} = \theta_t - \nabla f_t(w_t)$  ;  $\theta$  is updated in “Dual” space, actual decision  $w_t$  is *mirrored/linked* to  $K$  via  $h$ .

## 17.2 Fenchel dual

**Definition 17.2.1.** Legendre function: Let  $K \subseteq \mathbb{R}^d$  be a convex set. A function  $R : K \rightarrow \mathbb{R}$  is said to be Legendre function if (i)  $R$  is strictly convex with continuous gradients over  $K$  and (ii) any sequence  $x$  approaching the boundary of  $K$  ( $\delta K$ ) satisfies  $\lim_{x \rightarrow \delta K} \|\nabla R(x)\| = +\infty$

Define the “dual space” of  $K$  (with respect to the function  $R$ ) to be  $K^* = \{\nabla R(x) : x \in K\}$

**Definition 17.2.2.** Fenchel dual: The Fenchel dual of  $R$  is  $R^* : K^* \rightarrow \mathbb{R}$  ;

$$R^*(\theta) = \sup_{x \in K} \{\langle x, \theta \rangle - R(x)\}$$

### Properties of Fenchel Dual:

- (1) If  $R$  is Legendre,  $(R^*)^* \equiv R$
- (2)  $R(x) = \sup_{\theta \in K^*} \{\langle x, \theta \rangle - R^*(\theta)\}$
- (3) Fenchel-Young inequality:  $\forall \theta \in K^*, \forall x \in K : R^*(\theta) + R(x) \geq \langle x, \theta \rangle$  , with equality if  $x = \nabla R^*(\theta)$  or  $\theta = \nabla R(x)$ .

### Note:

(\*)  $\forall \theta \in K^*, \nabla(\nabla R^*(\theta)) = \theta$

(\*)  $\forall x \in K, \nabla R^*(\nabla R(x)) = x$  i.e.

$$\theta \in K^* \xrightarrow{\nabla R^*(\theta)} x \in K \xleftarrow{\nabla R(x)}$$

**Examples:**

Here are few examples of some convex functions and their Fenchel duals.

(a) Euclidean squared norm is its own dual. More generally,  $\frac{1}{2}\|x\|_q^2 \leftrightarrow \frac{1}{2}\|x\|_p^2$ ; where  $p, q \geq 1$  and  $\frac{1}{p} + \frac{1}{q} = 1$

$$(b) \sum_{i=1}^d x_i \log x_i - \sum_{i=1}^d x_i \leftrightarrow \left( \sum_{i=1}^d e^{\theta_i} \right)$$

$$(c) \text{The Fenchel dual of negative entropy is } \sum_{i=1}^d x_i \log x_i \leftrightarrow \log \left( \sum_{i=1}^d e^{\theta_i} \right)$$

## 17.3 Bregman Divergence

**Definition 17.3.1.** *Bregman Divergence: Let  $R : K \rightarrow \mathbb{R}$  be a Legendre function. The Bregman Divergence corresponding to  $R$ ,  $\forall x, y \in K$  is defined as  $D_R(x, y) = R(x) - R(y) - \langle \nabla R(y), (x - y) \rangle$*

**Examples:**

(a)  $R(x) = \frac{1}{2}\|x\|_2^2 \implies D_R(x, y) = \frac{1}{2}\|x - y\|_2^2$ ; In this case it's symmetric.

(b)  $R(x) = \sum_i x_i (\log x_i - 1) \implies D_R(x, y) = \sum_i x_i \log(\frac{x_i}{y_i}) - \sum_i (x_i - y_i)$ ; i.e. The unnormalized Kullback-Leibler divergence is the Bregman divergence induced by the unnormalized negative entropy.

**Properties of Bregman Divergences:**

(1)  $D_R \geq 0$  ( $D_R$  is the difference between function value  $R$  at  $x$  and the linear approximation of  $R$  around point  $y$  evaluated at point  $x$ . Since  $R$  is convex, the difference is always non-negative.)

(2) For  $R$  and  $S$  convex and differentiable  $\implies D_{R+S}(x, y) = D_R(x, y) + D_S(x, y)$

(3) “3-point inequality”  $\implies \forall u, v, w: D_R(u, v) + D_R(v, w) = D_R(u, w) + \langle (u - v), \nabla R(w) - \nabla R(v) \rangle$

(4) [Projection] Bregman projection onto a convex set  $A$  exists and is unique.  $R$  being Legendre,  $\forall w, w' = \underset{v \in A}{\operatorname{argmin}} D_R(v, w)$  is unique.

(5) “Generalized Pythagorean theorem” : Let,  $w' = \underset{v \in A}{\operatorname{argmin}} D_R(v, w)$ ; then  $\forall u \in A, D_R(u, w) \geq D_R(u, w') + D_R(w', w)$

(6)  $\forall u, v, R$  Legendre  $\implies D_R(u, v) = D_{R^*}(\nabla R(v), \nabla R(u))$ ;  $R^*$  is the Fenchel dual of  $R$ .

(7)  $\nabla_x [D_R(x, y)] = \nabla R(x) - \nabla R(y)$

(8) If  $f$  is linear, then  $D_f = 0 \implies D_{R+f} = D_R$

## 17.4 Equivalence of FTRL [constrained optimization $\equiv$ unconstrained optimization + Bregman projection ]

**Lemma 17.1.** Let  $\phi_t(x) = \sum_{s=1}^{t-1} l_s(x) + R(x)$ ;  $R$  is Legendre function. and Let,  $\Pi_{\phi_t, K}(x) := \operatorname{argmin}_{v \in K} D_{\phi_t}(v, x)$  be the Bregman projection of  $x$  onto  $K$ . Then  $\operatorname{argmin}_{w \in K} \phi_t(w) = \Pi_{\phi_t, K} \left( \operatorname{argmin}_{w \in \mathbb{R}^d} \phi_t(w) \right)$

**Proof:** Let,

$$\begin{aligned}\tilde{w}_t &:= \operatorname{argmin}_{w \in \mathbb{R}^d} \phi_t(w) \\ w_t &:= \operatorname{argmin}_{w \in K} \phi_t(w) \\ w'_t &:= \prod_{\phi_t, K} (\tilde{w}_t); w'_t \in K\end{aligned}$$

So we require  $w'_t = w_t$

$\therefore w_t$  is the minimizer of  $\phi_t$ , So by definition, we have

$$\phi_t(w_t) \leq \phi_t(w'_t) \quad (17.1)$$

$\therefore \tilde{w}_t$  is the unconstrained minimizer of  $\phi_t$ , we have  $\nabla \phi_t(\tilde{w}_t) = 0$

$$\therefore D_{\phi_t}(w, \tilde{w}_t) = \phi_t(w) - \phi_t(\tilde{w}_t); \forall w$$

By definition of  $w'_t$ ,

$$\begin{aligned}D_{\phi_t}(w'_t, \tilde{w}_t) &\leq D_{\phi_t}(w_t, \tilde{w}_t) \\ \phi_t(w'_t) - \phi_t(\tilde{w}_t) &\leq \phi_t(w_t) - \phi_t(\tilde{w}_t) \\ \phi_t(w'_t) &\leq \phi_t(w_t)\end{aligned} \quad (17.2)$$

By 17.1 and 17.2, we have  $\phi_t(w'_t) = \phi_t(w_t) = \min_{w \in K} \phi_t(w)$

□

### Mirror Descent form of FTRL:

Recall: Mirror Descent form of FTRL with linear losses  $\langle Z_t \rangle$  over  $K \subseteq \mathbb{R}^d \equiv \theta_1 = 0 \in \mathbb{R}^d \forall t = 1, 2, 3, \dots$

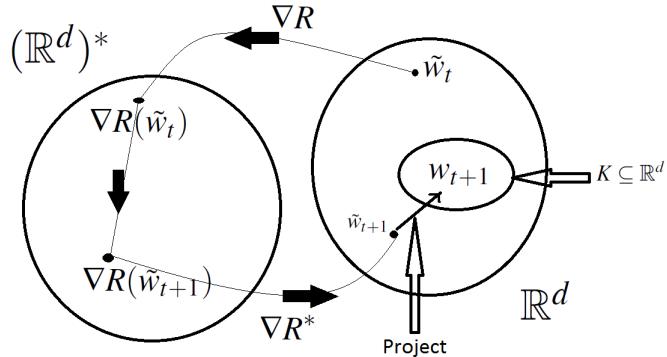
Predict:  $w_t = h(\theta_t) = \operatorname{argmax}_{w \in K} [\underbrace{\langle w, \theta_t \rangle - R(w)}_{\phi_t(w)}]$

Update:  $\theta_{t+1} = \theta_t - Z_t$  ;

$$h(\theta_t) = \prod_{R,K} \left( \underset{w \in \mathbb{R}^d}{\operatorname{argmax}} \left[ \underbrace{\langle w, \theta_t \rangle - R(w)}_{\tilde{w}_t} \right] \right)$$

So  $\forall t$ ,  $\tilde{w}_t$  satisfies:

$$\begin{aligned} \sum_{s=1}^{t-1} Z_s + \nabla R(\tilde{w}_t) &= 0 \\ \sum_{s=1}^t Z_s + \nabla R(\tilde{w}_{t+1}) &= 0 \\ \nabla R(\tilde{w}_{t+1}) &= \nabla R(\tilde{w}_t) - Z_t \\ \tilde{w}_{t+1} &= \nabla R^*[\nabla R(\tilde{w}_t) - Z_t] \\ w_{t+1} &= \prod_{R,K} [\nabla R^* \nabla R(\tilde{w}_t) - Z_t] \end{aligned}$$



**Figure 17.1.** Mirror Descent form of FTRL

The figure above illustrates the online mirror descent form of FTRL. The iteration begins with the unconstrained (in  $\mathbb{R}^d$ ) optimizer  $\tilde{w}_t$  of the loss function.  $\tilde{w}_t$  is mapped to the dual space via  $\nabla R(\tilde{w}_t)$  and gradient step is taken in the dual space obtaining  $\nabla R(\tilde{w}_{t+1})$ . Then it's mapped back to  $\tilde{w}_{t+1}$  using inverse mapping  $\nabla R^*(\tilde{w}_{t+1})$ . Finally the Bregman projection of  $\tilde{w}_{t+1}$  onto  $K$  gives  $w_{t+1}$ .

# References

- [1] Nicolo Cesa-Bianchi and Gabor Lugosi, “Prediction, Learning and Games”, Cambridge University Press, 2006.
- [2] Gabor Bartok, David Pal, Csaba Szepesvari, and Istvan Szita, “Online learning - CMPUT 654”, Course Notes. 2011.