
E1 245: Online Prediction & Learning Fall 2015

Lecture 17 — October 1
Lecturer: Aditya Gopalan Scribe: Prakash Barman

17.1 Recap:
Recall FTRL with linear loss function 〈Zt〉 over K ∈ Rd ≡ θ1 = 0 ∈ Rd ∀t = 1,2,3, ....
Predict: wt = h(θt)
Update: θt+1 = θt −∇ ft(wt) ; θ is updated in “Dual” space, actual decision wt is mirrored/linked
to K via h.

17.2 Fenchel dual
Definition 17.2.1. Legendre function: Let K ⊆ Rd be a convex set. A function R : K→ R is said
to be Legendre function if (i) R is strictly convex with continuous gradients over K and (ii) any
sequence x approaching the boundary of K ( δK) satisfies limx→δK‖∇R(x)‖=+∞

Define the “dual space” of K (with respect to the function R) to be K∗ = {∇R(x) : x ∈ K}

Definition 17.2.2. Fenchel dual: The Fenchel dual of R is R∗ : K∗→ R ;

R∗(θ) = sup
x∈K
{〈x,θ〉−R(x)}

Properties of Fenchel Dual:

(1) If R is Legendre, (R∗)∗ ≡ R
(2) R(x) = supθ∈K∗{〈x,θ〉−R∗(θ)}
(3) Fenchel-Young inequality: ∀θ ∈ K∗,∀x ∈ K : R∗(θ) + R(x) ≥ 〈x,θ〉 , with equality if x =
∇R∗(θ) or θ = ∇R(x).

Note:

(*) ∀θ ∈ K∗, ∇(∇R∗(θ)) = θ

(*) ∀x ∈ K, ∇R∗(∇(R(x)) = x i.e.

θ ∈ K∗
∇R∗(θ)//

x ∈ K
∇R(x)
oo
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Examples:

Here are few examples of some convex functions and their Fenchel duals.
(a) Euclidean squared norm is its own dual. More generally, 1

2‖x‖
2
q↔ 1

2‖x‖
2
p; where p,q ≥ 1 and

1
p +

1
q = 1

(b)
d
∑

i=1
xi logxi−

d
∑

i=1
xi↔

(
d
∑

i=1
eθi

)
(c) The Fenchel dual of negative entropy is

d
∑

i=1
xi logxi↔ log

(
d
∑

i=1
eθi

)

17.3 Bregman Divergence
Definition 17.3.1. Bregman Divergence: Let R : K → R be a Legendre function. The Bregman
Divergence corresponding to R, ∀x,y ∈ K is defined as DR(x,y) = R(x)−R(y)−〈∇R(y),(x− y)〉

Examples:

(a) R(x) = 1
2‖x‖

2
2 =⇒ DR(x,y) = 1

2‖x− y‖2
2 ; In this case it’s symmetric.

(b) R(x)=∑
i

xi(logxi−1)=⇒DR(x,y)=∑
i

xi log(xi
yi
)−∑

i
(xi−yi); i.e. The unnormalized Kullback-

Leibler divergence is the Bregman divergence induced by the unnormalized negative entropy.

Properties of Bregman Divergences:

(1) DR ≥ 0 ( DR is the difference between function value R at x and the linear approximation of R
around point y evaluated at point x. Since R is convex, the difference is always non-negative.)
(2) For R and S convex and differentiable =⇒ DR+S(x,y) = DR(x,y)+DS(x,y)
(3) “3-point inequality” =⇒ ∀u,v,w: DR(u,v)+DR(v,w) = DR(u,w)+ 〈(u− v),∇R(w)−∇R(v)〉
(4) [Projection] Bregman projection onto a convex set A exists and is unique. R being Legendre,
∀w, w′ = argmin

v∈A
DR(v,w) is unique.

(5) “Generalized Pythagorean theorem” : Let, w′ = argmin
v∈A

DR(v,w); then ∀u ∈ A, DR(u,w) ≥

DR(u,w′)+DR(w′,w)
(6) ∀u,v, R Legendre =⇒ DR(u,v) = DR∗(∇R(v),∇R(u)); R∗ is the Fenchel dual of R.
(7) ∇x[DR(x,y)] = ∇R(x)−∇R(y)
(8) If f is linear, then D f = 0 =⇒ DR+ f = DR
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17.4 Equivalence of FTRL [constrained optimization≡ uncon-
strained optimization + Bregman projection ]

Lemma 17.1. Let φt(x)=
t−1
∑

s=1
lt(x)+R(x); R is Legendre function. and Let, ∏φt ,K(x) := argmin

v∈K
Dφt (v,x)

be the Bregman projection of x onto K. Then argmin
w∈K

φt(w) = ∏φt ,K

(
argmin

w∈Rd
φt(w)

)

Proof: Let,

w̃t := argmin
w∈Rd

φt(w)

wt := argmin
w∈K

φt(w)

w′t := ∏
φt ,K

(w̃t);w′t ∈ K

So we require w′t = wt
∵ wt is the minimizer of φt , So by definition, we have

φt(wt)≤ φt(w′t) (17.1)

∵ w̃t is the unconstrained minimizer of φt , we have ∇φt(w̃t) = 0
∴ Dφt (w, w̃t) = φt(w)−φt(w̃t); ∀w
By definition of w′t ,

Dφt (w
′
t , w̃t)≤ Dφt (wt , w̃t)

φt(w′t)−φt(w̃t)≤ φt(wt)−φt(w̃t)

φt(w′t)≤ φt(wt) (17.2)

By 17.1 and 17.2, we have φt(w′t) = φt(wt) = min
w∈K

φt(w)

�

Mirror Descent form of FTRL:

Recall: Mirror Descent form of FTRL with linear losses 〈Zt〉 over K ⊆ Rd ≡ θ1 = 0 ∈ Rd ∀t =
1,2,3, ....
Predict: wt = h(θt) = argmax

w∈K
[〈w,θt〉−R(w)︸ ︷︷ ︸

φt(w)

]

Update: θt+1 = θt−Zt ;
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h(θt) = ∏R,K

argmax
w∈Rd

[〈w,θt〉−R(w)︸ ︷︷ ︸
w̃t

]


So ∀t, w̃t satisfies:

t−1

∑
s=1

Zs +∇R(w̃t) = 0

t

∑
s=1

Zs +∇R(w̃t+1) = 0

∇R(w̃t+1) = ∇R(w̃t)−Zt

w̃t+1 = ∇R∗[∇R(w̃t)−Zt ]

wt+1 = ∏
R,K

[∇R∗∇R(w̃t)−Zt ]

Figure 17.1. Mirror Descent form of FTRL

The figure above illustrates the online mirror descent form of FTRL. The iteration begins with
the unconstrained (in Rd) optimizer w̃t of the loss function. w̃t is mapped to the dual space via
∇R(w̃t) and gradient step is taken in the dual space obtaining ∇R(w̃t+1). Then it’s mapped back
to w̃t+1 using inverse mapping ∇R∗(w̃t+1). Finally the Bregman projection of w̃t+1 onto K gives
wt+1.
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