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21.1 A Minimax Lower Bound on Regret for Bandit Algorithms
We consider the multi-armed bandit problem with N actions. The reward of action i at time t is
denoted as g(i, t) which is either 0 or 1. An algorithm’s choice of an action at time step t is denoted
as It , to which the environment assigns the reward g(It , t). The regret of an algorithm for T time
steps, with respect to the best performing action is given as:

max
i∈[N]

T

∑
t=1

g(i, t)−
T

∑
t=1

g(It , t).

Assuming the rewards g(., t), ∀t are stochastic and in particular distributed according to the Bernoulli
distribution, we have the following lower bound [1]:

Theorem 21.1. Let the reward distributions g(i,1),g(i,2), . . . ,g(i,T ) be i.i.d Bernoulli random
variables for all i ∈ [N]. Let sup be the supremum over all reward distributions and inf be the
infimum over all algorithms (forecasters)

inf sup

[
max
i∈[N]

E

[
T

∑
t=1

g(i, t)−
T

∑
t=1

g(It , t)

]]
≥ c1
√

NT ,

where the expectations are with respect to random generation of rewards and the algorithm’s choice
of actions.

There are two sources of randomness - the reward sequence and the algorithm’s choice of actions.
Once a gain sequence has been set for all actions, then the sequence {It} results in one realisation
of the reward sequence.

For the proof, we use the idea of stochastic Bandit models. Let ε ∈ (0,1). For each i ∈
[N], let the Bandit model i be the stochastic reward generating distribution, where all action’s
rewards are i.i.d Bernoulli(1−ε

2 ) except for action i, whose rewards are i.i.d Bernoulli(1+ε

2 ). Hence
based on this definition, bandit model 0 corresponds to all actions having same reward distribution
Bernoulli(1−ε

2 ). Let Ei[.] denote the expectation for bandit model i. Then, ∀i the following holds:

Lemma 21.2.

max
i∈[N]

Ei

[
T

∑
t=1

g(i, t)−
T

∑
t=1

g(It , t)

]
≥ T ε

(
1− 1

N
−

√
εT
2N

log
(

1+ ε

1− ε

))
.
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Consider deterministic bandits algorithm. Let Si,T =
T
∑

t=1
1{It=i}, ∀i ∈ [N]. This keeps track of the

number of times action i was chosen by the algorithm. The proof for this lemma requires the
following tools:

Let P, Q be two probability distributions over {1,2, . . . ,M}.

Definition 1. The Total Variation distance [2] between P and Q is

dTV (P,Q) = max
S⊆[M]

(P[S]−Q[S]).

Equivalently, dTV (P,Q) = 1
2

M
∑

i=1
|P(i)−Q(i)|= 1

2 ||P−Q||1

Definition 2. The Kullback-Leibler (KL) divergence [2] (relative entropy) between P and Q is

D(P||Q) = ∑
i∈[M]

P(i) log
(

P(i)
Q(i)

)
.

Note that, D(P||Q)≥ 0 with equality if and only if P = Q.

Definition 3. Let P and Q be joint distributions for random variables X and Y with support over
[M]× [M]. The Conditional KL Divergence [2] between P and Q is

D(PY |X ||QY |X ) = ∑
x∈[M]

P(x)D
(

PY |X (Y |X = x)||QY |X (Y |X = x)
)

= ∑
x

P(x)∑
y

PY |X (y|x) log

(
PY |X (y|x)
QY |X (y|x)

)

We have the following properties which relate these distances between distributions:

Property 1 (Pinsker’s Inequality [3]). For probability distributions P and Q on [M],

D(P||Q)≥ 1
2
||P−Q||2

1

Property 2 (Chain rule of KL Divergence [3]). Let P and Q be joint distributions for random
variables X and Y with support over [M]× [M]. Then,

D(PXY ||QXY ) = D(PX ||QX )+D(PY |X ||QY |X )
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[1] Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Machine Learning, 5(1):1–122, 2012.

[2] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley & Sons,
2012.

[3] Imre Csiszar and János Körner. Information theory: coding theorems for discrete memoryless
systems. Cambridge University Press, 2011.

3


