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21.1 A Minimax Lower Bound on Regret for Bandit Algorithms

We consider the multi-armed bandit problem with N actions. The reward of action i at time ¢ is
denoted as g(i,7) which is either O or 1. An algorithm’s choice of an action at time step 7 is denoted
as I;, to which the environment assigns the reward g(I;,7). The regret of an algorithm for 7' time
steps, with respect to the best performing action is given as:
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Assuming the rewards g(.,¢), Vt are stochastic and in particular distributed according to the Bernoulli
distribution, we have the following lower bound [1]:

Theorem 21.1. Let the reward distributions g(i,1),g(i,2),...,g(i,T) be i.i.d Bernoulli random
variables for all i € [N]. Let sup be the supremum over all reward distributions and inf be the
infimum over all algorithms (forecasters)
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where the expectations are with respect to random generation of rewards and the algorithm’s choice
of actions.

There are two sources of randomness - the reward sequence and the algorithm’s choice of actions.
Once a gain sequence has been set for all actions, then the sequence {/; } results in one realisation
of the reward sequence.

For the proof, we use the idea of stochastic Bandit models. Let € € (0,1). For each i €
[N], let the Bandit model i be the stochastic reward generating distribution, where all action’s
rewards are i.i.d Bernoulli(15%) except for action i, whose rewards are i.i.d Bernoulli(14£). Hence
based on this definition, bandlt model 0 corresponds to all actions having same reward distribution
Bernoulh( £). Let E;[.] denote the expectation for bandit model i. Then, Vi the following holds:
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Lemma 21.2.
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Consider deterministic bandits algorithm. Let S; 7 = ): 1 (h=i}> Vi € [N]. This keeps track of the

number of times action i was chosen by the algorlthm The proof for this lemma requires the
following tools:
Let P, Q be two probability distributions over {1,2,...,M}.

Definition 1. The Total Variation distance [2] between P and Q is

dry(P,Q) = 52%(1)[5] —0lS)).

Bquivalenty, dry (7.0) = § 1. [P(i)~ 0()| = 4lIP - 0l

Definition 2. The Kullback-Leibler (KL) divergence [2] (relative entropy) between P and Q is
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Note that, D(P||Q) > 0 with equality if and only if P = Q.

Definition 3. Let P and Q be joint distributions for random variables X and Y with support over
[M] x [M]. The Conditional KL Divergence [2] between P and Q is
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We have the following properties which relate these distances between distributions:

Property 1 (Pinsker’s Inequality [3]). For probability distributions P and Q on [M],

1
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Property 2 (Chain rule of KL Divergence [3]). Let P and Q be joint distributions for random
variables X and Y with support over [M] x [M]. Then,
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