

Lecture 2 — August 6

Lecturer: Aditya Gopalan

Scribe: Shreyas S

2.1 Review of Math Fundamentals

2.1.1 Probability

Probability Space: A probability space is defined to be a triple $(\Omega, \mathcal{F}, \mathbb{P})$. The Ω is the set of all possible outcomes. The \mathcal{F} is a σ -algebra, i.e., a collection of events $\mathcal{F} \subseteq 2^\Omega$ such that it satisfies the following properties:

1. $\Omega \in \mathcal{F}$.
2. $\forall E \in \mathcal{F}, E^c \in \mathcal{F}$.
3. If $E_1, E_2 \dots$ is a sequence of sets in \mathcal{F} , then $\cup_{i=1}^{\infty} E_i \in \mathcal{F}$.

The function $\mathbb{P} : \mathcal{F} \rightarrow \mathbb{R}$ is called probability measure and satisfies following properties:

1. $\forall E \in \mathcal{F}, \mathbb{P}(E) \geq 0$.
2. $\mathbb{P}(\Omega) = 1$.
3. If $E_1, E_2 \dots$ is a sequence of disjoint sets (mutually exclusive events) in \mathcal{F} , then $\mathbb{P}(\sum_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mathbb{P}(E_i)$.

Random Variables: The function $\mathbf{X} : \Omega \rightarrow \mathbb{R}$ is called a Random variable if \mathbf{X} is measurable i.e., $\forall x \in \mathbb{R}$ following holds

$$\{\omega : \mathbf{X}(\omega) \leq x\} \in \mathcal{F}$$

Expectation of a Random Variable: The function $\mathbb{E}[\mathbf{X}] : \mathcal{X} \rightarrow \mathbb{R}$ called Expectation of a Random variable \mathbf{X} is defined as follows:

$$\mathbb{E}[\mathbf{X}] = \int_{\Omega} \mathbf{X}(\omega) \mathbb{P}(d\omega)$$

The following definitions of $\mathbb{E}[\mathbf{X}]$ hold depending on the nature of sample space:

1. If Ω is discrete, then $\mathcal{F} = 2^\Omega$ and $\mathbb{P}[w \in \Omega : \mathbf{X}(w) = x] = p_x$. The expectation is given by $\mathbb{E}[\mathbf{X}] = \sum_x x p_x$.

2. If \mathbf{X} is continuous random variable, with probability density function $f_{\mathbf{X}} : \mathbb{R} \rightarrow \mathbb{R}$ then expectation is given by $\mathbb{E}[\mathbf{X}] = \int_{\mathbb{R}} x f_{\mathbf{X}}(x) dx$.

Some of the properties of expectation are given below:

1. If \mathbf{X} and \mathbf{Y} are random variables, then $\mathbb{E}[\mathbf{X} + \mathbf{Y}] = \mathbb{E}[\mathbf{X}] + \mathbb{E}[\mathbf{Y}]$.
2. If \mathbf{X} is non-negative random variable i.e., $\mathbb{P}[\mathbf{X} < 0] = 0$ then expectation of \mathbf{X} is given by $\mathbb{E}[\mathbf{X}] = \int_0^{\infty} \mathbb{P}[\mathbf{X} \geq x] dx$.
3. Corresponding to any event $E \in \mathcal{F}$, we can define its Indicator random variable 1_E is defined as

$$1_E(\omega) = \begin{cases} 1 & \omega \in E \\ 0 & \text{otherwise} \end{cases}$$

then we have $\mathbb{E}[1_E] = \mathbb{P}(E), \forall E \in \mathcal{F}$.

Variance of a Random Variable: The variance of a random variable \mathbf{X} is given

$$\text{Var}(\mathbf{X}) = \mathbb{E}[(\mathbf{X} - \mathbb{E}[\mathbf{X}])^2]$$

The variance $\text{Var}(\mathbf{X}) = 0$ iff $\mathbb{P}[\mathbf{X} = \mathbb{E}[\mathbf{X}]] = 1$.

Conditional Probability and Expectation: Let \mathbf{X} and \mathbf{Y} be two discrete random variables on probability space $(\Omega, \mathcal{F}, \mathbb{P})$ then conditional Expectation of \mathbf{X} given \mathbf{Y} .

$$\mathbb{E}[\mathbf{X}/\mathbf{Y} = \mathbf{y}] = \sum_x x \mathbb{P}[\mathbf{X} = x/\mathbf{Y} = \mathbf{y}]$$

where $\mathbb{P}[\mathbf{X} = x/\mathbf{Y} = \mathbf{y}] = \frac{\mathbb{P}[\mathbf{X}=x, \mathbf{Y}=\mathbf{y}]}{\mathbb{P}[\mathbf{Y}=\mathbf{y}]}$ is called the conditional probability of \mathbf{X} given \mathbf{Y} with $\mathbb{P}[\mathbf{Y} = \mathbf{y}] > 0$. Let \mathbf{X} and \mathbf{Y} be two continuous random variables on probability space $(\Omega, \mathcal{F}, \mathbb{P})$ then conditional Expectation of \mathbf{X} given \mathbf{Y} .

$$\mathbb{E}[\mathbf{X}/\mathbf{Y} = \mathbf{y}] = \int_{\mathbb{R}} x f_{\mathbf{X}/\mathbf{Y}}(x/y) dx$$

where $f_{\mathbf{X}/\mathbf{Y}}(x/y) = \frac{f_{\mathbf{X}, \mathbf{Y}}(x, y)}{f_{\mathbf{Y}}(y)}$ is called the conditional probability of \mathbf{X} given \mathbf{Y} .

Independence: For $A, B \in \mathcal{F}$, then events A and B are said to be independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

Similarly for random variables \mathbf{X} and \mathbf{Y} on $(\Omega, \mathcal{F}, \mathbb{P})$ are said to be independent if $\forall x, y \in \mathbb{R}$ the following holds

$$\mathbb{P}(\mathbf{X} \leq x, \mathbf{Y} \leq y) = \mathbb{P}[\mathbf{X} \leq x] \cdot \mathbb{P}[\mathbf{Y} \leq y]$$

or alternatively,

$$\mathbb{E}[\mathbf{X}/\mathbf{Y} = \mathbf{y}] = \sum_x x \mathbb{P}[\mathbf{X} = x/\mathbf{Y} = y]$$

where $\mathbb{P}[\mathbf{X} = x/\mathbf{Y} = y] = \frac{\mathbb{P}[\mathbf{X}=x, \mathbf{Y}=y]}{\mathbb{P}[\mathbf{Y}=y]}$ where $\mathbb{P}[\mathbf{Y}=y] > 0$.

Strong Law of Large Numbers: Let X_1, X_2, X_3, \dots be a sequence of i.i.d random variables. Suppose that $\mathbb{E}[|\mathbf{X}_1|] < \infty$ and $\mathbb{E}[\mathbf{X}_1] = \mu$. Then

$$\mathbb{P}\left[\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^n \mathbf{X}_i = \mu\right] = 1$$

Central Limit of Theorem: Let X_1, X_2, X_3, \dots be a sequence of i.i.d random variables. Suppose that $\mathbb{E}[\mathbf{X}_1] = \mu$ and $Var(\mathbf{X}_1) = \sigma^2$. Then

$$\mathbb{P}\left[\left(\frac{1}{n} \sum_{i=1}^n \mathbf{X}_i - \mu\right) \geq \frac{\varepsilon}{\sqrt{n}}\right] \rightarrow \Phi(\varepsilon/\sigma) \text{ as } n \rightarrow \infty$$

where Φ is the cumulative distribution of standard normal random variable.

Markov Inequality: For a non-negative random variable \mathbf{X} , $\forall z > 0$,

$$\mathbb{P}[\mathbf{X} \geq z] \leq \frac{\mathbb{E}[\mathbf{X}]}{z}.$$

Proof:

$$\begin{aligned} \mathbb{E}[\mathbf{X}] &= \mathbb{E}[\mathbf{X} \mathbf{1}_{\{\mathbf{X} \geq z\}} + \mathbf{X} \mathbf{1}_{\{\mathbf{X} < z\}}] \\ &= \mathbb{E}[\mathbf{X} \mathbf{1}_{\{\mathbf{X} \geq z\}}] + \mathbb{E}[\mathbf{X} \mathbf{1}_{\{\mathbf{X} < z\}}] \\ &\geq \mathbb{E}[\mathbf{X} \mathbf{1}_{\{\mathbf{X} \geq z\}}], \text{ since } \mathbb{E}[\mathbf{X} \mathbf{1}_{\{\mathbf{X} < z\}}] \geq 0 \\ &\geq \mathbb{E}[\mathbf{X} \mathbf{1}_{\{\mathbf{X} \geq z\}}] \\ &\geq \mathbb{E}[z \mathbf{1}_{\{\mathbf{X} \geq z\}}] \\ &\geq z \mathbb{P}[\mathbf{X} \geq z] \end{aligned}$$

□

Chebyshev Inequality:

$$\mathbb{P}[|\mathbf{X} - \mathbb{E}[\mathbf{X}]| \geq z] \leq \frac{Var(\mathbf{X})}{z^2}.$$

Hoeffding's Inequality: Let $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$ be independent random variables such that $\mathbf{X}_i \in [a_i, b_i]$ for $a_i, b_i \in \mathbb{R}, \forall i$.

$$\mathbb{P}\left[\frac{1}{n}\left(\sum_{i=1}^n \mathbf{X}_i - \sum_{i=1}^n \mathbb{E}[\mathbf{X}_i]\right) > \varepsilon\right] \leq \exp\left(-\frac{2n\varepsilon^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$$