E1 245: Online Prediction & Learning Fall 2015
Lecture 3 — August 11

Lecturer: Aditya Gopalan Scribe: Prakash Barman

3.1 RECAP

e Math Tools - Probability, Expectation, Variance, Strong Law of Large Numbers, Central
Limit Theorem, Markov and Chebyshev’s inequality

e Chernoff bound ( Hoeffding’s inequality). The General case : Let X1,X>,...., X;, be iid random

variables. Assume X; are almost surely bounded i.e. Pr(X; € [a,b]) =1, 1 <i < n Then we

have Pr[% " Xi—EX; > €] < exp(@z—”j)zz). If we fix a tolerance &, then this probability

goes down exponentially with n.

In the following sections we continue to see some more tools and concepts that are needed.

3.2 Bernstein’s Inequality

Let X1,X>....., X,, be iid random variables with zero mean and 62 = Var(X;). Assume |X;| < 1,Vi.
Then for all € > 0,
—ne?

1 n
Pr[; Y Xi > €] <exp]
i=1

The result is useful when variance of X; is small. Suppose 62 < 1i.e 62 = 0(¢) = 2(c? + )=

O(¢), then note that the bound on R.H.S = exp(—ng) vs. exp(—ne?) in Hoeffding’s inequality.

3.3 Convexity

3.3.1 Convex Set

A set K C R? is convex, if for any two points that lie in K i.e. Vx,y € K and VA € [0, 1], the line
segment between the two points also lies in Ki.e Ax+ (1 —A)y € K
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3.3.2 Convex Function

A real-valued function f : K — R, where K C R4 is a convex set, is called convex if the line
segment between any two points on the graph of the function lies above the graph. i.e. Vx,y € K
and VA € [0, 1],

fAx+(1=4)y) <Af(x)+(1=2A)f(y) (3.2)

vt € [0, 1]

tf(x )+ 1 =6)f(y)

I (tx+(1-t)y) >

X tx+(1-t)y y

Figure 3.1. convex Function

e g: K — Ris concave if (-g) is convex

3.3.3 Convex Differentiable Function

Let K C R9 be convex. Then the function f: K — Ris aconvex differentiable function if and only
if the function lies above all of its tangents i.e. Vx,y € K,

fO) = f@x)+ V) (y—x) (3.3)

The convex differentiable function f : K — R, o > 0 is called o-strongly convex if Vx,y € K,
T o 2
FO) 2 f)+ V)7 —=x) + 5 Iy —xl] (3.4)
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If the function f is twice continuously differentiable, then f is strongly convex with parameter o
if and only if V2f(x) > oI for all x in the domain, where I is the identity and V2f is the Hessian
matrix. e.g. f(x) = %HXHZ is a u-strongly convex; y > 0

3.4 Basic Inequalities

3.4.1 Arithmatic-Geometric mean

Given a list of n numbers Vxi,x2,.....,x, > 0

1
1 n n n
AM (X1,X2, .y Xp) = . Zx,' > GM (x1,Xx2,....,Xp) = (Hxl) (3.5)

with equality if and only if Vi, x; = x

3.4.2 Cauchy-Schwarz Inequality

For all vectors x1,x2,.....,Xn;V1,¥2, ---.., ¥n € R it is true that

n n n
Xixz'yf < w/;xﬂ / Zly,-z (3.6)
i= i= i=

with equality if and only if 3 o s.t. y; = ox; Vi
e Notations :

n
— Inner Product: <x,y >= Y x;y;
i=1

— Cauchy Schwarz inequality: < x,y >< ||x||2]|]|2

3.4.3 Holder’s Inequality

1

. 1
Let ||x]|, = (Z |x|p>p,p >0,x€ R"and p & q be atleast 1 i.e. p,g > 1 with%—ké =1, Then
i=1

<x,y > ||x|[ p|I¥lg 3.7

3.4.4 Exponential Inequalities
e VxecR:e">1+x
e Vx>0:e"< l—x—l—%2

o Vx< 5 e <1l-—x

N[—
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3.5 1 bit prediction with expert advice

Consider a learning protocol where learner makes some predictions at some discrete time instances
based on the predictions made by a pool of experts and the previous outcomes, e.g.

- Suppose the learner is trying to predict the movement of a stock on the market. Say, on day
‘" y; € {0,1} is the outcome. [ e.g. 0 — valuedecreased,1 — valueincreased]

- Additionally you have access to the advice of N "EXPERTS” [ Here, EXPERTS can be
thought of as financial analysts, or some algorithms/rules, or it may be rumours/news/media
etc.]. Let’s consider the below prediction model:

Algorithm Prediction model
1: Atround t=1,2,34,....
2: Observe recommendations of experts: fi € {0,1} Vi € [N]
3: Predicted output p; based on the “recommendations + past information”
4: see actual output y;

Our Goal is to minimize the number of prediction mistakes M7 (A) made by the algorithm (
T

say Algorithm ‘A’). Mr(A) = ¥ 1{fi; # y:}, where T is the total number of rounds and A is
=1

the prediction algorithm. In the following subsections, we will see some algorithms to achieve
our goal. For our next algorithm (Halving/Mjority algorithm), we will assume that there exists a

perfect expert which makes no mistakes in predicting the outcomes i.e. m[m} Mz (i) =0.
i€[N

3.5.1 Halving/Majority Algorithm [Barzdin and Freivalds (1972), Angluin
(1988)]

Algorithm Halving/Majority Algorithm
1. INPUT:

Prediction of N experts are available : fi;, f2/,....., fns € {0,1}

Suppose 3 a perfect expert j € [N] s.t. fj; =y Vt € [T],i.e Mr(j) =0
2: INITIALIZE:

Trust all experts initially
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Algorithm Halving/Majority Algorithm (continued)
3: Atround t=1,2,34,....

Observe recommendations of experts: f; € {0,1} Vi € [N]

Predicted output p; = majority (S;), where S| = [N] and S; C [N]

see actual output y;

Stop trusting/discard experts that were wrong i.e. S ={i € S;: fi; =y}
4: END

Theorem 3.1. Under the assumption that there exists a perfect expert, Halving/Majority algorithm
will make at most log, N mistakes, Mp(MAJ) < logoN

Proof: Observation 1: Whenever Majority makes a mistake - Number of experts reduces by a
factor of  i.e. |Sy41| < @ After j'* mistake; number of trusted experts |S;| < %
Observation 2: Because there is a perfect expert, we will always have |Sr| > 1.

Using observations 1 and 2, we have

N
2!
N>2/

logoN > j i.e.
M7 (MAJ) < logaN

Homework:
* Show that under the assumption that there exists a perfect expert

max [Mr(MAJ) — min M7 (i)] < logoN
Yieyr i€[N]

this bound is tight. i.e. no other alogrithm performs better;vVAlgo(A) 3 a sequence y;...yr
and f,, i € [N],t <T along with perfect expert such that M7 (A) > logoN

* What if number of mistakes by best expert is not zero, i.e. m[m] Mr(i)=m#0
i€[N

- Show: A simple modification of majority algorithm gives My (Algo) < (m+ 1)logoN

We will now show an algorithm that gets M7 (Algo) < am+ blog,N; for some constants a and
b that don’t depend on m and N. The idea for designing the algorithm: importance or trust of an
expert goes down with number of mistakes.
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3.5.2 Weighted Majority Algorithm [Littlestone-Warmuth (1994)]

Algorithm Weighted Majority Algorithm
1: INPUT:

Prediction of N experts are available : fi;, f2;,....., fv: € {0, 1}
2: INITIALIZE:

Initially assign weight 1 to all experts : w; ; = 1, Vi € [N]

Fix € € [0,1]
3: Ateachroundr > 1

Observe recommendations of experts: f; 1 € {0,1} Vi € [N]

Predicted output p; is given by

1 s if Z Wit Z Z Wit
i:ﬁ,tzl i:.fi,f =0

0, otherwise

Pt

see actual output y,

Re-weight each expert: w; ;1 =w;; (1 —€)7; 9= Lty
4. END

Note :
- For € = 1: Weighted Majority Algorithm = Halving/Majority Algorithm

Theorem 3.2. For any sequence of instances with binary labels i.e. Vy;....yr € {0,1}1 with N

expert predictions avaiable at each round f;;,i € [N] and 1 <t < T, with parameter € € [0,1], then

weighted majority algorithm mistakes at most will be given by

(min My (1) log( 1) + fogN

Mr(WTMAJ(g)) < 1
log(1—=)

Proof: Proof will be done in next class O

(3.8)

| )

Corollary 3.3. ife < 1, then Mr(WTMAJ(€)) < a(m) +b(logN), for some constants a and b that
don’t depend on m and N; m is number of mistakes by best expert

Proof: We know that Vx < % P <]l—-x= log(ﬁ) <g+¢g?

Also, Vxe R : ¥ > 1+x:>log(l_%) > £
2

- My (WTMAJ(g)) < "EHEIHOsN _ o1 4 gy 1 208N ) 4 p(1ogN) 0
2

€

3-6



References

[1] Nicolo Cesa-Bianchi and Gabor Lugosi, “Prediction, Learning and Games”, Cambridge Uni-
versity Press, 2006.

[2] Gabor Bartok, David Pal, Csaba Szepesvari, and Istvan Szita, “Online learning - CMPUT
654", Course Notes. 2011.



