3.1 RECAP

- Math Tools - Probability, Expectation, Variance, Strong Law of Large Numbers, Central Limit Theorem, Markov and Chebyshev's inequality
- Chernoff bound (Hoeffding's inequality). The General case : Let $X_{1}, X_{2}, \ldots ., X_{n}$ be iid random variables. Assume X_{i} are almost surely bounded i.e. $\operatorname{Pr}\left(X_{i} \in[a, b]\right)=1,1 \leq i \leq n$ Then we have $\operatorname{Pr}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}-E X_{1} \geq \varepsilon\right] \leq \exp \left(\frac{-2 n \varepsilon^{2}}{(b-a)^{2}}\right)$. If we fix a tolerance ε, then this probability goes down exponentially with n .

In the following sections we continue to see some more tools and concepts that are needed.

3.2 Bernstein's Inequality

Let $X_{1}, X_{2}, \ldots ., X_{n}$ be iid random variables with zero mean and $\sigma^{2}=\operatorname{Var}\left(X_{1}\right)$. Assume $\left|X_{i}\right| \leq 1, \forall i$. Then for all $\varepsilon \geq 0$,

$$
\begin{equation*}
\operatorname{Pr}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}>\varepsilon\right] \leq \exp \left[\frac{-n \varepsilon^{2}}{2\left(\sigma^{2}+\frac{\varepsilon}{3}\right)}\right] \tag{3.1}
\end{equation*}
$$

The result is useful when variance of X_{i} is small. Suppose $\sigma^{2} \ll 1$ i.e $\sigma^{2}=O(\varepsilon) \Rightarrow 2\left(\sigma^{2}+\frac{\varepsilon}{3}\right) \approx$ $O(\varepsilon)$, then note that the bound on R.H.S $\approx \exp (-n \varepsilon)$ vs. $\exp \left(-n \varepsilon^{2}\right)$ in Hoeffding's inequality.

3.3 Convexity

3.3.1 Convex Set

A set $K \subseteq \mathbb{R}^{d}$ is convex, if for any two points that lie in K i.e. $\forall x, y \in K$ and $\forall \lambda \in[0,1]$, the line segment between the two points also lies in K i.e $\lambda x+(1-\lambda) y \in K$

3.3.2 Convex Function

A real-valued function $f: K \rightarrow \mathbb{R}$, where $K \subseteq \mathbb{R}^{d}$ is a convex set, is called convex if the line segment between any two points on the graph of the function lies above the graph. i.e. $\forall x, y \in K$ and $\forall \lambda \in[0,1]$,

$$
\begin{equation*}
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) \tag{3.2}
\end{equation*}
$$

Figure 3.1. convex Function

- $g: K \rightarrow \mathbb{R}$ is concave if $(-\mathrm{g})$ is convex

3.3.3 Convex Differentiable Function

Let $K \subseteq \mathbb{R}^{d}$ be convex. Then the function $f: K \rightarrow \mathbb{R}$ is a convex differentiable function if and only if the function lies above all of its tangents i.e. $\forall x, y \in K$,

$$
\begin{equation*}
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \tag{3.3}
\end{equation*}
$$

The convex differentiable function $f: K \rightarrow \mathbb{R}, \sigma \geq 0$ is called σ-strongly convex if $\forall x, y \in K$,

$$
\begin{equation*}
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)+\frac{\sigma}{2}\|y-x\|^{2} \tag{3.4}
\end{equation*}
$$

If the function f is twice continuously differentiable, then f is strongly convex with parameter σ if and only if $\nabla^{2} f(x) \geq \sigma I$ for all x in the domain, where I is the identity and $\nabla^{2} f$ is the Hessian matrix. e.g. $f(x)=\frac{\mu}{2}\|x\|^{2}$ is a μ-strongly convex; $\mu \geq 0$

3.4 Basic Inequalities

3.4.1 Arithmatic-Geometric mean

Given a list of n numbers $\forall x_{1}, x_{2}, \ldots ., x_{n} \geq 0$

$$
\begin{equation*}
A M\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} x_{i} \geq G M\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}} \tag{3.5}
\end{equation*}
$$

with equality if and only if $\forall i, x_{i}=x$

3.4.2 Cauchy-Schwarz Inequality

For all vectors $x_{1}, x_{2}, \ldots \ldots, x_{n} ; y_{1}, y_{2}, \ldots ., y_{n} \in \mathbb{R}$ it is true that

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i} y_{i} \leq \sqrt{\sum_{i=1}^{n} x_{i}^{2}} \sqrt{\sum_{i=1}^{n} y_{i}^{2}} \tag{3.6}
\end{equation*}
$$

with equality if and only if $\exists \alpha$ s.t. $y_{i}=\alpha x_{i} \forall i$

- Notations :
- Inner Product: $\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}$
- Cauchy Schwarz inequality: $\langle x, y\rangle \leq\|x\|_{2}\|y\|_{2}$

3.4.3 Holder's Inequality

Let $\|x\|_{p}=\left(\sum_{i=1}^{n}|x|^{p}\right)^{\frac{1}{p}}, p>0, x \in \mathbb{R}^{n}$ and $\mathrm{p} \& \mathrm{q}$ be atleast 1 i.e. $p, q \geq 1$ with $\frac{1}{p}+\frac{1}{q}=1$, Then

$$
\begin{equation*}
<x, y>\leq\|x\|_{p}\|y\|_{q} \tag{3.7}
\end{equation*}
$$

3.4.4 Exponential Inequalities

- $\forall x \in \mathbb{R}: e^{x} \geq 1+x$
- $\forall x \geq 0: e^{-x} \leq 1-x+\frac{x^{2}}{2}$
- $\forall x \leq \frac{1}{2}: e^{-x-x^{2}} \leq 1-x$

3.51 bit prediction with expert advice

Consider a learning protocol where learner makes some predictions at some discrete time instances based on the predictions made by a pool of experts and the previous outcomes, e.g.

- Suppose the learner is trying to predict the movement of a stock on the market. Say, on day ' t ' $y_{t} \in\{0,1\}$ is the outcome. [e.g. $0 \rightarrow$ valuedecreased, $1 \rightarrow$ valueincreased]
- Additionally you have access to the advice of N "EXPERTS" [Here, EXPERTS can be thought of as financial analysts, or some algorithms/rules, or it may be rumours/news/media etc.]. Let's consider the below prediction model:

```
Algorithm Prediction model
    At round \(\mathrm{t}=1,2,3,4, \ldots\).
    Observe recommendations of experts: \(f_{i, 1} \in\{0,1\} \forall i \in[N]\)
    Predicted output \(p_{t}\) based on the "recommendations + past information"
    see actual output \(y_{t}\)
```

Our Goal is to minimize the number of prediction mistakes $M_{T}(A)$ made by the algorithm (say Algorithm 'A'). $M_{T}(A)=\sum_{t=1}^{T} \mathbb{1}\left\{f_{i, t} \neq y_{t}\right\}$, where T is the total number of rounds and A is the prediction algorithm. In the following subsections, we will see some algorithms to achieve our goal. For our next algorithm (Halving/Mjority algorithm), we will assume that there exists a perfect expert which makes no mistakes in predicting the outcomes i.e. $\min _{i \in[N]} M_{T}(i)=0$.

3.5.1 Halving/Majority Algorithm [Barzdin and Freivalds (1972), Angluin (1988)]

```
Algorithm Halving/Majority Algorithm
    INPUT:
        Prediction of N experts are available : \(f_{1, t}, f_{2, t}, \ldots ., f_{N, t} \in\{0,1\}\)
        Suppose \(\exists\) a perfect expert \(j \in[N]\) s.t. \(f_{j, t}=y_{t} \forall t \in[T]\), i.e \(M_{T}(j)=0\)
```


INITIALIZE:

Trust all experts initially

```
Algorithm Halving/Majority Algorithm (continued)
3: At round \(t=1,2,3,4, \ldots\).
```

Observe recommendations of experts: $f_{i, 1} \in\{0,1\} \forall i \in[N]$
Predicted output $p_{t}=$ majority $\left(S_{t}\right)$, where $S_{1}=[N]$ and $S_{t} \subseteq[N]$
see actual output y_{t}
Stop trusting/discard experts that were wrong i.e. $S_{t+1}=\left\{i \in S_{t}: f_{i, t}=y_{t}\right\}$
4: END

Theorem 3.1. Under the assumption that there exists a perfect expert, Halving/Majority algorithm will make at most $\log _{2} N$ mistakes, $M_{T}(M A J) \leq \log _{2} N$

Proof: Observation 1: Whenever Majority makes a mistake - Number of experts reduces by a factor of $\frac{1}{2}$ i.e. $\left|S_{t+1}\right| \leq \frac{\left|S_{t}\right|}{2}$. After $j^{t h}$ mistake; number of trusted experts $\left|S_{t}\right| \leq \frac{N}{2^{j}}$.

Observation 2: Because there is a perfect expert, we will always have $\left|S_{T}\right| \geq 1$.
Using observations 1 and 2, we have

$$
\begin{aligned}
& \frac{N}{2^{j}} \geq 1 \\
& N \geq 2^{j} \\
& \log _{2} N \geq j \\
& M_{T}(M A J) \leq \log _{2} N
\end{aligned}
$$

Homework:

* Show that under the assumption that there exists a perfect expert

$$
\max _{y_{1} \ldots y_{T}}\left[M_{T}(M A J)-\min _{i \in[N]} M_{T}(i)\right] \leq \log _{2} N
$$

this bound is tight. i.e. no other alogrithm performs better; $\forall \operatorname{Algo}(A) \exists$ a sequence $y_{1} \ldots y_{T}$ and $f_{i, t}, i \in[N], t \leq T$ along with perfect expert such that $M_{T}(A) \geq \log _{2} N$

* What if number of mistakes by best expert is not zero, i.e. $\min _{i \in[N]} M_{T}(i)=m \neq 0$
- Show: A simple modification of majority algorithm gives $M_{T}($ Algo $) \leq(m+1) \log _{2} N$

We will now show an algorithm that gets $M_{T}(\operatorname{Algo}) \leq a m+b \log _{2} N$; for some constants a and b that don't depend on m and N . The idea for designing the algorithm: importance or trust of an expert goes down with number of mistakes.

3.5.2 Weighted Majority Algorithm [Littlestone-Warmuth (1994)]

Algorithm Weighted Majority Algorithm
 1: INPUT:

Prediction of N experts are available : $f_{1, t}, f_{2, t}, \ldots ., f_{N, t} \in\{0,1\}$
2: INITIALIZE:
Initially assign weight 1 to all experts : $w_{i, 1}=1, \forall i \in[N]$
Fix $\varepsilon \in[0,1]$
3: At each round $t \geq 1$

- Observe recommendations of experts: $f_{i, 1} \in\{0,1\} \forall i \in[N]$
- Predicted output p_{t} is given by

$$
p_{t}= \begin{cases}1, & \text { if } \sum_{i: f_{i, t}=1} w_{i, t} \geq \sum_{i: f_{i, t}=0} w_{i, t} \\ 0, & \text { otherwise }\end{cases}
$$

- see actual output y_{t}
- Re-weight each expert: $w_{i, t+1}=w_{i, t}(1-\varepsilon)^{q} ; q=\mathbb{1}_{\left\{f_{i, t} \neq y_{t}\right\}}$

4: END

Note :

- For $\varepsilon=1$: Weighted Majority Algorithm \equiv Halving/MajorityAlgorithm

Theorem 3.2. For any sequence of instances with binary labels i.e. $\forall y_{1} \ldots . . y_{T} \in\{0,1\}^{T}$ with N expert predictions avaiable at each round $f_{i, t}, i \in[N]$ and $1 \leq t \leq T$, with parameter $\varepsilon \in[0,1]$, then weighted majority algorithm mistakes at most will be given by

$$
\begin{equation*}
M_{T}(\operatorname{WTMAJ}(\varepsilon)) \leq \frac{\left(\min _{i \in[N]} M_{T}(i)\right) \log \left(\frac{1}{1-\varepsilon}\right)+\log N}{\log \left(\frac{1}{1-\frac{\varepsilon}{2}}\right)} \tag{3.8}
\end{equation*}
$$

Proof: Proof will be done in next class
Corollary 3.3. if $\varepsilon \leq \frac{1}{2}$, then $M_{T}(W T M A J(\varepsilon)) \leq a(m)+b(\log N)$, for some constants a and b that don't depend on m and N; m is number of mistakes by best expert

Proof: We know that $\forall x \leq \frac{1}{2}: e^{-x-x^{2}} \leq 1-x \Rightarrow \log \left(\frac{1}{1-\varepsilon}\right) \leq \varepsilon+\varepsilon^{2}$ Also, $\forall x \in \mathbb{R}: e^{x} \geq 1+x \Rightarrow \log \left(\frac{1}{1-\frac{\varepsilon}{2}}\right) \geq \frac{\varepsilon}{2}$
$\therefore M_{T}(W T M A J(\varepsilon)) \leq \frac{m\left(\varepsilon+\varepsilon^{2}\right)+\log N}{\frac{\varepsilon}{2}}=2(1+\varepsilon) m+\frac{2 \log N}{\varepsilon}=a(m)+b(\log N)$

References

[1] Nicolo Cesa-Bianchi and Gabor Lugosi, "Prediction, Learning and Games", Cambridge University Press, 2006.
[2] Gabor Bartok, David Pal, Csaba Szepesvari, and Istvan Szita, "Online learning - CMPUT 654", Course Notes. 2011.

