
E1 245: Online Prediction & Learning Fall 2015

Lecture 3 — August 11
Lecturer: Aditya Gopalan Scribe: Prakash Barman

3.1 RECAP
• Math Tools - Probability, Expectation, Variance, Strong Law of Large Numbers, Central

Limit Theorem, Markov and Chebyshev’s inequality

• Chernoff bound ( Hoeffding’s inequality). The General case : Let X1,X2,...., Xn be iid random
variables. Assume Xi are almost surely bounded i.e. Pr(Xi ∈ [a,b]) = 1, 1 ≤ i ≤ n Then we
have Pr[1

n ∑
n
i=1 Xi−EX1 ≥ ε] ≤ exp( −2nε2

(b−a)2 ). If we fix a tolerance ε , then this probability
goes down exponentially with n.

In the following sections we continue to see some more tools and concepts that are needed.

3.2 Bernstein’s Inequality
Let X1,X2,...., Xn be iid random variables with zero mean and σ2 =Var(X1). Assume |Xi| ≤ 1,∀i.
Then for all ε ≥ 0,

Pr[
1
n

n

∑
i=1

Xi > ε]≤ exp[
−nε2

2(σ2 + ε

3)
]. (3.1)

The result is useful when variance of Xi is small. Suppose σ2� 1 i.e σ2 = O(ε)⇒ 2(σ2 + ε

3)≈
O(ε), then note that the bound on R.H.S ≈ exp(−nε) vs. exp(−nε2) in Hoeffding’s inequality.

3.3 Convexity

3.3.1 Convex Set
A set K ⊆ Rd is convex, if for any two points that lie in K i.e. ∀x,y ∈ K and ∀λ ∈ [0,1], the line
segment between the two points also lies in K i.e λx+(1−λ )y ∈ K
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3.3.2 Convex Function
A real-valued function f : K → R, where K ⊆ Rd is a convex set, is called convex if the line
segment between any two points on the graph of the function lies above the graph. i.e. ∀x,y ∈ K
and ∀λ ∈ [0,1],

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y) (3.2)

Figure 3.1. convex Function

• g : K→ R is concave if (-g) is convex

3.3.3 Convex Differentiable Function
Let K ⊆Rd be convex. Then the function f : K→R is a convex differentiable function if and only
if the function lies above all of its tangents i.e. ∀x,y ∈ K,

f (y)≥ f (x)+∇ f (x)T (y− x) (3.3)

The convex differentiable function f : K→ R, σ ≥ 0 is called σ -strongly convex if ∀x,y ∈ K,

f (y)≥ f (x)+∇ f (x)T (y− x)+
σ

2
‖y− x‖2 (3.4)
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If the function f is twice continuously differentiable, then f is strongly convex with parameter σ

if and only if ∇2 f (x) ≥ σ I for all x in the domain, where I is the identity and ∇2 f is the Hessian
matrix. e.g. f (x) = µ

2 ‖x‖
2 is a µ-strongly convex; µ ≥ 0

3.4 Basic Inequalities

3.4.1 Arithmatic-Geometric mean
Given a list of n numbers ∀x1,x2, .....,xn ≥ 0

AM(x1,x2, ....,xn) =
1
n

n

∑
i=1

xi ≥ GM(x1,x2, ....,xn) =

(
n

∏
i=1

xi

) 1
n

(3.5)

with equality if and only if ∀i,xi = x

3.4.2 Cauchy-Schwarz Inequality
For all vectors x1,x2, .....,xn;y1,y2, .....,yn ∈ R it is true that

n

∑
i=1

xiyi ≤

√
n

∑
i=1

x2
i

√
n

∑
i=1

y2
i (3.6)

with equality if and only if ∃ α s.t. yi = αxi ∀i

• Notations :

– Inner Product: < x,y >=
n
∑

i=1
xiyi

– Cauchy Schwarz inequality: < x,y >≤ ‖x‖2‖y‖2

3.4.3 Holder’s Inequality

Let ‖x‖p =

(
n
∑

i=1
|x|p
) 1

p

, p > 0, x ∈ Rn and p & q be atleast 1 i.e. p,q≥ 1 with 1
p +

1
q = 1, Then

< x,y >≤ ‖x‖p‖y‖q (3.7)

3.4.4 Exponential Inequalities
• ∀x ∈ R : ex ≥ 1+ x

• ∀x≥ 0 : e−x ≤ 1− x+ x2

2

• ∀x≤ 1
2 : e−x−x2 ≤ 1− x
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3.5 1 bit prediction with expert advice
Consider a learning protocol where learner makes some predictions at some discrete time instances
based on the predictions made by a pool of experts and the previous outcomes, e.g.

- Suppose the learner is trying to predict the movement of a stock on the market. Say, on day
‘t’ yt ∈ {0,1} is the outcome. [ e.g. 0→ valuedecreased,1→ valueincreased]

- Additionally you have access to the advice of N ”EXPERTS” [ Here, EXPERTS can be
thought of as financial analysts, or some algorithms/rules, or it may be rumours/news/media
etc.]. Let’s consider the below prediction model:

Algorithm Prediction model
1: At round t=1,2,3,4,....
2: Observe recommendations of experts: fi,1 ∈ {0,1} ∀i ∈ [N]
3: Predicted output pt based on the “recommendations + past information”
4: see actual output yt

Our Goal is to minimize the number of prediction mistakes MT (A) made by the algorithm (

say Algorithm ‘A’). MT (A) =
T
∑

t=1
1{ fi,t 6= yt}, where T is the total number of rounds and A is

the prediction algorithm. In the following subsections, we will see some algorithms to achieve
our goal. For our next algorithm (Halving/Mjority algorithm), we will assume that there exists a
perfect expert which makes no mistakes in predicting the outcomes i.e. min

i∈[N]
MT (i) = 0.

3.5.1 Halving/Majority Algorithm [Barzdin and Freivalds (1972), Angluin
(1988)]

Algorithm Halving/Majority Algorithm
1: INPUT:

Prediction of N experts are available : f1,t , f2,t , ....., fN,t ∈ {0,1}
Suppose ∃ a perfect expert j ∈ [N] s.t. f j,t = yt ∀t ∈ [T ] , i.e MT ( j) = 0

2: INITIALIZE:
Trust all experts initially
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Algorithm Halving/Majority Algorithm (continued)
3: At round t=1,2,3,4,....

Observe recommendations of experts: fi,1 ∈ {0,1} ∀i ∈ [N]

Predicted output pt = majority (St), where S1 = [N] and St ⊆ [N]

see actual output yt

Stop trusting/discard experts that were wrong i.e. St+1 = {i ∈ St : fi,t = yt}
4: END

Theorem 3.1. Under the assumption that there exists a perfect expert, Halving/Majority algorithm
will make at most log2N mistakes, MT (MAJ)≤ log2N

Proof: Observation 1: Whenever Majority makes a mistake - Number of experts reduces by a
factor of 1

2 i.e. |St+1| ≤ |St |
2 . After jth mistake; number of trusted experts |St | ≤ N

2 j .

Observation 2: Because there is a perfect expert, we will always have |ST | ≥ 1.

Using observations 1 and 2, we have

N
2 j ≥ 1

N ≥ 2 j

log2N ≥ j i.e.
MT (MAJ)≤ log2N

�

Homework:

* Show that under the assumption that there exists a perfect expert

max
y1...yT

[MT (MAJ)−min
i∈[N]

MT (i)]≤ log2N

this bound is tight. i.e. no other alogrithm performs better;∀Algo(A) ∃ a sequence y1...yT
and fi,t , i ∈ [N], t ≤ T along with perfect expert such that MT (A)≥ log2N

* What if number of mistakes by best expert is not zero, i.e. min
i∈[N]

MT (i) = m 6= 0

- Show: A simple modification of majority algorithm gives MT (Algo)≤ (m+1)log2N

We will now show an algorithm that gets MT (Algo)≤ am+blog2N; for some constants a and
b that don’t depend on m and N. The idea for designing the algorithm: importance or trust of an
expert goes down with number of mistakes.
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3.5.2 Weighted Majority Algorithm [Littlestone-Warmuth (1994)]

Algorithm Weighted Majority Algorithm
1: INPUT:

Prediction of N experts are available : f1,t , f2,t , ....., fN,t ∈ {0,1}
2: INITIALIZE:

Initially assign weight 1 to all experts : wi,1 = 1, ∀i ∈ [N]

Fix ε ∈ [0,1]

3: At each round t ≥ 1

- Observe recommendations of experts: fi,1 ∈ {0,1} ∀i ∈ [N]

- Predicted output pt is given by

pt =

1, if ∑
i: fi,t=1

wi,t ≥ ∑
i: fi,t=0

wi,t

0, otherwise

- see actual output yt

- Re-weight each expert: wi,t+1 = wi,t(1− ε)q ; q = 1{ fi,t 6=yt}

4: END

Note :

- For ε = 1: Weighted Majority Algorithm ≡ Halving/MajorityAlgorithm

Theorem 3.2. For any sequence of instances with binary labels i.e. ∀y1.....yT ∈ {0,1}T with N
expert predictions avaiable at each round fi,t , i ∈ [N] and 1≤ t ≤ T , with parameter ε ∈ [0,1], then
weighted majority algorithm mistakes at most will be given by

MT (WT MAJ(ε))≤
(min

i∈[N]
MT (i))log( 1

1−ε
)+ logN

log( 1
1− ε

2
)

(3.8)

Proof: Proof will be done in next class �

Corollary 3.3. if ε ≤ 1
2 , then MT (WT MAJ(ε))≤ a(m)+b(logN), for some constants a and b that

don’t depend on m and N; m is number of mistakes by best expert

Proof: We know that ∀x≤ 1
2 : e−x−x2 ≤ 1− x⇒ log( 1

1−ε
)≤ ε + ε2

Also, ∀x ∈ R : ex ≥ 1+ x⇒ log( 1
1− ε

2
)≥ ε

2

∴ MT (WT MAJ(ε))≤ m(ε+ε2)+logN
ε

2
= 2(1+ ε)m+ 2logN

ε
=a(m)+b(logN) �
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