E1 245: Online Prediction and Learning Fall 2015
Lecture 6 — August 20
Lecturer: Aditya Gopalan Scribe: Sindhu P R

6.1 Recap

In the last lecture, we focussed on expert advice based online learning algorithms wherein the loss
function was convex. We specifically looked at the Exponential Weights algorithm for convex
decision space and loss functions. The algorithm enjoys a regret bound of % + 108N \hich was
established by employing Jensen’s inequality and Hoeffding’s Lemma. Today, we will look at the
scenario when the decision space and the loss function need not have the nice convex structure.

6.2 Regret for a Deterministic Prediction Algorithm

Let us consider 2 = % = {0, 1} and the loss function to be /(p,y) = 1{p # y}. It can be seen that
the decision space as well as the range of the loss function is a discrete space (and non-convex).
Suppose we consider two experts - one who always recommends 0 and the other who always
recommends 1 to the agent. Thus, |&| = 2.

Theorem 6.1. For 2, %, and & as before, suppose </ is a deterministic prediction algorithm. If
the algorithm predicts the outcome for T time instants, then, Ry (/) > %

The general idea of the proof is to construct an outcome sequence (yi,ys,...,yr) for which the
algorithm suffers a large loss and hence large regret.

Proof: The prediction of the algorithm at time ¢ is denoted as p;. The prediction of Expert j at
time ¢ is given by f};. Note that p;, fj; € Z,i € {1,2} and V¢t > 1. Consider the outcome sequence
(y1,2,---,yr) defined as follows:

yi=1=pi(fi1,f21)
and
Vit >1 Yt = 1 _ﬁf(f117f217y17f127f22;y27'"7yl—17f1t7f21)‘

Every outcome is inverse of whatever the algorithm predicts. In such a scenario, /' makes T
number of mistakes. Hence Ly = T'. From the definition of the experts, we also know that

L T
min Y 1{fi # v} < b}

i€{1,2} /5
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6.3 Randomized Exponential Weights Algorithm

Algorithm 1 REXP-Wts(1)
Input: Set of expert indices: &
Convex decision space: ¥
Outcome space: %
Loss function [ : 2 x % — R ™, [ is convex on 4

Parameters: 1 >0
Initialise: W;; =1Vie {1,2,...,N}

Foreachroundr =1,2,...

- Get expert advice Fj;, i € {1,2,...,N}

- Draw I; € {1,2,...,N} according to P(Il; = i) = Nm"

Y Wi
=

- Predicted outcome p; = f7,;
- See y;. Algorithm suffers loss I(f7,,yr)
- Update weights:
Wiir1 = Wirexp(—=n(fis,yr))

End

Theorem 6.2. Let 7,2/ ,1 be arbitrary and |&'| = N. Denote the expected regret of the Randomized
Exponential Weights algorithm as Ry (REXP-Wts(n)). Then,

log N T
g

Ry (REXP-Wts(n)) = sup E [LT —minLi7T} <
B e

T
where Lt = Y. I(fis, 1)

=1

We will connect this problem to a new learning problem (in the spirit of reductions in computer
science) and transform (2,%,1,&8) to (2 ,% ,1,&) so that
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li !
e 9 .,% are convex

e Expected Regret of REXP-Wts(n) running on (Z,%/,1,&) = Deterministic Regret of EXP-
Wts(1) running on (2, %", 1", &)

Proof: Step I: Construction

! N / /
-9 ={rcRN: Y m>0Vi},ie 2 isaN-dimensional simplex and hence & is convex in
=
RN l
- =Y x PN

L O fis fos e fN)) = ﬁl ml(f;,y). So, [ is convex in 7'
i—
Given{y;} €y.{fir € Z2},1 <t <T,1<i<N we define a corresponding sequence:
fi €7
fir=e=(0,0,....1,...,00€ 7
y; S @/,y; = (yt7f1t7f2t7"'7th)

Step II: Transformation
Let us now run EXP-Wts(n) on (2,2 ,1',&") with {y, }1</<7.
Observation 1: Upon transformation the per-round losses of the experts remain the same.
! (fi,t?yt) =1 (ei,y;)
=1 (eia (yhfl,t?' .o 7fN,t))
= l(fLTayt)
= L,’7T = L;’,T'
So, /
minL; 7 =minL; y
i i ’
1—1
= Weights used by both algorithms are the same. { W;; = exp {—r[ Y l(fi,st)H
s=1

Observation 2:

E{l(fra:30)] E{l(fra:y)1 Py = i)

I
™=

I
—_

N
Wi
e J l .
,';ZWJ,I (fz,nyt)
J
=1 ((nlt;an- "775Nt)7(yhflt?th;"'?th))
= l (ﬁt7yt)'
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By EXP-Wts result for convex losses we get,

T T
o . oo logN nT
Y (Brov) —min YU (Froy) | € =+
=1 b=l | n
- :
. logN T
= ZE[l(flf,ty)’t)]—mianl(fihyt) S f} _f_n?
=1 =1 ]

6.3.1 Bounding the Tail of the Regret

The previous result helped bound the (worst case) expected regret of the REXPWTS algorithm.
One could ask - can the variance or tail of the regret be nontrivially large? It turns out that this is
not the case - we can control the deviation of the regret from its mean as follows.

Theorem 6.3. Let (#,%,1,&) be arbitrary and |&| = N. Then, for any 0 < § < 1, the loss of
REXP-Wts(n) satisties the following:

vy}, v{fis} P

N . T 1
LT —]E[LT] Z Elog(g)] S 5

and with probability > (1 —9):

. [TloeN  |Tlog(+
Ly —minL; 7 < Zg + —5(6)
l
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