

Lecture 9 — September 1

Lecturer: Aditya Gopalan

Scribe: Shreyas S

9.1 Recap - Tracking the Best Expert

In the previous lecture, we introduced another prediction game setting called **Actions Game**. The setting is a tuple $(\mathbb{A}, \mathbb{Y}, \ell)$, where

1. \mathbb{A} is the set actions of available, given by $\{1, 2, \dots, N\}$.
2. \mathbb{Y} is the space of outcomes.
3. $\ell : \mathbb{A} \times \mathbb{Y} \rightarrow \mathbb{R}$ is the loss function.

The game is defined for each time $t \geq 1$ as follows:

1. The predictor plays an (randomized) action i .
2. The predictor sees the outcome y_t and suffers a loss $\ell(i, y_t)$.

The regret of an algorithm \mathcal{A} in actions game setting with respect to a compound-action/switching-experts i.e., $(i_1, i_2, \dots, i_T) \in [N]^T$ for T rounds is given by

$$\mathbf{R}_T^{\mathcal{A}}(i_1, i_2, \dots, i_T) = E \left[\sum_{t=1}^T \ell(\mathbb{I}_t, y_t) - \sum_{t=1}^T \ell(i_t, y_t) \right]$$

where \mathbb{I}_t is the action chosen \mathcal{A} at time t . Recall the definition of space of experts who can switch at-most m times i.e.,

$$\mathcal{E}_{(m)} = \{(i_1, i_2, \dots, i_T) \in [N]^T : \#(i_1, i_2, \dots, i_T) \leq m\}$$

where $\#(i_1, i_2, \dots, i_T) = \sum_{t=1}^T \mathbb{1}\{i_{t-1} \neq i_t\}$. Then we proceeded to give definition of the regret of the algorithm \mathcal{A} over $\mathcal{E}_{(m)}$.

$$\mathbf{R}_T^{\mathcal{A}}(\mathcal{E}_{(m)}) = E \left[\sum_{t=1}^T \ell(\mathbb{I}_t, y_t) \right] - \min_{(i_1, i_2, \dots, i_T) \in \mathcal{E}_{(m)}} \sum_{t=1}^T \ell(i_t, y_t)$$

9.2 Bound on $|\mathcal{E}_{(m)}|$

Lemma 9.1.

$$|\mathcal{E}_{(m)}| \leq N^{m+1} \exp \left[(T-1)H\left(\frac{m}{(T-1)}\right) \right]$$

when $\forall x \in [0, 1]$ and where $H(x) = -[x \log x + (1-x) \log(1-x)]$.

Proof: We use the following lemma to prove the bound.

Lemma 9.2. $\forall k$, such that $0 \leq k \leq m$, then $\binom{n}{k} \leq \exp [nH(\frac{k}{n})]$.

From the previous lecture we know that,

$$\begin{aligned} |\mathcal{E}_{(m)}| &= \sum_{k=0}^m \binom{T-1}{k} N(N-1)^k \\ &\leq \binom{T-1}{m} NN^m, \text{ (By over counting.)} \\ &\leq \exp \left[(T-1)H\left(\frac{m}{(T-1)}\right) \right] N^{m+1}, \text{ (from Lemma (9.2))} \end{aligned}$$

□

9.3 R-EXPWTS Algo over $\mathcal{E}_{(m)}$

We now use R-EXPWTS on the space of switching-experts/compound actions. The R-EXPWTS is run over $\mathcal{E} \subseteq [N]^T$ as follows:

1. Initially $\forall (i_1, \dots, i_T) \in \mathcal{E}$, we set $w'_1(i_1, \dots, i_T) = 1$.
2. For each time $t \geq 1$, sample $E_t \in \mathcal{E}$, according to current weights w'_t . Suppose $E_t = (i_1, \dots, i_T)$ then play the action $I_t = i_t$.
3. $\forall (j_1, j_2, \dots, j_T) \in \mathcal{E}$, update weights

$$w'_{t+1}(j_1, \dots, j_T) = w'_t(j_1, \dots, j_T) \exp [-\eta \ell(i_t, y_t)]$$

Note: For $\mathcal{E} = \mathcal{E}_{(0)}$, we get back R-EXPWTS(η) over N actions.

Note: For $T \gg 1$, $\mathcal{E} = \mathcal{E}_{(m)}$, $m < \frac{T}{2}$,

$$\begin{aligned} |\mathcal{E}_{(m)}| &= \sum_{k=0}^m \binom{T-1}{k} N(N-1)^k \\ &\geq \binom{T-1}{m} (N-1)^m \\ &\geq \left(\frac{T-1}{m}\right)^m (N-1)^m. \end{aligned}$$

Theorem 9.3. *The R-EXPWTS algorithm when run with $\mathcal{E}_{(m)}$ as the set of “experts”, then*

$$E \left[\sum_{t=1}^T \ell(\mathbb{I}_t, y_t) \right] \leq \min_{(i_1, i_2, \dots, i_T) \in \mathcal{E}_{(m)}} \sum_{t=1}^T \ell(i_t, y_t) + \sqrt{\frac{T}{2} \left[(m+1) \log N + (T-1)H\left(\frac{m}{T-1}\right) \right]}$$

Note:

$$\begin{aligned} & \text{If } \sqrt{\frac{T}{2} \left[(m+1) \log N + (T-1)H\left(\frac{m}{T-1}\right) \right]} = O(T) \\ & \Leftrightarrow \lim_{T \rightarrow \infty} \sqrt{\left[\frac{(m+1) \log N}{T} + H\left(\frac{m}{T}\right) \right]} = 0 \\ & \Leftrightarrow \frac{m}{T} \leftarrow 0 \text{ as } T \rightarrow \infty \\ & m = O(T) \end{aligned}$$

Naively running R-EXPWTS over $\mathcal{E}_{(m)}$ “experts” is impossible in practice. But we’ll show an efficient algorithm that updates N weights. Before that, lets look at the regret of “standard R-EXPWTS” with non uniform initial weights.

9.3.1 R-EXPWTS Algo with non uniform initial weights

We begin the section by stating a lemma (without proof).

Lemma 9.4. *Let us consider an N actions game with losses $\in [0, 1]$ and initialize the R-EXPWTS algorithm with initial weights $(w_{1,1}, w_{2,1}, \dots, w_{N,1}) \in \Delta_N$. Then*

$$\sum_{t=1}^T \sum_{i=1}^N p_{ti} \ell(i, y_t) \leq \frac{1}{\eta} \log \frac{1}{W_{T+1}} + \frac{\eta T}{8}$$

where $W_{T+1} = \sum_{t=1}^N w_{i,T+1} = \sum_{t=1}^N w_{i,1} \exp(\eta \sum_{t=1}^T \ell(i, y_t))$.

Note: In Bayesian terminology, $(w_{1,1}, w_{2,1}, \dots, w_{N,1})$ is known as the “prior belief” or “prior distribution”.

The high level idea in running the R-EXPWTS algorithm with non uniform weights is to initialize/maintain a prior on all compound actions in $[N]^T$, such that $\forall (i_1, i_2, \dots, i_T) \notin \mathcal{E}_{(m)}$ the weight on (i_1, i_2, \dots, i_T) is very small. Therefore the initial weight assignment for any compound action $(i_1, i_2, \dots, i_T) \in [N]^T$ set its weight as

$$\begin{aligned}
w'_1(i_1, i_2, \dots, i_T) &= \frac{1}{N} \left(\frac{\alpha}{N} \right)^{\#(i_1, i_2, \dots, i_T)} \left(1 - \alpha + \frac{\alpha}{N} \right)^{T-1-\#(i_1, i_2, \dots, i_T)} \\
&= \frac{1}{N} \left(\frac{\alpha}{N} \right)^{\sum_{s=1}^T 1\{i_{s+1} \neq i_s\}} \left(1 - \alpha + \frac{\alpha}{N} \right)^{T-1-\sum_{s=1}^T 1\{i_{s+1} \neq i_s\}} \\
&= \frac{1}{N} \prod_{s=1}^{T-1} \left(\frac{\alpha}{N} \right)^{1\{i_{s+1} \neq i_s\}} \left(1 - \alpha + \frac{\alpha}{N} \right)^{1\{i_{s+1} = i_s\}}
\end{aligned}$$

where $\alpha \in (0, 1)$ is referred as switching property. For convenience, define the “marinalized” weight notation

$$w'_1(i_1, i_2, \dots, i_t) = \sum_{(i_{t+1}, \dots, i_T)} w'_1(i_1, i_2, \dots, i_T)$$

Lemma 9.5. *The initial marginalized weights satisfy the following recursion: Let us consider an N actions game with losses $\in [0, 1]$ and initialize the R-EXPWTS algorithm with initial weights $(w_{1,1}, w_{2,1}, \dots, w_{N,1}) \in \delta_N$. Then*

$$\begin{aligned}
w'_1(i_1) &= \frac{1}{N}, \forall i_1 \in [N] \\
w'_1(i_1, i_2, \dots, i_{t+1}) &= w'_1(i_1, i_2, \dots, i_t) \left((1 - \alpha) 1\{i_{t+1} = i_t\} + \frac{\alpha}{N} \right)
\end{aligned}$$

Proof: The proof follows by observing that $\forall (i_1, i_2, \dots, i_T) \in [N]^T$, the initial weights admit the interpretation:

$$w'_1(i_1, i_2, \dots, i_T) = \mathbb{P}[\mathbf{X}_1 = i_1, \mathbf{X}_2 = i_2, \dots, \mathbf{X}_T = i_T],$$

the joint distribution of the first T states of a discrete time Markov chain with state space $= [N]$, where the initial state X_1 is uniformly distributed over $[N]$. In other words, $w'_1(i_1) = \mathbb{P}[\mathbf{X}_1 = i_1] = \frac{1}{N}, \forall i_1 \in [N]$ and the transition probabilities of the Markov chain are given by $\mathbb{P}[\mathbf{X}_{t+1} = i_{t+1} / \mathbf{X}_t = i_t] = ((1 - \alpha) 1\{i_{t+1} = i_t\} + \frac{\alpha}{N})$. \square

Bibliography

- [1] Gabor Bartok, David Pal, Csaba Szepesvari, and Istvan Szita. Online learning - CMPUT 654 Course Notes. 2011.
- [2] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning and Games. Cambridge University Press, 2006.