
E1 245: Online Prediction & Learning Fall 2014

Lecture 9 — September 1
Lecturer: Aditya Gopalan Scribe: Shreyas S

9.1 Recap - Tracking the Best Expert
In the previous lecture, we introduced another prediction game setting called Actions Game. The
setting is a tuple (A,Y, `), where

1. A is the set actions of available, given by {1,2, · · ·N}.

2. Y is the space of outcomes.

3. ` : A×Y→ R is the loss function.

The game is defined for each time t ≥ 1 as follows:

1. The predictor plays an (randomized) action i.

2. The predictor sees the outcome yt an suffers a loss `(i,yt).

The regret of an algorithm A in actions game setting with respect to a compound-action/
switching-experts i.e., (i1, i2, · · · , ıT ) ∈ [N]T for T rounds is given by

RA
T (i1, i2, · · · , iT ) = E

[
T

∑
t=1

`(It ,yt)−
T

∑
t=1

`(it ,yt)

]
where It is the action chosen A at time t. Recall the definition of space of experts who can

switch at-most m times i.e.,

E(m) = {(i1, i2, · · · , iT ) ∈ [N]T : #(i1, i2, · · · , iT )≤ m}

where #(i1, i2, · · · , iT ) = ∑
T
t=1 1{it−1 6= it}. Then we proceeded to give definition of the regret

of the algorithm A over E(m).

RA
T
(
E(m)

)
= E

[
T

∑
t=1

`(It ,yt)

]
− min

(i1,i2,··· ,iT )∈E(m)

T

∑
t=1

`(it ,yt)
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9.2 Bound on |E(m)|
Lemma 9.1.

|E(m)| ≤ Nm+1 exp
[
(T −1)H(

m
(T −1)

)

]
when ∀x ∈ [0,1] and where H(x) =−[x logx+(1− x) log(1− x)].

Proof: We use the following lemma to prove the bound.

Lemma 9.2. ∀k, such that 0≤ k ≤ m, then
(n

k

)
≤ exp

[
nH( k

n)
]
.

From the previous lecture we know that,

|E(m)|=
m

∑
k=0

(
T −1

k

)
N(N−1)k

≤
(

T −1
m

)
NNm, (By over counting.)

≤ exp
[
(T −1)H(

m
(T −1)

)

]
Nm+1, ( from Lemma (9.2) )

�

9.3 R-EXPWTS Algo over E(m)

We now use R-EXPWTS on the space of switching-experts/compound actions. The R-EXPWTS
is run over E ⊆ [N]T as follows:

1. Initially ∀(i1, · · · , iT ) ∈ E , we set w′1(i1, · · · , iT ) = 1.

2. For each time t ≥ 1, sample Et ∈E , according to current weights w′t . Suppose Et =(i1, · · · , iT )
then play the action It = it .

3. ∀( j1, j2, · · · , jT ) ∈ E , update weights

w′t+1( j1, · · · , jT ) = w′t( j1, · · · , jT )exp [−η`(it ,yt)]

� Note: For E = E(0), we get back R-EXPWTS(η) over N actions.

� Note: For T >> 1, E = E(m), m < T
2 ,

|E(m)|=
m

∑
k=0

(
T −1

k

)
N(N−1)k

≥
(

T −1
m

)
(N−1)m

≥
(

T −1
m

)m

(N−1)m.
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Theorem 9.3. The R-EXPWTS algorithm when run with E(m) as the set of “experts”, then

E

[
T

∑
t=1

`(It ,yt)

]
≤ min

(i1,i2,··· ,iT )∈E(m)

T

∑
t=1

`(it ,yt)+

√
T
2

[
(m+1) logN +(T −1)H

(
m

T −1

)]
� Note:

If

√
T
2

[
(m+1) logN +(T −1)H

(
m

T −1

)]
= O(T )

⇔ lim
T→∞

√[
(m+1) logN

T
+H

(m
T

)]
= 0

⇔ m
T
← 0 as T → ∞

m = O(T )

Naively running R-EXPWTS over E(m) “experts” is impossible in practice. But we’ll show
an efficient algorithm that updates N weights. Before that, lets look at the regret of “standard
R-EXPWTS” with non uniform initial weights.

9.3.1 R-EXPWTS Algo with non uniform initial weights
We begin the section by stating a lemma (without proof).

Lemma 9.4. Let us consider an N actions game with losses ∈ [0,1] and initialize the R-EXPWTS
algorithm with initial weights (w1,1,w2,1, · · · ,wN,1) ∈ ∆N . Then

T

∑
t=1

N

∑
t=1

pti`(i,yt)≤
1
η

log
1

WT+1
+

ηT
8

where WT+1 = ∑
N
t=1 wi,T+1 = ∑

N
t=1 wi,1 exp

(
η ∑

T
t=1 `(i,yt)

)
.

� Note: In Bayesian terminology, (w1,1,w2,1, · · · ,wN,1) is known as the “prior belief” or
“prior distribution”.

The high level idea in running the R-EXPWTS algorithm with non uniform weights is to initial-
ize/maintain a prior on all compound actions in [N]T , such that ∀(i1, i2, · · · , iT ) /∈ E(m) the weight
on (i1, i2, · · · , iT ) is very small. Therefore the initial weight assignment for any compound action
(i1, i2, · · · , iT ) ∈ [N]T set its weight as
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w′1(i1, i2, · · · , iT ) =
1
N

(
α

N

)#(i1,i2,··· ,iT )(
1−α +

α

N

)T−1−#(i1,i2,··· ,iT )

=
1
N

(
α

N

)
∑

T
s=1 1{is+1 6=is}(

1−α +
α

N

)T−1−∑
T
s=1 1{is+1 6=is}

=
1
N

T−1

∏
s=1

(
α

N

)1{is+1 6=is}(
1−α +

α

N

)1{is+1=is}

where α ∈ (0,1) is referred as switching property. For convenience, define the “marinalized”
weight notation

w′1(i1, i2, · · · , it) = ∑
(it+1,··· ,iT )

w′1(i1, i2, · · · , iT )

Lemma 9.5. The initial marginalized weights satisfy the following recursion: Let us consider an
N actions game with losses ∈ [0,1] and initialize the R-EXPWTS algorithm with initial weights
(w1,1,w2,1, · · · ,wN,1) ∈ δN . Then

w′1(i1) =
1
N

, ∀i1 ∈ [N]

w′1(i1, i2, · · · , it+1) = w′1(i1, i2, · · · , it)
(
(1−α)1{is+1 = is}+

α

N

)
Proof: The proof follows by observing that ∀(i1, i2, · · · , iT ) ∈ [N]T , the initial weights admit the
interpretation:

w′1(i1, i2, · · · , iT ) = P[X1 = i1,X2 = i2, · · · ,XT = iT ],

the joint distribution of the first T states of a discrete time Markov chain with state space = [N],
where the initial state X1 is uniformly distributed over [N]. In other words, w′1(i1) = P[X1 = i1] =
1
N , ∀i1 ∈ [N] and the transition probabilities of the Markov chain are given by P[Xt+1 = it+1/Xt =
it ] =

(
(1−α)1{it+1 = it}+ α

N

)
. �
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