E1 245: Online Prediction & Learning Fall 2014
Lecture 9 — September 1

Lecturer: Aditya Gopalan Scribe: Shreyas S

9.1 Recap - Tracking the Best Expert

In the previous lecture, we introduced another prediction game setting called Actions Game. The
setting is a tuple (A,Y,£), where

1. A is the set actions of available, given by {1,2,---N}.
2. Y is the space of outcomes.
3. £: AxY — Ris the loss function.

The game is defined for each time ¢ > 1 as follows:

1. The predictor plays an (randomized) action i.

2. The predictor sees the outcome y; an suffers a loss £(i,y;).

The regret of an algorithm 7 in actions game setting with respect to a compound-action/
switching-experts i.e., (i,i2,--- ,17) € [N]” for T rounds is given by

T T
Ry (i1,i2,++,ir) =E | Y 0(T;,y,) — Y €(ir,»r)
=1 t=1

where I; is the action chosen .o/ at time z. Recall the definition of space of experts who can

switch at-most m times i.e.,

(gb(m) = {(il,iz,--- 1) € [N]T c#(iy,ip, e ir) < m}
where #(i1,i2,- - ,ir) = Y.I_; 1{i;_1 # i;}. Then we proceeded to give definition of the regret
of the algorithm &/ over &,,,).

T

E(H,,yt)] — min Zf(ita)’t)

1=

T ( (m)) (1,02, iT ) EE ) 1=

t=1
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9.2 Bound on |&,)|

Lemma 9.1.
m

L
when Vx € [0, 1] and where H(x) = —[xlogx+ (1 —x)log(1 —x)].

ol < N Lexp (7= D

Proof: We use the following lemma to prove the bound.
Lemma 9.2. Vk, such that 0 <k <m, then (}) <exp [nH(%)].

From the previous lecture we know that,

o (T —1

il = 3 (7 v ot

k=0

IN

T—-1
( )NN’", (By over counting.)
m

m

(T-1)

<exp [(T —1)H( )} N1 (from Lemma (9.2) )

9.3 R-EXPWTS Algo over &,

We now use R-EXPWTS on the space of switching-experts/compound actions. The R-EXPWTS
is run over & C [N]7 as follows:

1. Initially V(iy,--- ,ir) € &, we set w) (i1, - ,ir) = 1.

2. Foreachtimet > 1, sample E, € &, according to current weights w,. Suppose E; = (i1, -+ ,ir)
then play the action I, = i;.

3. Y(j1,J2, ", Jjr) € &, update weights
wi1 (s dr) = wi(jr, -+ jr)exp [=nL(ir, yr)]
@ Note: For & = &), we get back R-EXPWTS(n) over N actions.
@ Note: For T >> 1,éa:é"(m),m< g,

|| = i (T; 1)N(N— 1)

k=0
> (Tn; 1)(N— 1"
> <%>m(N— ™.
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Theorem 9.3. The R-EXPWTS algorithm when run with &,,) as the set of “experts”, then

iam,w]é( min le(it,yw\/g{<m+1>1°gN+<T‘”H (%)]

=1 i17i27"'7i7‘)€@@(m) 1=

@ Note:

E

If \/g [(m+ 1)logN + (T — 1)H (%)] = O(T)

, (m+1)logN m
| SR 4 H ()
<:)Tlgio\/[ T * T

m
& —<0asT — o
T »

m=O0(T)

Naively running R-EXPWTS over &,,) “experts” is impossible in practice. But we’ll show
an efficient algorithm that updates N weights. Before that, lets look at the regret of “standard
R-EXPWTS” with non uniform initial weights.

9.3.1 R-EXPWTS Algo with non uniform initial weights

We begin the section by stating a lemma (without proof).

Lemma 9.4. Let us consider an N actions game with losses € [0, 1] and initialize the R-EXPWTS

algorithm with initial weights (wy 1,w21,--- ,wn.1) € Ay. Then
T N
1 1 nT
piil(i,y) < —log +
t;,zzi e n "Wy 8

where W1 = YN wirs1 =YXN wirexp (N Ll i)

@ Note: In Bayesian terminology, (wj 1,w21,---,wn,1) is known as the “prior belief” or
“prior distribution”.

The high level idea in running the R-EXPWTS algorithm with non uniform weights is to initial-
ize/maintain a prior on all compound actions in [N]”, such that V(i1 iz, ,ir) & &, the weight
on (iy,ip, -+ ,ir) is very small. Therefore the initial weight assignment for any compound action
(i1,i,--+ ,ir) € [N]T set its weight as
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# ll,lz, 1 1 (04 Tfl*#(ilaiZF"aiT)
J— a JE—
) (e )

S= 11{lv+13‘élv} o T—l—ZXT:1 1{is+13£is}
) (1 —a+ —)

(l17l27 )1

LZISQ 28

- (
-
- T <N> Wis #is} <1 s %) Wiy =is}

where o € (0,1) is referred as switching property. For convenience, define the “marinalized”
weight notation

— ZIHZIH

1)
I
_

Wll(i],iz,"',i[): Z Wll(i17i2;"'7iT)

(it+17"' 7iT)

Lemma 9.5. The initial marginalized weights satisfy the following recursion: Let us consider an
N actions game with losses € [0, 1] and initialize the R-EXPWTS algorithm with initial weights
(W171,W271,~ .- ,WN71) c 5]\/. Then

1

w’l(il):N,Vil € [N]

.. . .. . . . o
Wll(ll,lz,"' ,lz+1) :Wﬁ(llvlz;“' alz) ((1 —a)l{ls+1 le}+]—v)

Proof: The proof follows by observing that V(i1,ip,- - ,ir) € [N]7, the initial weights admit the
interpretation:
Wll(il,iz,--- Jgr) =PXy =i1,Xp =i, , X7 = i7],

the joint distribution of the first T states of a discrete time Markov chain with state space = [N],
where the initial state X; is uniformly distributed over [N]. In other words, w (i1) = P[X; = i1] =
% , Vi1 € [N] and the transition probabilities of the Markov chain are given by P[X;11 =i,11/X; =

i) = (1= o) 1{iy1 =i} + §). O
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