E1 245: Online Prediction & Learning
Lecture 5 — August 18

Lecturer: Aditya Gopalan Scribe: Ravi Ranjan

Fall 2015

5.1 Recap

In the last lecture, we looked at general problem of 1-Bit prediction. We studied weighted majority
algorithm for this problem and derived its worst case performance. We setup the problem of

prediction-with-expert-advice and defined following:
e Decison space : ¥
e Outcome space : %
e Loss function: [: 2 x % — R*
e Experts: &.

We saw some examples of the problem and defined Regret.

5.2 Experts game with convex losses

For this problme, we’ll consider that

1. 9 is a convex set in RY

2. I(.,y)is convex on Z,Vy € ¥ .
Examples of some convex loss function are:

1. I(p,y)=(p—y)’,for 2 =% =R
,for9 =% =R

2. l(p,y)=I|p—y
3. U(p,y)=|lp—yllg for 2=% =R and g > 1

4. I(m,y) = log (%),for.@: (reR:m>0Vi Yl m=1},% ={1,23,...

™)

Example of non-convex loss function is:

I(p,y) = Lp4y(p,y).
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5.2.1 Exponentially weighted average forecaster

Exponantially weighted average forecaster(EXPTWTS) algorithm is shown in algorithm 1. It is
also known as HEDGE or multiplicative weight algorithm. The algorithm takes learning-rate (n >
0) as parameter.

Algorithm 1 EXPWTS(n)
1: procedure

Parameter -
2: n=>0

Initialize:
3: Wil < 1,Vie [N]
4: t+1

loop: . .

A i Witlit

> pr < Zi[eN[]N] V"’i,z’
6: See y;
7 Wit Wl.’te—nl(fi‘,nyt)

For analysis of algorithm 1, let’s define the following functions
. T
L = ZKﬁn)’t)
=1

T
Lir =Y I(fi,y1)Vieé&.

t=1

Theorem 5.1. If & is convex, [(p,y) is convex on & and | : 9 x % — [0, 1], then regret of algo-
rithm 1 can be bounded by

Rr(EXPWTS(1)) <

|
ognl T
n 8

Proof: Let || = N. Define the potential function

4 L 1 % L i CnLi
a = — ngl = — Og Wi,l‘ fr— Og e 1,— .
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We have,
1 WT1
or1—01=— < ot )
71 wi
= llog e T
n N
> Ljog [ TN i
7 N
logN
=-—minL; 7 — 05 . (G.D)
ieN 7
On the other hand, the per step change in potential is,
1 w
¢ —¢—1 = —log t
n Wr—1
1 ZN e—anze—nl(ﬂtil,yH)
= —log | &=L N T
n = le —MNLit—2
N
_10g qu N(fis—1.31-1) (5.2)
where,
e_nLi172
qgi 7 1e TIL][ 2
So,
N
Z qi=1
i=1
Equation 5.2 can also be written in terms of expectation,
1
O — G = HlogE [e*nl(fz,z—l,ym)] (5.3)

where, [ is a random variable realization of i and ¢; can be thought of as P(I =

Hoeffding’s Lemma, stated in appendix A, on 5.3,

o —¢ 1 <-E [l(fl,layt—l)] +

|3
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<10 Elfri—1] 7)’[—1)4‘% (5.4)
——
Zi’i] Qifi,tfl:Ptll

_l(pl"\—byt—l)_'_g- (5.5

The inequality 5.4 is due to Jensen’s inequality, since /(p,y) is a convex funtion by assumption of
theorem. Summing equation 5.5 acrosst =2,3...T +1,

L nT
Or1— Z Pr>yt) ? (5.6)
Putting 5.6 and 5.1 together,
T 1 N
LT—mlnLlT < n—+ o8
8 n
U
Note:
1. If n = 81°g‘g‘ , then bound on regret is

Ry (EXPWTS) < ,/glog|g|. 5.7)

2. Optimal value of 1 requires knowing 7" in advance. But algorithm 1 can be tweaked to get
bound that holds uniformly over time. This is also called the doubling trick’. The bound in
this case will be,

Bound 5.7 is tight.

\/_
V2 —

R(EXPWTS/) <

—Og!@”’!

Appendix
A Hoeffding’s Lemma

Let X be a random variable with a < X < b, then Vz € R

log E [¢¥] < zE[X] + %(b —a)>.
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B Jensen’s inequality

Let K be a convex set and X be a random variable, which always takes values from K. If f : k — R
is a convex function, then

f(EX]) <Ef(X).
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