
E1 245: Online Prediction & Learning Fall 2015

Lecture 5 — August 18
Lecturer: Aditya Gopalan Scribe: Ravi Ranjan

5.1 Recap
In the last lecture, we looked at general problem of 1-Bit prediction. We studied weighted majority
algorithm for this problem and derived its worst case performance. We setup the problem of
prediction-with-expert-advice and defined following:

• Decison space : D

• Outcome space : Y

• Loss function : l : D×Y → R+

• Experts : E .

We saw some examples of the problem and defined Regret.

5.2 Experts game with convex losses
For this problme, we’ll consider that

1. D is a convex set in Rd

2. l(.,y) is convex on D ,∀y ∈ Y .

Examples of some convex loss function are:

1. l(p,y) = (p− y)2, for D = Y = R

2. l(p,y) = |p− y|, for D = Y = R

3. l(p,y) = ||p− y||q, for D = Y = Rd and q≥ 1

4. l(π,y) = log
(

1
π(y)

)
, for D =

{
π ∈ Rd : πi ≥ 0 ∀i,∑d

i=1 πi = 1
}

, Y = {1,2,3, . . . ,d}.

Example of non-convex loss function is:

l(p,y) = 1p 6=y(p,y).
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5.2.1 Exponentially weighted average forecaster
Exponantially weighted average forecaster(EXPTWTS) algorithm is shown in algorithm 1. It is
also known as HEDGE or multiplicative weight algorithm. The algorithm takes learning-rate (η ≥
0) as parameter.

Algorithm 1 EXPWTS(η)
1: procedure

Parameter :
2: η ≥ 0

Initialize:
3: wi,1← 1,∀i ∈ [N]
4: t← 1

loop:
5: p̂t ←

∑i∈[N] wi,t fi,t
∑i∈[N] wi,t

6: See yt
7: wi,t+1← wi,te−η l( fi,t ,yt)

For analysis of algorithm 1, let’s define the following functions

L̂t =
T

∑
t=1

l(p̂t ,yt)

Li,T =
T

∑
t=1

l( fi,t ,yt)∀i ∈ E .

Theorem 5.1. If D is convex, l(p,y) is convex on D and l : D ×Y → [0,1], then regret of algo-
rithm 1 can be bounded by

RT (EXPWT S(η))≤ log |η |
η

+
ηT
8

Proof: Let |E |= N. Define the potential function

φt =
1
η

logwt =
1
η

log
N

∑
i=1

wi,t =
1
η

log
N

∑
i=1

e−ηLi,t−1.
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We have,

φT+1−φ1 =
1
η

log
(

wT+1

w1

)
=

1
η

log
(

∑
N
i=1 e−ηLi,T

N

)
≥ 1

η
log

(
maxi∈[N] e−ηLi,T

N

)

=−min
i∈N

Li,T −
logN

η
. (5.1)

On the other hand, the per step change in potential is,

φt−φt−1 =
1
η

log
wt

wt−1

=
1
η

log

(
∑

N
i=1 e−ηLi,t−2e−η l( fi,t−1,yt−1)

∑
N
i=1 e−ηLi,t−2

)

=
1
η

log

(
N

∑
i=1

qie−η l( fi,t−1,yt−1)

)
(5.2)

where,

qi =
e−ηLi,t−2

∑
N
j=1 e−ηL j,t−2

≥ 0.

So,
N

∑
i=1

qi = 1.

Equation 5.2 can also be written in terms of expectation,

φt−φt−1 =
1
η

logE
[
e−η l( fI,t−1,yt−1)

]
(5.3)

where, I is a random variable realization of i and qi can be thought of as P(I = i). Applying
Hoeffding’s Lemma, stated in appendix A, on 5.3,

φt−φt−1 ≤−E [l( fI,t ,yt−1)]+
η

8
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≤−l( E[ fI,t−1]︸ ︷︷ ︸
∑

N
i=1 qi fi,t−1= ˆpt−1

,yt−1)+
η

8
(5.4)

=−l( ˆpt−1,yt−1)+
η

8
. (5.5)

The inequality 5.4 is due to Jensen’s inequality, since l(p,y) is a convex funtion by assumption of
theorem. Summing equation 5.5 across t = 2,3 . . .T +1,

φT+1−φ1 ≤−
T

∑
t=1

l(p̂t ,yt)+
ηT
8

. (5.6)

Putting 5.6 and 5.1 together,

L̂T −min
i∈N

Li,T ≤
ηT
8

+
logN

η
.

�

Note:

1. If η =

√
8log |E |

T , then bound on regret is

RT (EXPWT S)≤
√

T
2

log |E |. (5.7)

Bound 5.7 is tight.

2. Optimal value of η requires knowing T in advance. But algorithm 1 can be tweaked to get
bound that holds uniformly over time. This is also called the ’doubling trick’. The bound in
this case will be,

R(EXPWT S′)≤
√

2√
2−1

√
T
2

log |E |.

Appendix

A Hoeffding’s Lemma
Let X be a random variable with a≤ X ≤ b, then ∀z ∈ R

logE [ezx]≤ zE[X ]+
z2

8
(b−a)2.
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B Jensen’s inequality
Let K be a convex set and X be a random variable, which always takes values from K. If f : k→R
is a convex function, then

f (E[X ])≤E f (X).
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