E1 245 - Online Prediction and Learning, Aug-Dec 2015
Final Exam
December 2, 2015

Instructions:
e There are 5 main questions with a maximum score of 65 points. There is also a 6th (challenging)
question that is worth 25 bonus points. The total time allotted is 3 hours.

e No cellphones or electronic aids are allowed. You may use notes made on one A4 size sheet of
paper for reference.

1. Fenchel dual and Bregman divergence (10 points)
Let F': (0, +00)? = R, F(x) := Zle x;logx; — Z‘ij:l x;. This is called the generalized negative
entropy function.

(a) Find the Bregman divergence D induced by F'. (2 points)
(b) Find the Fenchel dual F'* of F'. Mention its domain clearly. (4 points)
(c) Find the Bregman divergence D+ induced by F™. (2 points)

(d) Show the following ‘three-point inequality’ for the Bregman divergence Dr(z,y) induced by
a differentiable convex function R : R? — R: (2 points)

Yu,v,w € RY: Dg(u,v) + Dr(v,w) = Dp(u,w) + (u — v, VR(w) — VR(v)).

2. Online vs. Classical Optimization (10 points)
Suppose you have a good online convex optimization algorithm .4 with the following property. For
any number of rounds 7" > 1 and any sequence of 7" loss functions from £: a family of convex
functions defined over a convex set K, the algorithm’s regret is at most f(7") in T rounds, with
respect to any single point of /C. Assume that f(7') = o(T) is a known sublinear function.

Now consider the standard (or ‘batch’) convex optimization problem: you want to find a minimum
of the convex function f € £ over K to within an accuracy € > 0. In other words, you must output
x € K satisfying f(2) < minyex f(y) + €. How you would accomplish this using the algorithm A?

[Hint: Run A with a particular sequence of functions and a particular number of rounds, and output
a single point in the end. Jensen’s inequality may be useful.]

3. Stochastic Bandit Algorithms (3 x 6 points; +2 points for getting all = 20 points)
Consider the general iid! stochastic bandit with N arms and all arms’ rewards being Bernoulli-
distributed. If p; denotes the expected reward of the ith arm, then the regret of a bandit algorithm,
that plays an arm [; € [N] at each time 1 < ¢ < T and observes only the random reward from the
chosen arm is defined to be R(7T') := T - max; j1; — Zthl E [pr,].

Explain briefly which of the following algorithms will/will not always achieve sublinear regret with
time horizon 7" (R(T') is sublinear < limp_, @ =0).

(a) Initialize s; := 0V i € [N]. Ateachtime ¢t < T, play [; := arg max; s; (break ties in any fixed
manner), get (stochastic) reward R; and update sy, < sy, + R:.

(b) Play all arms exactly once. For each arm ¢, initialize s; to be its observed reward and n; := 1.
Ateachtime t < T, play I := arg max; s;/n; (break ties in any fixed manner), get (stochastic)
reward R; and update sy, <= s;, + Ry, ny, < ng, + 1.

(c) Play all arms exactly once. For each arm ¢, initialize s; to be its observed reward and n; := 1. At
each time t < T, play I; := arg max; (si /ni + m) (break ties in any fixed manner),
get (stochastic) reward R; and update sy, < sy, + B¢, ny, < ny, + 1.

'independent and identically distributed

(d) For each arm ¢ € [N], initialize u; = 1,v; = 1. At each time ¢ < T, sample independent
random variables 6;(t) ~ Beta(u;, v;), and play I; := arg max; 0;(t) (break ties in any fixed
manner). Get (stochastic) reward R; and update uy, < uy, + Ry, vy, < v, + (1 — Ry).

(e) For each arm i € [N], initialize u; = 1,v; = 1. At each time ¢ < T, for each arm i let 6;(t) =
u;/ (u; + v;), i.e., the expected value of the Beta(u;, v;) distribution. Play I; := arg max; 6;(t)
(break ties in any fixed manner). Get (stochastic) reward R; and update u;, < uj, + R,
vy, < vr, + (1 — Ry).

(f) For each arm ¢ € [N], initialize p; := 1/N. Ateach time ¢t < T, play a random arm I; drawn

independently at that time according to the probability distribution (p, ..., px). Get (stochas-

Ryl[I,=i . _ _
%) for each i € [N], and update p; < pi/ > ;i) D)

for all arms i. (Note: 1[A] is the indicator random variable of event A.)

tic reward) Ry, let p; := p; exp (

4. ‘Worst-case’ UCB regret (10 points)
Consider the same Bernoulli stochastic /N-armed bandit setting as in Question 3. We proved in class
the following bound for the Upper Confidence Bound (UCB) algorithm:

log T 2
ET(T) < 281, 7

- R 1
—A§+3’ (1)

for any suboptimal arm 7 (i.e., ;; < max; p;), with T;(T") denoting the total number of times that
arm ¢ was chosen up to time 7', and A; := max; u; — p; denoting its gap from an optimal arm. This
directly gave us the regret bound R(T) := -~ | A, E[Ty(T)] < 8 D A0 loAgiT + NTNQ The bound,
however, is of no use when A; is very small as the regret can never be more than 7.

Show instead that the following gap-independent (or problem-independent, or ‘worst-case’) regret
bound for UCB holds.

2
R(T) < \/NT <8 log T + 7;) YN, T.

[Hint: Bound the regret using a well-known inequality, use the bound (1), and note that the 7;(7T")
sum to 1" across all ¢.]

5. Sequential probability estimation (15 points)
Suppose you are observing an arbitrary stream of bits y1, yo, ... with y; € {0,1}, generated from
some source (e.g., a digital voice signal). The following occurs at each round ¢ > 1: You are asked
to guess a probability distribution p; = (p(0),p(1)) € {(p,1 —p) : 0 < p < 1} for the next bit y;,

Following your guess, y; is revealed and you suffer a loss of log 5D (lyt) .

Consider competing in this game with the class of all ‘constant experts’. A constant expert is a rule
parameterized by p € [0, 1] that always guesses the probability distribution (p,1 — p) (this is the
analog of Constantly Rebalancing Portfolios in finance).

Write down the natural version of the Exponential Weights prediction algorithm with uniform initial
weights and learning rate = 1 [Note: There are infinitely many experts!]. Can you express its
prediction at each time ¢ in the simplest possible form?? You may use the identity

1
(nl + no + 1) (n1+n2))

ni

1
/ ¢" (1—q)" dg =
0

. |
for any integers n1,ng > 0, and where (Z) is the standard binomial coefficient (aaTbl?)‘.

6. x Bonus question - Sequential probability estimation (25 points)
With regard to the previous question. show that the regret of the Exponential Weights algorithm you
wrote down (with 7 = 1) in T" rounds with respect to all the constant experts, for any sequence of
bits y1, ..., yr, is no more than log(1 + 7).

%implementable using finitely many arithmetic operations

