
E1 245 - Online Prediction and Learning, Aug-Dec 2015
Final Exam
December 2, 2015

Instructions:

• There are 5 main questions with a maximum score of 65 points. There is also a 6th (challenging)
question that is worth 25 bonus points. The total time allotted is 3 hours.

• No cellphones or electronic aids are allowed. You may use notes made on one A4 size sheet of
paper for reference.

1. Fenchel dual and Bregman divergence (10 points)
Let F : (0,+∞)d → R, F (x) :=

∑d
i=1 xi log xi −

∑d
i=1 xi. This is called the generalized negative

entropy function.

(a) Find the Bregman divergence DF induced by F . (2 points)

(b) Find the Fenchel dual F ∗ of F . Mention its domain clearly. (4 points)

(c) Find the Bregman divergence DF ∗ induced by F ∗. (2 points)

(d) Show the following ‘three-point inequality’ for the Bregman divergence DR(x, y) induced by
a differentiable convex function R : Rd → R: (2 points)

∀u, v, w ∈ Rd : DR(u, v) +DR(v, w) = DR(u,w) + 〈u− v,∇R(w)−∇R(v)〉.

2. Online vs. Classical Optimization (10 points)
Suppose you have a good online convex optimization algorithm A with the following property. For
any number of rounds T ≥ 1 and any sequence of T loss functions from L: a family of convex
functions defined over a convex set K, the algorithm’s regret is at most f(T ) in T rounds, with
respect to any single point of K. Assume that f(T ) = o(T ) is a known sublinear function.

Now consider the standard (or ‘batch’) convex optimization problem: you want to find a minimum
of the convex function f ∈ L over K to within an accuracy ε > 0. In other words, you must output
x ∈ K satisfying f(x) ≤ miny∈K f(y) + ε. How you would accomplish this using the algorithm A?

[Hint: Run A with a particular sequence of functions and a particular number of rounds, and output
a single point in the end. Jensen’s inequality may be useful.]

3. Stochastic Bandit Algorithms (3× 6 points; +2 points for getting all = 20 points)
Consider the general iid1 stochastic bandit with N arms and all arms’ rewards being Bernoulli-
distributed. If µi denotes the expected reward of the ith arm, then the regret of a bandit algorithm,
that plays an arm It ∈ [N ] at each time 1 ≤ t ≤ T and observes only the random reward from the
chosen arm is defined to be R(T ) := T ·maxi µi −

∑T
t=1 E [µIt ].

Explain briefly which of the following algorithms will/will not always achieve sublinear regret with
time horizon T (R(T ) is sublinear⇔ limT→∞

R(T )
T = 0).

(a) Initialize si := 0 ∀ i ∈ [N ]. At each time t ≤ T , play It := arg maxi si (break ties in any fixed
manner), get (stochastic) reward Rt and update sIt ← sIt +Rt.

(b) Play all arms exactly once. For each arm i, initialize si to be its observed reward and ni := 1.
At each time t ≤ T , play It := arg maxi si/ni (break ties in any fixed manner), get (stochastic)
reward Rt and update sIt ← sIt +Rt, nIt ← nIt + 1.

(c) Play all arms exactly once. For each arm i, initialize si to be its observed reward and ni := 1. At
each time t ≤ T , play It := arg maxi

(
si/ni +

√
2 log t/ni

)
(break ties in any fixed manner),

get (stochastic) reward Rt and update sIt ← sIt +Rt, nIt ← nIt + 1.

1independent and identically distributed
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(d) For each arm i ∈ [N ], initialize ui = 1, vi = 1. At each time t ≤ T , sample independent
random variables θi(t) ∼ Beta(ui, vi), and play It := arg maxi θi(t) (break ties in any fixed
manner). Get (stochastic) reward Rt and update uIt ← uIt +Rt, vIt ← vIt + (1−Rt).

(e) For each arm i ∈ [N ], initialize ui = 1, vi = 1. At each time t ≤ T , for each arm i let θi(t) =
ui/(ui + vi), i.e., the expected value of the Beta(ui, vi) distribution. Play It := arg maxi θi(t)
(break ties in any fixed manner). Get (stochastic) reward Rt and update uIt ← uIt + Rt,
vIt ← vIt + (1−Rt).

(f) For each arm i ∈ [N ], initialize pi := 1/N . At each time t ≤ T , play a random arm It drawn
independently at that time according to the probability distribution (p1, . . . , pN ). Get (stochas-
tic reward) Rt, let p̃i := pi exp

(
Rt1[It=i]

pi
√
T

)
for each i ∈ [N ], and update pi ← p̃i/

∑
j∈[N ] p̃j

for all arms i. (Note: 1[A] is the indicator random variable of event A.)

4. ‘Worst-case’ UCB regret (10 points)
Consider the same Bernoulli stochastic N -armed bandit setting as in Question 3. We proved in class
the following bound for the Upper Confidence Bound (UCB) algorithm:

E [Ti(T )] ≤ 8 log T

∆2
i

+
π2

3
, (1)

for any suboptimal arm i (i.e., µi < maxj µj), with Ti(T ) denoting the total number of times that
arm i was chosen up to time T , and ∆i := maxj µj − µi denoting its gap from an optimal arm. This
directly gave us the regret bound R(T ) :=

∑N
i=1 ∆i E[Ti(T )] ≤ 8

∑
i:∆i>0

log T
∆i

+ Nπ2

3 . The bound,
however, is of no use when ∆i is very small as the regret can never be more than T .

Show instead that the following gap-independent (or problem-independent, or ‘worst-case’) regret
bound for UCB holds.

R(T ) ≤

√
NT

(
8 log T +

π2

3

)
∀N,T.

[Hint: Bound the regret using a well-known inequality, use the bound (1), and note that the Ti(T )
sum to T across all i.]

5. Sequential probability estimation (15 points)
Suppose you are observing an arbitrary stream of bits y1, y2, . . . with yi ∈ {0, 1}, generated from
some source (e.g., a digital voice signal). The following occurs at each round t ≥ 1: You are asked
to guess a probability distribution p̂t ≡ (p̂t(0), p̂t(1)) ∈ {(p, 1− p) : 0 ≤ p ≤ 1} for the next bit yt,
Following your guess, yt is revealed and you suffer a loss of log 1

p̂t(yt)
.

Consider competing in this game with the class of all ‘constant experts’. A constant expert is a rule
parameterized by p ∈ [0, 1] that always guesses the probability distribution (p, 1 − p) (this is the
analog of Constantly Rebalancing Portfolios in finance).

Write down the natural version of the Exponential Weights prediction algorithm with uniform initial
weights and learning rate η = 1 [Note: There are infinitely many experts!]. Can you express its
prediction at each time t in the simplest possible form2? You may use the identity∫ 1

0
qn1(1− q)n2 dq =

1

(n1 + n2 + 1)
(
n1+n2

n1

) ,
for any integers n1, n2 ≥ 0, and where

(
a
b

)
is the standard binomial coefficient (a+b)!

a!b! .

6. ? Bonus question - Sequential probability estimation (25 points)
With regard to the previous question. show that the regret of the Exponential Weights algorithm you
wrote down (with η = 1) in T rounds with respect to all the constant experts, for any sequence of
bits y1, . . . , yT , is no more than log(1 + T ).

2implementable using finitely many arithmetic operations
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