

Instructions:

- There are 5 main questions with a maximum score of 65 points. There is also a 6th (challenging) question that is worth 25 bonus points. The total time allotted is 3 hours.
- No cellphones or electronic aids are allowed. You may use notes made on one A4 size sheet of paper for reference.

1. Fenchel dual and Bregman divergence (10 points)

Let $F : (0, +\infty)^d \rightarrow \mathbb{R}$, $F(x) := \sum_{i=1}^d x_i \log x_i - \sum_{i=1}^d x_i$. This is called the generalized negative entropy function.

- Find the Bregman divergence D_F induced by F . (2 points)
- Find the Fenchel dual F^* of F . Mention its domain clearly. (4 points)
- Find the Bregman divergence D_{F^*} induced by F^* . (2 points)
- Show the following ‘three-point inequality’ for the Bregman divergence $D_R(x, y)$ induced by a differentiable convex function $R : \mathbb{R}^d \rightarrow \mathbb{R}$: (2 points)

$$\forall u, v, w \in \mathbb{R}^d : D_R(u, v) + D_R(v, w) = D_R(u, w) + \langle u - v, \nabla R(w) - \nabla R(v) \rangle.$$

Solution.

- $\forall x, y \in (0, +\infty)^d \quad D_F(x, y) = \sum_{i=1}^d x_i \log \frac{x_i}{y_i} - \sum_{i=1}^d (x_i - y_i)$.
- Domain of $F^* = \{\nabla F(x) : x \in (0, +\infty)^d\} = \{(\log x_1, \dots, \log x_d) : x_i > 0 \ \forall 1 \leq i \leq d\} = \mathbb{R}^d$.
For any $\theta \in \mathbb{R}^d$, we have $F^*(\theta) = \sup_{x \in (0, +\infty)^d} \langle x, \theta \rangle - F(x)$. At the optimizing point x^* , the gradient must vanish; thus $\forall i \ \theta_i = \log x_i^* \Rightarrow x_i^* = \exp(\theta_i) \Rightarrow F^*(\theta) = \sum_{i=1}^d \exp(\theta_i)$.
- $\forall \theta, \mu \in \mathbb{R}^d \quad D_{F^*}(\theta, \mu) = \sum_{i=1}^d (\exp(\theta_i) - \exp(\mu_i) - \exp(\mu_i)(\theta_i - \mu_i))$.
- We have,

$$\begin{aligned} D_R(u, v) + D_R(v, w) &= R(u) - R(v) - \langle \nabla R(v), u - v \rangle + R(v) - R(w) - \langle \nabla R(w), v - w \rangle \\ &= R(u) - R(w) - \langle \nabla R(w), u - w \rangle - \langle \nabla R(w), v - u \rangle - \langle \nabla R(v), u - v \rangle \\ &= D_R(u, w) + \langle u - v, \nabla R(w) - \nabla R(v) \rangle. \end{aligned}$$

2. Online vs. Classical Optimization (10 points)

Suppose you have a good online convex optimization algorithm \mathcal{A} with the following property. For any number of rounds $T \geq 1$ and any sequence of T loss functions from \mathcal{L} : a family of convex functions defined over a convex set \mathcal{K} , the algorithm’s regret is at most $f(T)$ in T rounds, with respect to any single point of \mathcal{K} . Assume that $f(T) = o(T)$ is a known sublinear function.

Now consider the standard (or ‘batch’) convex optimization problem: you want to find a minimum of the convex function $f \in \mathcal{L}$ over \mathcal{K} to within an accuracy $\epsilon > 0$. In other words, you must output $x \in \mathcal{K}$ satisfying $f(x) \leq \min_{y \in \mathcal{K}} f(y) + \epsilon$. How you would accomplish this using the algorithm \mathcal{A} ? [Hint: Run \mathcal{A} with a particular sequence of functions and a particular number of rounds, and output a single point in the end. Jensen’s inequality may be useful.]

Solution.

Feed the function f repeatedly for n rounds to the algorithm \mathcal{A} , i.e., $f_1 = f_2 = \dots = f_n = f$ (2 points). If the algorithm plays points $w_1, \dots, w_n \in \mathcal{K}$, then output the mean of these points $w := \frac{1}{n} \sum_{t=1}^n w_t$ which is guaranteed to lie in \mathcal{K} since \mathcal{K} is convex (3 points).

To determine n , observe that the regret property gives $\sum_{t=1}^n f(w_t) - n \cdot \min_{y \in \mathcal{K}} f(y) \leq f(n)$. Thus,

$$\begin{aligned} f(w) &= f\left(\frac{1}{n} \sum_{t=1}^n w_t\right) \leq \frac{1}{n} \sum_{t=1}^n f(w_t) \quad (\text{by Jensen's inequality} - 2 \text{ points}) \\ &\leq \min_{y \in \mathcal{K}} f(y) + \frac{f(n)}{n} \quad (\text{by the regret property; 1 point}) \\ &\leq \epsilon, \end{aligned}$$

provided we take n to be any number satisfying $\frac{f(n)}{n} \leq \epsilon$ (this is possible since $f(n)$ is sublinear in n ; 2 points).

3. *Stochastic Bandit Algorithms* (3 \times 6 points; +2 points for getting all = 20 points)

Consider the general iid¹ stochastic bandit with N arms and all arms' rewards being Bernoulli-distributed. If μ_i denotes the expected reward of the i th arm, then the regret of a bandit algorithm, that plays an arm $I_t \in [N]$ at each time $1 \leq t \leq T$ and observes only the random reward from the chosen arm is defined to be $R(T) := T \cdot \max_i \mu_i - \sum_{t=1}^T \mathbb{E}[\mu_{I_t}]$.

Explain briefly which of the following algorithms will/will not always achieve sublinear regret with time horizon T ($R(T)$ is sublinear $\Leftrightarrow \lim_{T \rightarrow \infty} \frac{R(T)}{T} = 0$).

- (a) Initialize $s_i := 0 \forall i \in [N]$. At each time $t \leq T$, play $I_t := \arg \max_i s_i$ (break ties in any fixed manner), get (stochastic) reward R_t and update $s_{I_t} \leftarrow s_{I_t} + R_t$.
- (b) Play all arms exactly once. For each arm i , initialize s_i to be its observed reward and $n_i := 1$. At each time $t \leq T$, play $I_t := \arg \max_i s_i/n_i$ (break ties in any fixed manner), get (stochastic) reward R_t and update $s_{I_t} \leftarrow s_{I_t} + R_t, n_{I_t} \leftarrow n_{I_t} + 1$.
- (c) Play all arms exactly once. For each arm i , initialize s_i to be its observed reward and $n_i := 1$. At each time $t \leq T$, play $I_t := \arg \max_i (s_i/n_i + \sqrt{2 \log t / n_i})$ (break ties in any fixed manner), get (stochastic) reward R_t and update $s_{I_t} \leftarrow s_{I_t} + R_t, n_{I_t} \leftarrow n_{I_t} + 1$.
- (d) For each arm $i \in [N]$, initialize $u_i = 1, v_i = 1$. At each time $t \leq T$, sample independent random variables $\theta_i(t) \sim \text{Beta}(u_i, v_i)$, and play $I_t := \arg \max_i \theta_i(t)$ (break ties in any fixed manner). Get (stochastic) reward R_t and update $u_{I_t} \leftarrow u_{I_t} + R_t, v_{I_t} \leftarrow v_{I_t} + (1 - R_t)$.
- (e) For each arm $i \in [N]$, initialize $u_i = 1, v_i = 1$. At each time $t \leq T$, for each arm i let $\theta_i(t) = u_i/(u_i + v_i)$, i.e., the expected value of the $\text{Beta}(u_i, v_i)$ distribution. Play $I_t := \arg \max_i \theta_i(t)$ (break ties in any fixed manner). Get (stochastic) reward R_t and update $u_{I_t} \leftarrow u_{I_t} + R_t, v_{I_t} \leftarrow v_{I_t} + (1 - R_t)$.
- (f) For each arm $i \in [N]$, initialize $p_i := 1/N$. At each time $t \leq T$, play a random arm I_t drawn independently at that time according to the probability distribution (p_1, \dots, p_N) . Get (stochastic reward) R_t , let $\tilde{p}_i := p_i \exp\left(\frac{R_t \mathbb{1}[I_t=i]}{p_i \sqrt{T}}\right)$ for each $i \in [N]$, and update $p_i \leftarrow \tilde{p}_i / \sum_{j \in [N]} \tilde{p}_j$ for all arms i . (Note: $\mathbb{1}[A]$ is the indicator random variable of event A .)

Solution.

- (a) Will not always achieve sublinear regret. The algorithm greedily plays the arm with the best current empirical mean. With non-zero probability the algorithm will get trapped into playing a bad arm at the start, leading to linear (expected) regret.
- (b) Will not always achieve sublinear regret. The algorithm is essentially the same as in (a).
- (c) Will always achieve sublinear regret. This is the Upper Confidence Bound (UCB) algorithm.
- (d) Will always achieve sublinear regret. This is the Thompson sampling algorithm with a Uniform (i.e., $\text{Beta}(1,1)$) prior.

¹independent and identically distributed

- (e) Will not always achieve sublinear regret. The algorithm is essentially the same as in (b) and (a).
- (f) Will always achieve sublinear regret. The algorithm is EXP3 with learning rate $\eta = 1/\sqrt{T}$, for which a sublinear regret guarantee holds even if rewards are arbitrary in $[0, 1]$.

4. ‘Worst-case’ UCB regret (10 points)

Consider the same Bernoulli stochastic N -armed bandit setting as in Question 3. We proved in class the following bound for the Upper Confidence Bound (UCB) algorithm:

$$\mathbb{E}[T_i(T)] \leq \frac{8 \log T}{\Delta_i^2} + \frac{\pi^2}{3}, \quad (1)$$

for any suboptimal arm i (i.e., $\mu_i < \max_j \mu_j$), with $T_i(T)$ denoting the total number of times that arm i was chosen up to time T , and $\Delta_i := \max_j \mu_j - \mu_i$ denoting its gap from an optimal arm. This directly gave us the regret bound $R(T) := \sum_{i=1}^N \Delta_i \mathbb{E}[T_i(T)] \leq 8 \sum_{i: \Delta_i > 0} \frac{\log T}{\Delta_i} + \frac{N\pi^2}{3}$. The bound, however, is of no use when Δ_i is very small as the regret can never be more than T .

Show instead that the following *gap-independent* (or problem-independent, or ‘worst-case’) regret bound for UCB holds.

$$R(T) \leq \sqrt{NT \left(8 \log T + \frac{\pi^2}{3} \right)} \quad \forall N, T.$$

[Hint: Bound the regret using a well-known inequality, use the bound (1), and note that the $T_i(T)$ sum to T across all i .]

Solution.

$$\begin{aligned} R(T) &\stackrel{(2)}{=} \sum_{i=1}^N \Delta_i \mathbb{E}[T_i(T)] \stackrel{(4)}{=} \sum_{i=1}^N \Delta_i \sqrt{\mathbb{E}[T_i(T)]} \sqrt{\mathbb{E}[T_i(T)]} \\ &\stackrel{(4)}{\leq} \sqrt{\sum_{i=1}^N \Delta_i^2 \mathbb{E}[T_i(T)]} \sqrt{\sum_{i=1}^N \mathbb{E}[T_i(T)]} \\ &\quad (\text{by the Cauchy-Schwarz inequality, i.e., } \sum_i x_i y_i \leq \sqrt{\sum_i x_i^2} \sqrt{\sum_i y_i^2}) \\ &\stackrel{(2)}{\leq} \sqrt{\sum_{i=1}^N \left(8 \log T + \frac{\Delta_i^2 \pi^2}{3} \right)} \sqrt{\mathbb{E} \left[\sum_{i=1}^N T_i(T) \right]} \quad (\text{by (1)}) \\ &\stackrel{(2)}{\leq} \sqrt{NT \left(8 \log T + \frac{\pi^2}{3} \right)} \quad (\text{since } \Delta_i^2 \leq 1 \text{ and } \sum_i T_i(T) = T). \end{aligned}$$

5. *Sequential probability estimation* (15 points)

Suppose you are observing an arbitrary stream of bits y_1, y_2, \dots with $y_i \in \{0, 1\}$, generated from some source (e.g., a digital voice signal). The following occurs at each round $t \geq 1$: You are asked to guess a probability distribution $\hat{p}_t \equiv (\hat{p}_t(0), \hat{p}_t(1)) \in \{(p, 1-p) : 0 \leq p \leq 1\}$ for the next bit y_t . Following your guess, y_t is revealed and you suffer a loss of $\log \frac{1}{\hat{p}_t(y_t)}$.

Consider competing in this game with the class of all ‘constant experts’. A constant expert is a rule parameterized by $p \in [0, 1]$ that always guesses the probability distribution $(p, 1-p)$ (this is the analog of Constantly Rebalancing Portfolios in finance).

Write down the natural version of the Exponential Weights prediction algorithm with uniform initial weights and learning rate $\eta = 1$ [Note: There are infinitely many experts!]. Can you express its

prediction at each time t in the *simplest* possible form²? You may use the identity

$$\int_0^1 q^{n_1} (1-q)^{n_2} dq = \frac{1}{(n_1 + n_2 + 1) \binom{n_1+n_2}{n_1}},$$

for any integers $n_1, n_2 \geq 0$, and where $\binom{a}{b}$ is the standard binomial coefficient $\frac{(a+b)!}{a!b!}$.

Solution.

The decision space is $\mathcal{D} = \{(p, 1-p) : 0 \leq p \leq 1\}$, the outcome space is $\mathcal{Y} = \{0, 1\}$, the loss function is $l((p(0), p(1)), y) = \log 1/p(y)$, and the set of experts is $\mathcal{E} = \{(p, 1-p) : 0 \leq p \leq 1\}$. (4 points)

The Exponential Weights algorithm with learning rate $\eta = 1$ is as follows: Initialize $w_1((p, 1-p)) = 1 \forall (p, 1-p) \in \mathcal{E}$. At each round $t \geq 1$, guess the distribution $\hat{p}_t = (\hat{p}_t(0), \hat{p}_t(1))$ where

$$\hat{p}_t(0) = \frac{\int_0^1 w_t((q, 1-q)) q dq}{\int_0^1 w_t((q, 1-q)) dq}.$$

Following this, observe y_t and update weights $\forall (p(0), p(1)) \in \mathcal{E}$:

$$\begin{aligned} w_{t+1}((p(0), p(1))) &= w_t((p(0), p(1))) \exp\left(-\eta \log \frac{1}{p(y_t)}\right) \\ &= w_t((p(0), p(1))) p(y_t) \\ &= w_t((p(0), p(1))) p(0)^{1-y_t} p(1)^{y_t} \\ &= \dots \\ &= w_1((p(0), p(1))) p(0)^{t-\sum_{s=1}^t y_s} p(1)^{\sum_{s=1}^t y_s} \\ &= p(0)^{n_0(t)} p(1)^{n_1(t)}, \quad (6 \text{ points}) \end{aligned}$$

where $n_0^t := (t - \sum_{s=1}^t y_s)$ and $n_1^t := \sum_{s=1}^t y_s$ are simply the number of 0s and 1s in the first t bits, respectively. Hence we can simplify the expression for $\hat{p}_t(0)$ as

$$\begin{aligned} \hat{p}_t(0) &= \frac{\int_0^1 q^{n_0^{t-1}} (1-q)^{n_1^{t-1}} q dq}{\int_0^1 q^{n_0^{t-1}} (1-q)^{n_1^{t-1}} dq} = \frac{\int_0^1 q^{1+n_0^{t-1}} (1-q)^{n_1^{t-1}} dq}{\int_0^1 q^{n_0^{t-1}} (1-q)^{n_1^{t-1}} dq} \\ &= \frac{(t-1+1) \binom{t-1}{n_0^{t-1}}}{(t+1) \binom{t}{1+n_0^{t-1}}} = \frac{n_0^{t-1} + 1}{t+1}. \quad (5 \text{ points}) \end{aligned}$$

With the above, the Exponential Weights algorithm becomes the very simple ‘add-1’ rule: At each time t , predict the distribution $\hat{p}_t = (\hat{p}_t(0), \hat{p}_t(1))$ where

$$\hat{p}_t(0) = \frac{\text{number of 0s seen so far} + 1}{t+1} \quad \text{and} \quad \hat{p}_t(1) = 1 - \hat{p}_t(0).$$

6. **★ Bonus question - Sequential probability estimation** (25 points)

With regard to the previous question, show that the regret of the Exponential Weights algorithm you wrote down (with $\eta = 1$) in T rounds with respect to all the constant experts, for any sequence of bits y_1, \dots, y_T , is no more than $\log(1+T)$.

Solution.

²implementable using finitely many arithmetic operations

The regret incurred in T rounds by the algorithm, for the sequence y_1, \dots, y_T , is

$$\begin{aligned}
R(T) &= \sum_{t=1}^T \log \frac{1}{\hat{p}_t(y_t)} - \min_{(p(0), p(1)) \in \mathcal{E}} \sum_{t=1}^T \log \frac{1}{p(y_t)} \\
&= \max_{(p(0), p(1)) \in \mathcal{E}} \left(\sum_{t=1}^T \log \frac{1}{\hat{p}_t(y_t)} - \sum_{t=1}^T \log \frac{1}{p(y_t)} \right) \\
&= \max_{(p(0), p(1)) \in \mathcal{E}} \left(\sum_{t=1}^T \log \frac{p(y_t)}{\hat{p}_t(y_t)} \right) = \max_{(p(0), p(1)) \in \mathcal{E}} \log \prod_{t=1}^T \frac{p(y_t)}{\hat{p}_t(y_t)} \\
&= \log \frac{\max_{(p(0), p(1)) \in \mathcal{E}} \prod_{t=1}^T p(y_t)}{\prod_{t=1}^T \hat{p}_t(y_t)} \\
&= \log \frac{\max_{(p(0), p(1)) \in \mathcal{E}} p(0)^{n_0^T} p(1)^{n_1^T}}{\prod_{t=1}^T \hat{p}_t(y_t)} \\
&= \log \frac{\left(\frac{n_0^T}{T}\right)^{n_0^T} \left(\frac{n_1^T}{T}\right)^{n_1^T}}{\prod_{t=1}^T \hat{p}_t(y_t)} = \log \frac{\left(\frac{n_0^T}{T}\right)^{n_0^T} \left(\frac{n_1^T}{T}\right)^{n_1^T}}{\frac{n_0(T)! n_1(T)!}{(T+1)!}} \\
&= \log(T+1) + \log \underbrace{\left(\frac{T}{n_0(T)}\right) \left(\frac{n_0^T}{T}\right)^{n_0^T} \left(\frac{n_1^T}{T}\right)^{n_1^T}}_{\leq 1} \\
&\leq \log(T+1).
\end{aligned}$$