
E1 245 - Online Prediction and Learning, Aug-Dec 2015
Final Exam
December 2, 2015

Instructions:

• There are 5 main questions with a maximum score of 65 points. There is also a 6th (challenging)
question that is worth 25 bonus points. The total time allotted is 3 hours.

• No cellphones or electronic aids are allowed. You may use notes made on one A4 size sheet of
paper for reference.

1. Fenchel dual and Bregman divergence (10 points)
Let F : (0,+∞)d → R, F (x) :=

∑d
i=1 xi log xi −

∑d
i=1 xi. This is called the generalized negative

entropy function.

(a) Find the Bregman divergence DF induced by F . (2 points)

(b) Find the Fenchel dual F ∗ of F . Mention its domain clearly. (4 points)

(c) Find the Bregman divergence DF ∗ induced by F ∗. (2 points)

(d) Show the following ‘three-point inequality’ for the Bregman divergence DR(x, y) induced by
a differentiable convex function R : Rd → R: (2 points)

∀u, v, w ∈ Rd : DR(u, v) +DR(v, w) = DR(u,w) + 〈u− v,∇R(w)−∇R(v)〉.

Solution.

(a) ∀x, y ∈ (0,+∞)d DF (x, y) =
∑d

i=1 xi log xi
yi
−
∑d

i=1(xi − yi).

(b) Domain of F ∗ =
{
∇F (x) : x ∈ (0,+∞)d

}
= {(log x1, . . . , log xd) : xi > 0 ∀1 ≤ i ≤ d} =

Rd.
For any θ ∈ Rd, we have F ∗(θ) = supx∈(0,+∞)〈x, θ〉 − F (x). At the optimizing point x∗, the
gradient must vanish; thus ∀i θi = log x∗i ⇒ x∗i = exp(θi)⇒ F ∗(θ) =

∑d
i=1 exp(θi).

(c) ∀θ, µ ∈ Rd DF ∗(θ, µ) =
∑d

i=1 (exp(θi)− exp(µi)− exp(µi)(θi − µi)).

(d) We have,

DR(u, v) +DR(v, w) = R(u)−R(v)− 〈∇R(v), u− v〉+R(v)−R(w)− 〈∇R(w), v − w〉
= R(u)−R(w)− 〈∇R(w), u− w〉 − 〈∇R(w), v − u〉 − 〈∇R(v), u− v〉
= DR(u,w) + 〈u− v,∇R(w)−∇R(v)〉.

2. Online vs. Classical Optimization (10 points)
Suppose you have a good online convex optimization algorithm A with the following property. For
any number of rounds T ≥ 1 and any sequence of T loss functions from L: a family of convex
functions defined over a convex set K, the algorithm’s regret is at most f(T ) in T rounds, with
respect to any single point of K. Assume that f(T ) = o(T ) is a known sublinear function.

Now consider the standard (or ‘batch’) convex optimization problem: you want to find a minimum
of the convex function f ∈ L over K to within an accuracy ε > 0. In other words, you must output
x ∈ K satisfying f(x) ≤ miny∈K f(y) + ε. How you would accomplish this using the algorithm A?

[Hint: Run A with a particular sequence of functions and a particular number of rounds, and output
a single point in the end. Jensen’s inequality may be useful.]

Solution.
Feed the function f repeatedly for n rounds to the algorithm A, i.e., f1 = f2 = · · · = fn = f
(2 points). If the algorithm plays points w1, . . . , wn ∈ K, then output the mean of these points
w := 1

n

∑n
t=1wt which is guaranteed to lie in K since K is convex (3 points).
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To determine n, observe that the regret property gives
∑n

t=1 f(wt)−n ·miny∈K f(y) ≤ f(n). Thus,

f(w) = f

(
1

n

n∑
t=1

wt

)
≤ 1

n

n∑
t=1

f(wt) (by Jensen’s inequality – 2 points)

≤ min
y∈K

f(y) +
f(n)

n
(by the regret property; 1 point)

≤ ε,

provided we take n to be any number satisfying f(n)
n ≤ ε (this is possible since f(n) is sublinear in

n; 2 points).

3. Stochastic Bandit Algorithms (3× 6 points; +2 points for getting all = 20 points)
Consider the general iid1 stochastic bandit with N arms and all arms’ rewards being Bernoulli-
distributed. If µi denotes the expected reward of the ith arm, then the regret of a bandit algorithm,
that plays an arm It ∈ [N ] at each time 1 ≤ t ≤ T and observes only the random reward from the
chosen arm is defined to be R(T ) := T ·maxi µi −

∑T
t=1 E [µIt ].

Explain briefly which of the following algorithms will/will not always achieve sublinear regret with
time horizon T (R(T ) is sublinear⇔ limT→∞

R(T )
T = 0).

(a) Initialize si := 0 ∀ i ∈ [N ]. At each time t ≤ T , play It := arg maxi si (break ties in any fixed
manner), get (stochastic) reward Rt and update sIt ← sIt +Rt.

(b) Play all arms exactly once. For each arm i, initialize si to be its observed reward and ni := 1.
At each time t ≤ T , play It := arg maxi si/ni (break ties in any fixed manner), get (stochastic)
reward Rt and update sIt ← sIt +Rt, nIt ← nIt + 1.

(c) Play all arms exactly once. For each arm i, initialize si to be its observed reward and ni := 1. At
each time t ≤ T , play It := arg maxi

(
si/ni +

√
2 log t/ni

)
(break ties in any fixed manner),

get (stochastic) reward Rt and update sIt ← sIt +Rt, nIt ← nIt + 1.

(d) For each arm i ∈ [N ], initialize ui = 1, vi = 1. At each time t ≤ T , sample independent
random variables θi(t) ∼ Beta(ui, vi), and play It := arg maxi θi(t) (break ties in any fixed
manner). Get (stochastic) reward Rt and update uIt ← uIt +Rt, vIt ← vIt + (1−Rt).

(e) For each arm i ∈ [N ], initialize ui = 1, vi = 1. At each time t ≤ T , for each arm i let θi(t) =
ui/(ui + vi), i.e., the expected value of the Beta(ui, vi) distribution. Play It := arg maxi θi(t)
(break ties in any fixed manner). Get (stochastic) reward Rt and update uIt ← uIt + Rt,
vIt ← vIt + (1−Rt).

(f) For each arm i ∈ [N ], initialize pi := 1/N . At each time t ≤ T , play a random arm It drawn
independently at that time according to the probability distribution (p1, . . . , pN ). Get (stochas-
tic reward) Rt, let p̃i := pi exp

(
Rt1[It=i]

pi
√
T

)
for each i ∈ [N ], and update pi ← p̃i/

∑
j∈[N ] p̃j

for all arms i. (Note: 1[A] is the indicator random variable of event A.)

Solution.

(a) Will not always achieve sublinear regret. The algorithm greedily plays the arm with the best
current empirical mean. With non-zero probability the algorithm will get trapped into playing
a bad arm at the start, leading to linear (expected) regret.

(b) Will not always achieve sublinear regret. The algorithm is essentially the same as in (a).

(c) Will always achieve sublinear regret. This is the Upper Confidence Bound (UCB) algorithm.

(d) Will always achieve sublinear regret. This is the Thompson sampling algorithm with a Uniform
(i.e., Beta(1,1)) prior.

1independent and identically distributed
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(e) Will not always achieve sublinear regret. The algorithm is essentiallt the same as in (b) and (a).

(f) Will always achieve sublinear regret. The algorithm is EXP3 with learning rate η = 1/
√
T , for

which a sublinear regret guarantee holds even if rewards are arbitrary in [0, 1].

4. ‘Worst-case’ UCB regret (10 points)
Consider the same Bernoulli stochastic N -armed bandit setting as in Question 3. We proved in class
the following bound for the Upper Confidence Bound (UCB) algorithm:

E [Ti(T )] ≤ 8 log T

∆2
i

+
π2

3
, (1)

for any suboptimal arm i (i.e., µi < maxj µj), with Ti(T ) denoting the total number of times that
arm i was chosen up to time T , and ∆i := maxj µj − µi denoting its gap from an optimal arm. This
directly gave us the regret bound R(T ) :=

∑N
i=1 ∆i E[Ti(T )] ≤ 8

∑
i:∆i>0

log T
∆i

+ Nπ2

3 . The bound,
however, is of no use when ∆i is very small as the regret can never be more than T .

Show instead that the following gap-independent (or problem-independent, or ‘worst-case’) regret
bound for UCB holds.

R(T ) ≤

√
NT

(
8 log T +

π2

3

)
∀N,T.

[Hint: Bound the regret using a well-known inequality, use the bound (1), and note that the Ti(T )
sum to T across all i.]

Solution.

R(T )
(2)
:=

N∑
i=1

∆i E[Ti(T )]
(4)
=

N∑
i=1

∆i

√
E[Ti(T )]

√
E[Ti(T )]

(4)

≤

√√√√ N∑
i=1

∆2
i E[Ti(T )]

√√√√ N∑
i=1

E[Ti(T )]

(by the Cauchy-Schwarz inequality, i.e.,
∑

i xiyi ≤
√∑

i x
2
i

√∑
i y

2
i )

(2)

≤

√√√√ N∑
i=1

(
8 log T +

∆2
iπ

2

3

)√√√√E

[
N∑
i=1

Ti(T )

]
(by (1))

(2)

≤

√
NT

(
8 log T +

π2

3

)
(since ∆2

i ≤ 1 and
∑

i Ti(T ) = T ).

5. Sequential probability estimation (15 points)
Suppose you are observing an arbitrary stream of bits y1, y2, . . . with yi ∈ {0, 1}, generated from
some source (e.g., a digital voice signal). The following occurs at each round t ≥ 1: You are asked
to guess a probability distribution p̂t ≡ (p̂t(0), p̂t(1)) ∈ {(p, 1− p) : 0 ≤ p ≤ 1} for the next bit yt,
Following your guess, yt is revealed and you suffer a loss of log 1

p̂t(yt)
.

Consider competing in this game with the class of all ‘constant experts’. A constant expert is a rule
parameterized by p ∈ [0, 1] that always guesses the probability distribution (p, 1 − p) (this is the
analog of Constantly Rebalancing Portfolios in finance).

Write down the natural version of the Exponential Weights prediction algorithm with uniform initial
weights and learning rate η = 1 [Note: There are infinitely many experts!]. Can you express its
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prediction at each time t in the simplest possible form2? You may use the identity∫ 1

0
qn1(1− q)n2 dq =

1

(n1 + n2 + 1)
(
n1+n2

n1

) ,
for any integers n1, n2 ≥ 0, and where

(
a
b

)
is the standard binomial coefficient (a+b)!

a!b! .

Solution.

The decision space is D = {(p, 1 − p) : 0 ≤ p ≤ 1}, the outcome space is Y = {0, 1}, the loss
function is l((p(0), p(1)), y) = log 1/p(y), and the set of experts is E = {(p, 1 − p) : 0 ≤ p ≤ 1}.
(4 points)

The Exponential Weights algorithm with learning rate η = 1 is as follows: Initialize w1((p, 1−p)) =
1 ∀(p, 1− p) ∈ E . At each round t ≥ 1, guess the distribution p̂t = (p̂t(0), p̂t(1)) where

p̂t(0) =

∫ 1
0 wt((q, 1− q)) q dq∫ 1
0 wt((q, 1− q)) dq

.

Following this, observe yt and update weights ∀(p(0), p(1)) ∈ E :

wt+1((p(0), p(1))) = wt((p(0), p(1))) exp

(
−η log

1

p(yt)

)
= wt((p(0), p(1))) p(yt)

= wt((p(0), p(1))) p(0)1−yt p(1)yt

= · · ·

= w1((p(0), p(1))) p(0)t−
∑t

s=1 ys p(1)
∑t

s=1 ys

= p(0)n0(t) p(1)n1(t), (6 points)

where nt0 := (t−
∑t

s=1 ys) and nt1 :=
∑t

s=1 ys are simply the number of 0s and 1s in the first t bits,
respectively. Hence we can simplify the expression for p̂t(0) as

p̂t(0) =

∫ 1
0 q

nt−1
0 (1− q)n

t−1
1 q dq∫ 1

0 q
nt−1
0 (1− q)nt−1

1 dq
=

∫ 1
0 q

1+nt−1
0 (1− q)n

t−1
1 dq∫ 1

0 q
nt−1
0 (1− q)nt−1

1 dq

=
(t− 1 + 1)

( t−1
nt−1
0

)
(t+ 1)

( t
1+nt−1

0

) =
nt−1

0 + 1

t+ 1
. (5 points)

With the above, the Exponential Weights algorithm becomes the very simple ‘add-1’ rule: At each
time t, predict the distribution p̂t = (p̂t(0), p̂t(1)) where

p̂t(0) =
number of 0s seen so far +1

t+ 1
and p̂t(1) = 1− p̂t(0).

6. ? Bonus question - Sequential probability estimation (25 points)
With regard to the previous question. show that the regret of the Exponential Weights algorithm you
wrote down (with η = 1) in T rounds with respect to all the constant experts, for any sequence of
bits y1, . . . , yT , is no more than log(1 + T ).

Solution.
2implementable using finitely many arithmetic operations
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The regret incurred in T rounds by the algorithm, for the sequence y1, . . . , yT , is

R(T ) =
T∑
t=1

log
1

p̂t(yt)
− min

(p(0),p(1))∈E

T∑
t=1

log
1

p(yt)

= max
(p(0),p(1))∈E

(
T∑
t=1

log
1

p̂t(yt)
−

T∑
t=1

log
1

p(yt)

)

= max
(p(0),p(1))∈E

(
T∑
t=1

log
p(yt)

p̂t(yt)

)
= max

(p(0),p(1))∈E
log

T∏
t=1

p(yt)

p̂t(yt)

= log
max(p(0),p(1))∈E

∏T
t=1 p(yt)∏T

t=1 p̂t(yt)

= log
max(p(0),p(1))∈E p(0)n

T
0 p(1)n

T
1∏T

t=1 p̂t(yt)

= log

(
nT
0
T

)nT
0
(
nT
1
T

)nT
1∏T

t=1 p̂t(yt)
= log

(
nT
0
T

)nT
0
(
nT
1
T

)nT
1

n0(T )! n1(T )!
(T+1)!

= log(T + 1) + log

(
T

n0(T )

)(
nT0
T

)nT
0
(
nT1
T

)nT
1

︸ ︷︷ ︸
≤1

≤ log(T + 1).
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