
E1 245 - Online Prediction and Learning, Aug-Dec 2015
Homework #1

(10 marks per problem)

1. Exponential inequalities
Prove the following inequalities (useful in showing mistake bounds for Weighted-Majority,
for instance):

(a) ∀x ∈ R ex ≥ 1+ x

(b) ∀x≥ 0 e−x ≥ 1− x+ x2

(c) ∀|x| ≤ 1
2 e−x−x2 ≤ 1− x

2. 1-Bit prediction problem, one-shot version, iid outcomes
Let n ≥ 1 be a fixed integer. Consider the problem of predicting the next bit of an inde-
pendent and identically distributed (iid) Bernoulli sequence given the previous n− 1 bits.
i.e., let Y1,Y2, ...,Yn be iid random variables distributed as Ber(p), 0 < p < 1. We seek
an algorithm that outputs Ŷn ∈ {0,1}, possibly depending on Y1, ...,Yn−1 but not on Yn, to
minimize the prediction error (relative to the best constant predictor 0 or 1), defined as
P
[
Ŷn 6= Yn

]
−min{p,1− p}. Show that the prediction error for the MAJORITY prediction

rule1 admits the upper bound2

P
[
Ŷn 6= Yn

]
−min{p,1− p}= O

(
1/
√

n
)
.

(Hint: Suppose p < 1/2. Begin by conditioning on the value of Ŷn. Use Hoeffding’s in-
equality to bound the probability of error in terms of p. Conclude by bounding the worst
that this can be as a function of p.)

3. 1-Bit prediction problem, sequential version, iid outcomes
Consider now the game of sequentially predicting bits of an iid Ber(p) sequence (using
only the previously observed bits) for a total of n rounds. Using the result from the previous
problem, argue that the same O(1/

√
n) bound on the expected mean no. of mistakes (relative

to the best constant predictor 0 or 1), i.e.,

1
n

n

∑
i=1

P
[
Ŷi 6= Yi

]
−min{p,1− p}= O

(
1/
√

n
)

holds when the MAJORITY rule is used to predict at each round.

4. 1-Bit prediction problem, sequential version, arbitrary outcomes
Consider the game of sequentially predicting the next bit of an arbitrary, fixed bit sequence
for a total of n rounds. What happens to the mean no. of mistakes (relative to the best
constant predictor 0 or 1) for the MAJORITY rule? (in other words, what is the worst that it
can be?) Can you show that this behaviour must hold more generally for any deterministic
(and causal) prediction rule?3

1The MAJORITY prediction rule is Ŷn := 1
{

∑
n−1
i=1 Yi ≥ n−1

2

}
or Ŷn := 1

{
∑

n−1
i=1 Yi >

n−1
2

}
, depending on how

you may want to break ties.
2Big-Oh notation: We say that f (n) = O(g(n)) if there exist constants α and n0 such that f (n) ≤ αg(n)

∀n≥ n0.
3It is enough to give order-wise (in n) bounds or estimates.
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5. Tweaking the MAJORITY algorithm in the absence of perfect experts
We showed that the MAJORITY or HALVING algorithm for binary prediction makes at
most log2 N mistakes using the advice of N experts whenever some expert is always pre-
dicting correctly. Show that a straightforward modification of MAJORITY makes at most
O((m+1) log2 N) mistakes whenever the best expert makes m≥ 0 mistakes. (Hint: What if
all the experts get thrown out?)
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