E1 245 - Online Prediction and Learning, Aug-Dec 2015 Homework #1

(10 marks per problem)

1. Exponential inequalities

Prove the following inequalities (useful in showing mistake bounds for Weighted-Majority, for instance):

- (a) $\forall x \in \mathbb{R} \quad e^x \ge 1 + x$
- (b) $\forall x \ge 0 \quad e^{-x} \ge 1 x + x^2$
- (c) $\forall |x| \le \frac{1}{2} \quad e^{-x-x^2} \le 1-x$
- 2. 1-Bit prediction problem, one-shot version, iid outcomes

Let $n \ge 1$ be a fixed integer. Consider the problem of predicting the next bit of an independent and identically distributed (iid) Bernoulli sequence given the previous n - 1 bits. i.e., let $Y_1, Y_2, ..., Y_n$ be iid random variables distributed as Ber(p), $0 . We seek an algorithm that outputs <math>\hat{Y}_n \in \{0, 1\}$, possibly depending on $Y_1, ..., Y_{n-1}$ but not on Y_n , to minimize the prediction error (relative to the best constant predictor 0 or 1), defined as $\mathbb{P}[\hat{Y}_n \neq Y_n] - \min\{p, 1 - p\}$. Show that the prediction error for the MAJORITY prediction rule¹ admits the upper bound²

$$\mathbb{P}\left[\hat{Y}_n \neq Y_n\right] - \min\{p, 1-p\} = O\left(1/\sqrt{n}\right).$$

(Hint: Suppose p < 1/2. Begin by conditioning on the value of \hat{Y}_n . Use Hoeffding's inequality to bound the probability of error in terms of p. Conclude by bounding the worst that this can be as a function of p.)

3. 1-Bit prediction problem, sequential version, iid outcomes

Consider now the game of *sequentially* predicting bits of an iid Ber(*p*) sequence (using only the previously observed bits) for a total of *n* rounds. Using the result from the previous problem, argue that the same $O(1/\sqrt{n})$ bound on the expected mean no. of mistakes (relative to the best constant predictor 0 or 1), i.e.,

$$\frac{1}{n}\sum_{i=1}^{n}\mathbb{P}\left[\hat{Y}_{i}\neq Y_{i}\right]-\min\{p,1-p\}=O\left(1/\sqrt{n}\right)$$

holds when the MAJORITY rule is used to predict at each round.

- 4. 1-Bit prediction problem, sequential version, arbitrary outcomes
- Consider the game of sequentially predicting the next bit of an *arbitrary, fixed* bit sequence for a total of *n* rounds. What happens to the mean no. of mistakes (relative to the best constant predictor 0 or 1) for the MAJORITY rule? (in other words, what is the worst that it can be?) Can you show that this behaviour must hold more generally for any *deterministic* (and causal) prediction rule?³

¹The MAJORITY prediction rule is $\hat{Y}_n := \mathbb{1}\left\{\sum_{i=1}^{n-1} Y_i \ge \frac{n-1}{2}\right\}$ or $\hat{Y}_n := \mathbb{1}\left\{\sum_{i=1}^{n-1} Y_i > \frac{n-1}{2}\right\}$, depending on how you may want to break ties.

²Big-Oh notation: We say that f(n) = O(g(n)) if there exist constants α and n_0 such that $f(n) \le \alpha g(n)$ $\forall n \ge n_0$.

³It is enough to give order-wise (in n) bounds or estimates.

5. Tweaking the MAJORITY algorithm in the absence of perfect experts

We showed that the MAJORITY or HALVING algorithm for binary prediction makes at most $\log_2 N$ mistakes using the advice of N experts whenever some expert is always predicting correctly. Show that a straightforward modification of MAJORITY makes at most $O((m+1)\log_2 N)$ mistakes whenever the best expert makes $m \ge 0$ mistakes. (Hint: What if all the experts get thrown out?)