E1 245 - Online Prediction and Learning, Aug-Dec 2015
Homework #2

(10 marks per problem)

1. The doubling trick for obtaining “anytime” learning algorithms
Suppose an online learning algorithm with a parameter 1 > 0 enjoys a regret bound of
% +ynT for a total of T rounds, where B and y are some positive constants (think of the
Exponential Weights forecaster for instance). If the time horizon T is known in advance,

then setting ) := \/% minimizes the bound. Consider the following tweak to obtain an

algorithm (and bound) that does NOT require knowing the horizon 7" beforehand (i.e., an
“anytime” algorithm). Time is divided into periods: the m-th period is formed by rounds
2m oM, ..., 2"t 1, wherem =0, 1,2, ... Inevery m-th period, starting at round 2", the

original algorithm is re-initialized and run with a parameter 1, := 4/ 75,,, Prove that for any

s

T, this modified algorithm enjoys a regret bound which is at most T times the original

optimal regret bound.

2. The Exponentially Weighted Forecaster with non-uniform initial weights

Consider running the Exponentially Weighted Forecaster (EXPWTS) across N actions with
losses bounded in [0, 1] (note: randomization is implicit as usual). Let the initial weight
distribution over actions be arbitrary (and possibly non-uniform), denoted by w; 1 >0, i €
{1,2,...,N}, Zﬁ-\;lwm = 1, and let the learning rate be n > 0. If p;; and I(i,y;) denote
the probability that EXPWTS plays action action i and the loss of action i, respectively, in
round ¢ > 1, then show that the cumulative (expected) loss suffered by EXPWTS after T > 1
rounds satisfies
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(note: we used this result to derive a bound for the Fixed Share forecaster)
3. Exp-Concavity and common loss functions
(a) Show that if for a y € % and n > 0 the function F(z) := e M) is concave, then
I(z,y) is a convex function of z.
(b) Show that the relative entropy loss [(x,y) := ylog2 + (1 —y)log }%, x,y € [0,1], is
1-exp-concave for all valid values' of y.

(c) Show that the squared loss I(x,y) := (x—y)?, x,y € [0,1], is %-exp—concave for all valid
values of y.

(d) Show that the absolute value loss /(x,y) := |x —y|, x,y € [0,1], cannot be n-exp-
concave for any n > 0.

4. Improved regret with exp-concave losses
Show that if the Exponentially Weighted Forecaster (EXPWTS) is run in the prediction-
with-expert-advice setting with a o-exp-concave loss function [ : Z x % — [0, 1] (over 2)

By convention, we take % :=0&0-log0:=0.



and the learning rate 1 = o > 0 over N experts, then the algorithm enjoys the regret bound
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(note: regret does not grow with time 7'!)

5. Lower bound for tracking regret
Show that in the actions game with N > 1 actions, there is no algorithm whose worst-case
expected regret is sublinear when competing against all switching experts. More precisely,
show that there exists a constant ¢ > 0 such that for 7 :=[0,1], # :={0,1}, and I(p,y) :=
|p— |, for any N > 1, for any algorithm, there exists a set of base experts of size N and a
time horizon 7' > 1 such that the regret with respect to all switching experts is at least c7'.

6. Establish the following properties used to prove a regret bound for Cover’s Universal Port-
folio algorithm.

(a) Letb* € A, represent a Constantly Rebalancing Portfolio (CRP) on the (non-negative)
unit simplex in R%. Let Ballg(b*) := {(1 —€)b* +¢eb: b € A,} for € € [0,1]. If
Vol(A) denotes the (m — 1)-dimensional volume? of a set A C A,,, then show that
Vol(Ballg(b*)) = €™~ 1Vol(Ap,).

(b) Show that the CRP strategy b € Ballg(b*) achieves wealth Sy (b,x") > S7(b*,x7) (1 —
€)7 in T investment periods.

2Vol(A) can be taken to be the (m — 1)-dimensional “surface area” of the surface defined by x, =
Soer, o xmmy) == 1— Z'l”;ll xi, for x1,...,%,_1 >0, Z’l”;ll x; < 1. Alternatively, Vol(A) can be defined to be
the probability of a point lying in the set A when it is drawn from the uniform probability distribution over A,,,.
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