
E1 245 - Online Prediction and Learning, Aug-Dec 2015
Homework #2

(10 marks per problem)

1. The doubling trick for obtaining “anytime” learning algorithms
Suppose an online learning algorithm with a parameter η > 0 enjoys a regret bound of
β

η
+ γηT for a total of T rounds, where β and γ are some positive constants (think of the

Exponential Weights forecaster for instance). If the time horizon T is known in advance,

then setting η :=
√

β

γT minimizes the bound. Consider the following tweak to obtain an
algorithm (and bound) that does NOT require knowing the horizon T beforehand (i.e., an
“anytime” algorithm). Time is divided into periods: the m-th period is formed by rounds
2m,2m+1, . . . ,2m+1−1, where m = 0,1,2, . . . In every m-th period, starting at round 2m, the

original algorithm is re-initialized and run with a parameter ηm :=
√

β

γ2m . Prove that for any

T , this modified algorithm enjoys a regret bound which is at most
√

2√
2−1

times the original
optimal regret bound.

2. The Exponentially Weighted Forecaster with non-uniform initial weights
Consider running the Exponentially Weighted Forecaster (EXPWTS) across N actions with
losses bounded in [0,1] (note: randomization is implicit as usual). Let the initial weight
distribution over actions be arbitrary (and possibly non-uniform), denoted by wi,1 ≥ 0, i ∈
{1,2, . . . ,N}, ∑

N
i=1 wi,1 = 1, and let the learning rate be η > 0. If pt,i and l(i,yt) denote

the probability that EXPWTS plays action action i and the loss of action i, respectively, in
round t ≥ 1, then show that the cumulative (expected) loss suffered by EXPWTS after T ≥ 1
rounds satisfies

T

∑
t=1

N

∑
i=1

pt,i · l(i,yt)≤
1
η

log

[
1

∑
N
i=1 wi,1 exp

(
−η ∑

T
s=1 l(i,ys)

)]+ ηT
8

.

(note: we used this result to derive a bound for the Fixed Share forecaster)

3. Exp-Concavity and common loss functions

(a) Show that if for a y ∈ Y and η > 0 the function F(z) := e−η l(z,y) is concave, then
l(z,y) is a convex function of z.

(b) Show that the relative entropy loss l(x,y) := y log y
x +(1− y) log 1−y

1−x , x,y ∈ [0,1], is
1-exp-concave for all valid values1 of y.

(c) Show that the squared loss l(x,y) := (x−y)2, x,y∈ [0,1], is 1
2 -exp-concave for all valid

values of y.

(d) Show that the absolute value loss l(x,y) := |x− y|, x,y ∈ [0,1], cannot be η-exp-
concave for any η > 0.

4. Improved regret with exp-concave losses
Show that if the Exponentially Weighted Forecaster (EXPWTS) is run in the prediction-
with-expert-advice setting with a σ -exp-concave loss function l : D ×Y → [0,1] (over D)

1By convention, we take 0
0 := 0 & 0 · log0 := 0.
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and the learning rate η = σ > 0 over N experts, then the algorithm enjoys the regret bound

T

∑
t=1

l(pt ,yt)−min
i∈[N]

T

∑
t=1

l( fi,t ,yt)≤
logN

σ
.

(note: regret does not grow with time T !)

5. Lower bound for tracking regret
Show that in the actions game with N > 1 actions, there is no algorithm whose worst-case
expected regret is sublinear when competing against all switching experts. More precisely,
show that there exists a constant c > 0 such that for D := [0,1], Y := {0,1}, and l(p,y) :=
|p− y|, for any N > 1, for any algorithm, there exists a set of base experts of size N and a
time horizon T ≥ 1 such that the regret with respect to all switching experts is at least cT .

6. Establish the following properties used to prove a regret bound for Cover’s Universal Port-
folio algorithm.

(a) Let b∗ ∈ ∆m represent a Constantly Rebalancing Portfolio (CRP) on the (non-negative)
unit simplex in Rm

+. Let Ballε(b∗) := {(1− ε)b∗+ εb : b ∈ ∆m} for ε ∈ [0,1]. If
Vol(A) denotes the (m− 1)-dimensional volume2 of a set A ⊆ ∆m, then show that
Vol(Ballε(b∗)) = εm−1Vol(∆m).

(b) Show that the CRP strategy b ∈ Ballε(b∗) achieves wealth ST (b,xT )≥ ST (b∗,xT )(1−
ε)T in T investment periods.

2Vol(A) can be taken to be the (m − 1)-dimensional “surface area” of the surface defined by xm =
f (x1, . . . ,xm−1) := 1−∑

m−1
1=1 xi, for x1, . . . ,xm−1 ≥ 0, ∑

m−1
1=1 xi ≤ 1. Alternatively, Vol(A) can be defined to be

the probability of a point lying in the set A when it is drawn from the uniform probability distribution over ∆m.
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