
E1 245 - Online Prediction and Learning, Aug-Dec 2015
Homework #3

1. Strong convexity of the entropy function (Pinsker’s inequality)

(a) (5 points) Show that the negative entropy function R(x) = ∑i xi logxi over the 2 dimen-
sional simplex ∆2 := {(x,1− x) : 0 ≤ x ≤ 1} is 1-strongly convex with respect to the
|| · ||1 norm.

(b) (10 points) Prove the same in any number of dimensions d ≥ 2.
Hint: One way is to find a reduction to the d = 2 case. Let x and y be two vectors in
∆d . Let A := {i : xi ≥ yi} be the coordinates where x dominates y. Can you find two
new vectors xA and yA in ∆2 so that ||x− y||1 = ||xA− yA||1 and carry on?

2. Fenchel duality (3×4 points)
Compute the Fenchel dual functions for the following on Rd .

(a) F(x) = ex1 + · · ·+ exd .

(b) F(x) = log(ex1 + · · ·+ exd).

(c) F(x) = 1
2 ||x||

2
p, p ∈ [1,∞].

3. Exponential Weights as FTRL (10 points)
Show that executing Follow The Regularized Leader (FTRL) on the simplex
∆N :=

{
(x1, . . . ,xN) : ∑

N
i=1 xi = 1,∀i xi ≥ 0

}
with the entropic regularizer1

Rη(x) := 1
η ∑

N
i=1 xi logxi, and linear loss functions ft(x) = 〈zt ,x〉, is equivalent to running

the Exponential Weights algorithm on N experts with loss vectors {zt}t≥1 and parameter η .
Hint: You can derive this directly from first principles and the definition of the FTRL rule.
An alternative way is by using (a) the equivalence between FTRL and (unconstrained mini-
mization + Bregman projection) proven in class, and (b) observing that Bregman projection
wrt the regularizer R onto ∆N is equivalent to scaling by the || · ||1 norm.

4. Programming exercise – multi-armed bandits, synthetic data (40 points)
Consider a stochastic multi-armed bandit problem with N arms and Bernoulli reward dis-
tributions. For each N ∈ {10,100,1000}, setting the arms’ mean rewards to be, say, equi-
spaced in (0,1), simulate each of the following bandit algorithms in your favourite lan-
guage/scientific package (MATLAB/Python/C/C++/...).

(a) Upper Confidence Bound (UCB)

(b) Thompson Sampling with the Beta(1,1) prior per arm

(c) Thompson Sampling with the Beta(0.5,0.5) prior per arm

(d) EXP3 with the (optimally tuned) horizon-dependent learning rate η :=
√

2logN
NT

(e) EXP3-IX (EXP3-Implicit Exploration, Neu 2015) with parameters δ := 0.05, and
time-dependent ηt , γt prescribed as per Thm. 1 of Neu’s paper2.

For each of these algorithms,

10log0 is interpreted as 0 in the definition.
2http://cs.bme.hu/∼gergo/files/N15b.pdf , link also on course homepage
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(a) Plot the cumulative regret for various values of total time horizon
T ∈ {10,50,100,500,1000,5000, . . . ,106}, averaged across many (say about 103−
105) sample paths (the more the better). Along with the averaged regret, you should
also display a measure of the regret variability in the form of, say, error bars of width 1-
standard deviation around the mean (the errorbar or shadedErrorBar function
in MATLAB can help do this).

(b) Comment (broadly) on the nature of the average regret curves you have obtained. What
is the observed scaling of regret with the time horizon? How does it fare compared to
theoretical regret bounds for the algorithm?

Finally, compare the performance of all the algorithms together. Can you offer an explana-
tion for why some perform better than others? (Please turn in your code by email.)

5. Programming exercise – multi-armed bandits, real-world data (40 points)
Benchmark the bandit algorithms in the previous problem to adaptively find the fastest net-
work server across time with respect to the university-latencies dataset, available
as a zipped file download on the course page. The time horizon in this case corresponds
to the total number of data records (1361), and each arm is a university server defined on
the first line of the data file. Make sure you read the license.txt file in the dataset to
understand the dataset; also note that the range of the measured values is not [0,1] (you may
want to normalize). You must plot the regret as outlined before (mean as well as spread).
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