
E1 245: Online Prediction & Learning Fall 2014

Lecture 14 — September 22
Lecturer: Aditya Gopalan Scribe: Arvind Kumar

14.1 RECAP

14.1.1 THE ONLINE CONVEX OPTIMIZATION MODEL
K Convex Set ⊆ Rd

∀t ≥ 1 choose wt ∈K
See ft : K→ R
Suffer loss : ft(wt)

14.1.2 FOLLOW THE LEADER
Choose W1 ∈K arbitrarily,∀t ≥ 1

Wt = min
w∈K

t−1

∑
s=1

f s(w)

FTL is very bad (linear regret ) in some cases.

Example- Linear loss function { ft}
K= [−1,1] , ft(x) =ztx, {zt}= {0.5,−1,1,−1, ......}
”DARTBOARD GAME” : K ∈ Rd

ft(x) = ‖zt− x‖2
2

FTL gives O(logT ) regret

Lemma 1 - [FTL Regret]

∀u ∈K :
T

∑
t=1

( ft(wt)− ft(u))≤
T

∑
t=1

[ ft(wt)− ft(wt+1)]

Question : How can we improve FTL or prevent ”Oscillations” or ”instability in its behavior”?
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Ans Three broad streams of algorithms:

1. REGULARIZATION BASED ALGORITHM (Follow The Regularised Leader)

2. PROXIMAL POINT ALGORITHMS(e.g Projected Gradient Descent).

3. PERTURBATION BASED ALGORITHM (e.g Follow the Perturbed leader)

14.2 Follow The Regularised Leader (FTRL)
R : K→ R is a strictly convex function.

wt = argmin
w∈K

{
t−1

∑
s=1

( fs(w)+R(w))}

14.2.1 Classic Examples
1. K= Rd and linear loss function ftx = 〈zt ,x〉
R(x) = 1

2η
‖x‖2

2

wt = argmin
w∈Rd

t−1

∑
s=1

(
〈zs,w〉+

1
2η
‖w‖2

2

)
Let

G(w) =
t−1

∑
s=1

(
〈zs,w〉+

1
2η
‖w‖2

2

)
5G(w)|w=wt = 0
So

⇐⇒
t−1

∑
s=1

Zs +
1
η

wt = 0

wt =−η

t−1

∑
s=1

Zs

= wt−1−ηZt−1

= wt−1−η5 ft−1(wt−1)

This is (Online and Unconstrained) Gradient Descent.
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2. K=4d {(w1,w2, ....,wd) : wi ≥ 0∀i ∑
d
i=1 wi = 1}

Linear losses : ft(x) = 〈zt ,x〉
Entropic Regularizer : ∀x ∈K

R(x) =
〈w, logw〉

η

=
∑

d
i=1 wi logwi

η

wt = argmin
w∈K

{
t−1

∑
s=1
〈zs,w〉+

∑
d
i=1 wi logwi

η
}

Its Solution turns out to be

wt(i) =
wt−1(i)exp(−ηZt−1(i))

∑
d
j=1 wt−1( j)exp(−ηZt−1( j))

14.2.2 Lemma: [FTRL Regret Bound]
If FTRL produces w1,w2, .....,wT then ∀u ∈K

T

∑
t=1

( ft(wt)− ft(u))≤ R(u)−R(w1)+
T

∑
t=1

[ ft(wt)− ft(wt+1)]

Proof: Key Observations : Running FTRL on the sequence of loss functions f1, f2, f3, ......, fT is
equivalent to running FTL with loss function f0 ≡ R, f1, f2, ....., fT .

T

∑
t=0

( ft( wt)− ft(u))≤
T

∑
t=0

[ ft(wt)− ft(wt+1)]

= f0(w0)− f0(u)+
T

∑
t=1

ft(wt)− ft(u)

= f0(wi)− f0(w1)+
T

∑
t=0

[ ft(wt)− ft(wt+1)]

�

Theorem 14.1. Let ft(x) = 〈zt ,x〉,K= Rd and R(x) = 1
2η
‖x‖2

2
Wt is computed by FTRL(O.G.D).
Then ∀u ∈ Rd

RegretT FT RL(u)≤ 1
2η
‖u‖2

2 +η×
T

∑
t=1
‖zt‖2

2
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Proof: By FTRL regret lemma ,

RegretT FT RL(u)≤ R(u)−R(w1)+
T

∑
t=1

[ ft(wt)− ft(wt+1)]

≤ 1
2η
‖u‖2

2 +
T

∑
t=1
〈zt ,wt−wt+1〉

By OGD,
wt+1 = wt−η× zt

=
1

2η
‖u‖2

2 +
T

∑
t=1
〈zt ,ηzt〉

�

14.3 DEFINITION
LIPSCHITZ CONTINUITY :
f : K→ R is L-Lipschitz continuous with respect to a norm || · ||, if ∀x,y ∈K

| f (x)− f (y)≤ L‖x− y‖

Theorem 14.2. FTRL Regret with strongly convex Regularizer+ Lipschitz-continuous losses
Let f1, f2, ....be such that ft : K→ R is LT - Lipsschitz continuous with respect to ‖ ‖� . Let R
be σ−strongly convex w.r.t the same norm ‖ ‖� .Then ∀u ∈K

RegretF
T T RLu≤ R(u)−min

v∈K
R(v)+

1
σ
×

T

∑
t=1

L2
t

Proof: ∀t Let

φt(w) =
t−1

∑
s=1

fs(w)+R(w)

FTRL picks
wt = argmin

w∈K
φt(w)

φt(w) is σ−strongly convex.
Lemma : φt is σ− strongly convex over K,

wt = argmin
w∈K

φt(w)

Then ∀v ∈K :

φt(v)−φt(wt)≥
σ

2
‖v−wt‖2

�
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Proof: From strong convexity

φt(v)−φt(wt)≥ 〈5φt(wt),v−wt〉+
σ

2
‖v−wt‖2

�

≥ σ

2
‖v−wt‖2

�

�

φt(wt+1)−φt(wt)≥
σ

2
‖wt+1−wt‖2

� (14.1)

In Lemma switching
φt → φt+1 and v→ wt

φt+1(wt)−φt+1(wt+1)≥
σ

2
‖wt+1−wt‖2

� (14.2)

Adding inequalities 14.1 and 14.2

ft(wt)− ft(wt+1)≥ σ‖wt+1−wt‖2
�

Also since ft is LT - Lipsschitz continuous

σ‖wt+1−wt‖2
� ≤ Lt‖wt+1−wt‖�

‖wt+1−wt‖� ≤
Lt

σ

Since
T

∑
t=1

( ft(wt)− ft(u))≤ R(u)−R(w1)+
T

∑
t=1

[ ft(wt)− ft(wt+1)]

≤ R(u)−R(w1)+
T

∑
t=1

Lt×
Lt

σ

≤ R(u)−R(w1)+T × L2

σ

�
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