E1 245: Online Prediction & Learning Fall 2014
Lecture 14 — September 22

Lecturer: Aditya Gopalan Scribe: Arvind Kumar

14.1 RECAP
14.1.1 THE ONLINE CONVEX OPTIMIZATION MODEL

K Convex Set C R4
¥Vt > 1 choose w; € K
See fi: K—R
Suffer loss : f;(wy)

14.1.2 FOLLOW THE LEADER
Choose W, € K arbitrarily,vt > 1
=
W, = wmelﬂrés; fs(w)
FTL is very bad (linear regret ) in some cases.
Example- Linear loss function {f; }

K=[-1,1].(x)=Fx, {F:}=1{05—1,1,—1,....}
"DARTBOARD GAME” : K € R?

fo(x) = |z =3
FTL gives O'(logT) regret

Lemma 1 - [FTL Regret]

T

T
VueK: Z(ft(wt Z [fe(wr) = fr(wiy1)]

t=1

Question : How can we improve FTL or prevent ”Oscillations” or instability in its behavior”?
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Ans Three broad streams of algorithms:

1. REGULARIZATION BASED ALGORITHM (Follow The Regularised Leader)
2. PROXIMAL POINT ALGORITHMS(e.g Projected Gradient Descent).

3. PERTURBATION BASED ALGORITHM (e.g Follow the Perturbed leader)

14.2 Follow The Regularised Leader (FTRL)

R: K — R is a strictly convex function.

t—1
wy =argmin{ ) (fs(w)+R(w))}
weK s=1

14.2.1 Classic Examples

1. K = R and linear loss function fix = (z;,x)
R(x) = 55 [IxI13
-1

- 1
w; =argminy_ (<ZS,W) + %HWH%>

weRd =1
Let
t—1 1 )
605) = X ew) + 51w
s=1 n
VG(W)|W:W1 =0
So

t—1
wr = —T1 ZZs

s=1
=Wi—1 —NZ—y

=W 1 =NV fic1(wi—1)

This is (Online and Unconstrained) Gradient Descent.
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2. K= Ad {(Wl,Wz,....,Wd) Twp > 0vi szzlwi = 1}
Linear losses : f;(x) = (z,x)
Entropic Regularizer : Vx € K

(w,logw)
n

_ Zl‘-lzl wilogw;
n

R(x) =

t—1 d 1 .
Wl — argmln{z ZS; + M}
wek s=1 n

Its Solution turns out to be

w1 (i) exp(—nZ—1(i))
Y4 wi1(j)exp (—=nZ-1(j))

wy (i) =

14.2.2 Lemma: [FTRL Regret Bound]
If FTRL produces wy,wy,.....,wr then VueK

(fe(we) = fi(u)) < R(u) = R(w1) +

=1 =1

[fi(we) = fi(wig1)]

1=
MH

Proof: Key Observations : Running FTRL on the sequence of loss functions fi, f>, f3,...... , fris
equivalent to running FTL with loss function fy =R, f1, f2,....., fT.

T

T
Z(ft( ) Z(,) frwe) = fi(weir)]

T
= fo(w Z

= fo(wi) — fo(w1) + Z [fe(we) = fi(Wes1)]

t=0

Theorem 14.1. Let f;(x) = (z,x),K = R? and R(x) = ZinHz
W, is computed by FTRL(O.G.D).
Then Yu € R4

| T
RegretTFTRL(u) < EH“H%"‘TI X Z HZIH%
=1
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Proof: By FTRL regret lemma,

T
Regretr" TRE (1) < R(u Z [ft (we) = fr(Wig1)]
=1

1 T
S_nHMH%—'_Z 2, W — Wit 1)

By OGD,
Wipl =Wy — 11 X Zt

T
= E“”Hfrg (2, M%)

14.3 DEFINITION

LIPSCHITZ CONTINUITY :

1f(x) = f(y) < L[Jx—]

Theorem 14.2. FTRL Regret with strongly convex Regularizer+ Lipschitz-continuous losses
Let f1, f2,....be such that f;: K — R is Ly - Lipsschitz continuous with respect to | ||o . Let R

be 6 —strongly convex w.r.t the same norm || ||g .Then Yu € K
Regrety TRLu < R(u) —minR(v) + — X L;
egretr u < R(u)— R Z

Proof: V¢t Let |
t_

= Zfs(w) +R(w
s=1

FTRL picks

w; = argmin @ (w)
weK

¢ (w) is o —strongly convex.
Lemma : ¢, is 6— strongly convex over K,

w, = argmin @ (w)
weK

Then Vv € K:

¢ (v) — @ (wr) > —||V—Wt||D
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Proof: From strong convexity
o 2
G (v) = O (wi) = (7 (wi), v —wr) "'EHV_WtHD
> vl
—lv—w
= i
O
G (wit1) — (i) > —”Wt+1 wil[?, (14.1)
In Lemma switching
(Pl‘ — ¢l+1 and v — We
Br1(We) = Ot (Wrg1) > _HWH—I WtH2E| (14.2)
Adding inequalities 14.1 and 14.2
Frw) = fiwirn) = ollwe —wil |y
Also since f; is Lt - Lipsschitz continuous
Slwest = will2y < Lillwit —welo
H o<
Wig] —W —
t+1 0 > e
Since
T T
Y (filw) = fi(w)) <R )+ X Lfilwe)
t=1 t=1
< R(u) — R(w —l—ZL <L
= t
=1 c
L2
<R(u)—R(wy)+T x -
O
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