E1 245: Online Prediction & Learning Fall 2015
Lecture 15 — September 24

Lecturer: Aditya Gopalan Scribe: Mukund Seethamraju

15.1 ONLINE CONVEX OPTIMIZATION:

15.1.1 General convex optimization problem:

Let K be a Convex set C R?
Vi>1
- choose w; € K
- see f; : K — R where f; is a convex loss function.

- Suffer Loss: fi(wy)

15.1.2 Follow the Leader Algorithm(FTL):

Choose w € K arbitrarily

Vi>1
t—1

- wy = argmin Y. fy(w)
weK  s=1
- FTL is really bad( has linear regret) in some cases.
e.g. Linear loss functions(fy), K = [-1, 1] and fi(w) = zw.
ze=—0.5ift=1,1if tiseven andl if t > 1 and t is odd

Then, the predictions of FTL will be to set wy = 1 for t odd andw; = —1 for t even. The cumulative
loss of the FTL algorithm will therefore be T while the cumulative loss of the fixed solution u =0
is 0. Thus, the regret of FTL is T.

Consider the "DARTBOARD GAME”, K C R4, f(x) = ||z, — x||3

- FTL gives O(logT) regret.

LEMMA (FTL Regret):

T T
uck: Z (fe(wy) — Z (fe(wy) — (fe((wer1))  where wy is updated using FTL
=1

=1

15-1



E1 245 Lecture 15 — September 24 Fall 2015

Question: How can we improve FTL or prevent "oscillations”?
- Regularization based algorithms (Follow the regularized leader)
- PROXIMAL POINT algorithms (e.g. Projected Gradient Descent)
- PERTURBATION BASED METHODS (Follow the Perturbed Leader)

15.1.3 Follow the Regularized Leader(FTRL):
R : K — R where R is strictly CONVEX function, i.e.

Vx#yeK, A €(0,1), R(Ax+(1-24)y) <AR(x) + (1 - A)R(y)

FTRL:
In FTRL w; is chosen accordingly:

1
Wt—argmm{Zf )+R(w)}

wekK §=

Famous Examples:
1) K =R, linear losses: f(x) = < z;,x >

R(x) = 163
argmin Z {<z,w> +ﬁ||xH%} =W
weK  s=1
G(w) = <z,w> +%||x||%
VWG(W)’WZWt = 0

t=1
p=— Z ZS+%Wt:O

s=1
t=1
Swe=-NnY z
s=1

& W= W1 —NZ—1

& Wy =W — NV (wi—1)
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15.1.4 ONLINE GRADIENT DESCENT (OGD) Algorithm(unconstrained):

2)K:Ad:{(W1,W2,W3, ...... Wd)l W; ZOVZ _1}
i_
Linear loss function: f;(w) =< z;,x >

Entropic Regularizer: Vx € K

< w,logw > 1 &
—_— = —Zw,-logw,-

R(x) =
(=" )

t—1
Wi = argmmz {< Zy, W > +— Zw,logwl}

WeAd s=1

Wt 1(-)e—nzt71(1)

Zwt 1( )e Nz1(J)

Vield wli)=

= Equvivalent welghts with 1) udate

Lemma(FTRL regret bound):
If FTRL produces wi,wi,...... wrthenVu e K:

T
Z (f(wy) u)) <R(u) —R(w; ‘|‘Z{ft wy) — fi(wer) }

Proof: Key observation: Running FTRL on the sequence of loss functions fi, ....... fr = Running
FTL with the loss functions {(fy = R),fy, ....... fr}

T T
Z(’) fe(wy) u)) < Z(){ft(wt) —fi(wer1)}
T T
f Z ft Wt ) —f()(W()) fo(W])+Z{ft(Wt)_ft(wt—i-l)}
=1 t=1
fo=R

Hence done. Let us apply this to (unconstrained) ONLINE GRADIENT DESCENT with linear
losses:

THEOREM(Regret of OGD w.r.t Linear losses):

Let f(x) =< z,x >, K=R¢

& R(x) = 5 IxI3
& wy is computed by FTRL(OGD)
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T
Then ¥V u € R? Regreth RE (u) < %HuH% +n E,l ||z |3

T
Proof: By FTRL regret lemma, Regret= RN (u) < R(u) — R(wy) + ):l {fe(wi) —fi(We1) }
t=

1 T
< _Hu||%+z< Zt, Wi — Wiy >
2n =1
Wierl = Wy — N7

1 T
wipt = 5|l + Y <z, nz >
2n =1

More FTRL analysis:
Question: What is the right regularizer for my OCO problem?

15.1.5 FTRL with strongly convex regularization:
Recall R : K — R, R differentiable, ¢ > 0 is o - strongly convex if
c
Yy €K, R(y) > R(x)+ < VR(x),y —x >+ |y =[5
Definition(Lipschitz continuous): f : K — R is L-Lipschitz continuous if

Vx,y € K, [f(x) = f ()| < Lf}x—yl|

Theorem(FTRL regret with strongly convex regularizer+ Lipschitz continuous losses):

Let f1, f2,...... be such that f; : K — R is L;-Lipschitz continuous w.r.t || || & let R be o-strongly
convex w.r.t the same norm || ||.
Then

1 T
Vu € K, Regrett "“(u) < R(u) —minR(v) + — ¥ L?
u € K, Regrety (1) < R(u) min (v)+ 5 1—21 ”

t

Proof: V¢ let ¢;(w) il +R(w)
1

S=

FTRL picks w; = argmin ¢ (w)
wekK

¢ 1s strongly convex(since adding convex function to o-strongly convex function gives a o-
strongly convex function.)
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Lemma: ¢, is o-strongly convex over K, w, = argmin ¢ (w)
weK

c
=WeKkK, ¢(v)—¢(w) > §||v—w,||2

References:
e Online learning CMPUT 654 by Gabor Bartok, chapter-8

e Online Learning and Online Convex Optimization By Shai Shalev-Shwartz, chapter-2
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