
E1 245: Online Prediction & Learning Fall 2015

Lecture 15 — September 24
Lecturer: Aditya Gopalan Scribe: Mukund Seethamraju

15.1 ONLINE CONVEX OPTIMIZATION:

15.1.1 General convex optimization problem:
Let K be a Convex set ⊆Rd

∀ t ≥ 1

- choose wt ∈ K

- see ft : K→R where ft is a convex loss function.

- Suffer Loss: ft(wt)

15.1.2 Follow the Leader Algorithm(FTL):
Choose w1 ∈ K arbitrarily

∀ t ≥ 1

- wt = argmin
w∈K

t−1
∑

s=1
fs(w)

- FTL is really bad( has linear regret) in some cases.
e.g. Linear loss functions(ft), K = [-1, 1] and ft(w) = ztw.

zt =−0.5 if t = 1,1 if t is even and1 if t > 1 and t is odd

Then, the predictions of FTL will be to set wt = 1 for t odd andwt =−1 for t even. The cumulative
loss of the FTL algorithm will therefore be T while the cumulative loss of the fixed solution u = 0
is 0. Thus, the regret of FTL is T.
Consider the ”DARTBOARD GAME”, K ⊆Rd , ft(x) = ||zt−x||22
- FTL gives O(logT) regret.

LEMMA(FTL Regret):

u ∈ K :
T

∑
t=1

(ft(wt)− (ft(u)≤
T

∑
t=1

(ft(wt)− (ft(wt+1)) where wt is updated using FTL
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Question: How can we improve FTL or prevent ”oscillations”?
- Regularization based algorithms (Follow the regularized leader)
- PROXIMAL POINT algorithms (e.g. Projected Gradient Descent)
- PERTURBATION BASED METHODS(Follow the Perturbed Leader)

15.1.3 Follow the Regularized Leader(FTRL):
R : K→R where R is strictly CONVEX function, i.e.

∀x 6= y ∈ K, λ ∈ (0,1), R(λx+(1−λ )y)< λR(x)+(1−λ )R(y)

FTRL:
In FTRL wt is chosen accordingly:

wt = argmin
w∈K

{ t−1

∑
s=1

fs(w)+R(w)
}

Famous Examples:
1) K = Rd , linear losses: ft(x) =< zt,x >

R(x) = 1
2η
||x||22

argmin
w∈K

t−1
∑

s=1

{
< zt,w >+ 1

2η
||x||22

}
= wt

G(w) = < zt,w >+ 1
2η
||x||22

OwG(w)|w=wt = 0

⇔
t=1
∑

s=1
zs +

1
η

wt = 0

⇔ wt =−η
t=1
∑

s=1
zs

⇔ wt = wt−1−ηzt−1

⇔ wt = wt−1−ηOft−1(wt−1)
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15.1.4 ONLINE GRADIENT DESCENT (OGD) Algorithm(unconstrained):

2) K = ∆d = { (w1,w2,w3, ......wd) : wi ≥ 0 ∀ i,
d
∑

i=1
= 1}

Linear loss function: ft(w) =< zt,x >
Entropic Regularizer: ∀x ∈ K

R(x) =
< w, logw >

η
=

1
η

d

∑
i=1

wi logwi

wt = argmin
w∈∆d

t−1

∑
s=1

{
< zt,w >+

1
η

d

∑
i=1

wi logwi
}

∀i ∈ [d] wt(i) =
wt−1(i)e−ηzt−1(i)

d
∑
j=1

wt−1( j)e−ηzt−1( j)

≡ Equvivalent weights with η udate

Lemma(FTRL regret bound):
If FTRL produces w1,w1, ......wT then ∀ u ∈ K :

T

∑
t=1

(ft(wt)− (ft(u))≤ R(u)−R(w1)+
T

∑
t=1
{ft(wt)− ft(wt+1)}

Proof: Key observation: Running FTRL on the sequence of loss functions f1, .......fT ≡ Running
FTL with the loss functions {(f0 = R), f1, .......fT}

T

∑
t=0

(ft(wt)− (ft(u))≤
T

∑
t=0
{ft(wt)− ft(wt+1)}

f0(w0)− f0(u)+
T

∑
t=1

(ft(wt)− (ft(u)) = f0(w0)− f0(w1)+
T

∑
t=1
{ft(wt)− ft(wt+1)}

f0 = R

Hence done. Let us apply this to (unconstrained) ONLINE GRADIENT DESCENT with linear
losses:
THEOREM(Regret of OGD w.r.t Linear losses):
Let ft(x) =< zt,x >, K =Rd

& R(x) = 1
2η
||x||22

& wt is computed by FTRL(OGD)
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Then ∀ u ∈Rd RegretFTRL
T (u)≤ 1

2η
||u||22 +η

T
∑

t=1
||zt||22

Proof: By FTRL regret lemma, RegretFTRL
T (u)≤ R(u)−R(w1)+

T
∑

t=1
{ft(wt)− ft(wt+1)}

≤ 1
2η
||u||22 +

T

∑
t=1

< zt,wt−wt+1 >

wt+1 = wt−ηzt

wt+1 =
1

2η
||u||22 +

T

∑
t=1

< zt,ηzt >

More FTRL analysis:
Question: What is the right regularizer for my OCO problem?

15.1.5 FTRL with strongly convex regularization:
Recall R : K→R, R differentiable, σ > 0 is σ - strongly convex if

∀ x,y ∈ K, R(y) ≥ R(x)+< OR(x),y− x >+
σ

2
||y− x||22

Definition(Lipschitz continuous): f : K→R is L-Lipschitz continuous if

∀x,y ∈ K, | f (x)− f (y)| ≤ L||x− y||

Theorem(FTRL regret with strongly convex regularizer+ Lipschitz continuous losses):

Let f1, f2, ...... be such that ft : K→R is Lt-Lipschitz continuous w.r.t || || & let R be σ -strongly
convex w.r.t the same norm || ||.
Then

∀u ∈ K, RegretFTRL
T (u)≤ R(u)−min

v∈K
R(v)+

1
σ

T

∑
t=1

L2
t

Proof: ∀ t let φt(w) =
t−1
∑

s=1
+R(w)

FTRL picks wt = argmin
w∈K

φt(w)

φt is strongly convex(since adding convex function to σ -strongly convex function gives a σ -
strongly convex function.)
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Lemma: φt is σ -strongly convex over K, wt = argmin
w∈K

φt(w)

⇒∀v ∈ K, φt(v)−φt(wt)≥
σ

2
||v−wt ||2
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