E1 245: Online Prediction & Learning Fall 2015
Lecture 7 — August 25

Lecturer: Aditya Gopalan Scribe: Arvind Kumar

7.1 RECAP

Randomized-EXP-WTS(7)
INIT :
Wii=1 Vied&

fort > 1:
Sample an expert
I, ~ W
Predict
Pe=1 it

Wigs1 — Wicexp[=nl(fis,y)] Vi

7.2 Regret bound for R-EXPWTS

Theorem 7.1. High probability regret bound for R-EXPWTS.

For 1:92x% —10,1], |&|=N, V 0<dé<1

Lr—E[Lr] >/ S log &

P 5 logs

Proof: With probability 1 — &

L7 —minL7t; 1 0o + 0o
ice b - 2 £ 1) 2 £

Recall Hoeftding’s inequality =
If X1, X5....Xy are independent random variables with values in [0,1] Ve > 0,

P [ixi Z
i=1

<exp (—2n82)

S| =

iEXi + &
i=1
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Equivalently, forany 0 < 6 < 1,

M=

X< Y EXity/ log )
S8 V2 i

1

with probability > 1 — 6
Applying Hoffeding to sequence of r.v.s Xy =1 (f1,, 1)
distribution /; depends on sequence of previous losses

exp—n ):2;11 I(fissye)

=1 Zje[n] exp—n Yol (fisyr)
a A T 1
:>Zl(fl’,tayt) < E Zl(fiJ,yt) + Elogg
=1 =1

O

7.3 MINIMAX REGRET AND LOWER BOUND FOR CON-

VEX OPTIMIZATION GAME

Regret of an algorithm .27, With losses function 1,Set of experts & and number of rounds T

T
R‘{’«f = sup [Z L(Pr,yr) — llélézl (ﬂtvyt)]
t

»ho|=1

o/ is defined as V¢ > 1

ﬁt: ((ﬁ71)i7y17(ﬁ72)j7y27 """ 7yt—17(fi,t)[) =9
We showed the following
When D is convex and 1 is convex on Z ,1 € [0,1], |&| =N

{ [T
R (EXPWTS) < 5 logN
DEFINITION

MINIMAX REGRET — For a given set of 2,% 1 and || = N
We define minimax regret associated to (D,y,l,T,N) as

VT(N) =inf sup RT(l’g),@f
9 |&|=N

—=inf sup |Ly —minL; 7
o év|:pN|: €& b
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V% convex ,l convex and 1€ [0,1]
Bound for exp-wts =

T
VT(N) SwalogN

Theorem 7.2. Considery ={0,1} ,D=[0,1],1(p,y) = |p—Y|

Vo (N).LDy
sup T >

2181, [ Diog N B

IMPLICATION :
Givenany0< & <1, 3IT=T(&),N=N(&) such that

Ve ) > (1—5)1/§10gN

Let X be a random variable always in S . Then

sup f(x) > E[f (x)]

xeS

Given T, |&| = N,A, Let’s fix the expert advice [f;,],, to some arbitrary sequence.
For the algorithm A —

T T
R/ (A)= " sup <Z|ﬁt—)’z|_?éié§2|ﬁ7t—yt’> >E
t=1

()’1>y27~-~>yz) t=1

3 3

|Dr —ye| —min }_|fis — i
=1 €s 3

Y, ~ Bernoulli (3) and iid

=Ey

T
Z Dt —yi| —Ey
=1

T
Inlan | fie — ¥t ”

=1

M=

Ey [|pr —y:|] —Ey {mlmzm,t _—
t -

t=1
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T .
=3 —Ey {m,an\fi,t —Yz|]
Lot

T
1 .
= Ey Z—— mZ fiz =l
1:12 L
T 71
=Ey maXZ(E—ﬁJ—)’tO
Lor=1
Note
1 1
§_|fi,t_yt|:§_fi,t when y; =0
iyl = fu— s wheny =1
> it —YVt| = Jigt 3 when y, =
So

1 1
5 |fig — el = (fi’t_i) X (2y—1)
Let’s define o; = (2y, — 1) € (—1,1)

Rl (A) > Eq

4 1
mlaxz (fi,t — 5) G,]

=1

where o; is RADEMACHER random variable.
o

supR§ (A) > 51}p Es

fis

ZEf EG

. 1 . 1 1
Since , fi; — 5 can be either —50r+3
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1

T
max Z Zi’[ O;
|
Where {Z;;}, , is iid RADEMACHER € (+ — 1) withp = %

1 N
—_F l.
) {011} [{2%; Q ,t]

Note: Vi, Zthl 2, is just the position of independent standard random walk started at 0.

1 T

i€[N] =1

7.3.1 LEMMA
Take N x T iid RADEMACHER rvs ,{Q}

LN t<T
, T .
lim E {maX‘SN Lo Q”} _E {max G,-]
T—oo VT i<N
where G ~ N (0, 1) and further
E [max; G;]
N—e (/2logN
So with this lemma , we get
(N)
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