
E1 245: Online Prediction & Learning Fall 2015

Lecture 7 — August 25
Lecturer: Aditya Gopalan Scribe: Arvind Kumar

7.1 RECAP
Randomized-EXP-WTS(η)
INIT :

Wi,1 = 1 ∀i ∈ E

for t ≥ 1:
Sample an expert

It ∼Wt

Predict
p̂t = fI i,t

Wi,t+1→Wi,t exp [−η l ( fi,t ,yt)] ∀i

7.2 Regret bound for R-EXPWTS
Theorem 7.1. High probability regret bound for R-EXPWTS.

For l : D×Y → [0,1], |E |= N, ∀ 0 < δ < 1

P

[
L̂T −E

[
L̂T
]
>

√
T
2

log
1
δ

]
≤ δ

Proof: With probability 1−δ

L̂T −min
i∈E

LT i,T ≤
√

T
2

log
1
δ
+

√
T
2

logN

Recall Hoeffding’s inequality⇒
If X1,X2....XN are independent random variables with values in [0,1] ∀ε > 0,

P

[
n

∑
i=1

xi ≥
1
n

n

∑
i=1

EXi + ε

]
≤ exp

(
−2nε

2)
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Equivalently, for any 0 < δ < 1 ,

n

∑
i=1

Xi ≤
n

∑
i=1

EXi +

√
n
2

log
1
δ

with probability ≥ 1−δ

Applying Hoffeding to sequence of r.v.s Xt ≡ l ( fIt ,yt)
distribution It depends on sequence of previous losses

P [It = i] =
exp−η ∑

t−1
s=1 l ( fi,t ,yt)

∑ j∈[n] exp−η ∑s l ( fi,t ,yt)

⇒
T

∑
t=1

l ( fi,t ,yt) < E

[
T

∑
t=1

l ( fi,t ,yt)

]
+

√
T
2

log
1
δ

�

7.3 MINIMAX REGRET AND LOWER BOUND FOR CON-
VEX OPTIMIZATION GAME

Regret of an algorithm A , With losses function l ,Set of experts E and number of rounds T

RA
T = sup

y, fl

[
T

∑
t=1

l (p̂t ,yt)− inf
i∈E ∑

t
l ( fi,t ,yt)

]

A is defined as ∀t ≥ 1
p̂t :

(
( fi,1)i ,y1,( fi,2)i ,y2, ......,yt−1,( fi,t)i

)
→ D

We showed the following
When D is convex and l is convex on D ,l ∈ [0,1] , |E |= N

RT
l,E (EXPWT S)≤

√
T
2

logN

DEFINITION
MINIMAX REGRET→ For a given set of D ,Y ,l and |E |= N
We define minimax regret associated to (D,y, l,T,N) as

VT
(N) = inf

A
sup
|E |=N

RT
(l,E )A

= inf
A

sup
|E |=N

[
L̂T −min

i∈E
Li,T

]
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∀D convex ,l convex and l∈ [0,1]
Bound for exp-wts⇒

VT
(N) ≤

√
T
2

logN

Theorem 7.2. Consider y = {0,1} ,D = [0,1], l (p,y) = |p− y|

sup
T≥1,N≥1

VT
(N),l,D,y√
T
2 logN

≥ 1

IMPLICATION :
Given any 0 < E < 1 , ∃T ≡ T (E ) ,N = N (E ) such that

VT
(N) ≥ (1−E )

√
T
2

logN

Let X be a random variable always in S . Then

sup
x∈S

f (x)≥ E [ f (x)]

Given T, |E |= N,A, Let’s fix the expert advice [ fi,t ]i,t to some arbitrary sequence.
For the algorithm A→

RT
f (A) = sup

(y1,y2,...,yt)

(
T

∑
t=1
|p̂t− yt |−min

i∈E

T

∑
t=1
| fi,t− yt |

)
≥ E

[(
T

∑
t=1
|p̂t− yt |−min

i∈E

T

∑
t=1
| fi,t− yt |

)]

Yt ∼ Bernoulli
(1

2

)
and iid

= EY

[(
T

∑
t=1
|p̂t− yt |−EY

[
min

i

T

∑
t=1
| fi,t− yt |

)]]

=
T

∑
t=1

EY [|p̂t− yt |]−EY

[
min

i ∑
t
| fi,t− yt |

]
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=
T
2
−EY

[
min

i ∑
t
| fi,t− yt |

]

= EY

[
T

∑
t=1

1
2
−min

i ∑
t
| fi,t− yt |

]

= EY

[
max

i

T

∑
t=1

(
1
2
−| fi,t− yt |

)]

Note :

1
2
−| fi,t− yt |=

1
2
− fi,t when yt = 0

1
2
−| fi,t− yt |= fi,t−

1
2

when yt = 1

So
1
2
−| fi,t− yt |=

(
fi,t−

1
2

)
× (2yt−1)

Let’s define σt = (2yt−1) ∈ (−1,1)

R f
T (A)≥ Eσ

[
max

i

T

∑
t=1

(
fi,t−

1
2

)
σt

]

where σt is RADEMACHER random variable.
so ,

sup
fi,t

R f
T (A)≥ sup

f
Eσ

[
max

i

T

∑
t=1

(
fi,t−

1
2

)
σt

]

≥ E f

[
Eσ

[
max

i

T

∑
t=1

(
| fi,t−

1
2
|
)

σt

]]

Since , fi,t− 1
2 can be either −1

2or+ 1
2
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=
1
2
E f

[
Eσ

[
max

i

T

∑
t=1

Zi,tσt

]]

Where {Zi,t}i,t is iid RADEMACHER ∈ (+−1) with p = 1
2

=
1
2
E{QI,T }

[
max
i∈[N]

N

∑
t=1

Qi,t

]

Note : ∀i, ∑
T
t=1 Qi,t is just the position of independent standard random walk started at 0.

V (N)
T ≥ 1

2
E{QI,T }

[
max
i∈[N]

T

∑
t=1

Qi,t

]

7.3.1 LEMMA
Take N×T iid RADEMACHER rvs ,{Q}i,t i≤N,t≤T

lim
T→∞

E
[

maxi≤N ∑
T
t=1Qi,t√

T

]
= E

[
max
i≤N

Gi

]
where G∼ N(0,1) and further

lim
N→∞

E [maxiGi]√
2logN

= 1

So with this lemma , we get

lim
T→∞

V (N)
T√
T
≥ 1

2
E
[

max
i≤N

Gi

]

lim
N→∞

lim
T→∞

V (N)
T√

T
2 logN

≥ 1
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