E1 245: Online Prediction & Learning Fall 2015

Lecture 8 — August 27
Lecturer: Aditya Gopalan Scribe: Mukund Seethamraju

8.1 MINIMAX REGRET for general CONVEX Prediction Game:

y={0,1} D=[0,1] I=[p—y]|

In the last class we have seen the following:
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8.1.1 TRACKING EXPERSTS/ COMPETING WITH SHIFTING EXPERTS:

Motivation: So far, our performance have always been measure with respect to the performance of
the best SINGLE expert.
e.g. |[ef=N L:Dxy—|[0,1]. R-EXP weights algorithm enjoys

T T
. T
E[Y 1(fi0.y)] < min Y I(fy0.9) + 1/ = logN
=1 le[N]t:] 2

In other words, R-EXPWTS is COMPETETIVE with the set of all strategies of the form ”pick an
expert and follow it for all the time.”

But: Then there might be strategies that can switch across experts that can achieve much better
cumulative loss.

e.g. Consider D =y=1{0,1} [(p,y) =1{p # y} & consider the outcome sequence.

(yl,yz, ..... yT):(0,0,0, ...... 0,1,1,1,....11)

.

k tiTnes T- k‘rtimes
assume k ~ %
€1 = {always predict *0’, always predict "1’}

RV
SIL

Best possible loss of any expert from € on (y1,y2,.....yr) is
& = {start with predicting ’0” (or "1°) and toggle atmost once at some time t < T}

Best possible CUMULATIVE loss of any “expert’ from & with repsect to sequences of the form
(YI 3 Y2y eeene )’T) =0
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QUESTION: Design predicting strategies that are competitive w.r.t classes of the DYNAMIC/SWITCHING
strategies? TRACKING PROBLEM.

Consider the following (randomized) prediction game:

This is a Actions game, essentially same PREDICTION with EXPERT ADVICE.
Set of actions A = {1,2,3.... N}

set of outcomes : y

loss function: /: A xy — [0, 1]

If y is finite:

A(Actions)

..

y (environment)

In the above figure set of actions = (1,2,3,..... o ) and set of outcomes(y) is finite.
At each timet > 1:
Learner observes a distribution p; € A,
Environment chooses y; € y
n
Learner sets yy, suffers (expected) loss Y, pyil(i,y;)

i=1

T n T
Rg)) Regret of the learner over T rounds = Y. Y pyil(i,y;) — m[lr]l Y (i)
1=1i=1 i€ln] r=1
Previously we showed that if the learner uses R_LEXPWTS (n) over (A) then Rg) ) < IO%N + %
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Definition(TRACKING REGRET):
Fix a time horizon T € N

Let (i1,i2,13,..-.-.. it) € [N]T = AT by a length T’ sequence of actions.

T n
The tracking regret of an algorithm A w.r.t (i1,i2,13,....... ir)is Y Y pul(i,ye) — ¥ 1(i, )
t=1i=1 t=1

T
Definition: For (i1, i3, i3, .......it) € [N]1, Let #(i1, iz, i3, .......ir) = ¥ 1{i; #i;_1}
=1
Definition: Let & C [N]T. The traccking regret of an algorithm A w.r.t & is

T n T

Rr(&) =maxRy(&) =Y ¥ Bil(i,y;) —min Y I(e;,y;) wheree = (ej,ey,......eT)
e€s 1=1i=1 e€é =1

NOTE: Define &, := {(iy,ia,....it) € [N]T : #(i1, 2, ....i1) < m}

Rt (&) is the usual notation of expected regret so far.

IDEA: WE can just apply RANDOMIZED EXPWTS algorithm by treating each compound action
(i1,i3,....iT) in & as a “new action”.

G0 i) Weight = 1
D) Weight=1

i)Y - Weight = 1

(i lf',z‘f',z‘f‘, ....... |g|) — Weight = 1

—>V(y1,y2, ...... yT) Ey RT(@@) \/Tloglé’]

NOTE: If & = &1 = [N]" then

T n
T logN
= (i min [(i,t) —logNT =T
L ) pillioy) ,ZNGN]’ < loeNT =T/ =

Infact no(casual) algorithm gets R (&(p_)) sublinear in T.
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Lemma: |&(| = kgo (TN - 1D

Proof: (Tzl)N (N — 1)K = # of sequences (i1, iz, ......ir) with exactly k switches.

Lemma: |&,| < N™Hle(T-DHEE)
H is the binary ENTROPY function.
H(x) = -[logx + (1 - x)log(1 -x) ]V x € (0,1)
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e Online learning CMPUT 654 by Gabor Bartok, chapter-6

e Prediction Learning and Games by Cesa Bianchi - chapter 5
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