
E1 245: Online Prediction & Learning Fall 2015

Lecture 8 — August 27
Lecturer: Aditya Gopalan Scribe: Mukund Seethamraju

8.1 MINIMAX REGRET for general CONVEX Prediction Game:
y = {0,1} D= [0,1] l = |p− y|
In the last class we have seen the following:

sup
T,N

V (N)
T√

T
2 logN

≥ 1, V (N)
T = inf
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sup

{y}{t}|ε|=N
RA

T

8.1.1 TRACKING EXPERSTS/ COMPETING WITH SHIFTING EXPERTS:
Motivation: So far, our performance have always been measure with respect to the performance of
the best SINGLE expert.
e.g. |ε|= N L :D× y→ [0,1]. R-EXP weights algorithm enjoys

E[
T
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t=1

l( fIt ,t ,yt)] ≤ min
i∈[N]

T
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l( fIt ,t ,yt) +

√
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2

logN

In other words, R-EXPWTS is COMPETETIVE with the set of all strategies of the form ”pick an
expert and follow it for all the time.”
But: Then there might be strategies that can switch across experts that can achieve much better
cumulative loss.
e.g. ConsiderD= y = {0,1} l(p,y) = 1{p 6= y} & consider the outcome sequence.

(y1,y2, .....yT ) = (0,0,0, ......0︸ ︷︷ ︸
k times

,1,1,1, ....1︸ ︷︷ ︸
T - k times

)

assume k ≈ T
2

ε1 = {always predict ’0’, always predict ’1’}

Best possible loss of any expert from ε1 on (y1,y2, .....yT ) is ' T
2

ε2 = {start with predicting ’0’ (or ’1’) and toggle atmost once at some time t ≤ T}

Best possible CUMULATIVE loss of any ’expert’ from ε2 with repsect to sequences of the form
(y1,y2, .....yT ) = 0
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QUESTION: Design predicting strategies that are competitive w.r.t classes of the DYNAMIC/SWITCHING
strategies? TRACKING PROBLEM.

Consider the following (randomized) prediction game:
This is a Actions game, essentially same PREDICTION with EXPERT ADVICE.
Set of actions A = {1,2,3.... N}
set of outcomes : y
loss function: l : A× y→ [0,1]
If y is finite:

l(a,y)

y (environment)

A(Actions)

In the above figure set of actions = (1,2,3,..... ∞ ) and set of outcomes(y) is finite.
At each time t ≥ 1:

Learner observes a distribution p̂t ∈ ∆n
Environment chooses yt ∈ y

Learner sets yt , suffers (expected) loss
n
∑

i=1
p̂til(i,yt)

R(0)
T Regret of the learner over T rounds =

T
∑

t=1

n
∑

i=1
p̂til(i,yt)−min

i∈[n]

T
∑

t=1
l(i,yt)

Previously we showed that if the learner uses R EXPWTS (η) over (A) then R(0)
T ≤

logN
η

+ ηT
8
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Definition(TRACKING REGRET):

Fix a time horizon T ∈N

Let (i1, i2, i3, .......iT ) ∈ [N]T =AT by a length ’T’ sequence of actions.

The tracking regret of an algorithm A w.r.t (i1, i2, i3, .......iT ) is
T
∑

t=1

n
∑

i=1
p̂til(i,yt)−

T
∑

t=1
l(it ,yt)

Definition: For (i1, i2, i3, .......iT ) ∈ [N]T, Let #(i1, i2, i3, .......iT ) =
T
∑

t=1
1{it 6= it−1}

Definition: Let E ⊆ [N]T. The traccking regret of an algorithm A w.r.t E is

RT(E ) = max
e∈E

RT(E ) =
T
∑

t=1

n
∑

i=1
p̂til(i,yt)−min

e∈E

T
∑

t=1
l(et ,yt) where e = (e1,e2, ......eT)

NOTE: Define Em := {(i1, i2, ....iT) ∈ [N]T : #(i1, i2, ....iT)≤ m}

RT(Em) is the usual notation of expected regret so far.

IDEA: WE can just apply RANDOMIZED EXPWTS algorithm by treating each compound action
(i1, i2, ....iT) in E as a ”new action”.

(i(1)1 , i(1)2 , i(1)3 , .......i(1)T )→Weight = 1

(i(2)1 , i(2)2 , i(2)3 , .......i(2)T )→Weight = 1

(i(3)1 , i(3)2 , i(3)3 , .......i(3)T )→Weight = 1
.
.
.

(i|E |1 , i|E |2 , i|E |3 , .......i|E |T )→Weight = 1

→∀ (y1,y2, ......yT) ∈ yT RT(E )≤
√

T
2 log |E |

NOTE: If E ≡ ET−1 ≡ [N]T then

RT(E ) =
T

∑
t=1

n

∑
i=1

p̂til(i,yt)−
T

∑
t=1

min
i∈[N]

l(i, t)≤
√

T
2

logNT = T

√
logN

2

Infact no(casual) algorithm gets RT(E(T−1)) sublinear in T.

8-3



E1 245 Lecture 8 — August 27 Fall 2015

Lemma: |E(m)|=
m
∑

k=0

(T−1
k

)
N(N−1)K

Proof:
(T−1

k

)
N(N−1)K = # of sequences (i1, i2, ......iT) with exactly k switches.

Lemma: |Em| ≤ Nm+1e(T−1)H( m
m−1 )

H is the binary ENTROPY function.
H(x) = -[logx + (1 - x)log(1 - x) ] ∀ x ∈ (0,1)
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References:

• Online learning CMPUT 654 by Gabor Bartok, chapter-6

• Prediction Learning and Games by Cesa Bianchi - chapter 5
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