
E1 245 – O. P. and L. Exam Oct 30, 2018

Name:

Question: 1 2 3 Total

Points: 10 12 18 40

Score:

E1 245 – Online Prediction and Learning, Aug-Dec 2018 – Exam

Instructions

• Write your name on top of this question sheet, attach your solution sheets to it and

return everything together.

• The total time for this exam is 2 hours. The exam has 3 questions, for a total of

40 points and 8 bonus points.

• Feel free to use any notes for this exam.

• Academic dishonesty will not be tolerated.

Useful results:

• Hoeffding’s inequality: For independent random variables X1, . . . , Xn taking values in

[a, b], and v ≥ 0, P [|
∑n

t=1Xt −
∑n

t=1 E [Xt]| ≥ v] ≤ 2 exp
(

− 2v2

n(b−a)2

)

.

1. (Stochastic online learning)

Consider a stochastic online learning problem with 2 actions or arms {1, 2} with Bernoulli

reward distributions. It is known that their Bernoulli parameters (µ1, µ2) are either (µ−, µ+)
or (µ+, µ−), where µ− := 1−ǫ

2
and µ+ := 1+ǫ

2
, for some (potentially unknown) ǫ ∈ (0, 1

2
).

At each round 1 ≤ t ≤ T , a learner plays a single action It ∈ {1, 2} and gets obser-

vations as described below. The total (pseudo) regret of the learner after T rounds is
∑T

t=1

(

1+ǫ
2

)

− µIt.

(a) (2 points) Suppose that after each play, the learner only observes a reward sample

from the action which it plays (independent of the past). Describe an algorithm for

playing arms and a non-trivial (sub-linear in T) regret bound for it. (Just state without

any proof.)

(b) (8 points) Suppose now that after each play It, the learner observes rewards from

both the actions’ reward distributions, i.e., it observes X1(t) ∼ Ber(µ1) and X2(t) ∼
Ber(µ2), independent of each other and the past (note that the reward earned by the

E1 245 – O. P. and L. Exam, Page 2 of 3 Oct 30, 2018

learner is the same, µIt , however the other arm is also observed). Design an algorithm

with as small regret in T rounds as possible. (A concrete regret bound is expected, but

without needing to be precise about constants.)

(Hint: Exploit the iid environment to do much better than before.)

(c) (Bonus question: 8 points) Can you argue a matching (up to constants) fundamen-

tal lower bound on the regret of any ‘reasonable’1 learning algorithm for this problem?

2. (Solving linear programs using Exponential-Weights)

Suppose we want to solve the following linear feasibility problem2: Given vectors a1, . . . , am
in R

d, we want to find a linear half space, described by some vector x, that contains all these

vectors. More precisely, we would like to find a vector x 6= 0 with xTaj ≥ 0 ∀j ∈ [m].
Without loss of generality, we can also include the condition 1

Tx = 1 in the specification3

for x, so that our search is over all probability distributions on the dimensions [d].

Suppose there really exists a vector x∗ such that xT
∗ aj ≥ ǫ > 0 for all j ∈ [m] (this is often

called a large margin condition in machine learning). Consider the following procedure for

the linear feasibility problem, based on the Exponential-Weights online algorithm.

initialize: experts {1, 2, . . . , d}, x1 as the uniform distribution over

the experts, t = 1, ρ = maxj ||aj ||∞, and η > 0

while min1≤j≤d xTt aj < 0:

1. set lt := −ajt/ρ, where jt ∈ [d] is some constraint that is

violated by the current distribution xt, i.e., xTt ajt < 0

2. run one iteration of Exponential-Weights(η), on the experts,

with the loss vector as lt, i.e., set xt+1(i) ∝ xt(i) exp(−ηlt(i))
∀1 ≤ i ≤ d, such that 1

Txt+1 = 1

3. increment t to t+ 1

end while

return xt as a feasible solution

Intuitively, this procedure at each step feeds a ‘hard’ example (a point aj that is on the

wrong side of the current half space xt, with large loss) to Exponential-Weights, i.e., it re-

wards constraint satisfaction and penalizes constraint violation to get Exponential-Weights

to learn a good half space.

(a) (6 points) Note that by definition, each loss vector lt ∈ [−1, 1]d. It is a standard fact

that Exponential-Weights enjoys the regret bound

T
∑

t=1

lTt xt − min
x∈∆d

T
∑

t=1

lTt x ≤ ηT +
log(d)

η
,

for any sequence of loss vectors l1, . . . , lT in [−1, 1]d, where ∆d denotes the set of

all probability distribution vectors on [d]. Describe how you would use this to adjust

1You will have to identify a suitable notion for an algorithm to be a ‘reasonable’ learning algorithm.
2This is actually a rather general form of linear programming.
3
1 denotes the all-ones vector in R

d.

E1 245 – O. P. and L. Exam, Page 3 of 3 Oct 30, 2018

the learning rate η in the procedure above, so that the number of rounds taken by it to

terminate is bounded above by a suitable function of ρ, d and ǫ.

(b) (6 points) What if the linear feasibility problem admits a solution x∗ but its margin ǫ
is unknown? How would you modify the algorithm above that assumes knowledge of

ǫ, to get an algorithm that still terminates, with a feasible solution, in the same number

of rounds as above (upto constants)?

3. (Stochastic bandits)

Consider the iid4 stochastic bandit problem with K Bernoulli-reward arms and total time

T . Recall that if µi denotes the expected reward of the ith arm, then the regret of a bandit

algorithm that plays an arm It ∈ [N] at each time 1 ≤ t ≤ T , and observes only the

(random) reward from the chosen arm, is defined to be R(T) := T ·maxi µi−
∑T

t=1 E [µIt].

Explain briefly which of the following algorithms will/will not always achieve sublinear

(pseudo-) regret with time horizon T (Recall: R(T) is sublinear⇔ limT→∞
R(T)
T

= 0).

(a) (3 points) Play all arms exactly once. For each arm i, initialize si to be its observed

reward and ni := 1. At each time t ≤ T , play It := argmaxi si/ni (break ties in any

fixed manner), get (stochastic) reward Rt and update sIt ← sIt +Rt, nIt ← nIt + 1.

(b) (3 points) Play all arms exactly once. For each arm i, initialize si to be its observed

reward and ni := 1. At each time t ≤ T , toss an independent coin with probability of

heads p := 1/
√
T . Play It := argmaxi si/ni (break ties in any fixed manner) if the

coin lands heads, else play a uniformly random arm, get (stochastic) reward Rt and

update sIt ← sIt +Rt, nIt ← nIt + 1.

(c) (3 points) Same as the previous part but with p := 1/T .

(d) (3 points) Same as the previous part but with p := 1/K.

(e) (3 points) For each arm i ∈ [N], initialize ui = 1, vi = 1. At each time t ≤ T , sam-

ple independent random variables θi(t) ∼ Beta(ui, vi), and play It := argmaxi θi(t)
(break ties in any fixed manner). Get (stochastic) reward Rt and update uIt ← uIt+Rt,

vIt ← vIt + (1−Rt).

(f) (3 points) Play all arms exactly once. For each arm i, initialize si to be its observed

reward and ni := 1. At each time t ≤ T , let At := argmaxi si/ni and Bt :=
argmaxi 6=At

si/ni denote the best and second-best arms in terms of sample mean,

respectively. Play It ∈ {At, Bt} chosen uniformly at random, get (stochastic) reward

Rt and update sIt ← sIt +Rt, nIt ← nIt + 1.

4independent and identically distributed

