Name:

Question:	1	2	3	Total
Points:	10	12	18	40
Score:				

E1 245 – Online Prediction and Learning, Aug-Dec 2018 – Exam

Instructions

- <u>Write your name</u> on top of this question sheet, attach your solution sheets to it and return everything together.
- The total time for this exam is 2 hours. The exam has 3 questions, for a total of 40 points and 8 bonus points.
- Feel free to use any notes for this exam.
- Academic dishonesty will <u>not</u> be tolerated.

Useful results:

- Hoeffding's inequality: For independent random variables X_1, \ldots, X_n taking values in [a, b], and $v \ge 0$, $\mathbb{P}\left[|\sum_{t=1}^n X_t \sum_{t=1}^n \mathbb{E}\left[X_t\right]| \ge v\right] \le 2 \exp\left(-\frac{2v^2}{n(b-a)^2}\right)$.
- 1. (Stochastic online learning)

Consider a stochastic online learning problem with 2 actions or arms $\{1, 2\}$ with Bernoulli reward distributions. It is known that their Bernoulli parameters (μ_1, μ_2) are either (μ_-, μ_+) or (μ_+, μ_-) , where $\mu_- := \frac{1-\epsilon}{2}$ and $\mu_+ := \frac{1+\epsilon}{2}$, for some (potentially unknown) $\epsilon \in (0, \frac{1}{2})$. At each round $1 \le t \le T$, a learner plays a single action $I_t \in \{1, 2\}$ and gets observations as described below. The total (pseudo) regret of the learner after T rounds is $\sum_{t=1}^{T} \left(\frac{1+\epsilon}{2}\right) - \mu_{I_t}$.

- (a) (2 points) Suppose that after each play, the learner only observes a reward sample from the action which it plays (independent of the past). Describe an algorithm for playing arms and a non-trivial (sub-linear in T) regret bound for it. (Just state without any proof.)
- (b) (8 points) Suppose now that after each play I_t , the learner observes rewards from <u>both</u> the actions' reward distributions, i.e., it observes $X_1(t) \sim \text{Ber}(\mu_1) \text{ and } X_2(t) \sim \text{Ber}(\mu_2)$, independent of each other and the past (note that the reward earned by the

learner is the same, μ_{I_t} , however the other arm is also observed). Design an algorithm with as small regret in T rounds as possible. (A concrete regret bound is expected, but without needing to be precise about constants.)

(Hint: Exploit the iid environment to do much better than before.)

- (c) (**Bonus question: 8 points**) Can you argue a matching (up to constants) fundamental lower bound on the regret of any 'reasonable'¹ learning algorithm for this problem?
- 2. (Solving linear programs using Exponential-Weights)

Suppose we want to solve the following linear feasibility problem²: Given vectors a_1, \ldots, a_m in \mathbb{R}^d , we want to find a linear half space, described by some vector x, that contains all these vectors. More precisely, we would like to find a vector $x \neq 0$ with $x^T a_j \ge 0 \forall j \in [m]$. Without loss of generality, we can also include the condition $\mathbf{1}^T x = 1$ in the specification³ for x, so that our search is over all probability distributions on the dimensions [d].

Suppose there really exists a vector x_* such that $x_*^T a_j \ge \epsilon > 0$ for all $j \in [m]$ (this is often called a <u>large margin</u> condition in machine learning). Consider the following procedure for the linear feasibility problem, based on the Exponential-Weights online algorithm.

```
initialize: experts \{1, 2, ..., d\}, x_1 as the uniform distribution over
the experts, t = 1, \rho = \max_j ||a_j||_{\infty}, and \eta > 0
while \min_{1 \le j \le d} x_t^T a_j < 0:
1. set l_t := -a_{j_t}/\rho, where j_t \in [d] is some constraint that is
violated by the current distribution x_t, i.e., x_t^T a_{j_t} < 0
2. run one iteration of Exponential-Weights (\eta), on the experts,
with the loss vector as l_t, i.e., set x_{t+1}(i) \propto x_t(i) \exp(-\eta l_t(i))
\forall 1 \le i \le d, such that \mathbf{1}^T x_{t+1} = 1
3. increment t to t+1
end while
return x_t as a feasible solution
```

Intuitively, this procedure at each step feeds a 'hard' example (a point a_j that is on the wrong side of the current half space x_t , with large loss) to Exponential-Weights, i.e., it rewards constraint satisfaction and penalizes constraint violation to get Exponential-Weights to learn a good half space.

(a) (6 points) Note that by definition, each loss vector $l_t \in [-1, 1]^d$. It is a standard fact that Exponential-Weights enjoys the regret bound

$$\sum_{t=1}^{T} l_t^T x_t - \min_{x \in \Delta_d} \sum_{t=1}^{T} l_t^T x \le \eta T + \frac{\log(d)}{\eta},$$

for any sequence of loss vectors l_1, \ldots, l_T in $[-1, 1]^d$, where Δ_d denotes the set of all probability distribution vectors on [d]. Describe how you would use this to adjust

¹You will have to identify a suitable notion for an algorithm to be a 'reasonable' learning algorithm.

²This is actually a rather general form of linear programming.

³1 denotes the all-ones vector in \mathbb{R}^d .

the learning rate η in the procedure above, so that the number of rounds taken by it to terminate is bounded above by a suitable function of ρ , d and ϵ .

- (b) (6 points) What if the linear feasibility problem admits a solution x_* but its margin ϵ is <u>unknown</u>? How would you modify the algorithm above that assumes knowledge of ϵ , to get an algorithm that still terminates, with a feasible solution, in the same number of rounds as above (upto constants)?
- 3. (Stochastic bandits)

Consider the iid⁴ stochastic bandit problem with K Bernoulli-reward arms and total time T. Recall that if μ_i denotes the expected reward of the *i*th arm, then the regret of a bandit algorithm that plays an arm $I_t \in [N]$ at each time $1 \le t \le T$, and observes only the (random) reward from the chosen arm, is defined to be $R(T) := T \cdot \max_i \mu_i - \sum_{t=1}^T \mathbb{E}[\mu_{I_t}]$. Explain briefly which of the following algorithms will/will not always achieve sublinear (pseudo-) regret with time horizon T (Recall: R(T) is sublinear $\Leftrightarrow \lim_{T\to\infty} \frac{R(T)}{T} = 0$).

- (a) (3 points) Play all arms exactly once. For each arm *i*, initialize s_i to be its observed reward and $n_i := 1$. At each time $t \leq T$, play $I_t := \arg \max_i s_i/n_i$ (break ties in any fixed manner), get (stochastic) reward R_t and update $s_{I_t} \leftarrow s_{I_t} + R_t$, $n_{I_t} \leftarrow n_{I_t} + 1$.
- (b) (3 points) Play all arms exactly once. For each arm *i*, initialize s_i to be its observed reward and n_i := 1. At each time t ≤ T, toss an independent coin with probability of heads p := 1/√T. Play I_t := arg max_i s_i/n_i (break ties in any fixed manner) if the coin lands heads, else play a uniformly random arm, get (stochastic) reward R_t and update s_{It} ← s_{It} + R_t, n_{It} ← n_{It} + 1.
- (c) (3 points) Same as the previous part but with p := 1/T.
- (d) (3 points) Same as the previous part but with p := 1/K.
- (e) (3 points) For each arm i ∈ [N], initialize u_i = 1, v_i = 1. At each time t ≤ T, sample independent random variables θ_i(t) ~ Beta(u_i, v_i), and play I_t := arg max_i θ_i(t) (break ties in any fixed manner). Get (stochastic) reward R_t and update u_{It} ← u_{It}+R_t, v_{It} ← v_{It} + (1 − R_t).
- (f) (3 points) Play all arms exactly once. For each arm *i*, initialize s_i to be its observed reward and n_i := 1. At each time t ≤ T, let A_t := arg max_i s_i/n_i and B_t := arg max_{i≠At} s_i/n_i denote the best and second-best arms in terms of sample mean, respectively. Play I_t ∈ {A_t, B_t} chosen uniformly at random, get (stochastic) reward R_t and update s_{It} ← s_{It} + R_t, n_{It} ← n_{It} + 1.

⁴independent and identically distributed