E1 245 - Online Prediction and Learning, Aug-Dec 2018
Homework #1

1. Exponential inequalities
Prove the following inequalities (useful in showing mistake bounds for the Weighted-Majority
algorithm, for instance):

(@) VxeR e >1+x
(b) VO<x<3 —log(l—x) <x+x?

2. Generalizing HALVING
We showed that the HALVING algorithm for binary prediction makes at most log, N mis-
takes using the advice of N experts whenever some expert is always predicting correctly.
Show that a straightforward modification of MAJORITY makes at most O((m+ 1)log, N)
mistakes! whenever the best expert makes m > 0 mistakes.

3. Mistake lower bound
For the 1-bit prediction problem discussed in class, show that for any deterministic algorithm
(i.e., an algorithm that does not randomize its predictions), there exists a binary sequence,
and a set of experts along with their advice, such that the algorithm’s mistake count is at
least twice the number of mistakes made by the best expert. (Hint: Think of forcing your
algorithm to make the most mistakes, and a very simple set of expert advice.) (This shows
that Weighted Majority’s mistake bound is essentially unimprovable in general.)

4. Hoeffding’s lemma
Show that for a random variable X taking values in |a, b],

s?(b—a)?

VseR logE[eSX} <sE[X]+ g

Hints: Assume E [X] = 0 without loss of generality (why?), write ¢** < ngew + %esz’
(why?), and proceed.

5. Smarter Exponential Weights when the best expert’s loss is known beforehand
Consider prediction with expert advice with a convex loss (in the first argument) bounded
in [0,1]. Suppose you know in advance what the best expert’s total loss is going to be at
time 7 (this could be much less than O(T), e.g., a constant). The aim of this exercise is to
see if this information a priori can be used to learn faster and reduce regret. (Recall that we
already showed an analogous performance bound in the mistake count or 0-1 loss setting for
the Weighted Majority algorithm, in terms of the mistake performance of a good expert.)

(a) First, prove that logE[e*X] < (e® — 1)E[X] for any random variable X € [0, 1].

(b) Let the experts be indexed by {1,2,...,K}. Use the previous result instead of (the
weaker) Hoeffding’s inequality to show that Ly (ExpWts) < (nL3 +1ogK)/(1 —e™")
for ExpWeights run with parameter 11 > 0. Here, Ly (ExpWts) is the cumulative loss
of the algorithm and L} := min;—; g L;7 is the cumulative loss of the best expert,
over T rounds.

IBig-Oh notation: We say that f(m) = O(g(m)) if there exist constants &, mq such that f(m) < ag(m) Vm >
my.



(c)

(d)

Use the elementary inequality 11 < (el —e~")/2 in the above bound to obtain a fur-
ther bound. Then, assuming that the value of L} is known beforehand, show that
setting the ExpWeight learning rate to 1 := log(1 + /(2logK)/L}.) gives regret at
most /2L log K +log K, which can be significantly small when the best expert’s cu-
mulative loss is small.

What if the best expert’s loss L; is not known beforehand, but available only sequen-
tially, i1.e., at time 7 for each ¢? Using a doubling trick idea, can you design an algorithm
that does not require advance knowledge of the cumulative loss of the best expert, and
show that its regret bound is only worse by a constant factor compared to the one in
part (c) above?



