E1 245 - Online Prediction and Learning, Aug-Dec 2018 Homework #2

1. Hoeffding's inequality

Prove the following inequality for independent random variables X_1, \ldots, X_T taking values in [0, 1].

$$\forall \varepsilon \geq 0 \quad \mathbb{P}\left[\frac{\sum_{t=1}^{T} X_t}{T} - \frac{\sum_{t=1}^{T} \mathbb{E}\left[X_t\right]}{T} \geq \varepsilon\right] \leq e^{-2T\varepsilon^2}.$$

Hint: For any $\lambda > 0$ and a non-negative random variable Z, $\mathbb{P}[Z \ge \varepsilon] = \mathbb{P}\left[e^{\lambda Z} \ge e^{\lambda \varepsilon}\right]$; use Markov's inequality, Hoeffding's lemma (from HW 1), optimize over $\lambda > 0$.

- 2. Exp-concavity and common loss functions
 - (a) Show that if for a $y \in \mathscr{Y}$ and $\eta > 0$ the function $F(z) := e^{-\eta l(z,y)}$ is concave, then l(z,y) is a convex function of z.
 - (b) Show that the relative entropy loss $l(x,y) := y \log \frac{y}{x} + (1-y) \log \frac{1-y}{1-x}$, $x, y \in [0,1]$, is 1-exp-concave for all values¹ of *y*.
 - (c) Show that the squared loss $l(x, y) := (x y)^2$, $x, y \in [0, 1]$, is $\frac{1}{2}$ -exp-concave for all valid values of *y*.
 - (d) Show that the absolute value loss l(x,y) := |x y|, $x, y \in [0,1]$, *cannot* be η -exp-concave for any $\eta > 0$.

3. Improved regret with exp-concave loss functions

Show that if the Exponentially Weighted Forecaster (EXPWTS) is run in the predictionwith-expert-advice setting with a σ -exp-concave loss function $l: \mathcal{D} \times \mathcal{Y} \to [0,1]$ (over \mathcal{D}) and the learning rate $\eta = \sigma > 0$ over N experts, then the algorithm enjoys the regret bound

$$\sum_{t=1}^{T} l(p_t, y_t) - \min_{i \in [N]} \sum_{t=1}^{T} l(f_{i,t}, y_t) \le \frac{\log N}{\sigma}.$$

(note: regret does not grow with time T!)

- 4. Establish the following properties, that we used in class, to prove a regret bound for Cover's Universal Portfolio algorithm.
 - (a) Let $b^* \in \Delta_m$ represent a Constantly Rebalancing Portfolio (CRP) on the (non-negative) unit simplex in \mathbb{R}^m_+ . Let $\text{Ball}_{\varepsilon}(b^*) := \{(1 - \varepsilon)b^* + \varepsilon b : b \in \Delta_m\}$ for $\varepsilon \in [0, 1]$. If Vol(A) denotes the (m - 1)-dimensional volume² of a set $A \subseteq \Delta_m$, then show that $\text{Vol}(\text{Ball}_{\varepsilon}(b^*)) = \varepsilon^{m-1} \text{Vol}(\Delta_m)$.
 - (b) Show that the CRP strategy $b \in \text{Ball}_{\varepsilon}(b^*)$ achieves wealth $S_T(b, x^T) \ge S_T(b^*, x^T)(1 \varepsilon)^T$ in *T* investment periods.

¹By convention, we take $\frac{0}{0} := 0 \& 0 \cdot \log 0 := 0$.

²Vol(A) can be taken to be the (m-1)-dimensional "surface area" of the surface defined by $x_m = f(x_1, \ldots, x_{m-1}) := 1 - \sum_{i=1}^{m-1} x_i$, for $x_1, \ldots, x_{m-1} \ge 0$, $\sum_{i=1}^{m-1} x_i \le 1$. Alternatively, Vol(A) can be defined to be the probability of a point lying in the set A when it is drawn from the uniform probability distribution over Δ_m .