
E1 245 - Online Prediction and Learning, Aug-Dec 2018
Homework #3

1. Strong convexity of entropy (Pinsker’s inequality)

(a) Prove that the negative entropy function R(x) =∑i xi logxi over the 2 dimensional simplex ∆2 :=
{(x1,x2) : xi ≥ 0,x1 + x2 = 1} is 1-strongly convex with respect to the || · ||1 norm.

(b) Prove the same statement when d = 2 is replaced with a general positive integer d ≥ 2.
Hint: One way is to find a reduction to the d = 2 case. Let x and y be two vectors in ∆d . Let
A := {i : xi ≥ yi} be the coordinates where x dominates y. Can you find two new vectors xA and
yA in ∆2 so that ||x− y||1 = ||xA− yA||1 and carry on?

2. Exponential Weights as FTRL and OMD

(a) Show that Follow The Regularized Leader (FTRL) on the simplex
∆N :=

{
(x1, . . . ,xN) : ∑

N
i=1 xi = 1,∀i xi ≥ 0

}
with the entropic regularizer1

Rη(x) := 1
η

∑
N
i=1 xi logxi, and linear loss functions ft(x) = 〈zt ,x〉, is equivalent to running the

Exponential Weights algorithm on N experts with loss vectors {zt}t≥1 and parameter η .
Hint: You can derive this directly from first principles and the definition of the FTRL rule. An
alternative way is by using (a) the equivalence between FTRL and (unconstrained minimization
+ Bregman projection) proven in class, and (b) observing that Bregman projection wrt the
regularizer R onto ∆N is equivalent to scaling by the || · ||1 norm.

(b) Show that Active Online Mirror Descent on the simplex
∆N :=

{
(x1, . . . ,xN) : ∑

N
i=1 xi = 1,∀i xi ≥ 0

}
with the entropic regularizer

Rη(x) := 1
η

∑
N
i=1 xi logxi, and linear loss functions ft(x) = 〈zt ,x〉, is equivalent to running the

Exponential Weights algorithm on N experts with loss vectors {zt}t≥1 and parameter η .

3. Analysing Exponential Weights as OMD

(a) Prove the following result. Suppose (active) OMD is run on the convex decision set K with
a Legendre function R, where R is α-strongly convex with respect to some norm || · || on K ,
R(x)−R(w1) ≤ B2 ∀x ∈K , and the gradients of the loss functions are at most G in the dual2

norm || · ||∗. Then, with a step size η := G
B

√
2
T , the T -round regret of OMD is at most BG

√
2T
α

.
Hint: In the regret bound for active OMD in class, upper bound the term DR(wt ,w′t+1)−
DR(wt+1,w′t+1).

(b) Using this and the previous exercises, argue an appropriate regret bound for the Exponential
weights algorithm run on the simplex ∆d , and with linear loss functions having coefficients in
[0,1].

4. Fenchel duality and Bregman divergence
For each of the following functions defined on Rd , compute its gradient, Fenchel dual, gradient of
the Fenchel dual, and the Bregman divergences of itself and its Fenchel dual.

(a) F1(x) = ex1 + · · ·+ exd .

(b) F2(x) = log(ex1 + · · ·+ exd ).

(c) F3(x) = 1
2 ||x||

2
p, p ∈ [1,∞].

5. Bregman projection
Show that the projection of y ∈ (0,∞)d onto the probability simplex ∆d , with respect to the Bregman
divergence induced by the generalized negative entropy (R(x) := ∑

2
i=1 xi logxi − xi), is simply its

normalization, i.e., Π
DR
∆d
(y) = y/||y||1.

10log0 is defined to be 0.
2Recall that for a norm || · || in Rd , its dual norm is defined by ||y||∗ := maxx:||x||=1 xT y.
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