E1 245 - Online Prediction and Learning, Aug-Dec 2018
Homework #3

1. Strong convexity of entropy (Pinsker’s inequality)

(a) Prove that the negative entropy function R(x) = }; x;log x; over the 2 dimensional simplex A, :=
{(x1,x2) : x; > 0,x; +x, = 1} is 1-strongly convex with respect to the || ||; norm.

(b) Prove the same statement when d = 2 is replaced with a general positive integer d > 2.
Hint: One way is to find a reduction to the d = 2 case. Let x and y be two vectors in Ay. Let
A:={i:x; > y;} be the coordinates where x dominates y. Can you find two new vectors x4 and
ya in Ay so that ||x —y||1 = ||xa — yal|1 and carry on?

2. Exponential Weights as FTRL and OMD

(a) Show that Follow The Regularized Leader (FTRL) on the simplex
Ay = {(xl, ey XN) vazlx,- =1,Vix; > 0} with the entropic regularizer
Ry(x) == % ¥ x;logx;, and linear loss functions f;(x) = (z,x), is equivalent to running the
Exponential Weights algorithm on N experts with loss vectors {z },>1 and parameter 7.
Hint: You can derive this directly from first principles and the definition of the FTRL rule. An
alternative way is by using (a) the equivalence between FTRL and (unconstrained minimization
+ Bregman projection) proven in class, and (b) observing that Bregman projection wrt the
regularizer R onto Ay is equivalent to scaling by the || - ||| norm.
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(b) Show that Active Online Mirror Descent on the simplex
Ay = {(xl veexy) XN = 1,Vix > 0} with the entropic regularizer
Ry(x) = % ¥ xilogx;, and linear loss functions f;(x) = (z,x), is equivalent to running the
Exponential Weights algorithm on N experts with loss vectors {z },>; and parameter 1.

3. Analysing Exponential Weights as OMD

(a) Prove the following result. Suppose (active) OMD is run on the convex decision set %~ with
a Legendre function R, where R is a-strongly convex with respect to some norm || - || on %",
R(x) —R(w;) < B? ¥x € %, and the gradients of the loss functions are at most G in the dual?

norm ||-||.. Then, with a step size ) := g\/;, the T-round regret of OMD is at most BG\/%.
Hint: In the regret bound for active OMD in class, upper bound the term Dg(w;,w,, ) —
Dr(Wii1,W; ).

(b) Using this and the previous exercises, argue an appropriate regret bound for the Exponential

weights algorithm run on the simplex A;, and with linear loss functions having coefficients in
[0,1].

4. Fenchel duality and Bregman divergence
For each of the following functions defined on R¢, compute its gradient, Fenchel dual, gradient of
the Fenchel dual, and the Bregman divergences of itself and its Fenchel dual.

(@) Fi(x) =€ 4+ &%,
(b) Fo(x) = log(e" +--- +€%).
(© F3(x) = 5]lx|[}, p € [1,%0].
5. Bregman projection
Show that the projection of y € (0,0)¢ onto the probability simplex Ay, with respect to the Bregman
divergence induced by the generalized negative entropy (R(x) := Z?:]xi logx; — x;), is simply its
normalization, i.e., HZ’; ) =vy/llyl-

1010g0 is defined to be 0.
ZRecall that for a norm || - || in R?, its dual norm is defined by ||y||« := max,. ||| xTy.



