
Bandit Algorithms

Tor Lattimore and Csaba Szepesvári

Draft of Friday 27th July, 2018
Revision: 1014M

Contents

Preface page 1
Notation 3

Part I Bandits, Probability and Concentration 7

1 Introduction 8
1.1 The language of bandits 9
1.2 Applications 13
1.3 Bibliographic remarks 16

2 Foundations of Probability (†) 18
2.1 Probability spaces and random elements 18
2.2 σ-algebras and knowledge 24
2.3 Conditional probabilities 26
2.4 Independence 28
2.5 Integration and expectation 29
2.6 Conditional expectation 32
2.7 Notes 35
2.8 Bibliographic remarks 39
2.9 Exercises 40

3 Stochastic Processes and Markov Chains (†) 44
3.1 Stochastic processes 45
3.2 Markov chains 45
3.3 Martingales and stopping times 47
3.4 Notes 48
3.5 Bibliographic remarks 49
3.6 Exercises 49

4 Finite-Armed Stochastic Bandits 51
4.1 The learning objective 52
4.2 The regret 54
4.3 Decomposing the regret 56
4.4 The canonical bandit model (†) 57

Contents iii

4.5 Notes 59
4.6 Bibliographical remarks 61
4.7 Exercises 62

5 Concentration of Measure 66
5.1 The inequalities of Markov and Chebyshev 67
5.2 The Cramer-Chernoff method and subgaussian random variables 68
5.3 Notes 71
5.4 Bibliographical remarks 74
5.5 Exercises 75

Part II Stochastic Bandits with Finitely Many Arms 82

6 The Explore-then-Commit Algorithm 84
6.1 Notes 88
6.2 Bibliographical remarks 88
6.3 Exercises 89

7 The Upper Confidence Bound Algorithm 95
7.1 Notes 103
7.2 Bibliographical remarks 103
7.3 Exercises 104

8 The Upper Confidence Bound Algorithm: Asymptotic Optimality 110
8.1 Notes 113
8.2 Bibliographic remarks 113
8.3 Exercises 114

9 The Upper Confidence Bound Algorithm: Minimax Optimality (†) 116
9.1 Notes 119
9.2 Bibliographic remarks 121
9.3 Exercises 121

10 The Upper Confidence Bound Algorithm: Bernoulli Noise (†) 125
10.1 Concentration for sums of Bernoulli random variables 125
10.2 The KL-UCB algorithm 128
10.3 Notes 132
10.4 Bibliographic remarks 133
10.5 Exercises 134

Part III Adversarial Bandits with Finitely Many Arms 137

11 The Exp3 Algorithm 141
11.1 Importance-weighted estimators 143

Contents iv

11.2 The Exp3 algorithm 145
11.3 Regret analysis 146
11.4 Notes 150
11.5 Bibliographic remarks 152
11.6 Exercises 152

12 The Exp3-IX Algorithm 157
12.1 Regret analysis 158
12.2 Notes 162
12.3 Bibliographic remarks 163
12.4 Exercises 164

Part IV Lower Bounds for Bandits with Finitely Many Arms 167

13 Lower Bounds: Basic Ideas 170
13.1 Notes 173
13.2 Exercises 174

14 Foundations of Information Theory (†) 175
14.1 The relative entropy 177
14.2 Notes 181
14.3 Bibliographic remarks 183
14.4 Exercises 183

15 Minimax Lower Bounds 185
15.1 Relative entropy between bandits 185
15.2 Minimax lower bounds 186
15.3 Notes 188
15.4 Bibliographic remarks 189
15.5 Exercises 189

16 Instance Dependent Lower Bounds 192
16.1 Asymptotic bounds 193
16.2 Finite-time bounds 195
16.3 Notes 196
16.4 Bibliographic remarks 197
16.5 Exercises 197

17 High Probability Lower Bounds 200
17.1 Stochastic bandits 201
17.2 Adversarial bandits 203
17.3 Notes 205
17.4 Bibliographic remarks 205
17.5 Exercises 205

Contents v

Part V Contextual and Linear Bandits 206

18 Contextual Bandits 208
18.1 Contextual bandits: one bandit per context 208
18.2 Bandits with expert advice 210
18.3 Can it go higher? Exp4 213
18.4 Regret analysis 213
18.5 Notes 216
18.6 Bibliographic remarks 218
18.7 Exercises 219

19 Stochastic Linear Bandits 221
19.1 Stochastic contextual bandits 221
19.2 Stochastic linear bandits 223
19.3 Regret analysis 225
19.4 Notes 227
19.5 Bibliographic remarks 229
19.6 Exercises 229

20 Confidence Bounds for Least Squares Estimators 231
20.1 Martingale noise and Laplace’s method 233
20.2 Notes 238
20.3 Bibliographic remarks 238
20.4 Exercises 238

21 Optimal Design for Least Squares Estimators 241
21.1 Proof of Kiefer–Wolfowitz (†) 242
21.2 Minimum volume ellipsoids and John’s theorem (†) 243
21.3 Notes 245
21.4 Bibliographic remarks 246
21.5 Exercises 246

22 Stochastic Linear Bandits with Finitely Many Arms 247
22.1 Bibliographic remarks 248
22.2 Exercises 249

23 Stochastic Linear Bandits with Sparsity 250
23.1 Sparse linear stochastic bandits 250
23.2 Elimination on the hypercube 251
23.3 Proof of technical lemma 255
23.4 UCB with sparsity 256
23.5 Online to confidence set conversion 256
23.6 Sparse online linear prediction 259
23.7 Notes 260

Contents vi

23.8 Bibliographical Remarks 260
23.9 Exercises 261

24 Minimax Lower Bounds for Stochastic Linear Bandits 263
24.1 Hypercube 264
24.2 Sphere 265
24.3 Sparse parameter vectors 266
24.4 Unrealizable case 267
24.5 Notes 269
24.6 Bibliographic remarks 269
24.7 Exercises 270

25 Asymptotic Lower Bounds for Stochastic Linear Bandits 271
25.1 Clouds looming for optimism 274
25.2 Notes 276
25.3 Bibliographic remarks 277
25.4 Exercises 277

Part VI Adversarial Linear Bandits 278

26 Foundations of Convex Analysis (†) 280
26.1 Convex sets and functions 280
26.2 Jensen’s inequality 281
26.3 Bregman divergence 282
26.4 Legendre functions 283
26.5 Optimization 284
26.6 Projections 285
26.7 Notes 286
26.8 Bibliographic remarks 287
26.9 Exercises 287

27 Exp3 for Adversarial Linear Bandits 289
27.1 Exponential weights for linear bandits 289
27.2 Regret analysis 291
27.3 Continuous exponential weights 292
27.4 Notes 293
27.5 Bibliographic remarks 294
27.6 Exercises 294

28 Follow the Regularized Leader and Mirror Descent 296
28.1 Online linear optimization 296
28.2 Regret analysis 299
28.3 Online learning for bandits 303
28.4 The unit ball 304

Contents vii

28.5 Notes 306
28.6 Bibliographic remarks 308
28.7 Exercises 309

29 The Relation Between Adversarial and Stochastic Linear Bandits 313
29.1 Reducing stochastic linear bandits to adversarial linear bandits 314
29.2 Stochastic linear bandits with parameter noise 316
29.3 Notes 317
29.4 Bibliographic remarks 318
29.5 Exercises 318

Part VII Other Topics 320

30 Combinatorial Bandits 324
30.1 Applications 324
30.2 Bandits 326
30.3 Semibandits 326
30.4 Follow the perturbed leader 328
30.5 Notes 333
30.6 Bibliographic remarks 334
30.7 Exercises 335

31 Non-Stationary Bandits 337
31.1 Adversarial bandits 337
31.2 Stochastic bandits 340
31.3 Notes 342
31.4 Bibliographic remarks 343
31.5 Exercises 344

32 Ranking 345
32.1 Click models 346
32.2 Policy 348
32.3 Regret analysis 350
32.4 Notes 354
32.5 Bibliographic remarks 356
32.6 Exercises 357

33 Pure Exploration 359
33.1 Simple regret 359
33.2 Best arm identification 361
33.3 Best arm identification with a budget 366
33.4 Notes 367
33.5 Bibliographical remarks 368
33.6 Exercises 369

Contents viii

34 Bayesian Methods 372
34.1 Bayesian optimal regret for finite-armed bandits 373
34.2 Bayesian learning (†) 374
34.3 Conjugate priors and the exponential family (†) 377
34.4 Bayesian learning and bandits 379
34.5 One-armed bandits 381
34.6 Gittins index 386
34.7 Computing the Gittins index 389
34.8 Notes 391
34.9 Bibliographical remarks 392
34.10 Exercises 393

35 Thompson Sampling 394
35.1 Finite-armed bandits 395
35.2 Linear bandits 400
35.3 Information theoretic analysis 402
35.4 Notes 405
35.5 Bibliographic remarks 407
35.6 Exercises 408

Part VIII Beyond Bandits 410

36 Partial Monitoring 411
36.1 Finite adversarial partial monitoring problems 412
36.2 The structure of partial monitoring 414
36.3 Classification of finite adversarial partial monitoring 418
36.4 Lower bounds 418
36.5 Policy for easy games 422
36.6 Upper bound for easy games 426
36.7 Proof of the classification theorem 430
36.8 Notes 431
36.9 Bibliographical remarks 434
36.10 Exercises 435

37 Markov Decision Processes 438
37.1 Problem setup 438
37.2 Optimal policies and the Bellman optimality equation 442
37.3 Finding an optimal policy (†) 445
37.4 Learning in Markov decision processes 447
37.5 Upper confidence bounds for reinforcement learning 448
37.6 Proof of upper bound 451
37.7 Proof of lower bound 454
37.8 Notes 457
37.9 Bibliographical remarks 460

Contents ix

37.10 Exercises 462

Appendix A Bibliography 471

Index 500
Solutions to Selected Exercises 1

Preface

Multi-armed bandits have now been studied for nearly a century. While research
in the beginning was quite meandering, there is now a large community publishing
hundreds of articles every year. Bandit algorithms are also finding their way into
practical applications in industry, especially in on-line platforms where data is
readily available and automation is the only way to scale.

We had hoped to write a comprehensive book, but the literature is now so vast
that many topics have been excluded. In the end we settled on the more modest
goal of equipping our readers with enough expertise to explore the specialized
literature by themselves, and to adapt existing algorithms to their applications.
This latter point is important. As Tolstoy might have written, “problems in theory
are all alike; every application is different”. A practitioner seeking to apply a
bandit algorithm must understand which assumptions in the theory are important
and how to modify the algorithm when the assumptions change. We hope this
book can provide that understanding.

What is covered in the book is covered in some depth. The focus is on the
mathematical analysis of algorithms for bandit problems, but this is not a
traditional mathematics book, where lemmas are followed by proofs, theorems
and more lemmas. We worked hard to include guiding principles for designing
algorithms and intuition for their analysis. Many algorithms are accompanied by
empirical demonstrations that further aid intuition.

We expect our readers to be familiar with basic analysis and calculus (mostly
one-dimensional) and some linear algebra. The book uses the notation of measure-
theoretic probability theory, but does not rely on any deep results. In addition, we
introduce the notation and carefully (and hopefully intuitively) explain it along
with the basic results that we need. This chapter is unusual for an introduction
to measure theory in that it emphasizes the reasons to use σ-algebras beyond the
standard technical justifications. We hope this will go some way to convince the
reader that measure theory is an important and intuitive tool and not merely a
weapon for rejecting papers written by non-mathematicians. Some chapters use
techniques from information theory and convex analysis and we devote a short
chapter to each.

Most chapters are short and should be readable in an afternoon or presented in
a single lecture. Some chapters contain content that is not really about bandits,
such as convex analysis, information theory and probability. These chapters can

Preface 2

be skipped by knowledgeable readers, or otherwise referred to when necessary.
They are marked with a (†). Most chapters end with a list of notes and exercises.
These are intended to deepen intuition and highlight the connections between
various subsections and the literature. Following this preface there is a table of
notation.

Thanks
Of course we will have many people to thank.

Notation

Some sections are marked with special symbols, which are listed and described
below.

This symbol is a note. Usually this is a remark that is slightly tangential to
the topic at hand.

Something important or a warning to the reader.

Hints and tips.

For many algorithms we present simple experimental results showing their
behaviour. These sections are marked with a beaker.

Basics
The sets of real and natural numbers are denoted by R and N, respectively,
with N = {0, 1, 2, 3, . . .}. We define [n] = {1, 2, 3, . . . , n}. The floor and ceiling
functions of x ∈ R are bxc and dxe, while (x)+ = max(x, 0). For p ≥ 1 the p-norm
of vector x ∈ Rd is ‖x‖p = (

∑d
i=1 x

p)1/p. The d-dimensional simplex embedded
in Rd+1 is Pd = {x ∈ [0, 1]d+1 : ‖x‖1 = 1}. A function v : [n] → R is often
associated with a vector using the same symbol v ∈ Rn which is defined in the
natural way: vi = v(i).

Distributions and probability
The notation for probability and measure theory is introduced in Chapter 2.
Those familiar with measure-theoretic probability can safely skip this chapter
as the notation is consistent with the standard [Kallenberg, 2002, Billingsley,
2008]. We mention here that N (µ, σ2) denotes the Gaussian distribution with
mean µ and variance σ2 and that B(p) is the Bernoulli distribution with bias
p. The set of all distributions on finite or countable set A is P(A). We use E[·]
and V[·] for the expectation and variance operators respectively. By and large

Notation 4

the underlying measure is omitted from the notation, but sometimes we find it
necessary to write EP [·] to indicate the expectation with respect to measure P .

Linear algebra and matrices
Some chapters depend heavily on linear algebra, though never in much depth.
Given x ∈ Rd and positive definite matrix A ∈ Rd×d the Mahalanobis norm of
x with respect to A is ‖x‖A =

√
x>Ax. The minimum eigenvalue of matrix

A is λmin(A), its inverse is A−1, its determinant det(A), its trace trace(A)
and transpose A>. The span of vectors x1, . . . , xn ∈ Rd is span(x1, . . . , xn) =
{∑i αixi : α ∈ Rn}. For vectors x, y ∈ Rd the inner product is x>y = 〈x, y〉 =∑d
i=1 xiyi and the 2-norm is ‖x‖2 = 〈x, x〉1/2. A matrix A ∈ Rn×m is often

viewed as a linear map from Rm → Rn. In this case we write im(A) and ker(A)
for the image and kernel of A respectively. The reader should know Hölder’s
inequality, which states that |〈x, y〉| ≤ ‖x‖p‖x‖q when p, q ∈ [1,∞] are conjugate
pairs: 1/p+ 1/q = 1. The most important case is when p = q = 2, which yields
Cauchy-Schwartz inequality: |〈x, y〉| ≤ ‖x‖2‖y‖2. Unless otherwise mentioned
‖x‖ is used to denote the 2-norm of x. Jensen’s inequality is also indispensable,
which says that f(E[X]) ≤ E[f(X)] for convex functions f . When f is concave
the inequality is reversed.

Convexity
A short chapter is devoted to the bare necessities of convexity (Chapter 26). The
convex hull of a set is A ⊂ Rd is co(A). For convex set A ⊂ Rd and convex function
f : A→ R we let f∗ denote its convex conjugate, f∗(y) = supx∈A〈x, y〉 − f(x).
The support function of A is φA(x) = supy∈A〈x, y〉 and the polar is the convex
set A◦ = {x ∈ Rd : supy∈A |〈x, y〉| ≤ 1}.

Landau notation
We make frequent use of Bachmann–Landau notation. Both were 19th century
mathematicians who could have never expected their notation to be adopted so
enthusiastically by computer scientists. Given functions f, g : N→ [0,∞) define

f(n) = O(g(n))⇔ lim sup
n→∞

f(n)
g(n) <∞ .

f(n) = o(g(n))⇔ lim
n→∞

f(n)
g(n) = 0 .

f(n) = Ω(g(n))⇔ lim inf
n→∞

f(n)
g(n) > 0 .

f(n) = ω(g(n))⇔ lim inf
n→∞

f(n)
g(n) =∞ .

f(n) = Θ(g(n))⇔ f(n) = O(g(n)) and f(n) = Ω(g(n)) .

We make use of Landau notation in two contexts. First, in proofs where limiting
arguments are made we sometimes write lower-order terms using Landau notation.

Notation 5

For example, we might write that f(n) =
√
n + o(

√
n), by which we mean

that limn→∞ f(n)/
√
n = 1. In this case we use the mathematical definitions as

envisaged by Bachmann and Landau. The second usage is to informally describe
a result without the clutter of uninteresting constants. For better or worse this
usage is often a little imprecise. For example, we will often write expressions of
the form: Rn = O(m

√
dn). Almost always what is meant by this is that there

exists a universal constant c > 0 such that Rn ≤ cm
√
dn for all (reasonable)

choices of m, d and n. In this context we are careful not to use Landau notation
to hide large lower-order terms. For example, if f(x) = x2 + 10100x we will not
write f(x) = O(x2), although this would be true.

Sets
N, N+ natural numbers, N = {0, 1, 2, . . .} and N+ = N \ {0}
R real numbers
R̄ R ∪ {−∞,∞}
2A the powerset of set A (the set of all subsets of A)
Sd++ symmetric positive definite matrices in Rd×d
[n] {1, 2, 3, . . . , n− 1, n}
P(A) set of probability distributions on discrete set A
A∗ set of finite sequences over A, A∗ =

⋃∞
i=0A

i

B(Rn) Borel measurable sets on Rn
L(Rn) Lebesgue measurable sets on Rn
Bd2 d-dimensional unit ball, {x ∈ Rd : ‖x‖2 ≤ 1}

Operators
|A| the cardinality (number of elements) of the finite set A
(x)+ max(x, 0)
amod b remainder when natural number a is divided by b
bxc largest integer smaller or equal to x
dxe smallest integer larger or equal to x
dom(f) domain of function f

E expectation
V variance
Supp support function of distribution or random variable
∇f(x) gradient of f at x
∇2f(x) Hessian of f at x
∨,∧ maximum and minimum: a∨b = max(a, b) and a∧b = min(a, b)

Matrix operations
λmin(G) minimum eigenvalue of matrix G
‖x‖2G x>Gx for positive definite G ∈ Rd×d and x ∈ Rd

Functions
erf(x) 2√

π

∫ x
0 exp(−y2)dy

erfc(x) 1− erf(x)

Notation 6

Γ(z) Gamma function: Γ(z) =
∫∞

0 xz−1 exp(−x)dx

Distributions
N (µ, σ2) Normal distribution with mean µ and variance σ2

B(p) Bernoulli distribution with mean p

U(a, b) uniform distribution supported on [a, b]
Beta(α, β) Beta distribution with parameters α, β > 0
δx Dirac distribution with point mass at x

Miscellaneous
∂A boundary of a set A
cl(A) closure of set A
int(A) interior of set A
co(A) convex hull of A
aff(A) affine hull of A
ri(A) relative interior of A
A◦ polar of A
e1, . . . , ed standard basis vectors of the d-dimensional Euclidean space
span(v1, . . . , vd) span of vectors v1, . . . , vd(
n
k

)
binomial coefficient

0,1 vectors whose elements are all zeros and all ones, respectively.

Part I

Bandits, Probability and
Concentration

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

1 Introduction

Bandit problems were introduced by William R. Thompson in an article
published in 1933 in Biometrika. Thompson was interested in medical trials
and the cruelty of running a trial blindly, without adapting the treatment
allocations on the fly as the drug appears more or less effective [Thompson, 1933].

Figure 1.1 Mouse learning a
T-maze.

The name comes from the 1950s when
Frederick Mosteller and Robert Bush decided
to study animal learning and ran trials
on mice and then on humans [Bush and
Mosteller, 1953]. The mice faced the dilemma
of choosing to go left or right after starting
in the bottom of a T-shaped maze, not
knowing each time at which end they will
find food. To study a similar learning setting
in humans, a ‘two-armed bandit’ machine was
commissioned where humans could choose to
pull either the left or the right arm of the
machine, each giving a random payoff with the distribution of payoffs for each
arm unknown to the human player. The machine was called a ‘two-armed bandit’
in homage to the one-armed bandit, an old-fashioned name for a lever operated
slot machine (‘bandit’ because they steal your money).

There are many reasons to care about bandit problems. Decision making with
uncertainty is a challenge we all face and bandits are the simplest example of this
demon. Bandit problems also have practical applications. We already mentioned
clinical trial design, which researchers have used to motivate their work for
eighty years. We can’t point to an example where bandits have actually been
used in clinical trials, but adaptive experimental design is gaining popularity
and is actively encouraged by the US Food and Drug Administration with the
justification that not doing so can lead to the withholding of effective drugs until
long after a positive effect has been established.

While clinical trials are an important application for the future, there are
applications where bandit algorithms are already in use. Major tech companies
use bandit algorithms for configuring web interfaces, where applications would
include news recommendation, dynamic pricing and ad placement. As of writing
of the book, Google analytics even offers running multi-armed bandit based

http://banditalgs.com
mailto:tor.lattimore@gmail.com

1.1 The language of bandits 9

service for their users. A bandit algorithm plays a role in Monte-Carlo Tree
Search, an algorithm made famous by the recent success of AlphaGo [Kocsis and
Szepesvári, 2006, Silver et al., 2016].

Finally, the mathematical formulation of bandit problems leads to a rich
structure with connections to other branches of mathematics. In writing
this book (and previous papers) we have read books on information theory,
convex analysis/optimization, Brownian motion, probability theory, concentration
analysis, statistics, differential geometry, information theory, Markov chains,
computational complexity and more. What fun!

A combination of all these factors has lead to an enormous growth in research
over the last two decades. Google scholar reports less than 1000, then 2700, and
7000 papers when searching for the phrase bandit algorithm for the periods of
2001–2005, 2006–2010, and 2011–2015 respectively and the trend just seems to
have strengthened since then with 5600 papers coming up for the period of 2016
to the middle of 2018. Even if these numbers are somewhat overblown, they are
indicative of a rapidly growing field. This could be a fashion or maybe there is
something interesting happening here? We think that the latter is true.

Figure 1.2
Two-armed bandit

Imagine you are playing a two-armed bandit machine
and you already pulled each lever 5 times, resulting in the
following payoffs (in dollars):

Left arm: 0, 10, 0, 0, 10
Right arm: 10, 0, 0, 0, 0

The left arm appears to be doing slightly better. The
average payoff for this arm is 4 dollars per round, while
the average for the right arm is only 2 dollars per round.
Let’s say, you have 20 more trials (pulls) altogether. How
would you pull the arms in the remaining trials? Will you
keep pulling the left arm, ignoring the right? Or would you attribute the poor
performance of the right arm to bad luck and try it a few more times? How
many more times? This illustrates one of the main interests in bandit problems:
They capture the fundamental dilemma a learner faces when choosing between
uncertain options. Should one explore an option that looks inferior or exploit
by going with the option that looks best currently? Finding the right balance
between exploration and exploitation is the heart of all bandit problems.

1.1 The language of bandits

A bandit problem is a sequential game between a learner and an environment.
The game is played over n rounds where n ∈ N+ is a positive natural number
called the horizon. In each round the learner first chooses an action At from a
given set A and the environment then reveals a reward Xt ∈ R.

Of course the learner cannot peak into the future when choosing their

1.1 The language of bandits 10

actions, which means that At should only depend on the history Ht−1 =
(A1, X1, . . . , At−1, Xt−1). A policy is a mapping from histories to actions.
An environment is a mapping from history sequences ending in actions to rewards.
Both the learner and the environment may randomize their decisions, but this
detail is not so important for now. The most common objective of the learner is
to choose actions that lead to the largest possible cumulative reward over all n
rounds, which is

∑n
t=1Xt.

The fundamental challenge in bandit problems is that the environment is
unknown to the learner. All the learner knows is that the true environment
lies in some set E called the environment class. Most of this book is about
designing policies for different kinds of environment classes, though in some cases
the framework is extended to include side observations as well as actions and
rewards.

The next question is how to evaluate a learner? We discuss several performance
measures throughout the book, but most of our efforts are devoted to
understanding the regret. There are several ways to define this quantity, so
to avoid getting bogged down in details we start with a somewhat informal
definition.

definition 1.1 The regret of the learner relative to a policy π is the difference
between the total expected reward using policy π for n rounds and the total
expected reward collected by the learner over n rounds. The regret relative to a
set of policies Π is the maximum regret relative to any policy π ∈ Π.

We usually measure the regret relative to a set of policies Π that is large enough
to include the optimal policy for all environments in E . In this case the regret
measures the loss suffered by the learner due to its lack of knowledge of the true
environment. The set Π is often called the competitor class. Another way of
saying all this is that the regret measures the performance of the learner relative
to the best policy in the competitor class.

example 1.1 Suppose the action-set is A = {1, 2, . . . ,K}. An environment is
called a stochastic Bernoulli bandit if the reward Xt ∈ {0, 1} is binary-valued
and there exists a vector µ ∈ [0, 1]K such that the probability that Xt = 1 given
the learner chose action At = a is µa. The class of stochastic Bernoulli bandits is
the set of all such bandits, which are characterized by their mean vectors. If you
knew the mean vector associated with the environment, then the optimal policy
is to play the fixed action a∗ = argmaxa∈A µa. This means that for this problem
the natural competitor class is the set of K constant polices Π = {π1, . . . , πK}
where πk chooses action k in every round. The regret over n rounds becomes

Rn = nmax
a∈A

µa − E

[
n∑

t=1
Xt

]
,

where the expectation is with respect to the randomness in the environment and

1.1 The language of bandits 11

policy. The first term in this expression is the maximum expected reward using
any policy while the second term is the expected reward collected by the learner.

For a fixed policy and competitor class the regret depends depends on the
environment. The environments where the regret is large are those where the
learner is behaving worse. Of course the ideal case is that the regret be small
for all environments. The worst-case regret is the maximum regret over all
possible environments.

One of the core questions in the study of bandits is to understand the growth
rate of the regret as n grows. A good learner achieves sublinear regret. Letting Rn
denote the regret over n rounds, this means that Rn = o(n) or equivalently that
limn→∞Rn/n = 0. Of course one can ask for more. Under what circumstances
is Rn = O(

√
n) or Rn = O(log(n))? And what are the leading constants?

How does the regret depend on the specific environment in which the learner
finds themselves? We will discover eventually that for the environment class in
Example 1.1 the worst case regret for any policy is at least Ω(

√
n) and that there

exist policies for which Rn = O(
√
n).

A large environment class corresponds to less knowledge by the learner. A large
competitor class means the regret is a more demanding criteria. Some care is
sometimes required to choose these sets appropriately so that (a) guarantees
on the regret are meaningful and (b) there exist policies that make the regret
small.

The framework is general enough to model almost anything by using a rich
enough environment class. This cannot be bad, but with too much generality it
becomes impossible to say much. For this reason we usually restrict our attention
to certain kinds of environment classes and competitor classes.

A simple problem setting is that of stochastic stationary bandits. In this
case the environment is restricted to generate the reward in response to each action
from a distribution that is specific to that action and independent of the previous
action choices and rewards. The environment class in Example 1.1 satisfies these
conditions, but there are many alternatives. For example, the rewards could follow
a Gaussian distribution rather than Bernoulli. This relatively mild difference
does not change too much. A more drastic change is to assume the action-set
A is a subset of Rd and that the mean reward for choosing some action a ∈ A
follows a linear model: Xt = 〈a, θ〉+ ηt for θ ∈ Rd and ηt a standard Gaussian.
The unknown quantity in this case is θ and the environment class corresponds to
its possible values (E = Rd).

For some applications the assumption that the rewards are stochastic and
stationary may be too restrictive. The world mostly appears deterministic, even
if it is hard to predict and often chaotic looking. Of course, stochasticity has been
enormously successful to explain patterns in data and this may be sufficient reason
to keep it as the modeling assumption. But what if the stochastic assumptions

1.1 The language of bandits 12

fail to hold? What if they are violated for a single round? Or just for one action,
at some rounds? Will our best algorithms suddenly perform poorly? Or will the
algorithms developed be robust to smaller or larger deviations from the modeling
assumptions?

An extreme idea is to drop all assumptions on how the rewards are generated,
except that they are chosen without knowledge of the learner’s actions and lie in
a bounded set. If these are the only assumptions we get what is called the setting
of adversarial bandits. The trick to say something meaningful in this setting
is to restrict the competitor class. The learner is not expected to find the best
sequence of actions, which may be like finding a needle in a haystack. Instead, we
usually choose Π to be the set of constant policies and demand that the learner is
not much worse than any of these. By defining the regret in this way we move the
stationarity assumption into the definition of regret rather than the environment.

Of course there are all shades of gray between these two extremes. Sometimes
we consider the case where the rewards are stochastic, but not stationary. Or
one may analyze the robustness of an algorithm for stochastic bandits to small
adversarial perturbations. Another idea is to isolate exactly which properties of
the stochastic assumption are really exploited by the policies design for stochastic
bandits. This kind of inverse analysis can help explain the strong performance of
policies when facing environments that clearly violate the assumptions they were
designed for.

1.1.1 Why the regret?

One might wonder why bother with the regret at all? If all we really care about
is the cumulative rewards, perhaps we should just state our theorems in terms of
the rewards. The first observation is that nothing is lost by considering the regret,
which simply translates the expected cumulative reward by some environment-
dependent constant. There are a few reasons why the regret is useful. One is that
it supplies a degree of normalization because it is invariant under translation of
rewards. Another benefit is the interpretation as the price paid by the learner for
not knowing the true environment. Be warned, however, that this only holds if
the competitor class includes the optimal policy.

1.1.2 Other learning objectives

We already mentioned that the regret can be defined in several ways, each
capturing slightly different aspects of the behavior of a policy. Because the regret
depends on the environment it becomes a multi-objective criteria. One way to
convert a multi-objective criteria into a single number is to take averages. This
corresponds to the Bayesian viewpoint where the objective is to minimize the
average cumulative regret with respect to a prior on the environment class.

Maximizing the sum of rewards is not always the objective. Sometimes the
learner just wants to find a near-optimal policy after n rounds, but the actual

1.2 Applications 13

rewards accumulated over those rounds are unimportant. We will see examples
of this shortly.

1.1.3 Limitations of the bandit framework

The presentation in this section makes it seem like bandits can model almost
anything. One of the distinguishing features of all bandit problems studied in this
book is that the learner never needs to plan for the future. More precisely, we will
invariably make the assumption that the learner’s choices and rewards tomorrow
are not affected by their decisions today. Problems that require this kind of
long-term planning fall into the realm of reinforcement learning, which is the
topic of the final chapter. Assuming away the need to plan is limiting, but as
we shall see, it buys you a great deal in terms of simplicity and fits with many
applications.

1.2 Applications

After this short preview, and as an appetizer before the hard work, we briefly
describe the formalizations of a variety of applications. Remember that for bandit
problem we need to choose an action-set and an environment class. Defining the
required demands us to provide a competitor class.

A/B testing
The designers of a company website are trying to decide whether the ‘buy it now’
button should be placed at the top of the product page or the bottom. In the old
days they would commit to a trial of each version, where incoming users are split
into two groups of ten thousand. Each group is shown a different version of the
site and a statistician examines the data at the end to decide which version is
better. A problem is the non-adaptivity of the test. Specifically, if the effect size
is very large, then the trial could be stopped earlier.

One way to apply bandits to this problem is to view the two versions of the
site as actions. Each time t a user makes a request, a bandit algorithm is used
to choose an action At ∈ A = {SiteA,SiteB} and the reward is Xt = 1 if the
user purchased the product and Xt = 0 otherwise. As opposed to the previous
setup, bandits also change the objective: Whereas in A/B testing the goal is to
gain knowledge, in the bandit setup the goal is to gain reward. In particular,
one should think of running a bandit algorithm continuously as opposed to just
running the algorithm until it is able to find out which of the two options is
better. In particular, while there are quite a few design choices to be made as we
shall see later, life gets simpler as there is no need to decide about a stopping
criteria, which in practice is not so simple to decide about ahead of time.

1.2 Applications 14

Advert placement
In advert placement each round corresponds to a user visiting a website and
the set of actions A is the set of all available adverts. One could treat this as
a standard multi-armed bandit problem, where in each round a policy chooses
At ∈ A and the reward is Xt = 1 if the user clicked on the advert and Xt = 0
otherwise. This might work for specialized websites where the adverts are all
likely to be appropriate. But for a company like Amazon the advertising should
be targeted. If I bought rock climbing shoes recently then I’m much more likely
to buy a harness than another user. Clearly an algorithm should take this into
account.

The standard way to incorporate this additional knowledge is to use the
information about the user as context. In its simplest formulation this might
mean clustering users and implementing a separate bandit algorithm for each
cluster. Much of this book is devoted to the question of how to use side information
to improve the performance of a learner.

This is a good place to emphasize that the world is messy. The set of available
adverts is changing from round to round. The feedback from the user can be
delayed for many rounds. Clearly the problem is far from stochastic on large
timescales. The adverts that were relevant last year are surely not relevant now.
Finally, the metrics to be optimized are rarely as simple as maximizing just
for number of clicks (user satisfaction, retention and many other issues matter).
These are the kinds of issues that makes implementing bandit algorithms in the
real world a difficult task. As noted beforehand, this book will not discuss how to
address these issues in detail, but we will rather focus on building up foundations
upon which the reader can build and invent new approaches to address the
messiness of their own real world problems.

Recommendation services
Netflix has to decide which movies to place most prominently in your ‘Browse’
page. Like in advert placement the users arrive at the page sequentially and the
reward can be measured using (a) whether or not you watched a movie and (b)
whether or not you rated it positively. There are many challenges. First of all,
Netflix doesn’t just recommend one movie, they show you a list. So the set of
possible actions is combinatorially large. Second, each user watches relatively few
movies and individual users are different. This suggests approaches such as low
rank matrix factorization (a popular approach in “collaborative filtering”), but
notice that this is not an offline problem. The learning algorithm gets to choose
what the users see and this affects the data that is collected. If the users are
never recommended the AlphaGo movie, then few users will watch it and the
amount of data about this film will be scarce.

Network routing
Another problem with an interesting structure is network routing, where the
learner tries to direct internet traffic through the shortest path on a network. In

1.2 Applications 15

each round the learner receives the start/end destinations for a packet of data.
The set of actions is the set of all paths starting and ending at the appropriate
points on some known graph. The feedback in this case is the time it takes for
the packet to be received at its destination and the reward is the negation of
this value. Again the action set is combinatorially large with even relatively
small graphs possessing an enormous number of paths. The routing problem can
obviously applied to more physical networks such as transportation systems used
in operations research.

Dynamic pricing
In dynamic pricing a company is trying to automatically optimize the price of
some product. Users arrive sequentially and the learner sets the price. The user
will only purchase the product if the price is lower than their valuation. What
makes this problem interesting is (a) the learner never actually observes the
valuation of the product, only the binary signal that the price was too low/too
high and (b) there is a monotonicity structure in the pricing. If a user purchased
an item priced at $10 then they would surely purchase it for $5, but whether or
not it would sell when priced at $11 is uncertain. Also, the set of possible actions
is close to continuous.

Waiting problems
Every day you travel to work, either by bus or by walking. Once you get on the
bus the trip only takes five minutes, but the timetable is unreliable and the bus
arrival time unknown and stochastic. Sometimes the bus doesn’t come at all.
Walking, on the other hand, takes thirty minutes along a beautiful river away
from the road. The problem is to devise a policy for choosing how long to wait at
the bus stop before giving up and walking. Walk too soon and you miss the bus
and gain little information. But waiting too long also comes at a price.

While waiting for a bus is not a problem we all face, there are other applications
of this setting. For example, deciding the amount of inactivity required before
putting a hard drive into sleep mode or powering off a car engine at traffic lights.
The statistical part of the waiting problem concerns estimating the cumulative
distribution function of the bus arrival times from data. The twist is that the data
is censored on the days you chose to walk before the bus came, which is a problem
analyzed in the subfield of statistics called survival analysis. The interplay between
the statistical estimation problem and the challenge of balancing exploration and
exploitation is what makes this problem interesting.

Resource allocation
High speed cache memory is still a scarce resource for computer processors and
the consequence in terms of running time for cache misses is quite extreme. Many
algorithms are optimized to match the cache process, for example by carefully
choosing the order of dimensions in arrays or using cache-oblivious trees. A
less-explored avenue of improvement is to try and learn the optimal allocation

1.3 Bibliographic remarks 16

of cache resources between processes. This can be modeled by a bandit problem
where the set of actions is the set of allocations and the reward is the negation of
the number of cache misses. For this problem the learner might reasonably make
a monotonicity assumption in the sense that increasing the allocation for one
process should decrease the number of cache misses.

Tree search
The UCT algorithm is a tree search algorithm commonly used in perfect-
information game playing algorithms. The idea is to iteratively build a search tree
where in each iteration the algorithm takes three steps: (1) Chooses a path from
the root to a leaf. (2) Expands the leaf (if possible). (3) Performs a Monte-Carlo
roll-out to the end of the game. The contribution of a bandit algorithm is in
selecting the path from the root to the leaves. At each node in the tree a bandit
algorithm is used to select the child based on the series of rewards observed
through that node so far. The resulting algorithm can be analyzed theoretically,
but more importantly has demonstrated outstanding empirical performance in
game playing problems.

1.3 Bibliographic remarks

We already mentioned that the first paper on bandits was by Thompson [1933].
Much credit for the popularization of the field must go to famous mathematician
and statistician, Herbert Robbins, whose name appears on many of the works
that we reference, with the earliest being: [Robbins, 1952]. Another early pioneer
was Herman Chernoff, who wrote papers with titles like “Sequential decisions in
the control of a spaceship” [Bather and Chernoff, 1967].

Besides these seminal papers, there are already a number of books on bandits
that may serve as useful additional reading. The most recent (and also most
related) is by Bubeck and Cesa-Bianchi [2012] and is freely available online. This
is an excellent book and is warmly recommended. The main difference between
their book and ours is that (a) we have the benefit of six years additional research
in a fast moving field and (b) our longer page limit permits more depth. Another
relatively recent book is “Prediction, Learning and Games” by Cesa-Bianchi and
Lugosi [2006]. This is a wonderful book, and quite comprehensive. But its scope
is ‘all of’ online learning, which is so broad that bandits are not covered in great
depth. There are also three books on sequential design and multi-armed bandits
in the Bayesian setting, which we will address only a little. Both are based on
relatively old material, but are still useful references for this line of work and are
well worth reading [Chernoff, 1959, Berry and Fristedt, 1985, Gittins et al., 2011].

Without trying to be exhaustive, here are a few articles applying bandit
algorithms to applications. The papers themselves will contain more useful
pointers to the vast literature. Le et al. [2014] applies bandits to wireless
monitoring where the problem is challenging due to the large action space.

1.3 Bibliographic remarks 17

Lei et al. [2017] design specialized contextual bandit algorithms for just-in-time
adaptive interventions in mobile health: In the typical application the user is
prompted with the intention of inducing a long-term beneficial behavioral change.
See also the article by Greenewald et al. [2017]. Rafferty et al. [2018] applies
Thompson sampling to educational software and notes the tradeoff between
knowledge and reward. That bandit algorithms have not been used in clinical
trials was explicitly noted by Villar et al. [2015]. Microsoft offers a ‘Decision
Service’ that uses bandit algorithms to automate decision-making [Agarwal et al.,
2016]. We already mentioned that bandit algorithms are a cornerstone of Monte-
Carlo Tree Search [Kocsis and Szepesvári, 2006]. Muller et al. [2017] uses bandits
for estimating the H∞-gain of linear systems; the problem here is to excite a
linear control system by designing clever inputs so that the magnitude of the
highest frequency amplification in the input is estimated. Knowing the H∞-gain
is helpful for assessing the robustness of a control loop.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

2 Foundations of Probability (†)

This chapter covers the fundamental concepts of measure-theoretic probability
on which the remainder of this book relies. Readers familiar with this topic can
safely skip the chapter, but perhaps a brief reading would yield some refreshing
perspectives. Measure-theoretic probability is often viewed as a necessary evil, to
be used when a demand for rigor combined with continuous spaces breaks the
simple approach we know and love from high school. We claim that measure-
theoretic probability offers more than annoying technical machinery. In this
chapter we attempt to prove this by providing a non-standard introduction.
Rather than a long list of definitions, we demonstrate the intuitive power of
the notation and tools. For those readers with little prior experience in measure
theory this chapter will doubtless be a challenging read. We think the investment
is worth the effort, but a great deal of the book can be read without it, provided
one is willing to take certain results on faith.

2.1 Probability spaces and random elements

Probability theory is a latecomer to the party of mathematical study. While
the ancient Greeks and Romans certainly gambled, there is no evidence they
ever formally analyzed the probabilistic nature of the games they played. But
probability does have its origins in the study of games of chance and gambling,
with early steps taken in the 16th and 17th centuries by famous mathematicians
and physicists such as Niccoló Tartaglia, Gerolamo Cardano, Blaise Pascal, Pierre
Fermat, Christian Huygens and Jacob Bernoulli. The thrill of gambling comes
from the fact that the bet is placed on future outcomes that are uncertain at the
time of the gamble. A central question in gambling is the fair value of a game.
This can be difficult to answer for all but the simplest games. As an illustrative
example, imagine the following moderately complex game: I throw a dice. If the
result is four, I throw two more dice, otherwise I throw one dice only. Looking
at the newly thrown dice (one or two), I repeat the same, for a total of three
rounds (and at most seven dice throws in total). Afterwards, I pay you the sum
of the values on the faces of the dice. How much are you willing to pay to play
this game with me?

The fact that the number of dice used is random appears to create a messy

http://banditalgs.com
mailto:tor.lattimore@gmail.com

2.1 Probability spaces and random elements 19

X1 := throw()

X1 = 4?

X21 := throw() X21 := throw() X22 := throw()

YesNo

Figure 2.1 The initial phase of a gambling game with a random number of dice rolls.
Depending on the outcome of a dice roll, one or two dice are rolled for a total of three
rounds. The number of dice used will then be random in the range of three to seven.

situation where the outcomes have a complicated dependency structure. This
situation is not unusual, with many examples of practical interest exhibiting
the same random interdependency between outcomes. The fundamental idea in
modern probability is aimed at removing this complication.

Instead of rolling the dice one by one, imagine that sufficiently many dice were
rolled before the game has even started. For our game we need to roll seven dice,
because this is the maximum number that might be required (see Fig. 2.1). With
the dice all rolled, the game can be emulated easily by ordering the dice and
revealing the outcomes sequentially. Then the value of the first dice in the chosen
ordering is the outcome of the dice in the first round. If we see a four, we look at
the next two dice in the ordering, otherwise we look at the single next dice.

This approach separates the randomness (rolls of the dice) from the mechanism
that produces values based on the random outcomes. This idea is one of the
cornerstones of modern probability as proposed by Kolmogorov.

By taking this approach we get a simple calculus for the probabilities of all kinds
of events. Rather than directly calculating the likelihood of each payoff, we first
consider the probability of any single outcome of the dice. Since there are seven
dice, the set of all possible outcomes is Ω = {1, . . . , 6}7. Because all outcomes
are equally probable the probability of any ω ∈ Ω is (1/6)7. The probability of
the game payoff taking value v can then be evaluated by calculating the total
probability assigned to all those outcomes ω ∈ Ω that would result in the value
of v. In principle, this is trivial to do thanks to the separation of everything that
is probabilistic from the rest. The set Ω is called the outcome space and its
elements are the outcomes. Fig. 2.2 illustrates this idea: Random outcomes are

2.1 Probability spaces and random elements 20

Figure 2.2 A key idea in probability theory is the separation of sources of randomness
from game mechanisms. A mechanism creates values from the elementary random
outcomes, some of which are visible for observers, while others may remain hidden.

generated on the left, while on the right, various mechanisms are used to arrive
at values, some of which may be observed and some not.

There will be much benefit from being a little more formal about how we come
up with the value of our artificial game. For this note that the process by which
the game gets its value is a function X that maps Ω to the set of natural numbers
N (simply, X : Ω→ N). While we view the value of the game as random, this map
is deterministic. We find it ironic that functions of this type (from the outcome
space to subsets of the reals) are called random variables. They are neither
random nor variables in a programming language sense. The randomness is in
the argument that X is acting on, producing randomly changing results. Later
we will put a little more structure on random variables, but for now it suffices to
think of them as maps from the outcome space to the reals.

We will follow the standard convention in probability theory where random
variables are denoted by capital letters. Be warned that capital letters are also
used for other purposes as demanded by different conventions.

Pick some natural number v ∈ N. What is the probability of seeing X = v?
As described above, this probability is (1/6)7 times the size of the set X−1(v) =
{ω ∈ Ω : X(ω) = v}. The set X−1(v) is called the preimage of v under X. More
generally, the probability that X takes its value in some set A ⊆ N is given by
(1/6)7 times the cardinality of X−1(A) = {ω ∈ Ω : X(ω) ∈ A}, where we have
overloaded the definition of X−1 to set-valued inputs.

Notice in the previous paragraph we only needed probabilities assigned to
subsets of Ω regardless of the question asked. To make this a bit more general,
let us introduce a map P that assigns probabilities to certain subsets of Ω. The
intuitive meaning of P is as follows. Random outcomes are generated in Ω. The

2.1 Probability spaces and random elements 21

probability that an outcome falls into a set A ⊂ Ω is P (A). If A is not in the
domain of P, then there is no answer to the question of the probability of the
outcome falling in A. But let’s postpone the discussion of why P should be
restricted to only certain subsets of Ω later. In the above example with the dice,
for any subset A ⊆ Ω, P (A) = (1/6)7|A|.

With this new notation, the answer to the question of what is the probability
of seeing X taking the value of v becomes P

(
X−1(v)

)
. To minimize clutter, the

more readable notation for this is P (X = v). It is important to realize, however,
that this familiar form is a shorthand for P

(
X−1(v)

)
. More generally, we also use

P (predicate(X,U, V, . . .)) = P ({ω ∈ Ω : predicate(X,U, V, . . .) is true})

with any predicate (an expression evaluating to true or false) where X,U, V, . . .
are functions with domain Ω.

What properties should P satisfy? It seems reasonable to expect the probability
that something happens is one, which is equivalent to saying that P is defined
for Ω and P(Ω) = 1. Second, probabilities should be nonnegative so P(A) ≥ 0
for any A ⊂ Ω on which P is defined. Let Ac = Ω \ A be the complement of A.
Then we should expect that P(Ac) = 1− P(A) (negation rule). Finally, if A,B
are disjoint so that A∩B = ∅ and P(A), P(B) and P(A∪B) are all defined, then
P(A ∪B) = P(A) + P(B). This is called the finite additivity property.

Let F be the set of subsets of Ω on which P is defined. It would seem silly if
A ∈ F and Ac /∈ F , since P(Ac) could simply be defined by P(Ac) = 1− P(A).
Similarly, if P is defined on disjoint sets A and B, then it makes sense A∪B ∈ F .
By a logical jump, we will also require the additivity property to hold for
countably infinitely many sets. If {Ai}i is a collection of sets and Ai ∈ F for
all i ∈ N, then ∪iAi ∈ F and P(∪iAi) =

∑
i P(Ai). A set of subsets that satisfies

all these properties is called a σ-algebra, which is pronounced ‘sigma-algebra’
and sometimes also called a σ-field.

definition 2.1 A set F ⊆ 2Ω is a σ-algebra if Ω ∈ F and Ac ∈ F for all
A ∈ F and ∪iAi ∈ F for all {Ai}i with Ai ∈ F for all i ∈ N. A function
P : F → R is a probability measure if P(Ω) = 1 and for all A ∈ F , P(A) ≥ 0
and P(Ac) = 1− P(A) and P(∪iAi) =

∑
i P(Ai) for all countable collections of

disjoint sets {Ai}i with Ai ∈ F for all i. If F is a σ-algebra and G ⊂ F is also a
σ-algebra, then way say G is a sub-σ-algebra of F .

The elements of F are called measurable sets. They are measurable in the
sense that P assigns values to them. The pair (Ω,F) alone is called a measurable
space, while the triplet (Ω,F ,P) is called a probability space. If the condition
that P(Ω) = 1 is lifted, then P is called a measure. If the condition that P(A) ≥ 0
is also lifted, then P is called a signed measure. We note in passing that both
for measures and signed measures it would be unusual to use the symbol P, which
is mostly reserved for probabilities.

Random variables lead to new probability measures. In particular, PX(A) =
P
(
X−1(A)

)
is a probability measure defined for all the subsets A of N for which

2.1 Probability spaces and random elements 22

P
(
X−1(A)

)
is defined. The probability measure PX is called the probability

measure induced by X and P, or the pushforward measure of P under X.
An important observation is that any probabilistic question concerning X can be
answered from the knowledge of PX alone.

It is worth noting that if we keep X fixed, but change P (for example, by
switching to loaded dice), then the measure induced by X changes. We will often
use arguments that do exactly this, especially when proving lower bounds on the
limits of how well bandit algorithms can perform.

The astute reader would have noticed that we skipped over some details. In
particular, we defined measures as functions from a σ-algebra to R. So if we
want to call PX a measure, then its domain {A ⊂ N : X−1(A) ∈ F} better be a
σ-algebra. This is indeed the case and in fact it holds even more generally that
sets of the above form are σ-algebras regardless of the range of X (Exercise 2.1).

Let (Ω,F) be a measurable space, X be an arbitrary set and G ⊆ 2X . A
function X : Ω→ X is called a F/G-measurable map if X−1(A) ∈ F for all
A ∈ G. Note that G need not be a σ-algebra. When G is obvious from the context,
X is called a measurable map. What are the typical choices for G? When X is
real-valued it is usual to let G be the set of all open intervals. The reader can
verify that if X is F/G-measurable, then it is also F/σ(G)-measurable, where
σ(G) is the smallest σ-algebra that contains G. This smallest σ-algebra can be
shown to exist. Furthermore, it contains exactly those sets A that are in every
σ-algebra that contains G (see Exercise 2.3). When G is the set of open intervals,
σ(G) is usually denoted by B or B(R) and is called the Borel σ-algebra. More
generally, the Borel σ-algebra on a topological space (X ,U) is the σ-algebra
generated by its open sets σ(U).

definition 2.2 A random variable on measurable space (Ω,F) is a F/B(R)-
measurable function X : Ω→ R. A random element between measurable spaces
(Ω,F) and (X ,G) is a F/G-measurable function X : Ω→ X .

The only difference between random variables and elements is that the former
are restricted to Borel-measurable functions taking values in the reals. A Borel
function is any function f : R→ R that is B/B-measurable.

Indicator functions
In the following text we make heavy uses of indicator functions. Given an
arbitrary set Ω and A ⊆ Ω the indicator function of A is IA : Ω→ {0, 1} given by

IA(x) =
{

1 if x ∈ A
0 otherwise .

To abuse notation even further but with the noble goal of removing clutter, we
will often write I {ω ∈ A} or I {predicate(X,Y, . . .)}, with the latter being the
indicator function of the set on which the predicate is true. It is easy to check
that an indicator function IA is a random variable on (Ω,F) if and only if A ∈ F .

2.1 Probability spaces and random elements 23

Why so complicated?
You may be wondering why we did not define P on the powerset of Ω, which
is equivalent to declaring all sets to be measurable. In many cases this is a
perfectly reasonable thing to do, including the example game above where nothing
prevents us from defining F = 2Ω. There are two justifications not to do this,
the first technical and the second conceptual. The technical issue is highlighted
by the following surprising theorem, which shows there does not exist a uniform
probability distribution on Ω = [0, 1] if F is chosen to be the powerset of Ω.
In other words, if you want to be able to define the uniform measure, then F
cannot be too large. By contrast, the uniform measure can be defined on the
Borel σ-algebra, though it is not as easy as you might expect.

theorem 2.1 Let Ω = [0, 1] and F is the powerset of Ω. Then there does not
exist a measure P on (Ω,F) such that P([a, b]) = b− a for all 0 ≤ a ≤ b ≤ 1.

There are other technical reasons besides this. For example, measure theory
allows for the unification of distributions on discrete spaces and densities on
continuous ones. This can be necessary when one wants to talk about measures
that combine elements of both (for example, draw a random number of a normal
whose mean is chosen at random from a finite set of means). The main conceptual
reason not to focus exclusively on the case where F is the powerset is that
σ-algebras are a way of representing information. This is especially useful in the
study of bandits where the learner is interacting with an environment and slowly
gaining knowledge. One useful way to represent this idea is by the means of a
sequence of σ-algebras as we explain in the next section. One might be worried
that the Borel σ-algebra does not contain enough measurable sets. Rest assured
that this is not a problem and you will be hard pressed to find a non-measurable
set. An example is given in the notes, along with a little more discussion on this
topic.

Probability spaces from random variables
The big ‘conspiracy’ in probability theory is that probability spaces are seldom
mentioned in theorem statements, despite the fact that a measure cannot be
defined without one. Statements are instead given in terms of random elements
and constraints on their joint probabilities. For example, suppose that X and Y

are random variables such that

P (X ∈ A, Y ∈ B) = |A ∩ [6]|
6 · |B ∩ [2]|

2 for all A,B ∈ B(R) ,

which represents the joint distribution for the values of a dice (X ∈ [6]) and
coin (Y ∈ [2]). The formula describes the probabalistic interactions between the
outputs of X and Y , but says nothing about their domain. The follow theorem
gives conditions under which a probability space carrying X and Y exists.

theorem 2.2 Let n ∈ N+ and for each k ∈ [n] let (Ωk,Fk) be a measurable
space and let µ̄ : F1 × · · · × Fn → [0, 1] be a function such that:

2.2 σ-algebras and knowledge 24

(a) µ̄(Ω1 × · · · × Ωn) = 1.
(b) µ̄(∪∞k=1Ak) =

∑∞
k=1 µ̄(Ak) for all sequences of disjoint sets with Ak ∈

F1 × · · · Fn.

Let Ω = Ω1 × · · · × Ωn and F = σ(F1 × · · · × Fn). Then there exists a unique
probability measure µ on (Ω,F) such that µ agrees with µ̄ on F1 × · · · × Fn.

The theorem is applied by letting Ωk = R and Fk = B(R). Then the values of
a measure on all cartesian products uniquely determines its value everywhere.

Even when n = 2 it is not true that F1 × F2 = σ(F1 × F2) since the former
set does not contain {(1, 1), (2, 2)}.

The law of a random variable X on probability space (Ω,F ,P) is a measure on
(R,B(R)) given by PX with PX(A) = P(X−1(A)). More generally, when (X ,G)
is a measurable space and X : Ω → X is a F/G-measurable random element,
then the law of X is a measure on (X ,G). Finally, when (Xk)nk=1 is a collection
of random elements to measurable spaces (Xk,Gk), then the law of (Xk)nk=1 is a
measure on (X1 × · · · × Xn, σ(G1 × · · · × Gn)).

2.2 σ-algebras and knowledge

One of the conceptual advantages of measure-theoretic probability is the
relationship between σ-algebras and the intuitive idea of ‘knowledge’. Regrettably
this relationship is not a perfect one, but nevertheless it is useful and provides a
great deal of intuition. Let (Ω,F), (X ,G) and (Y,H) be measurable spaces and
X : Ω→ X and Y : Ω→ Y be random elements. The σ-algebra generated by X
is defined by

σ(X) = {X−1(A) : A ∈ G} ⊆ F .

By checking the definitions one can show that σ(X) is a sub-σ-algebra of F and
in fact is the smallest sub-σ-algebra for which X is measurable. Having observed
the value of X, one might wonder what this entails about the value of Y . Even
more simplistically, under what circumstances can the value of Y be determined
exactly having observed X? Except for some technical assumptions on (Y,H),
the following result shows that Y is a measurable function of X if and only if Y
is σ(X)/H-measurable.

lemma 2.1 (Factorization lemma) Assume that (Y,H) is Borel. Then Y is
σ(X)-measurable if and only if there exists a G/H-measurable map f : X → Y
such that Y = f ◦X.

2.2 σ-algebras and knowledge 25

(Ω, F) (X , G)

(Y, H)

X

f
Y

What this means is that having observed X the value of Y can be computed as
f(X) for some measurable function f if and only if Y is σ(X)-measurable. In
this sense σ(X) contains all the information that can be extracted from X via
measurable functions. This is not quite the same as saying that Y can be deduced
from X if and only if Y is σ(X)-measurable, because the definition prohibits the
use of nonmeasurable functions. In extreme cases the restriction to measurable
functions can be a severe limitation.

example 2.1 Let Ω = Y = X = R, F = H = B(R) and G = {∅,R} be
the trivial σ-algebra. In this case G is so sparse that all functions X : Ω → X
are F/G-measurable and we will choose X(ω) = Y (ω) = ω to be the identity
functions. Now σ(X) = {∅,R} and Y is not σ(X)/B(R)-measurable and the
lemma says there does not exist a G/B(R)-measurable function f with Y = f ◦X.
But here Y = X and the knowledge of Y is easily deduced from X. The problem
is that the process by which this deduction takes place is not measurable because
G is not sufficiently rich.

The above example emphasizes the point that σ(X) does not only depend on X,
but also on the σ-algebra of (X ,G) and that if G is course-grained, then σ(X) can
also be course grained and not many functions will be σ(X)-measurable. If X is a
random variable, then by definition X = R and G = B(R), which is relatively fine-
grained and the requirement that f be measurable is less restrictive. Nevertheless,
even in the nicest setting where Ω = X = Y = R and F = G = H = B(R) it can
still occur that Y = f ◦ X for some nonmeasurable f . In other words, all the
information about Y exists in X but cannot be extracted in a measurable way.
These problems only occur when X maps measurable sets in Ω to nonmeasurable
sets in X . While such random variables exist, they are almost never encountered
in practice and when a probability measure P is introduced one can invariably
prove the existence of a measurable f̄ such that P(Y = f̄ ◦X) = 1.

Filtrations
In the study of bandits and other online settings it usually occurs that information
is revealed to the learner sequentially. Let X1, . . . , Xn be a collection of random
variables on common measurable space (Ω,F). We imagine a learner is sequentially
observing the values of these random variables. First X1, then X2 and so on.
Having observed X1 the learner has access to the information in σ(X1). By this
we mean that the value of σ(X1)-measurable maps can be deduced from the value
of X1 using a measurable function. Then the learner observes X2 and now they
have access to σ(X1, X2). This latter quantity is the smallest σ-algebra for which

2.3 Conditional probabilities 26

both X1 and X2 are measurable. Generalizing further, let Ft = σ(X1, . . . , Xt) be
the σ-algebra containing information observed after time t. It is easy to check
that F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fn, which means that more and more functions
are becoming Ft-measurable as t increases, which corresponds to increasing
knowledge.

Often we want to talk about increasing sequences of σ-algebras without
constructing them in terms of random variables as above. Given measurable
space (Ω,F) a filtration is a sequence (Ft)nt=0 of sub-σ-algebras of F where
Ft ⊆ Ft+1 for all t < n. Note that we also allow n =∞ and in this case we define

F∞ = σ

(∞⋃

t=0
Ft
)

to be the smallest σ-algebra containing the union of all Ft. Filtrations can
also be defined in continuous time in the obvious way, but we have no need
for that here. A sequence of random variables (Xt)nt=1 is adapted to filtration
F = (Ft)nt=0 if Xt is Ft-measurable for each t. We also say in this case that
(Xt)t is F-adapted. Finally, (Xt)t is F-predictable if Xt is Ft−1-measurable for
each t ∈ [n]. Intuitively (with the caveats expressed earlier), we may think of
a F-predictable process X = (Xt)t as one that has the property that Xt can
be known (or ‘predicted’) based on Ft−1, while a F-adapted process is one that
has the property that Xt can be known based on Ft only. Since Ft−1 ⊆ Ft, a
predictable process is also adapted. A filtered probability space is the tuple
(Ω,F ,F,P), where (Ω,F ,P) is a probability space and F = (Ft)t is filtration of
F .

2.3 Conditional probabilities

Conditional probabilities are introduced so that we can talk about how
probabilities should be updated when one gains some partial knowledge about a
random outcome. For the formal definition, let (Ω,F ,P) where Ω is the space
of outcomes, F is the collection of events to which the probability measure P
assigns probabilities. Fix some event B ∈ F that has a positive probability and
consider some other event A ∈ F . The conditional probability of A given B,
and denoted by P (A | B), is defined as

P (A | B) = P (A ∩B)
P (B) .

This is answers the question how the knowledge that B occurred changes the
probability assigned to A. We can think about the outcome ω ∈ Ω as the result
of throwing a many-sided dice. The question asked is the probability that the
dice landed so that ω ∈ A given that it landed with ω ∈ B. The meaning of the
condition ω ∈ B is that we focus on dice rolls when ω ∈ B is true. All dice rolls
when ω ∈ B does not hold are discarded. Intuitively, what should matter in the

2.3 Conditional probabilities 27

conditional probability of A given B is how large the portion of A is that lies in
B and this is indeed what the definition means.

The importance of conditional probabilities is that they define a calculus of how
probabilities are to be updated in the presence of extra information.

To emphasize this relationship to knowledge, the probability P (A | B) is also
called the a posteriori (‘after the fact’) probability of A given B. In contrast, its a
priori probability is P (A). Note that P (A | B) is defined for every A ∈ F as long
as P (B) > 0. In fact, A 7→ P (A | B) is a probability measure over the measure
space (Ω,F) called the a posteriori probability measure given B (see Exercise 2.4).
In a way the temporal characteristics attached to the words ‘a posteriori’ and ‘a
priori’ can be a bit misleading. As discussed before, probabilities are concerned
with predictions. They express the degrees of uncertainty one assigns to future
events. This is also true for conditional probabilities. The conditional probability
of A given B is a prediction of certain properties of the outcome of the random
experiment that results in ω given a certain condition. Note that everything is
related to a future hypothetical outcome. Once the dice is rolled, ω gets fixed
and either ω ∈ B or not, and either ω ∈ A or not. There is no randomness,
no uncertainty left. Probability theory is thus a science of predictions – this is
where its power is coming from (but one cannot talk about predictions after an
experiment is done).

We carefully avoided the issue of how to define conditional probabilities when
an event has zero probability. While it may seem weird at a first sight to even
ponder about the proper definition for this case, it turns out that conditional
probabilities that are also defined (in some yet unspecified way) have some useful
properties which makes the effort of defining them more than worthwhile. The
discussion of this, however, has to wait until after we have introduced conditional
expectations.

The discussion of conditional probabilities would not be complete without
mentioning Bayes law or Bayes rule, which states that provided A,B ∈ F
have both positive probabilities,

P (A | B) = P (B | A)P (A)
P (B) . (2.1)

This is obviously useful when we want to know P (A | B) and we have information
about the quantities on the right-hand side. Remarkably, this happens to be
the case quite often, explaining why this simple formula has quite a status in
probability and statistics. Exercise 2.5 asks the reader to verify this law.

2.4 Independence 28

2.4 Independence

Independence is another basic concept of probability that relates to
knowledge/information. The easiest way to define independence is through
conditional probabilities. In its simplest form independence is a relation that
holds between events on a probability space (Ω,F ,P). Two events A,B ∈ F are
independent if

P (A ∩B) = P (A)P (B) . (2.2)

How is this related to knowledge? Assuming that P (B) > 0, dividing both sides
by P (B) and using the definition of conditional probability we get that the above
is equivalent to

P (A | B) = P (A) . (2.3)

Of course, we also have that if P (A) > 0, (2.2) is equivalent to P (B | A) = P (B).
Note that both of the latter relations express something intuitive, which is that
A and B are independent if the probability assigned to A (or B) remains the
same regardless of whether it is known that B (respectively, A) occurred.

Independence of two events means that observing the outcome of one does not
change the likelihood of the other.

We hope our readers will find the definition of independence in terms of a ‘lack
of influence’ to be sensible. The reason not to use Eq. (2.3) as the definition is
mostly for the sake of convenience. If we started with (2.3) we would need to
separately discuss the case of P (B) = 0, which would cumbersome. A second
reason is that (2.3) suggests an asymmetric relationship, but intuitively we expect
independence to by be symmetric.

Why care about independence? There are at least two, unrelated reasons: (i)
Uncertain outcomes are often generated part by part with no interaction between
the processes, which naturally leads to an independence structure (think of rolling
multiple dice with no interactions between the rolls) and (ii) once we discover
some independence structure, calculations with probabilities can be immensely
simplified. In fact, independence is often used as a way of constructing probability
measures of interest (Exercise 2.6). Independence can also appear serendipitously
in the sense that a probability space may hold many more independent events
than what its construction may obviously suggest (Exercise 2.7).

Independence assumptions should not be taken lightly. Whenever independence
is brought up, one should carefully judge whether the independence structure is
really true. Since this is part of modeling, this reasoning is not mathematical in
nature but is concerned with thinking about the physical processes.

A collection of events G ⊂ F is said to be pairwise independent if any two
distinct elements of G are independent of each other. The events in G are said

2.5 Integration and expectation 29

to be mutually independent if for any n > 0 integer and A1, . . . , An distinct
elements of G, P (A1 ∩ · · · ∩An) =

∏n
i=1 P (Ai). This is a stronger restriction than

pairwise independence. In the case of mutually independent events the knowledge
of joint occurrence of any finitely many events from the collection will not change
our prediction of whether some other event happens. But this may not be the case
when the events are only pairwise independent (Exercise 2.7). Two collections
of events G1,G2 are said to be independent of each other if for any A ∈ G1
and B ∈ G2 it holds that A and B are independent of each other. This definition
is often applied to σ-algebras.

When the σ algebras are induced by random variables, this leads to the definition
of independence between random variables. Two random variables X and Y
are called independent of each other if their underlying σ-algebras, σ(X) and σ(Y),
are independent of each other. As we discussed previously, σ-algebras summarize
what knowledge can be gained by learning the value of a random variable. Hence
the above definition says that two random variables are independent of each
other when learning the value of one of them does not help in any way predicting
the value of the other. The notions of pairwise and mutual independence can
also be naturally extended to apply to collections of random variables. All these
concepts can be and are in fact extended to random elements. The default
meaning of independence when multiple events or random variables are involved
is mutual independence. Thus, when we say that X1, . . . , Xn are independent
random variables, we mean that they are mutually independent. When discussing
independence, the probability measure is often hidden.

Independence is always relative to some probability measure, even when a
probability measure is not explicitly mentioned. In such cases, the identity of
the probability measure should be clear from the context.

2.5 Integration and expectation

A key quantity in probability theory is the expectation, or mean value of
random variables. For the formal definition fix a probability space (Ω,F ,P). The
expectation of a random variable X : Ω → R is often denoted by E [X]. This
notation unfortunately obscures the dependence on the measure P. When the
underlying measure is not obvious from context we write EP to indicate the
expectation with respect to P. Mathematically, we define the expected value of
X as its Lebesgue integral with respect to P.

E [X] =
∫
X(ω) dP(ω) .

2.5 Integration and expectation 30

The right-hand side is also often abbreviated to
∫
X dP, suppressing the variable

ω that the integration is over. Shortly we will construct the integral on the right
hand side to satisfy the following properties.

(a) The integral of indicators is the probability of the underlying event. If X(ω) =
I {ω ∈ A} is an indicator function for some A ∈ F , then

∫
XdP = P (A).

(b) Integrals are linear. For all random variables X1, X2 and reals α1, α2 such
that

∫
X1dP and

∫
X2dP are defined,

∫
(α1X1 + α2X2)dP is defined and

satisfies
∫

(α1X1 + α2X2) dP = α1

∫
X1 dP + α2

∫
X2 dP . (2.4)

These two properties together tell us that whenever X(ω) =
∑n
i=1 αiI {ω ∈ Ai}

for some n, αi ∈ R and Ai ∈ F , i = 1, . . . , n, then
∫
XdP =

∑
i αiP (Ai).

Functions of this type are called simple functions.
The next step is to extend the definition to nonnegative random variables.

Let X : Ω→ [0,∞) be measurable. The idea is to approximate X using simple
functions from below and take the largest value that can be obtained this way.

∫

Ω
XdP = sup

{∫

Ω
hdP : h is simple and 0 ≤ h ≤ X

}
. (2.5)

Here h ≤ X if h(ω) ≤ X(ω) for all ω ∈ Ω. The supremum on the right-hand side
could be infinite in which case we say the integral of X is not defined. Whenever
the integral of X is defined we say that X is integrable or, if the identity of the
measure P is unclear, that X is integrable with respect to P.

Integrals for arbitrary random variables are defined by decomposing the
random variable into positive and negative parts. Let X : Ω → R be any
measurable function. Then define X+(ω) = X(ω)I {X(ω) > 0} and X−(ω) =
−X(ω)I {X(ω) < 0} so that X(ω) = X+(ω) − X−(ω). Now X+ and X− are
both nonnegative random variables called the positive and negative parts of
X. Provided that both X+ and X− are integrable we define

∫

Ω
XdP =

∫

Ω
X+dP−

∫

Ω
X−dP .

Note that X is integrable if and only if the nonnegative value random variable |X|
is integrable. The reader may challenge themselves by proving this in Exercise 2.9.

None of what we have done depends on P being a probability measure (that is
P (A) ≥ 0 and P (Ω) = 1). The definitions all hold more generally for any measure,
though for signed measures it is necessary to split Ω into disjoint measurable
sets on which the measure is positive/negative, an operation that is possible by
the Hahn decomposition theorem. We will never need signed measures in
this book, however. A particularly interesting case is when Ω = R is the real
line, F is the so-called Lebesgue σ-algebra (defined in the notes below), while
the measure is the so-called Lebesgue measure λ, which is the unique measure
such that λ((a, b)) = b − a for any a ≤ b. In this scenario, if f : R → R is a

2.5 Integration and expectation 31

Borel-measurable function (again, for the definition, see below), then we can
write the Lebesgue integral of f with respect to the Lebesgue measure as

∫

R
f dλ .

Perhaps unsurprisingly this almost always coincides with the improper Riemann
integral of f , which is normally written as

∫∞
−∞ f(x)dx. Precisely, if |f | is both

Lebesgue integrable and Riemann integrable, then the integrals are equal. There
do, however, exist functions that are Riemann integrable and not Lebesgue
integrable, and also the other way around (although examples of the former
are more unusual than the latter). This is mentioned because when it comes to
actually calculating the value of an expectation (or integral), this is often reduced
to calculating integrals over the real line with respect to the Lebesgue measure.
The calculation is then performed by evaluating the Riemann integral, thereby
circumventing the need to rederive the integral of many elementary functions.

Integrals (and thus expectations) have a number of important properties. By
far the most is their linearity, which was postulated above as the second property
in (2.4). To practice using the notation with expectations, we restate the first
half of this property. In fact, the statement is slightly more general than what we
demanded for integrals above.

proposition 2.1 Let (Xi)i be a (possibly infinite) collection of random
variables on the same probability space and assume that E [Xi] exists for all
i and furthermore that X =

∑
iXi and E [X] also exist. Then

E [X] =
∑

i

E [Xi] .

This exchange of expectations and summation is the source of much magic
in probability theory because it holds even if Xi are not independent. This
means that (unlike probabilities) we can very often decouple the expectations of
dependent random variables, which often proves extremely useful. We will not
prove this statement here, but as usual suggest the reader do so for themselves
(Exercise 2.11). The other requirement for linearity is that if c ∈ R is a constant,
then E [cX] = cE [X], which is also true and rather easy to prove (Exercise 2.12).
Another important statement is concerned with independent random variables.

proposition 2.2 If X and Y are independent, then E [XY] = E [X]E [Y].

Note that in general E [XY] 6= E [X]E [Y] (Exercise 2.14). Finally, an important
simple result connects expectations of nonnegative random variables to their tail
probabilities.

proposition 2.3 If X ≥ 0 is a nonnegative random variable, then

E [X] =
∫ ∞

0
P (X > x) dx .

2.6 Conditional expectation 32

The integrand in Proposition 2.3 is called the tail probability function
x 7→ P (X > x) of X. This is also known as the complementary cumulative
distribution function of X. The cumulative distribution function (CDF) of
X is defined as x 7→ P (X ≤ x) and is usually denoted by FX . These functions
are defined for all random variables, not just nonnegative ones. One can check
that FX : R→ [0, 1] is nondecreasing, right-continuous and limx→−∞ FX(x) = 0
and limx→∞ FX(x) = 1. The CDF of a random variable captures every aspect of
the probability measure PX induced by X, while still being just a function on
the real line, a property that makes it a little more human-friendly than PX .

2.6 Conditional expectation

Besides the expectation, we will also need conditional expectation, which
allows us to talk about the expectation of a random variable given the value of
another random variable. To illustrate with an example, let (Ω,F ,P) model the
outcomes of an unloaded dice: Ω = [6], F = 2Ω and P(A) = |A|/6. Define two
random variables X and Y by Y (ω) = I {ω > 3} and X(ω) = ω. Suppose we are
interested in the expectation of X given a specific value of Y . Arguing intuitively,
we might notice that Y = 1 means that the unobserved X must be either 4, 5
or 6, and that each of these outcomes is equally likely and so the expectation
of X given Y = 1 should be (4 + 5 + 6)/3 = 5. Similarly, the expectation of X
given Y = 0 should be (1 + 2 + 3)/3 = 2. If we want a concise summary, we
can just write that ‘the expectation of X given Y ’ is 5Y + 2(1− Y). Notice how
this is a random variable itself. The notation for this conditional expectation
is E [X | Y]. Using this notation, in the above example, we can concisely write
E [X | Y] = 5Y + 2(1− Y). A little more generally, if X : Ω→ X and Y : Ω→ Y
with X ,Y ⊂ R and |X |, |Y| <∞. Then E[X | Y] : Ω→ R is the random variable
given by E[X | Y](ω) = E[X,Y = Y (ω)] where

E[X | Y = y] =
∑

x∈X
xP (X = x | Y = y) =

∑

x∈X

xP (X = x, Y = y)
P (Y = y) . (2.6)

Notice that this is undefined when P(Y = y) = 0 so that E[X | Y](ω) is undefined
on the measure zero set {ω : P(Y = Y (ω)) = 0}.

The definition in Eq. (2.6) does not generalize to continuous random variables
because P (Y = y) in the denominator might be zero for all y. For example, let Y
be a random variable taking values on [0, 1] according to a uniform distribution
and X ∈ {0, 1} be Bernoulli with bias Y . This means that the joint measure
on X and Y is P (X = 1, Y ∈ [p, q]) =

∫ q
p
xdx for 0 ≤ p < q ≤ 1. Intuitively it

seems like E[X | Y] should be equal to Y , but how to define it? Remember that
the mean of a Bernoulli random variable is equal to its bias so the definition of

2.6 Conditional expectation 33

conditional probability shows that for 0 ≤ p < q ≤ 1,

E[X = 1 | Y ∈ [p, q]] = P (X = 1 | Y ∈ [p, q])

= P (X = 1, Y ∈ [p, q])
P (Y ∈ [p, q])

= q2 − p2

2(q − p)
= p+ q

2 .

The above calculation is not well defined when p = q because P (Y ∈ [p, p]) = 0.
Nevertheless, letting q = p+ ε for ε > 0 and taking the limit as ε tends to zero
seems like a reasonable way to argue that P (X = 1 | Y = p) = p. Unfortunately
this approach does not generalize to abstract spaces because there is no canonical
way of taking limits towards a set of measure zero and different choices lead to
different answers.

From Eq. (2.6) we see that E[X | Y](ω) should only depend on Y (ω) and so
should be measurable with respect to σ(Y). The second requirement is called the
‘averaging property’. For A ⊆ Y the above display shows that

E[IY −1(A)E[X | Y]] =
∑

y∈A
P (Y = y)E[X | Y](y)

=
∑

y∈A

∑

x∈X
xP (X = x, Y = y)

= E[IY −1(A)X] .

In fact these two properties alone completely determine E[X | Y] except for a set
of measure zero. Notice that both conditions actually only depend on σ(Y) ⊆ F .
Summarizing, we expect that E[X | Y] be σ(Y)-measurable and for all B ∈ σ(Y),
E[IBE[X | Y]] = E[IBX]. The abstract definition of conditional expectation takes
these properties as the definition and replaces the role of Y with a sub-σ-algebra.

definition 2.3 Let (Ω,F ,P) be a probability space and X : Ω→ R be random
variable and H be a sub-σ-algebra of F . The conditional expectation of X given
H is denoted by E[X | H] and defined to be any H-measurable random variable
on Ω such that for all H ∈ H,

∫

H

E[X | H]dP =
∫

H

XdP . (2.7)

Given a random variable Y , the conditional expectation of X given Y is
E [X | Y] = E [X | σ(Y)].

The reader may find it odd that E[X | Y] is a random variable on Ω rather than
the range of Y . Lemma 2.1 and the fact that E[X | σ(Y)] is σ(Y)-measurable
shows there exists a measurable function f : (R,B(R))→ (R,B(R)) such that

2.6 Conditional expectation 34

E[X | σ(Y)](ω) = (f ◦ Y)(ω) (see Fig. 2.3). In this sense E[X | Y](ω) only
depends on Y (ω) and occasionally we write E[X | Y](y).

(Ω,F)

(R,B(R)) (R,B(R))

Y E[X | σ(Y)]

f

Figure 2.3 Factorization of conditional expectation.

At the risk of being a overly verbose, what is the meaning of all this?
Returning to the dice example above we see that E [X | Y] = E [X | σ(Y)] and
σ(Y) = {{1, 2, 3}, {4, 5, 6}, ∅,Ω}. The condition that E[X | H] is H-measurable
can only be satisfied if E[X | H](ω) is constant on {1, 2, 3} and {4, 5, 6}. Then
(2.7) immediately implies that

E [X | H] (ω) =
{

2, if ω ∈ {1, 2, 3} ;
5, if ω ∈ {4, 5, 6} .

Finally, we want to emphasize that the definition of conditional expectation given
above is not constructive. Even more off-putting is that E[X | H] is not even
uniquely defined, though any two conditional expectations will only differ in a set
of measure zero, which does not matter when we calculate further expectations.

A related notation that will be useful in the future is the concept of almost
surely. Let X and Y be two random variables on the same probability space.
Then X = Y P-almost surely if P(X = Y) = 1. This is often abbreviated to
X = Y P-a.s. or just X = Y a.s. when the probability measure is clear from the
context. Yet another alternative is to write X = Y with probability one or
‘with P-probability one’. Note that this agrees with P (X 6= Y) = 0.

In the above examples we were ‘lucky’ to find the random variable that
satisfies the definition of conditional expectation. Or were we? In other words, do
conditional expectations always exist? Unsurprisingly, the answer is yes.

theorem 2.3 Given any probability space (Ω,F ,P), a sub-σ-algebra H of F
and a random variable X : Ω→ R, there exist a H-measurable function f : Ω→ R
that satisfies (2.7).

We close the section by summarizing some additional important properties of
conditional expectations. These follow from the definition directly and the reader
is invited to prove them in Exercise 2.16, but note the difficulty varies wildly.

2.7 Notes 35

theorem 2.4 Let (Ω,F ,P) be a probability space, G ⊂ F a sub-σ-algebra of F ,
X,Y random variables on (Ω,F ,P). The following hold true:

1 If X ≥ 0, then E [X | G] ≥ 0 almost surely.
2 E [1 | G] = 1 almost surely.
3 E [X + Y | G] = E [X | G] + E [Y | G] almost surely, assuming the expression

on the right-hand side is defined.
4 E [XY | G] = Y E [X | G] almost surely if E [XY] exists and Y is G-measurable.
5 if G1 ⊂ G2 ⊂ F , then E [X | G1] = E [E [X | G2] | G1] almost surely.
6 if G and F are independent, then E [X | G] = E [X] almost surely.
7 If G = {∅,Ω} is the trivial σ-algebra, then E [X | G] = E [X] almost surely.

2.7 Notes

1 The term σ-algebra (and σ-field) comes from that in many parts of mathematics,
the Greek letter σ is the symbol to be used in association with the countably
infinities. Countable additivity is in fact often also called σ-additivity. The
requirement that additivity should hold for systems of countably infinitely many
sets is made so that probabilities (interesting) limiting events are guaranteed
to exist.

2 It is not obvious why the expected value is a good summary of the reward
distribution. Decision makers who base their decisions on expected values are
called risk-neutral. In the example shown on the figure above, a risk-averse
decision maker may actually prefer the distribution labeled as A because
occasionally distribution B may incur a very small (even negative) reward.
Risk-seeking decision makers, if they exist at all, would prefer distributions with
occasional large rewards to distributions that give mediocre rewards only. There
is a formal theory of what makes a decision maker rational (a decision maker
in a nutshell is rational if he/she does not contradict himself/herself). Rational
decision makers compare stochastic alternatives based on the alternatives’
expected utilities, according to the Von-Neumann-Morgenstern utility theorem.
Humans are known to be not doing this, i.e., they are irrational. No surprise
here.

3 In our toy example instead of Ω = [6]7, we could have chosen Ω = [6]8
(considering rolling eight dice instead of 7, one dice never used). There are
many other possibilities. We can consider coin flips instead of dice rolls (think
about how this could be done). To make this easy, we could use weighted coins
(e.g, a coin lands on its head with probability 1/6), but we don’t actually need
weighted coins (this may be a little tricky to see). The main point is that there
are many ways to emulate one randomization device by using another. The
difference between these is the set Ω. What makes a choice of Ω viable is if
we can emulate the game mechanism on the top of Ω so that in the end the
probability of seeing any particular value remains the same. In other words,

2.7 Notes 36

the choice of Ω is far from unique. The same is true for the way we calculate
the value of the game! For example, the dice could be reordered, if we stay
with the first construction. The biggest irony in all probability theory is that
we first make a big fuss about introducing Ω and then it turns out that the
actual construction of Ω does not matter.

4 The Lebesgue σ-algebra is obtained as the completion of the Borel σ-algebra
with the following process: Take the null-sets in the Borel σ-algebra, which are
those the sets with zero Lebesgue measure (one first constructs the Lebesgue
measure for the Borel sets). Add all these to the Borel sets and then close
the resulting set to make it a σ-algebra. The resulting set is the Lebesgue
σ-algebra and the Lebesgue measure is then extended to this set. With the
same process, we can complete any σ-algebra with respect to some chosen
measure. Incomplete σ-algebras are annoying to work with as one can meet
sets that have a zero measure superset but whose measure is not defined.

5 How ‘big’ are the Borel and Lebesgue σ-algebras? Can you think of a set that
is not Borel measurable? Such sets do exist, but they do not arise naturally in
applications. The classic example is called the Vitali set, which is formed by
taking the quotient group G = R/Q and then applying the axiom of choice to
choose a representative in [0, 1] from each equivalence class in G. To reiterate,
you do not have to worry much about whether or not functions X : R → R
are Borel. In this book questions of measurability are not related to the fine
details of the Borel or Lebesgue σ-algebras. Much more frequently they are
related to filtrations and the notion of knowledge available having observed
certain random elements.

6 We did not talk about this, but there is a whole lot to say about why the sum,
or the product of random variables are also random variables, or why infnXn,
supnXn, lim infnXn, lim supnXn are measurable when Xn are, just to list a
few things. The key point is to show first that the composition of measurable
maps is a measurable map and that continuous maps are measurable, and then
apply these results. For lim supnXn, just rewrite it as limm→∞ supn≥mXn,
note that supn≥mXn is decreasing (we take suprema of smaller sets as m
increases), hence lim supnXn = infm supn≥mXn, reducing the question to
studying infnXn and supnXn. Finally, for infnXn note that it suffices if
{ω : infnXn ≥ t} is measurable any t real. Now, infnXn ≥ t if and only if
Xn ≥ t for all n. Hence, {ω : infnXn ≥ t} = ∩n{ω : Xn ≥ t}, which is a
countable intersection of measurable sets, hence measurable.

7 The factorization lemma, Lemma 2.1, is attributed to Joseph Doob and Eugene
Dynkin. The lemma sneakily uses the properties of real numbers (think about
why), so what we said about σ-algebras containing all information is just almost
entirely true. The lemma has extensions to more general random elements. In
particular, the mathematically oriented readers will find it reassuring that the
lemma continues to hold true as long as the σ-algebra of the image space of
the random variable to be factored (X in our statement) is a Borel σ-algebra.
The key requirement in a way is that this σ-algebra should be rich enough.

2.7 Notes 37

8 We did not talk about some basic results, like Lebesgue’s dominated, monotone
convergence theorems, or Fatou’s lemma, or Jensen’s inequality. Of these, we
will definitely use the last, which we elaborate on in the next item. The other
results can be found in the texts we cite. These results are concerned with
infinite sequence of random variables and conditions under which their limits
can be interchanged with Lebesgue integrals. In this book we rarely encounter
problems related to such sequences and hope you forgive us on the few occasions
they are necessary (the reason is simply because we mostly focus on finite time
results, or we take expectations before taking limits if we look at asymptotics).

9 A simple version of Jensen’s inequality states that if for any U ⊂ R convex,
with non-empty interior and for any f : U → R convex function and random
variable X ∈ U such that E [X] exists, f(E [X]) ≤ E [f(X)]. The proof is simple
if one notes that for such a convex f function, at every point m ∈ R in the
interior of U , there exists a ‘slope’ a ∈ R such that a(x−m)+f(m) ≤ f(x) for all
x ∈ R (if f is differentiable at m, take a = f ′(m)). Indeed, is such a slope exists,
taking m = E [X] and replacing x by X we get a(X−E [X])+f(E [X]) ≤ f(X).
Then, taking the expectation of both sides we arrive at Jensen’s inequality.
The idea can be generalized into multiple directions, i.e., the domain of f could
be a convex set in a vector space, etc.

10 The reader might be quite surprised that we have not mentioned densities yet.
For most of us our first exposure to probability on continuous spaces was by
studying the normal distribution and its density

p(x) = 1√
2π

exp(−x2/2) , (2.8)

which can be integrated over intervals to obtain the probability that a Gaussian
random variable will take a value in that interval. The reader should notice
that p : R→ R is Borel measurable and that the Gaussian measure associated
with this density is P on (R,B(R)) defined by

P(A) =
∫

A

p dλ .

Here the integral is with respect to the Lebesgue measure λ on (R,B(R)). The
notion of a density can be generalized beyond this simple setup. Let P and Q

be measures (not necessarily probability measures) on arbitrary measurable
space (Ω,F). The Radon-Nikodym derivative of P with respect to Q is an
F-measurable random variable dP

dQ : Ω→ [0,∞) such that

P (A) =
∫

A

dP

dQ
dQ for all A ∈ F . (2.9)

Another word for the Radon-Nikodmm derivative dP
dQ is the density of P

with respect to Q. It is not hard to find examples where the density does
not exist. We say that P is absolutely continuous with respect to Q if
Q(A) = 0 =⇒ P (A) = 0 for all A ∈ Ω. When dP

dQ exists it follows immediately
that P is absolutely continuous with respect to Q by Eq. (2.9). Except for some

2.7 Notes 38

pathological cases it turns out that this is both necessary and sufficient for
the existence of dP/dQ. The measure Q is σ-finite if there exists a countable
covering {Ai} of Ω with F-measurable sets such that Q(Ai) <∞ for each i.

theorem 2.5 Let P,Q be measures on a common measurable space (Ω,F)
and assume that Q is σ-finite. Then the density of P with respect to Q, dP

dQ ,
exists if and only if P is absolutely continuous with respect to Q. Furthermore,
dP
dQ is uniquely defined up to a Q-null set so that for any f1, f2 satisfying (2.9),
f1 = f2 holds Q-almost surely.

Densities work as expected. Suppose that Z is a standard Gaussian random
variable. Without much thinking, we usually write its density as in Eq. (2.8),
which we now know is the Radon-Nikodym derivative of the Gaussian measure
with respect to the Lebesgue measure. The densities of ‘classical’ distributions
are almost always defined with respect to the Lebesgue measure.

11 A useful result for Radon-Nikodym derivatives is the chain rule, which states
that if P � Q� S, then dP

dQ
dQ
dS = dP

dS . The proof of this result follows from the
definition of the densities and the ‘usual machinery’, which means proving the
result holds for simple functions and then applying the monotone convergence
theorem to take the limit for any measurable function. The chain rule is
often used to reduce the calculation of densities to calculation with known
densities. The Radon-Nikodym derivative unifies the notions of distribution
(for discrete spaces) and density (for continuous spaces). Let Ω be discrete
(finite or countable) and let ν be the counting measure on (Ω, 2Ω), which is
defined by ν(A) = |A|. For any P on (Ω,F) it is easy to see that P � ν and
dP
dν (i) = P ({i}), which is sometimes called the distribution function of P .

12 The Radon-Nikodym derivative provides one way to define the conditional
expectation. Let X be a random variable on (Ω,F ,P) and H ⊂ F be a sub-σ-
algebra and P|H be the restriction of P to (Ω,H). Define measure µ on (Ω,H) by
µ(A) =

∫
A
XdP|H. It is easy to check that µ� P|H and that E[X | H] = dµ

dP|H
satisfies Eq. (2.7). We note that the proof of the Radon-Nikodym theorem is
nontrivial and that the existence of conditional expectations are more easily
guaranteed via an ‘elementary’ but abstract argument using functional analysis.

13 The Fubini-Tonelli theorem is a very powerful result that allows one to
exchange the order of integrations. This result is needed for example for proving
Proposition 2.3 (cf. Exercise 2.15). To state it, we need to introduce product
measurable-spaces and product measures. These work as expected: Given
two measurable spaces, (Ω1,F1) and (Ω2,F2), the product measurable space is
(Ω1×Ω2,F) where F is the smallest σ-algebra that contains the direct product
of F1 and F2, defined as F1×F2 = {(A1, A2) : A1 ∈ F1, A2 ∈ F2}. We will use
F1⊗F2 to denote F and call it the product σ-algebra. (The definition can also
be extended to the product of multiple measurable spaces. Unsurprisingly the
product operation is associative.) Further, given two probability distributions
P1 and P2 on the respective measurable spaces (Ω1,F1) and (Ω2,F2), their
product measure P is defined as any measure on (Ω1 × Ω2,F1 ⊗ F2) that

2.8 Bibliographic remarks 39

satisfies P(A1, A2) = P1(A1)P2(A2) for all (A1, A2) ∈ F1 ×F2. One can show
that this product measure, which is often denoted by P1 × P2 (or P1 ⊗ P2)
is uniquely defined. (Think about what this product measure has to do with
independence.) Now, the Fubini-Tonelli theorem, which is oftentimes just
mentioned as the Fubini theorem, states the following: Let (Ω1,F1,P1) and
(Ω2,F2,P2) be two probability spaces and consider a random variable X of
the product probability space (Ω,F ,P) = (Ω1 × Ω2,F1 ⊗F2,P1 × P2). Then,
if any of the three integrals

∫
|X(ω)|dP(ω),

∫
(
∫
|X(ω1, ω2)|dP1(ω1)) dP2(ω2),∫

(
∫
|X(ω1, ω2)|dP2(ω2)) dP1(ω1) is finite then their values are all equal:

∫
|X(ω)|dP(ω) =

∫ (∫
|X(ω1, ω2)|dP1(ω1)

)
dP2(ω2)

=
∫ (∫

|X(ω1, ω2)|dP2(ω2)
)

dP1(ω1) .

14 Mathematical terminology can be a bit confusing sometimes. Since E maps
(certain) functions to real values, it is also called the expectation operator.
‘Operator’ is just a fancy name for functions. In operator theory, the study of
operators, the focus is on operators whose domain is infinite dimensional, hence
the distinct name. However, most results of operator theory do not hinge upon
this property. If the image space is the set of reals, we talk about functionals.
The properties of functionals is studied in functional analysis. The expectation
operator, the way we define it here, is a functional (a special operator) which
maps the set of P-integrable functions (often denoted by L1(Ω,P)) or L1(P))
to reals. Its most important property is its linearity, which was stated as a
requirement for integrals which defines the E expectation operator (cf. (2.4)).
In line with the previous comment, when we use E, more often than not, the
probability space remains hidden. As such, the symbol E is further abused.
However, again in line with the previous comment, the abuse is intended and
harmless.

15 Let X : Ω → R be a random variable on probability space (Ω,F ,P). The
support of X is the smallest closed subset A ⊆ R such that P (X ∈ A) = 1.

2.8 Bibliographic remarks

Much of this chapter draws inspiration from David Pollard’s “A user’s guide
to measure theoretic probability” [Pollard, 2002]. The curious reader should be
warned: The notation of the book will be unusual. Pollard follows de Finetti’s
notation, where P and E gets merged into one. In particular, instead of E [X],
in this notation one writes P[X]. This has the clear advantage that it clearly
shows the dependence of the expectation on the probability measure P (an
approximation to this is to use EP[X], which is a bit clumsy. Another way of
think of this is that all that we have are expectations: In this approach, when
writing P(A) for some event A, we should think of A being replaced by its

2.9 Exercises 40

indicator so that P(A) is E [I {A}]. Using indicators in place of sets is also easier
at times as we tend to be stronger in algebra than in logic (think of deriving
something like A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) with algebra versus with logic.
Nevertheless, the main reason we recommend this book is not because of its
notation (in fact we realize the notation may be off-putting for some people),
but because we find that it is written with extreme care. In particular, this book
explains much more about the ‘why’ and ‘how’ than any other book we came
across. The book gets quite advanced quite fast, concentrating on the big picture
rather than getting lost in the details. Other useful references include the book
by Billingsley [2008], which has many good exercises and is quite comprehensive
in terms of its coverage of the ‘basics’. We also like the book by Kallenberg [2002].
This book is recommended for the mathematically inclined readers who already
have a good understanding of the basics: The author has put a major effort
into organizing the material so that redundancy is minimized and generality is
maximized. This reorganization resulted in quite a few original proofs and the
book is comprehensive. The factorization lemma (Lemma 2.1) is stated in the
book by Kallenberg [2002] (Lemma 1.13 there). Kallenberg calls this lemma the
“functional representation” lemma and attributes it to Joseph Doob. Theorem 2.2
is a Corollary of Caratheodory’s extension theorem, which says that probability
measures defined on semi-rings have a unique extension to the generated σ-algebra.
The remaining results can be found in either of the three books mentioned above.
Finally, for something older and less technical we recommend the philosophical
essays on probability by Pierre Laplace [Laplace, 2012].

2.9 Exercises

2.1 [Random-variable induced σ-algebra] Let U be an arbitrary set and
(V,Σ) a measurable space and X : U → V an arbitrary function. Show that
ΣX = {X−1(A) : A ∈ Σ} is a σ-algebra over U .

2.2 Let (Ω,F) be a measurable space and A ⊆ Ω and F|A = {A ∩B : B ∈ F}.

(a) Show that (A,F|A) is a measurable space.
(b) Show that if A ∈ F , then F|A = {B ∈ F : B ⊆ A}.

2.3 Let G ⊂ Ω be an arbitrary nonempty collection of sets and define σ(G) as
the smallest σ-algebra that contains G.

(a) Show that σ(G) exists and contains exactly those sets A that are in every
σ-algebra that contains G.

(b) Suppose (Ω′,F) is a measurable space and X : Ω′ → Ω be F/G-measurable.
Show that X is also F/σ(G)-measurable. (We often use this result to simplify
the job of checking whether a random variable satisfies some measurability
property).

2.9 Exercises 41

(c) Prove that if A ∈ F where F is a σ-algebra then I {A} is F-measurable.

2.4 Let (Ω,F ,P) be a probability space, B ∈ F be such that P (B) > 0. Prove
that A 7→ P (A | B) is a probability measure over (Ω,F).

2.5 [Bayes law] Verify (2.1).

2.6 Consider the standard probability space (Ω,F ,P) generated by two standard,
unbiased, six-sided dice which are thrown independently of each other. Thus,
Ω = {1, . . . , 6}2, F = 2Ω and P(A) = |A|/62 for any A ∈ F so that Xi(ω) = ωi
represents the outcome of throwing dice i ∈ {1, 2}.

(a) Show that the events ‘X1 < 2’ and ‘X2 is even’ are independent of each other.
(b) More generally, show that the any two events, A ∈ σ(X1) and B ∈ σ(X2),

are independent of each other.

2.7 [Serendipitous independence] The point of this exercise is to understand
independence more deeply. Solve the following problems:

(a) Let (Ω,F ,P) be a probability space. Show that ∅ and Ω (which are events)
are independent of any other event. What is the intuitive meaning of this?

(b) Continuing the previous part, show that any event A ∈ F with P (A) ∈ {0, 1}
is independent of any other event.

(c) What can we conclude about an event A ∈ F that is independent of its
complement, Ac = Ω \A? Does your conclusion make intuitive sense?

(d) What can we conclude about an event A ∈ F that is independent of itself?
Does your conclusion make intuitive sense?

(e) Consider the probability space generated by two independent flips of unbiased
coins with the smallest possible σ-algebra. Enumerate all pairs of events A,B
such that A and B are independent of each other.

(f) Consider the probability space generated by the independent rolls of two
unbiased three-sided dice. Call the possible outcomes of the individual dice
rolls 1, 2 and 3. Let Xi be the random variable that corresponds to the
outcome of the ith dice roll (i ∈ {1, 2}). Show that the events {X1 ≤ 2} and
{X1 = X2} are independent of each other.

(g) The probability space of the previous example is an example when the
probability measure is uniform on a finite outcome space (which happens to
have a product structure). Now consider any n-element, finite outcome space
with the uniform measure. Show that A and B are independent of each other
if and only if the cardinalities |A|, |B|, |A ∩B| satisfy n|A ∩B| = |A| · |B|.

(h) Continuing with the previous problem, show that if n is prime, then no
non-trivial events are independent (an event A is trivial if P (A) ∈ {0, 1}).

(i) Construct an example showing that pairwise independence does not imply
mutual independence.

(j) Is it true or not that A,B,C are mutually independent if and only if
P (A ∩B ∩ C) = P (A)P (B)P (C)? Prove your claim.

2.9 Exercises 42

2.8 [Independence and random elements] Solve the following problems:

(a) Let X be a constant random element (that is, X(ω) = x for any ω ∈ Ω over
the outcome space over which X is defined). Show that X is independent of
any other random variable.

(b) Show that the above continues to hold if X is almost surely constant (that is,
P (X = x) = 1 for an appropriate value x).

(c) Show that two events are independent if and only if their indicator random
variables are independent (that is, A,B are independent if and only if
X(ω) = I {ω ∈ A} and Y (ω) = I {ω ∈ B} are independent of each other).

(d) Generalize the result of the previous item to pairwise and mutual independence
for collections of events and their indicator random variables.

2.9 Our goal in this exercise is to show that X is integrable if and only if |X| is
integrable. This is broken down into multiple steps. The first issue is to deal with
the measurability of |X|. While a direct calculation can also show this, it may be
worthwhile to follow a more general path:

(a) Let (Ωi,Fi), i ∈ {1, 2, 3} be measurable spaces. Show that if fi : Ωi → Ωi+1 is
Fi/Fi+1 measurable for i ∈ {1, 2}, then their composition, f2 ◦ f1 : Ω1 → Ω3,
defined by (f2 ◦ f1)(ω) = f2(f1(ω)) is F1/F3-measurable.

(b) Any f : R→ R continuous function is Borel-measurable.
(c) Conclude that for any random variable X, |X| is also a random variable.
(d) Prove that for any random variable X, X is integrable if and only if |X|

is integrable. (The statement makes sense since |X| is a random variable
whenever X is). Hint: Notice the relationship between |X| and (X)+ and
(X)−.

2.10 [Infinite-valued integrals] Can we consistently extend the definition of
integrals so that, e.g., for nonnegative random variables, the integral is always
defined (it may take on +∞)? Defend your view by either constructing an example
(if you are arguing against) or by proving that your definition is consistent with
the requirements we have for integrals.

2.11 Prove Proposition 2.1.

2.12 Prove that if c ∈ R is a constant, then E [cX] = cE [X] (as long as X is
integrable).

2.13 Prove Proposition 2.2. Hint: Follow the ‘inductive’ definition of Lebesgue
integrals, starting with simple functions, then nonnegative functions and finally
arbitrary independent random variables.

2.14 Demonstrate using an example that in general, for dependent random
variables, E [XY] = E [X]E [Y] does not hold.

2.15 Prove Proposition 2.3. Hint: Consider writingX(ω) =
∫

[0,∞) I {[0, X(ω)]} (x) dx

2.9 Exercises 43

(why does this hold?) and exchange the integrals. Call the Fubini-Tonelli theorem
to justify the exchange of integrals.

2.16 Prove Theorem 2.4.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

3 Stochastic Processes and Markov
Chains (†)

The measure-theoretic probability in the previous chapter covers almost all the
definitions required. Occasionally, however, we make use of infinite sequences of
random variables and for these one requires just a little more machinery. We
expect most readers will skip this chapter on the first reading, perhaps referring
to it when necessary.

For many applications in this book we only need to construct infinite sequences
of independent and identically distributed random variables. In what follows we
let λ be the Lebesgue measure on ([0, 1],B([0, 1])). Two measurable spaces (X ,F)
and (Y,G) are Borel isomorphic if there exists an injective function f : X → Y
such that f is X/Y-measurable and f−1 is Y/X -measurable. A Borel space is a
measurable space (X ,F) that is Borel isomorphic to (A,B(A)) with A ∈ B(R) a
Borel measurable subset of the of the reals. The spaces in which random elements
usually live are all Borel, including Rn and its measurable subsets.

theorem 3.1 Let µ be a probability measure on a Borel measurable space
S. Then there exists a sequence of independent random elements X1, X2, . . . on
([0, 1],B([0, 1]), λ) such that the law λXt = µ for all t.

This allows us to write “let X1, X2, . . . be an infinite sequence of independent
standard Gaussian random variables” and be comfortable knowing there exists
a probability space on which these random variables can be defined. We give a
sketch of the proof because, although it is not really relevant for the material in
this book, it illustrates the general picture and dispels some of the mystic about
what is really going on.

Proof sketch of Theorem 3.1 For simplicity we consider only the case that
S = ([0, 1],B([0, 1])) and µ is the Lebesgue measure. For any x ∈ [0, 1] let
F1(x), F2(x), . . . be the binary expansion of x, which is the unique infinite sequence
such that

x =
∞∑

t=1
Ft(x)2−t .

A direct calculation shows that F1, F2, . . . are an infinite sequence of independent
Bernoulli random variables. From this we can create an infinite sequence of
uniform random variables by reversing the process. To do this we rearrange the

http://banditalgs.com
mailto:tor.lattimore@gmail.com

3.1 Stochastic processes 45

(Ft)∞t=1 sequence into a grid. For example:

F1, F2, F4, F7, · · ·
F3, F5, F8, · · ·
F6, F9, · · ·
F10, · · ·
...

Letting Hm,n be the n entry in the mth row of this grid we define Xm =∑∞
t=1 2−tXm,t and again one can easily check that with this choice the sequence

X1, X2, . . . is independent and λXt = µ is uniform for each t.

3.1 Stochastic processes

Let T be an arbitrary set. A stochastic process on probability space (Ω,F ,P)
is a collection of random variables {Xt : t ∈ T }. In this book T will always
be countable and so in the following we restrict ourselves to T = N. The first
theorem is not the most general, but suffices for our purposes and is more easily
stated than more generic alternatives.

theorem 3.2 For each n ∈ N+ let (Ωn,Fn) be a Borel space and µn be a
measure on (Ω1 × · · · × Ωn,F1 ⊗ · · · ⊗ Fn) such that

µn+1(A× Ωn+1) = µn(A) for all A ∈ Ω1 ⊗ · · · ⊗ Ωn . (3.1)

Then there exists a probability space (Ω,F ,P) and random elements X1, X2, . . .

with Xt : Ω→ Ωt such that PX1,...,Xn = µn for all n.

Sequences of measures satisfying Eq. (3.1) are called projective.

Theorem 3.2 also demonstrates the existence of an infinite sequence of
independent and identically distributed random variables X1, X2, . . . with
distribution µ. By assumption a random variable takes values in (R,B(R)),
which is Borel. Then let µn = ⊗nt=1µ be the n-fold product measure of µ with
itself. That this sequence of measures is projective is clear and the theorem does
the rest. Nothing required the measures be identical (or independent), which will
sometimes be necessary in the sequel.

3.2 Markov chains

A Markov chain is an infinite sequence of random elements X1, X2, . . . where
the conditional distribution of Xt+1 given X1, . . . , Xt only depends on Xt.

3.2 Markov chains 46

Such random sequences appear throughout probability theory and have many
applications besides. The theory is much too rich to explain in detail, so we give
the basics and point towards the literature for more details at the end. The focus
here is mostly on the definition and existence of Markov chains.

Let (X ,F) and (Y,G) be measurable spaces. A probability kernel or Markov
kernel between (X ,F) and (Y,G) is a function K : X × G → [0, 1] such that:

(a) K(x, ·) is a measure for all x ∈ X .
(b) K(·, A) is F-measurable for all A ∈ G.

The idea here is that K describes a stochastic transition. Having arrived at x, a
process’s next state is sampled Y ∼ K(x, ·). If K1 is a (X ,F)→ (Y,G) probability
kernel and K2 is a (Y,G)→ (Z,H) probability kernel, then the product kernel
K = K1 ⊗K2 is the probability kernel from (X ,F)→ (Z,H) defined by

K(x,A) =
∫

Y
K2(y,A)K1(x, dy) ,

for which an alternate notation is to write K(x, dz) =
∫
Y K2(y, dz)K1(x, dy).

Note the ‘d’ appearing inside the measure rather than outside. Occasionally one
sees the notation Kx(A) rather than K(x,A), in which case the notation dKx(y)
would make more sense. The product kernel corresponds to taking one step using
K1 follows by a step from K2 so that Y ∼ K1(x, ·) and then Z ∼ K2(Y, ·). The
counterpart of Theorem 3.2 for Markov chains is known as the Ionescu Tulcea
theorem.

theorem 3.3 For each n ∈ N+ let (Ωn,Fn) be a measurable space and Kn

be a probability kernel from
∏n−1
t=1 Ωt → Ωn. Then there exists a probability

space (Ω,F ,P) and random elements X1, X2, . . . with Xt : Ω → Ωt such that
PX1,...,Xn =

⊗n
t=1Kt for all n ∈ N+.

A homogeneous Markov chain is a sequence of random elements X1, X2, . . .

taking values in state space S = (X ,F) and with

E[Xt+1 ∈ · | X1, . . . , Xt] = E[Xt+1 ∈ · | Xt] = µ(Xt, ·) almost surely ,

where µ is a probability kernel from (X ,F) to (X ,F) and we assume that
E[X1 ∈ ·] = P (X1 ∈ ·) = µ0(·) for some measure µ0 on (X ,F).

The word ‘homogeneous’ refers to the fact that the probability kernel does
not change with time. Accordingly, sometimes one writes time-homogeneous
instead of homogeneous. The reader can no doubt see how to define a Markov
chain where µ depends on t, though doing so is purely cosmetic since the
state-space can always be augmented to include a time component.

Note that if µ(x | ·) = µ0(·) for all x ∈ X , then Theorem 3.3 is yet another
way to prove the existence of an infinite sequence of independent and identically
distributed random variables. The basic questions in Markov chains resolve around

3.3 Martingales and stopping times 47

understanding the evolution of Xt in terms of the probability kernel. For example,
assuming that Ωt = Ω1 for all t ∈ N+, does the law of Xt converge to some fixed
distribution as t→∞ and if so, how fast is this convergence? For now we make
do with the definitions, but in the special case that X is finite we introduce some
of these topics much later in Chapters 36 and 37.

3.3 Martingales and stopping times

Let X1, X2, . . . be a sequence of random variables on (Ω,F ,P) and (Ft)∞t=1 a
filtration of F . We note that for finite sequences the definitions are unchanged
except for the obvious range modifications. The sequence (Xt)∞t=1 is called Ft-
adapted if Xt is Ft-measurable for all t. If (Xt) is Ft-adapted and for all t the
conditional expectation E[Xt+1 | Ft] = Xt almost surely and Xt is integrable,
then (Xt) is a Ft-martingale. The dependence on the filtration is often omitted
when the underlying filtration is self-evident.

definition 3.1 A Ft-adapted sequence of random variables (Xt) is a Ft-
adapted martingale if E[Xt | Ft−1] = Xt−1 almost surely for all t ∈ {2, 3, . . .}.
If the equality is replaced with a less/greater-than, then it is called a super/sub-
martingale respectively.

example 3.1 A gambler repeatedly throws a coin, winning a dollar for each
heads and losing a dollar for each tails. Their total winnings over time is a
martingale. To model this situation let Y1, Y2, . . . be a sequence of independent
Rademacher distributions, which means that P (Yt = 1) = P (Yt = −1) = 1/2.
The winnings after t rounds is St =

∑t
s=1 Ys, which is a martingale adapted to

the filtration (Ft)∞t=1 given by Ft = σ(Y1, . . . , Yt).

definition 3.2 Let (Ft)t∈N be a filtration. A random variable τ with values in
N ∪ {∞} is a stopping time with respect to (Ft) if I {τ ≤ t} is Ft-measurable
for all t ∈ N. The σ-algebra at stopping time τ is

Fτ = {A ∈ F∞ : A ∩ {τ ≤ t} ∈ Ft for all t} .

A stopping time τ is a random variable that determines when a process stops
and that only depends on information available at time τ , which means it cannot
‘peak into the future’ to determine stopping.

example 3.2 In the gambler example, the first time when the gambler’s
winnings hits 100 is a stopping time: τ = min{t : St = 100}. On the other
hand, τ = min{t : St+1 = −1} is not a stopping time because I {τ = t} is not
Ft-measurable.

theorem 3.4 (Doob’s optional stopping) Let F = (Ft)t∈N be a filtration and
(Xt)t∈N be a F-adapted martingale and τ a F-stopping time such that at least one
of the following holds:

3.4 Notes 48

(a) There exists an n ∈ N such that P (τ > n) = 0.
(b) E[τ] <∞ and there exists a constant c ∈ R such that E[|Xt+1 −Xt| | Ft] ≤ c

almost surely on the event that τ > t.
(c) There exists a constant c such that |Xt∧τ | ≤ c almost surely for all t ∈ N.

Then Xτ is almost-surely well defined and E[Xτ] = X0. Furthermore, when (Xt)
is a super/sub-martingale rather than a martingale, then equality is replaced with
less/greater-than respectively.

One application of Doob’s optional stopping theorem is a useful and apriori
surprising generalization of Markov’s inequality to nonnegative supermartingales.

theorem 3.5 (Maximal inequality) Let (Xt)nt=1 be a supermartingale with
Xt ≥ 0 almost surely for all t. Then

P
(

sup
t≤n

Xt ≥ ε
)
≤ 1
ε
E[X1] .

Proof Let τ = (n+ 1) ∧min{t ≤ n : Xt ≥ ε}, where the minimum of an empty
set is assumed to be infinite so that τ = n+ 1 if Xt < ε for all t ∈ [n]. Clearly τ
is a Ft-stopping time and P (τ ≤ n+ 1) = 1. Then by Theorem 3.4,

E[X1] ≥ E[Xτ] ≥ εP (τ ≤ n) = εP
(

sup
t≤n

Xt ≥ ε
)
,

where the second inequality uses the definition of the stopping time and the
nonnegativity of the supermartingale. Rearranging completes the proof.

Markov’s inequality combined with the definition of a supermartingale shows
that P (Xn ≥ ε) ≤ E[X1]/ε. The maximal inequality is a strict improvement
by replacing Xn with supt≤nXt at no cost whatsoever.

3.4 Notes

1 Some authors include in the definition of a stopping time τ that P (τ <∞) = 1
and call random times without this property Markov times. We do not adopt
this convention and allow stopping times to be infinite with nonzero probability.
Stopping times are also called optional times.

2 There are several notations for probability kernels depending on the application.
The follow are commonly seen and equivalent: K(x,A) = K(A | x) = Kx(A).
For example, in statistics a parametric family is often given by {Pθ : θ ∈ Θ}
where Θ is the parameter space and Pθ is a measure on some measurable space
(Ω,F). This notation is often more convenient than writing P(θ, ·). In Bayesian
statistics the posterior is a probability kernel from the observation space to
the parameter space and this is often written as P(θ | X).

3.5 Bibliographic remarks 49

3 A note on product measure notation.
4 There is some disagreement about whether or not a Markov chain on an

uncountable state space should instead be called a Markov process. In this
book we use Markov chain for arbitrary state spaces and discrete time. When
time is continuous (which it never is in this book), there is general agreement
that ‘process’ is more appropriate. For a little more history on this see the
preface of the book by Meyn and Tweedie [2012].

3.5 Bibliographic remarks

There are many places to find the construction of a stochastic process. Like
before we recommend Kallenberg [2002] for readers who want to refresh their
memory and Billingsley [2008] for a more detailed account. For Markov chains the
recent book by Levin and Peres [2017] provides a wonderful introduction. Perhaps
followed by the tome of Meyn and Tweedie [2012]. A proof of Theorem 3.1 is
given Theorem 3.19 in the book by Kallenberg [2002]. Theorem 3.2 is credited to
Percy John Daniell by Kallenberg [2002] (see Aldrich 2007). More general versions
of this theorem exist. Readers looking for these should look up Kolmogorov’s
extension theorem [Kallenberg, 2002, Thm 6.16]. The theorem of Ionescu
Tulcea (Theorem 3.3) is attributed to her [Tulcea, 1949–50] with a modern proof
in the book by [Kallenberg, 2002, Thm 6.17]. There are lots of minor variants of
the optional stopping theorem, most of which can be found in any probability book
featuring martingales. The most historically notable source is by the man himself
[Doob, 1953]. A more modern book that also gives the maximal inequalities is
the book on optimal stopping by Peskir and Shiryaev [2006].

3.6 Exercises

3.1 Fill in the details to prove Theorem 3.1.

3.2 Let X1, X2, . . . be an infinite sequence of independent Rademacher random
variables and St =

∑t
s=1Xs2s−1.

(a) Show that S1, S2, . . . is a martingale.
(b) Let τ = min{t : St = 1} and show that P (τ <∞) = 1.
(c) What is E[Sτ]?
(d) Explain why this does not contradict Doob’s optional stopping theorem.

3.3 Give an example of a martingale S1, S2, . . . and stopping time τ such that

lim
n→∞

E[Xτ∧n] 6= E[Xτ] .

3.4 Show that Theorem 3.5 does not hold in general for supermartingales if the
assumption that it be nonnegative is dropped.

3.6 Exercises 50

3.5 Let τ1, τ2, . . . be an almost surely increasing sequence of F-stopping times on
probability space (Ω,F ,P) with F = (Ft), which means that τ1(ω) ≤ τ2(ω) ≤ · · ·
almost surely. Prove that τ(ω) = limn→∞ τn(ω) is a F-stopping time.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

4 Finite-Armed Stochastic Bandits

start, t = 0

Learner
1 Increment t
2 Choose At ∈ {1, 2, . . . , K}

Environment
1 Sample reward Xt ∼ PtAt

At Xt

Figure 4.1 Interaction between
learner and environment

A K-armed stochastic bandit is a tuple of
distributions ν = (P1, P2, . . . , PK), where Pi is a
distribution over the reals for each i ∈ [K]. The
learner and the environment interact sequentially
as summarized in Fig. 4.1. In each round t

the learner chooses action At ∈ {1, 2, . . . ,K},
which is fed to the environment. Then the
environment samples reward Xt ∈ R from
distribution PAt and reveals it to the learner. The
interaction between the learner (or policy) and
environment induces a measure on the sequence
of outcomes A1, X1, A2, X2, . . . , An, Xn where n
is the horizon. Usually the horizon n is finite, but
sometimes we allow the interaction to continue
indefinitely (n = ∞). The interaction diagram
above suggests that At and Xt should satisfy the following assumptions:

(a) The conditional distribution of Xt given A1, X1, . . . , At−1, Xt−1, At is PtAt ,
which captures the intuition that the environment samples Xt from PtAt in
round t.

(b) P (At = a | A1, X1, . . . , At−1, Xt−1) = πt(A1, X1, . . . , At−1, Xt−1) where
π1, π2, . . . is a sequence of functions that characterize the learner with
πt(a | a1, x1, . . . , at−1, xt−1) representing the probability that the learner
chooses action a having observed a1, x1, . . . , at−1, xt−1. The most important
element of this assumption is the intuitive fact that the learner cannot use
the future observations in current decisions.

A mathematician might ask on which probability space At and Xt are defined
and the measure for which (a) and (b) are satisfied. We show how to do this in
Section 4.4, but for now we move on.

http://banditalgs.com
mailto:tor.lattimore@gmail.com

4.1 The learning objective 52

4.1 The learning objective

The learner’s goal is to maximize the total reward Sn =
∑n
t=1Xt, which is a

random quantity that depends on the actions of the learner and the rewards
sampled by the environment. This is not an optimization problem for three
reasons:

1 The cumulative reward is a random quantity. Even if the reward distributions
were known, then we require a measure of utility on distributions of Sn.

2 The learner does not know the distributions (Pi)i that determine the reward
for each arm.

3 What is the value of n for which we are maximizing? Occasionally prior
knowledge of the horizon is reasonable, but very often the learner does not
know ahead of time how many rounds are to be played.

We address the first two points below. For issues relating to knowledge of the
horizon it usually suffices to assume the horizon is known when designing a policy.
Then if the horizon is unknown the objective is to design a new policy that does
not depend on the horizon and is never much worse than what could be achieved
for a known horizon. This is almost always quite easy and there exist generic
approaches for making the conversion.

Expectation and risk
Suppose that Sn is the revenue of your company. The figure on the right shows
the distribution of Sn for two different learners, call them A and B. Suppose you
can choose between learners A and B. Which one would you choose? One choice
is to go with the learner whose reward distribution has the larger expected value.
This will be our default choice for
stochastic bandits, but it bears remem-
bering that there are other considera-
tions, including the variance or tail be-
havior of the cumulative reward, which
we will discuss occasionally. In particu-
lar, in the situation shown on the above
figure, learner B achieves a higher ex-
pected total reward than A. However
B has a reasonable probability of earning less than A, so a risk sensitive user
may prefer learner A.

Environment classes
Even if the horizon is known in advance and we commit to maximizing the
expected value of Sn, there is still the problem that ν = (Pi)i is unknown. A
policy that maximizes the expectation of Sn for one ν can lead to very poor results
on another. The learner usually has partial information about the distributions
(Pi)i. For example, that the rewards are binary, which means that Pi is Bernoulli

4.1 The learning objective 53

Name Symbol Definition

Bernoulli EKB {(B(µi))i : µ ∈ [0, 1]K}

Uniform EKU {(U(ai, bi))i : a, b ∈ RK with ai ≤ bi for all i}

Gaussian (known var.) EKN (σ2) {(N (µi, σ2))i : µ ∈ RK}

Gaussian (unknown var.) EKN {(N (µi, σ2
i))i : µ ∈ RK and σ2 ∈ [0,∞)K}

Finite variance EKV (σ2) {(Pi)i : VX∼Pi [X] ≤ σ2 for all i}

Finite kurtosis EKKurt(κ) {(Pi)i : KurtX∼Pi [X] ≤ κ for all i}

Bounded support EK[a,b] {(Pi)i : Supp(Pi) ⊆ [a, b]}

Subgaussian EKSG(σ2) {(Pi)i : Pi is σ-subgaussian for all i}

Supp(P) is the support of distribution P . The kurtosis of a random variable X is a measure
of its tail behavior and is defined by E[(X−E[X])4]/V[X]2. Subgaussian distributions have
similar properties to the Gaussian and will be defined in the next chapter.

Table 4.1 Typical environment classes for stochastic bandits

for each i. We represent this knowledge by defining a set of bandits E for which
(Pi)i ∈ E is guaranteed. Some typical choices are listed in Table 4.1. Of course,
these are not the only choices, and the reader can no doubt find ways to construct
more. For example, by allowing some arms to be Bernoulli and some Gaussian, or
have rewards being exponentially distributed, or Gumbel distributed, or belonging
to your favorite (non-)parametric family.

The Bernoulli, Gaussian and uniform distributions are often used as examples
for illustrating some specific property of learning in stochastic bandit problems.
The Bernoulli distribution is in fact a natural choice - think of applications like
maximizing click-through rates in a web-based environment. A bandit problem
is often called a ‘distribution bandit’ where ‘distribution’ is replaced by the
underlying distribution from which the payoffs are sampled. Some examples
are: Gaussian bandit, Bernoulli bandit or subgaussian bandit. Similarly we say
‘bandits with X’ where ‘X’ is a property of the underlying distribution from which
the payoffs are sampled. For example, we can talk about bandits with finite
variance, meaning the bandit environment where the a priori knowledge of the
learner is that all payoff distributions are such that their underlying variance is
finite.

Some of the environment classes, like Bernoulli bandits, are parametric while
others, like subgaussian bandits, are nonparametric. The distinction is the
number of degrees of freedom needed to describe an element of the environment.
When the number of degrees of freedom is finite it is parametric and otherwise it
is non-parametric. Of course, if a learner is designed for a specific environment
class E , then we might expect that it has good performance on all bandits ν ∈ E .
What do we mean by ‘good’? Keep reading! Some environment classes are subsets
of other classes. For example, Bernoulli bandits are a special case of bandits with
a finite variance, or bandits with bounded support. Something to keep in mind is
that we expect that it will be harder to achieve a good performance in a larger

4.2 The regret 54

class. In a way, the theory of finite-armed stochastic bandits tries to quantify this
expectation in a rigorous fashion.

All the environments mentioned so far are unstructured, by which we mean
that knowledge about the distribution of one arm does not restrict the range
of possibilities for other arms. This means the only way to learn about the
distribution for an arm is to play it. When we refer to finite-armed stochastic
bandits with no further qualifications the reader should take it as assumed that
we mean unstructured finite-armed stochastic bandits. Later we will see that
much changes in structured bandit problems when this property does not hold.

4.2 The regret

In Chapter 1 we informally defined the regret as being the deficit suffered
by the learner relative to the optimal policy. Let ν be a K-armed stochastic
bandit and define µi(ν) =

∫∞
−∞ xdPi(x), which is the mean of Pi. Then let

µ∗(ν) = maxi∈[K] µi(ν) be the largest mean of all the arms. Of course µi(ν) could
be undefined or infinite, so for the remainder of the book we assume that µi(ν)
exists and is finite for all stochastic bandit instances. For stochastic bandits we
define the regret of policy π in bandit ν by

Rn(π, ν) = nµ∗(ν)− E

[
n∑

t=1
Xt

]
, (4.1)

where the expectation is taken with respect to the measure on outcomes induced
by the interaction of π and ν. Minimizing the regret is equivalent to maximizing
the expectation of Sn, but the normalization inherent in the definition of the
regret is useful when stating results, which would otherwise need to be stated
relative to the optimal action.

If the context is clear we will often drop the dependence on ν and π in various
quantities. For example, by writing Rn = nµ∗ − E[

∑n
t=1Xt]. Similarly, when

we think readers can work out ranges of symbols in a unique way, we abbreviate
sums, or maxima. For example: µ∗ = maxi µi

The regret is always nonnegative and for every bandit ν there exists a policy π
for which the regret vanishes.

lemma 4.1 Let ν be a stochastic bandit environment. Then,

(a) Rn(π, ν) ≥ 0 for all policies π.
(b) The policy π choosing At ∈ argmaxi µi for all t satisfies Rn(π, ν) = 0.
(c) If Rn(π, ν) = 0 for some policy π then for all t, At ∈ [K] is optimal with

probability one: P (µAt = µ∗) = 1.

4.2 The regret 55

We leave the proof for the reader (Exercise 4.7). Part (b) of Lemma 4.1 shows
that for every bandit ν there exists a policy for which the regret is zero (the best
possible outcome). According to Part (c), achieving zero is possible if and only if
the learner knows which bandit it is facing (or at least, what is the optimal arm).
In general, however, the learner only knows that ν ∈ E for some environment
class E . So what can we hope for? A relatively weak objective is to find a policy
π with sublinear regret on all ν ∈ E . Formally, this objective is to find a policy π
such that

for all ν ∈ E , lim
n→∞

Rn(π, ν)
n

= 0 .

If the above holds, then at least the learner is choosing the optimal action almost
all of the time as the horizon tends to infinity. One might hope for much more,
however. For example that for some specific choice of C > 0 and p < 1 that

for all ν ∈ E , Rn(π, ν) ≤ Cnp . (4.2)

Yet another alternative is to find a function C : E → [0,∞) and f : N→ [0,∞)
such that

for all n ∈ N, ν ∈ E , Rn(π, ν) ≤ C(ν)f(n) . (4.3)

This factorization of the regret into a function of the instance and a function
of the horizon is not uncommon in learning theory and appears in particular in
supervised learning (for example, Györfi et al. 2002).

We will spend a lot of time in the following chapters finding policies satisfying
Eq. (4.2) and Eq. (4.3) for different choices of E . The form of Eq. (4.3) is quite
general, so much time is also spent discovering what are the possibilities for f and
C, both of which should be ‘as small as possible’. All of the policies are inspired
by the simple observation that in order to make the regret small, the algorithm
must discover the action/arm with the largest mean. Usually this means the
algorithm should play each arm some number of times to form an estimate of
the mean of that arm, and subsequently play the arm with the largest estimated
mean. The question essentially boils down to discovering exactly how often the
learner must play each arm in order to have reasonable statistical certainty that
it has found the optimal arm.

There is another candidate objective called the Bayesian regret. If Q is a
prior probability measure on E (which must be equipped with a σ-algebra F),
then the Bayesian regret is the average of the regret with respect to the prior Q.

BRn(π,Q) =
∫

E
Rn(π, ν)dQ(ν) , (4.4)

which is only defined by assuming (or proving) that the regret is a measurable
function with respect to F . An advantage of the Bayesian approach is that having
settled on a prior and horizon, the problem of finding a policy that minimizes the
Bayesian regret is just an optimization problem. Most of this book is devoted to

4.3 Decomposing the regret 56

analyzing the frequentist regret, but Bayesian methods are covered in Chapters 34
and 35.

4.3 Decomposing the regret

We now present a lemma that forms the basis of almost every proof for stochastic
bandits. Let ν = (Pi)Ki=1 be a stochastic bandit and define ∆i(ν) = µ∗(ν)−µi(ν),
which is called the suboptimality gap or action gap or immediate regret
of action i. Further, let

Ti(t) =
t∑

s=1
I {As = i}

be the number of times action i was chosen by the learner after the end of round
t. In general, Tk(n) is random, which may seem surprising if we think about a
deterministic policy that chooses the same action for any fixed history. So why
is Tk(n) random in this case? The reason is because for all rounds t except for
the first, the action At depends on the rewards observed in rounds 1, 2, . . . , t− 1,
which are random, hence At will also inherit their randomness. We are now ready
to state the second and last lemma of the chapter. In the statement of the lemma
we use our convention that the dependence of the various quantities involved on
the policy π and the environment ν is suppressed.

lemma 4.2 (Regret Decomposition Lemma) For any policy π and K-armed
stochastic bandit environment ν and horizon n ∈ N, the regret Rn of policy π in
ν satisfies

Rn =
K∑

i=1
∆iE [Ti(n)] .

The lemma decomposes the regret in terms of the loss due to using each of the
arms. It is useful because it tells us that to keep the regret small, the learner
should try to minimize the weighted sum of expected action-counts, where the
weights are the respective action gaps.

Lemma 4.2 tells us that a learner should aim to use an arm with a larger action
gap proportionally fewer times.

Proof of Lemma 4.2 Since Rn is based on summing over rounds, and the right
hand side of the lemma statement is based on summing over actions, to convert
one sum into the other one we introduce indicators. In particular, note that for any
fixed t we have

∑
k I {At = k} = 1. Hence, Sn =

∑
tXt =

∑
t

∑
kXtI {At = k}

4.4 The canonical bandit model (†) 57

and thus

Rn = nµ∗ − E [Sn] =
K∑

k=1

n∑

t=1
E [(µ∗ −Xt)I {At = k}] .

Now, knowing At, the expected reward is µAt . Thus we have

E [(µ∗ −Xt)I {At = k} |At] = I {At = k}E [µ∗ −Xt |At]
= I {At = k} (µ∗ − µAt)
= I {At = k} (µ∗ − µk) .

Using the definition of ∆k and then plugging in into the right-hand side of the
previous equation, followed by using the definition of Tk(n) gives the result.

4.4 The canonical bandit model (†)

In most cases the underlying probability space that supports the random rewards
and actions is never mentioned. Occasionally, however, it becomes convenient to
choose a specific probability space, which we call the canonical bandit model.

Finite horizon
Let n ∈ N be the horizon. A policy and bandit interact to produce the outcome,
which is the tuple of random variables Hn = (A1, X1, . . . , An, Xn). The first step
towards constructing a probability space that carries these random variables is
to choose the measurable space. For each t ∈ [n] let Ωt = ([K]× R)t ⊂ R2t and
Ft = B(R2t)|Ωt be the restriction of the Borel σ-algebra to Ωt (see Exercise 2.2).
The random variables A1, X1, . . . , An, Xn that make up the outcome are defined
by their coordinate projections:

At(a1, x1, . . . , an, xn) = at and Xt(a1, x1, . . . , an, xn) = xt .

The probability measure on (Ωn,Fn) depends on both the environment and the
policy. Our informal definition of a policy is not quite sufficient now.

definition 4.1 A policy π is a sequence π1, . . . , πn where πt is a Markov
kernel from (Ωt−1,Ft−1) to ([K], ρ) where ρ is the counting measure. Since the
latter space is discrete we adopt the notational convention that for i ∈ [K],

πt(i | a1, x1, . . . , at−1, xt−1) = πt({i} | a1, x1, . . . , at−1, xt−1) .

Let ν = (Pi)Ki=1 be a stochastic bandit where each Pi is a measure on (R,B(R)).
We want to define a measure on (Ωn,Fn) that respects our understanding of
the sequential nature of the interaction between the learner and a stationary
stochastic bandit. Since we only care about the law of the random variables (Xt)
and (At) the easiest way to enforce this is to directly list our expectations, which
are:

4.4 The canonical bandit model (†) 58

(a) The conditional distribution of action At given A1, X1, . . . , At−1, Xt−1 is
πt(· | A1, X1, . . . , At−1, Xt−1) almost surely.

(b) The conditional distribution of reward Xt given A1, X1, . . . , At is PAt almost
surely.

The sufficiency of these assumptions is asserted by the following proposition,
which we ask you to prove in Exercise 4.1.

proposition 4.1 Suppose that P and Q are measures on an arbitrary
measurable space (Ω,F) and A1, X1, . . . , An, Xn are random variables on Ω.
If both P and Q satisfy (a) and (b), then the law of the outcome under P is the
same as under Q:

PA1,X1,...,An,Xn = QA1,X1,...,An,Xn .

Next we construct a measure on (Ωn,Fn) that satisfies (a) and (b). To emphasize
that what follows is intuitively not complicated, imagine that Xt ∈ {0, 1} is
Bernoulli, which means the set of possible outcomes is finite and we can define
the measure in terms of a distribution. Let pi(0) = Pi({0}) and pi(1) = 1− pi(0)
and define

pνπ(a1, x1, . . . , an, xn) =
n∏

t=1
π(at | a1, x1, . . . , at−1, xt−1)pat(xt) .

The reader can check that pνπ is a distribution on ([K]× {0, 1})n and that the
associated measure satisfies (a) and (b) above. Making this argument rigorous
when (Pi) are not discrete requires the use of Radon-Nikodym derivatives. Let λ
be a σ-finite measure on (R,B(R)) for which Pi is absolutely continuous with
respect to λ for all i. Next let pi = dPi/dλ be the Radon-Nikodym derivative of
Pi with respect to λ, which is a function pi : R→ R such that

∫
B
pidλ = Pi(B)

for all B ∈ B(R). The density pνπ : Ω→ R can now be defined with respect to
the product measure (ρ× λ)n by

pνπ(a1, x1, . . . , an, xn) =
n∏

t=1
π(at | a1, x1, . . . , at−1, xt−1)pat(xt) . (4.5)

The reader can again check (more abstractly) that (a) and (b) are satisfied by
the measure Pνπ defined by

Pνπ(B) =
∫

B

pνπ(ω)(ρ× λ)n(dω) for all B ∈ Fn .

It is important to emphasize that this choice of (Ωn,Fn,Pνπ) is not unique.
Instead, all that this shows is that a suitable probability space does exist.
Furthermore, if some quantity of interest depends on the law of Hn, by
Proposition 4.1, there is no loss in generality in choosing (Ωn,Fn,Pνπ) as the
probability space.

4.5 Notes 59

A choice of λ such that Pi � λ for all i always exists since λ =
∑K
i=1 Pi satisfies

this condition. For direct calculations another choice is usually more convenient.
For example, the counting measure when (Pi) are discrete and the Lebesgue
measure for continuous (Pi).

There is another way define the probability space, which can be useful. Define
a collection of independent random variables (Xsi)s∈[n],i∈[K] such that the law
of Xti is Pi. By Theorem 2.2 these random variables may be defined on (Ω,F)
where Ω = RnK and F = B(RnK). Then let Xt = XtAt and At is a probability
kernel from (Ω,Ft) to ([K], ρ) where Ft = σ(A1, X1, . . . , At, Xt). Yet another
way is to define (Xsi)s,i as above, but let Xt = XTAt (t),At . This corresponds to
sampling a stack of rewards for each arm at the beginning of the game. Each
time the learner chooses an action they receive the reward on top of the stack.
All of these models are convenient from time to time. The important thing is
that it does not matter which model we choose because the quantity of ultimate
interest (usually the regret) only depends on the law of A1, X1, . . . , An, Xn and
this is the same for all choices.

Infinite horizon
We never need the canonical bandit model for the case that n =∞. It is comforting
to know, however, the there does exists a probability space (Ω,F ,Pνπ) and infinite
sequences of random variables X1, X2, . . . and A1, A2, . . . satisfying (a) and (b).
The result follows directly from the theorem of Ionescu Tulcea (Theorem 3.3).

4.5 Notes

1 Recall that A×B stands for the Descartes product of sets A and B. Formally,
any of the unstructured environments shown in Table 4.1 are of the form
EK = (P)K where (P)K = P × P × · · · × P and P is some set of distributions
over the reals. The upper index in EK hints on this and also reminds us that
there are K arms. Because of the product form, unstructured environments
can also be called ‘product environments’, or ‘rectangle environments’.

2 Note that every unstructured environment EK is symmetric in the following
sense: for any (Pi)i ∈ EK and any bijection π : [K] → [K], (Pπ(i))i ∈ EK
also holds. Since a bijection over [K] is also known as a permutation,
we also say that EK is invariant to permutations. While an unstructured
environment is necessarily symmetric, a symmetric environment can be
structured. Consider for example K = 2 and consider the symmetric
environment E = {(B(0),B(1)), (B(1),B(0))}. Clearly, E is symmetric. It is not
unstructured, however. If a nonzero reward is observed for the first arm, then
the mean of the second arm must be zero.

4.5 Notes 60

3 While the canonical model introduced in Section 4.4 is enough for finite-armed
bandits, in later chapters require similar constructions for more complicated
settings. For example, the action space may be infinite or the learner may
receive side information that evolves according to a sequence of Markov kernels.
In all cases one could construct a canonical model using the same techniques, a
task that we leave for connoisseurs of measure theory to tackle for themselves.

4 The study of utility and risk has a long history, going right back to (at least) the
beginning of probability [Bernoulli, 1954, translated from original Latin, 1738].
The research can broadly be categorized into two branches. The first deals with
describing how people actually make choices (descriptive theories) while the
second is devoted to characterizing how a rational decision maker should make
decisions (prescriptive theories). A notable example of the former type is
‘prospect theory’ [Kahneman and Tversky, 1979], which models how people
handle probabilities (especially small ones) and earned Daniel Khaneman a
Nobel prize (after the death of his long-time collaborator, Amos Tversky).
Further descriptive theories concerned with alternative aspects of human
decision-making include bounded rationality, choice strategies, recognition-
primed decision making, and image theory [Adelman, 2013].

5 The most famous example of a prescriptive theory is the von Neumann-
Morgenstern expected utility theorem, which states that under (reasonable)
axioms of rational behavior under uncertainty, a rational decision maker must
choose amongst alternatives by computing the expected utility of the outcomes
[Neumann and Morgenstern, 1944]. Thus, rational decision makers, under the
chosen axioms, differ only in terms of how they assign utility to outcomes
(that is, rewards). Finance is another field where attitudes toward uncertainty
and risk are important. Markowitz [1952] argues against expected return as
a reasonable metric that investors would use. His argument is based on the
(simple) observation that portfolios maximizing expected returns will tend to
have a single stock only (unless there are multiple stocks with equal expected
returns, a rather unlikely outcome). He argues that such a complete lack of
diversification is unreasonable. He then proposes that investors should minimize
the variance of the portfolio’s return subject to a constraint on the portfolio’s
expected return, leading to the so-called mean-variance optimal portfolio choice
theory. Under this criteria, portfolios will indeed tend to be diversified (and in
a meaningful way: correlations between returns are taken into account). This
theory eventually won him a Nobel-prize in economics (shared with 2 others).
Closely related to the mean-variance criterion are the ‘Value-at-Risk’ (VaR) and
the ‘Conditional Value-at-Risk’, the latter of which has been introduced and
promoted by Rockafellar and Uryasev [2000] due to its superior optimization
properties. The distinction between the prescriptive and descriptive theories
is important: Human decision makers are in many ways violating rules of
rationality in their attitudes towards risk.

6 We defined the regret as an expectation, which makes it unusable in conjunction
with measures of risk because the randomness has been eliminated by the

4.6 Bibliographical remarks 61

expectation. When using a risk measure in a bandit setting we can either base
this on the random regret or pseudo-regret defined by:

R̂n = nµ∗ −
n∑

t=1
Xt . (random regret)

R̄n = nµ∗ −
n∑

t=1
µAt . (pseudo-regret)

While R̂n is influenced by the noise Xt− µAt in the rewards, the pseudo-regret
filters this out, which arguably makes it a better basis for measuring the ‘skill’
of a bandit policy. As these random regret measures tend to be highly skewed,
using variance to assess risk suffers not only from the problem of penalizing
upside risk, but also from failing to capture the skew of the distribution.

7 What happens if the distributions of the arms are changing with time?
Such bandits are unimaginatively called nonstationary bandits. With no
assumptions there is not much to be done. Because of this it is usual to
assume the distributions change slowly. We’ll eventually see that techniques for
stationary bandits can be adapted quite easily to this setup (see Chapter 31).

4.6 Bibliographical remarks

There is now a huge literature on stochastic bandits, much of which we will
discuss in detail in the chapters that follow. The earliest reference to the problem
that we know of is by Thompson [1933], who proposed an algorithm that forms
the basis of many of the currently practical approaches in use today. Thompson
was a pathologist who published broadly and apparently did not pursue bandits
much further. Sadly his approach was not widely circulated and the algorithm
(now called Thompson sampling) did not become popular until very recently.
Two decades after Thompson, the bandit problem was formally restated in a
short but influential paper by Robbins [1952], an American statistician now most
famous for his work on empirical Bayes. Robbin’s introduced the notion of regret
and minimax regret in his 1952 paper. The regret decomposition (Lemma 4.2)
has been used in practically every work on stochastic bandits and its origin
is hard to pinpoint. All we can say for sure is that it does not appear in the
paper by Robbins [1952], but does appear in the work of Lai and Robbins [1985].
Denardo et al. [2007] considers risk in a (complicated) Bayesian setting. Sani
et al. [2012] consider a mean-variance approach to risk, while Maillard [2013]
considers so-called coherence risk measures (CVaR, is one example of such a risk
measure), and with an approach where the regret itself is redefined. Value-at-Risk
is considered in the context of a specific bandit policy family by Audibert et al.
[2007, 2009].

4.7 Exercises 62

4.7 Exercises

4.1 Prove Proposition 4.1.

4.2 Prove that the measure defined in terms of the density in Eq. (4.5) satisfies
the conditions (a) and (b) in Section 4.4.

Use the properties of the Radon-Nikodym derivative in combination with
Fubini’s theorem.

4.3 Implement a Bernoulli bandit environment in Python using the code snippet
below (or adapt to your favorite language).

class BernoulliBandit :
accepts a list of K >= 2 floats , each lying in [0 ,1]
def __init__ (self , means):

pass

Function should return the number of arms
def K(self):

pass

Accepts a parameter 0 <= a <= K -1 and returns the
realisation of random variable X with P(X = 1) being
the mean of the (a+1) th arm .
def pull(self , a):

pass

Returns the regret incurred so far.
def regret (self):

pass

4.4 Implement the following simple algorithm called ‘Follow-the-Leader’, which
chooses each action once and subsequently chooses the action with the largest
average observed so far. Ties should be broken randomly.

def FollowTheLeader (bandit , n):
implement the Follow -the - Leader algorithm by replacing
the code below that just plays the first arm in every round
for t in range (n):

bandit .pull (0)

Depending on the literature you are reading, Follow-the-Leader may be called
‘stay with the winner’ or the ‘greedy algorithm’.

4.5 Consider a Bernoulli bandit with two arms and means µ1 = 0.5 and µ2 = 0.6.

(a) Using a horizon of n = 100, run 1000 simulations of your implementation of

4.7 Exercises 63

0 2 4 6 8 10

0

100

200

300

400

500

Regret

Fr
eq

ue
nc

y

Follow-the-Leader

Figure 4.2 Histogram of regret for Follow-the-Leader over 1000 trials on Bernoulli
bandit with means µ1 = 0.5, µ2 = 0.6

Follow-the-Leader on the Bernoulli bandit above and record the (random)
regret, nµ∗ − Sn, in each simulation.

(b) Plot the results using a histogram. Your figure should resemble Fig. 4.2.
(c) Explain the results in the figure.

4.6 Consider the same Bernoulli bandit as used in the previous question.

(a) Run 1000 simulations of your implementation of Follow-the-Leader for each
horizon n ∈ {100, 200, 300, . . . , 1000}.

(b) Plot the average regret obtained as a function of n (see Fig. 4.3). Because the
average regret is an estimator of the expected regret, you should generally
include error bars to indicate the uncertainty in the estimation.

(c) Explain the plot. Do you think Follow-the-Leader is a good algorithm?
Why/why not?

4.7 Prove Lemma 4.1.

All items follow from Lemma 4.2.

4.8 Suppose ν is a finite-armed stochastic bandit and π is a policy such that

lim
n→∞

Rn(π, ν)
n

= 0 .

Let T ∗(n) =
∑n
t=1 I {µAt = µ∗} be the number of times the optimal arm is chosen.

Prove or disprove each of the following statements:

4.7 Exercises 64

200 400 600 800 1,000

10

20

30

40

50

n

Ex
pe

ct
ed

R
eg

re
t

Follow-the-Leader

Figure 4.3 Histogram of regret for Follow-the-Leader over 1000 trials on a Bernoulli
bandit with means µ1 = 0.5, µ2 = 0.6

(a) limn→∞ E[T ∗(n)]/n = 1.
(b) limn→∞ P (µ∗ − µAt > 0) = 0.

4.9 [One-armed bandits] This exercise is concerned with a very simple model
called the one-armed bandit. A bar contains a single slot machine. Playing
costs $1 and the payoff is either $2 or $0 with probabilities p and 1−p respectively.
Of course you do not know p and – unlike in the real world – we will assume it
could reasonably take on any value in [0, 1]. The game proceeds over n rounds,
where in each round you choose either to play the machine or do nothing. If
you do nothing, then your reward is Xt = 0. If you play the machine, then your
reward is Xt = 1 with probability p and Xt = −1 otherwise. A policy in this case
chooses either Play or DoNothing based on the history. The expected regret
of policy π is given by

Rn(p, π) = nmax {0, 2p− 1} − E

[
n∑

t=1
Xt

]
,

where X1, . . . , Xn are the random rewards earned by π.

(a) Describe an optimal policy when p is known (your policy should depend on
p).

(b) A policy is called a retirement policy if it chooses to play the machine
until some (possibly random) time and then does nothing until the game
ends. Prove that if n is known, then for any policy π there exists a retirement
policy π′ such that

Rn(p, π′) ≤ Rπp (n) for all p .

4.7 Exercises 65

(c) Prove that if n is not known, then all retirement policies have linear regret
for some p ∈ [0, 1] as n tends to infinity.

For (b) specify what the policy π′ does given that it has access to the policy
π. One easy way of doing this is assuming that π has a memory of past
observations it has two subroutines; one for getting the next action and one
for feeding π with the next observation. Show in a pseudocode how π′ would
use π through these two subroutines and argue that π′ is indeed a retirement
policy. For (c) use that in a stochastic bandit problem the regret can be written
as Rn =

∑
i:∆i>0 ∆iE [Ti(n)] where ∆i are the action gaps and Ti(n) is the

number of times arm i is chosen.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

5 Concentration of Measure

Before we can start designing and analyzing algorithms we need one more tool
from probability theory called concentration of measure. Recall that the
optimal action is the one with the largest mean. Since the mean payoffs are
initially unknown, they must be learned from data. We now ask how long it takes
to learn about the mean reward of an action.

Suppose that X,X1, X2, . . . , Xn is a sequence of independent and identically
distributed random variables and assume that the mean µ = E[X] and variance
σ2 = V[X] exist. Having observed X1, X2, . . . , Xn we would like to define an
estimator of the common mean µ. The natural choice to estimate µ is to use
the average of the observations, also known as the sample mean or empirical
mean.

µ̂ = 1
n

n∑

i=1
Xi .

The question is how far from µ do we expect µ̂ to be? First, by the linearity of
expectation (Proposition 2.1), we notice that E [µ̂] = µ. A simple measure
of the spread of the distribution of a random variable Z is its variance,
V [Z] = E

[
(Z − E [Z])2]. A quick calculation using independence shows that

V [µ̂] = σ2/n. From this we get

E
[
(µ̂− µ)2] = σ2

n
, (5.1)

which means that we expect the squared distance between µ and µ̂ to shrink
as n grows large at a rate of 1/n and scale linearly with the variance of X (so
larger variance means larger expected squared difference). While the expected
squared error is important, it does not tell us very much about the distribution of
the error. To do this we usually analyze the probability that µ̂ overestimates or
underestimates µ by more than some value ε > 0. Precisely, how do the following
quantities depend on ε?

P (µ̂ ≥ µ+ ε) and P (µ̂ ≤ µ− ε)

The expressions above (as a function of ε) are often called the tail probabilities
of µ̂ − µ, see the figure below. In particular, the first is called an upper tail
probability and the second the lower tail probability. Analogously, the probability
P (|µ̂− µ| ≥ ε) is called a two-sided tail probability.

http://banditalgs.com
mailto:tor.lattimore@gmail.com

5.1 The inequalities of Markov and Chebyshev 67

Figure 5.1 The figure shows a probability density, with the tails shaded indicating the
regions where X is more than ε away from the mean µ.

5.1 The inequalities of Markov and Chebyshev

The most straightforward way to bound the tails is by using Chebyshev’s
inequality, which is itself a corollary of Markov’s inequality. The latter is
one of the golden hammers of probability theory and so we include it for the sake
of completeness.

lemma 5.1 For any random variable X with finite mean and ε > 0 it holds
that:

(a) (Markov): P (|X| ≥ ε) ≤ E [|X|]
ε

.

(b) (Chebyshev): If V [X] <∞, then P (|X − E [X] | ≥ ε) ≤ V [X]
ε2 .

We leave the proof of Lemma 5.1 as an exercise for the reader. By combining
(5.1) with Chebyshev’s inequality we can bound the two-sided tail directly in
terms of the variance by

P (|µ̂− µ| ≥ ε) ≤ σ2

nε2 . (5.2)

This result is nice because it was so easily bought and relied on no assumptions
other than the existence of the mean and variance. The downside is that in many
cases the inequality is extremely loose and that huge improvement is possible
if the distribution of X is well behaved. In particular, by assuming that higher
moments of X exist, Chebyshev’s inequality can be greatly improved, by applying
Markov’s inequality to |µ̂− µ|k with the positive integer k to be chosen so that
the resulting bound is optimized. This is a bit cumbersome and thus instead we
present the continuous analog of this, known as the Cramer-Chernoff method.

To calibrate our expectations on what gains to expect over Chebyshev’s
inequality, let us first discuss the central limit theorem. Let Sn =

∑n
t=1(Xt−µ).

5.2 The Cramer-Chernoff method and subgaussian random variables 68

The central limit theorem (CLT) says that under no additional assumptions than
the existence of the variance, the limiting distribution of Sn/

√
σ2n as n→∞ is

a Gaussian with mean zero and unit variance. Now, if Z ∼ N (0, 1),

P (Z ≥ u) =
∫ ∞

u

1√
2π

exp
(
−x

2

2

)
dx .

The integral has no closed form solution, but is easy to bound:
∫ ∞

u

1√
2π

exp
(
−x

2

2

)
dx ≤ 1

u
√

2π

∫ ∞

u

x exp
(
−x

2

2

)
dx

=
√

1
2πu2 exp

(
−u

2

2

)
, (5.3)

which gives

P (µ̂ ≥ µ+ ε) = P
(
Sn/
√
σ2n ≥ ε

√
n/σ2

)
≈ P

(
Z ≥ ε

√
σ2n

)

≤
√

σ2

2πnε2 exp
(
−nε

2

2σ2

)
. (5.4)

This is usually much smaller than what we obtained with Chebyshev’s inequality
(cf. Exercise 5.3) In particular, the bound on the right-hand side of (5.4) decays
slightly faster than the negative exponential of nε2/σ2, which means that µ̂
rapidly concentrates around its mean. Unfortunately, since the central limit
theorem is asymptotic, we cannot use it to study the regret when the number of
rounds is a fixed finite number (cf. Exercise 5.5). Despite the folk-rule that n = 30
is sufficient for the Gaussian approximation based on the CLT to be reasonable,
this is simply not true. One well known example is provided by Bernoulli variables
with parameter p ≈ 1/n, in which case the distribution of the sum is known to
be much better approximated by the Poisson distribution with parameter one,
which is nowhere near similar to the Gaussian distribution.

For these reasons we need a non-asymptotic alternative to the CLT. The
pathological example in the previous paragraph shows this is only possible by
making some additional assumptions.

5.2 The Cramer-Chernoff method and subgaussian random
variables

For the sake of moving rapidly towards bandits we start with a straightforward
and relatively fundamental assumption on the distribution of X, known as the
subgaussian assumption.

definition 5.1 (Subgaussianity) A random variable X is σ-subgaussian if for
all λ ∈ R it holds that E [exp(λX)] ≤ exp

(
λ2σ2/2

)
.

An alternative way to express the subgaussianity condition uses the moment

5.2 The Cramer-Chernoff method and subgaussian random variables 69

generating function of X, which is a function MX : R → R defined by
MX(λ) = E [exp(λX)]. The condition in the definition can be written as

logMX(λ) ≤ 1
2 λ

2σ2 for all λ ∈ R .

Another useful function is the cumulative generating function, which is a
function ψX : R→ R defined by ψX(λ) = logMX(λ). The origin of the names of
MX and ψX are explained in the notes and Exercise 5.9. It is not hard to see
that MX (or ψX) need not exist for all random variables over the whole range of
real numbers. For example, if X is exponentially distributed and λ ≥ 1, then

E [exp(λX)] =
∫ ∞

0
exp(−x)︸ ︷︷ ︸

density of exponential

× exp(λx)dx =∞ .

Therefore the definition of a subgaussian places a nontrivial restriction on the
random variables by assuming that the domain of the moment generating function
is the whole real line. It is not hard to verify that the moment generating function
of a zero-mean Gaussian with variance σ2 is exp(λ2σ2/2) from which we conclude
that a centered Gaussian with standard deviation σ > 0 is σ-subgaussian.

Where does the term ‘subgaussian’ come from? The following result provides the
explanation. The tails of a σ-subgaussian random variable decay approximately
as fast as that of a Gaussian with zero mean and the same variance

theorem 5.1 If X is σ-subgaussian, then for any ε ≥ 0,

P (X ≥ ε) ≤ exp
(
− ε2

2σ2

)
. (5.5)

Proof We take a generic approach called Cramer-Chernoff’s method. Let
λ > 0 be some constant to be tuned later. Then

P (X ≥ ε) = P (exp (λX) ≥ exp (λε))
≤ E [exp (λX)] exp (−λε) (Markov’s inequality)

≤ exp
(
λ2σ2

2 − λε
)
. (Def. of subgaussianity)

Now λ was any positive constant, and in particular may be chosen to minimize
the bound above, which is achieved by λ = ε/σ2.

A similar inequality holds for the left tail. By using the union bound
P (A ∪B) ≤ P (A) + P (B) we also find that P (|X| ≥ ε) ≤ 2 exp(−ε2/(2σ2)).
An equivalent form of these bounds is:

P
(
X ≥

√
2σ2 log(1/δ)

)
≤ δ P

(
|X| ≥

√
2σ2 log(2/δ)

)
≤ δ .

This form is often more convenient and especially the latter, which for small δ
shows that with overwhelming probability the random variable X takes values in

5.2 The Cramer-Chernoff method and subgaussian random variables 70

the interval
(
−
√

2σ2 log(2/δ),
√

2σ2 log(2/δ)
)
.

To study the tail behavior of µ̂− µ, we need one more lemma (the first item of
the lemma is included for completeness):

lemma 5.2 Suppose that X is σ-subgaussian and X1 and X2 are independent
and σ1 and σ2-subgaussian respectively, then:

(a) E[X] = 0 and V [X] ≤ σ2.
(b) cX is |c|σ-subgaussian for all c ∈ R.
(c) X1 +X2 is

√
σ2

1 + σ2
2-subgaussian.

The proof of the lemma is left to the reader (Exercise 5.7). Note that if X1
and X2 are not independent then X1 + X2 is still guaranteed to be (σ1 + σ2)-
subgaussian. The difference between this and

√
σ2

1 + σ2
2 is the price of losing

independence.
With this we are ready for our key concentration inequality. In particular,

combining Lemma 5.2 and Theorem 5.1 leads to a very straightforward analysis
of the tails of µ̂−µ under the assumption that Xi−µ are σ-subgaussian. Since Xi

are assumed to be independent, by the lemma it holds that µ̂−µ =
∑n
i=1(Xi−µ)/n

is σ/
√
n-subgaussian.

corollary 5.1 Assume that Xi − µ are independent, σ-subgaussian random
variables. Then for any ε ≥ 0

P (µ̂ ≥ µ+ ε) ≤ exp
(
−nε

2

2σ2

)
and P (µ̂ ≤ µ− ε) ≤ exp

(
−nε

2

2σ2

)
,

where µ̂ = 1
n

∑n
t=1Xt.

By the inequality exp(−x) ≤ 1/(ex) (which holds for all x ≥ 0) we can see
that except for a very small ε the above inequality is strictly stronger than what
we obtained via Chebyshev’s inequality and exponentially smaller (tighter) if nε2

is large relative to σ2.
The alternative deviation form of the above result says that under the conditions

of the result, for any δ ∈ [0, 1], with probability at least 1− δ,

µ ≤ µ̂+
√

2σ2 log(1/δ)
n

. (5.6)

Symmetrically, it also follows that with probability at least 1− δ,

µ ≥ µ̂−
√

2σ2 log(1/δ)
n

. (5.7)

Again, one can use a union bound to derive a two-sided inequality.
Before we finally return to bandits, one might be wondering what variables

are subgaussian? We give three basic examples. First, as was already mentioned,
if X is distributed like a Gaussian with zero mean and variance σ2, then X is

5.3 Notes 71

σ-subgaussian. Second, if X is bounded, zero-mean (i.e., E [X] = 0 and |X| ≤ B
almost surely for some B ≥ 0) then X is B-subgaussian. A special case is when
X is a shifted Bernoulli with P (X = 1− p) = p and P (X = −p) = 1− p. In this
case it also holds that X is 1/2-subgaussian. Finally, recall that the exponential
serves the role of a classical distribution that is not subgaussian (instead it is
sub-exponential, but we will not concern ourselves with this).

For random variables that are not centered (E [X] 6= 0) we will abuse notation
by saying that X is σ-subgaussian if the noise X − E [X] is σ-subgaussian.
A distribution is called σ-subgaussian if a random variable drawn from that
distribution is σ-subgaussian. In fact, the subgaussianity property is really a
property of both a random variable and the measure on the space on which it
is defined, so the nomenclature is doubly abused.

5.3 Notes

1 The Berry-Esseen Theorem (independently discovered by Berry [1941] and
Esseen [1942]) quantifies the speed of convergence in the CLT. It essentially
says that the distance between the Gaussian and the actual distribution decays
at a rate of 1/

√
n under some mild assumptions (see Exercise 5.5). This is

known to be tight for the class of probability distributions that appear in the
Berry-Esseen result. However, this is a vacuous result when the tail probabilities
themselves are much smaller than 1/

√
n. Hence the need for concrete finite-time

results.

2 Theorem 5.1 shows that subgaussian random variables have tails that decay
almost as fast as a Gaussian. A version of the converse is also possible. That
is, if a centered random has tails that behave in a similar way to a Gaussian,
then it is subgaussian. In particular, the following holds: Let X be a centered
random variable (E[X] = 0) with P (|X| ≥ ε) ≤ 2 exp(−ε2/2). Then X is

5.3 Notes 72

√
5-subgaussian:

E[exp(λX)] = E

[∞∑

i=0

λiXi

i!

]
≤ 1 +

∞∑

i=2
E
[
λi|X|i
i!

]

≤ 1 +
∞∑

i=2

∫ ∞

0
P
(
|X| ≥ i!1/i

λ
x1/i

)
dx (Exercise 2.15)

≤ 1 + 2
∞∑

i=2

∫ ∞

0
exp

(
− i!

2/ix2/i

2λ2

)
dx (by assumption)

= 1 +
√

2πλ
(

exp(λ2/2)
(

1 + erf
(
λ√
2

))
− 1
)

(by Mathematica)

≤ exp
(

5λ2

2

)
.

This bound is surely loose. At the same time, there is little room for
improvement: If X has density p(x) = |x| exp(−x2/2)/2, then P (|X| ≥ ε) =
exp(−ε2/2). And yet X is at best

√
2-subgaussian, so some degree of slack is

required (see Exercise 5.4).
3 The classical CLT only applies to sequences of independent and identically

distributed random variables with finite variance. It turns out that these
conditions can be relaxed significantly. One such relaxation is the removal of
the condition that the sequence be identically distributed. A CLT-like result
still holds under Lindeberg’s condition, which ensures that the variance is
not caused by increasingly infrequent (and catastrophic events). Formally, let
(Xt)t be a sequence of independent random variables with means (µt)t and
variances (σ2

t)t and let s2
n =

∑n
t=1 σ

2
t . Then the Lindeberg CLT says that if

for all ε > 0,

lim
n→∞

1
s2
n

n∑

t=1
E
[
(Xt − µt)2I {|Xt − µt| ≥ εsn}

]
= 0 ,

then the random variable given by Zn = 1
sn

∑n
t=1(Xt − µt) converges in

distribution to a standard normal distribution. We have little use for this
theorem as-is because like the CLT, it only holds asymptotically. It does,
however, provide inspiration for what might be possible in finite-time and we
will see similar results in subsequent chapters. The interested reader can find
much more on this in the classic text by Billingsley [2008], which includes many
other generalizations such as the multi-variate case.

4 We saw in (5.4) that if X1, X2, . . . , Xn are independent standard Gaussian
random variables and µ̂ = 1

n

∑n
t=1, then

P (µ̂ ≥ ε) ≤
√

σ2

2πnε2 exp
(
−nε

2

2σ2

)
.

If nε2/σ2 is relatively large, then this bound is marginally stronger than
exp(−nε2/(2σ2)) that follows from the subgaussian analysis. One might ask

5.3 Notes 73

whether or not a similar improvement is possible more generally. And Talagrand
[1995] will tell you: Yes! At least for bounded random variables (details in the
paper).

5 The name ‘moment generating function’ comes from the following fact. Suppose
that MX(λ) exists in a neighborhood of zero, then all the moments of
the underlying random variable can be read out from its derivatives at
zero (see Exercise 5.9). Furthermore, the moment generating function in
any small neighborhood of zero uniquely determines the distribution of the
underlying random variable. In particular, the following holds: Let X and
Y be random variables and a > 0 and assume that dom(MX) ⊇ [−a, a] and
dom(MY) ⊇ [−a, a] and MX(λ) = MY (λ) on [−a, a]. Then
(e) X and Y have the same distribution: P (X ≥ x) = P (Y ≥ x) for all x ∈ R.
(e) Suppose additionally that X1, X2, . . . are a sequence of random variables

such that dom(MXt) ⊇ [−a, a] and limt→∞MXt(λ) = MX(λ) for all
λ ∈ [−a, a]. Then limt→∞ P (Xt ≥ x) = P (X ≥ x) for all x, which is
equivalent to saying that (Xt)t converges in distribution to X.

The proof of this result does not belong here (but could serve as a challenging
exercise). Most probability texts prove the analogous result for the characteristic
function (see the next note), which is known as Lévy’s continuity theorem,
but the above is sometimes also given [Billingsley, 2008, §30]. The significance
of these results is that the moment generating function is often more convenient
to work with than the distribution. For example if X and Y are independent,
then the distribution of X + Y is the convolution of the distributions of X
and Y , which, in a way, is a complicated object. The moment generating
function, on the other hand, satisfies MX+Y (λ) = MX(λ)MY (λ). To illustrate
the usefulness of this, let X,X1, X2, . . . , Xn be a sequence of independent
random variables with zero mean, unit variance and MX(λ) defined for all
λ ∈ [−a, a] ⊂ R with a > 0 and let Zn =

∑n
t=1Xt/

√
n. By the multiplicative

property above, for any λ ∈ [−a, a], we have

lim
n→∞

logMZn(λ) = lim
n→∞

n logMX(λ/
√
n)

= lim
n→∞

n logE[exp(λX/
√
n)]

= lim
n→∞

n log
(

1 + λ2

2n +
∞∑

i=3

λiE[Xi]
i!ni/2

)

= λ2

2
= logMZ(λ) ,

where Z is distributed like a standard Gaussian. Therefore the sequence Zn
converges in distribution to Z, which is exactly the statement of the central
limit theorem. Of course here we required the additional assumption that
MX(λ) was defined over [−a, a] with a > 0, which does not normally appear
in the statement of the CLT.

5.4 Bibliographical remarks 74

6 The non-existence of the moment generating function is one of the motivations
to introduce the characteristic function, which is defined as φX(λ) =
E[exp(λiX)] with i =

√
−1 being the imaginary unit and which always exists

and shares many properties with the moment generating function. An example
application of characteristic functions is the classical proof of the central
limit theorem. Mathematically inclined readers will notice that the moment
generating function of random variable X is the Laplace transform of −X (and
the characteristic function is the Fourier transform). There are many books on
these topics, so we’ll just mention that they are essential tools for a probabilist
and leave it at that.

7 Hoeffding’s lemma states that for a zero-mean random variable X such that
X ∈ [a, b] almost surely for real values a < b, then MX(λ) ≤ exp(λ2(b− a)2/8).
Applying Chernoff’s method shows that if X1, X2, . . . , Xn are independent and
Xt ∈ [at, bt] almost surely with at < bt for all t, then

P

(
n∑

t=1
(Xt − E[Xt]) ≥ ε

)
≤ exp

(
2n2ε2

∑n
t=1(bt − at)2

)
. (5.8)

For details see Exercise 5.13. There are many variants of this result that provide
tighter bounds when X satisfies certain additional distributional properties.
For example, if X has small variance, then Bernstein’s inequality supplies
a useful improvement. For details see the texts mentioned below.

8 The Cramer-Chernoff method is applicable beyond the subgaussian case, even
when the moment generating function is not defined globally. One example
where this occurs is when X1, X2, . . . , Xn are independent standard Gaussian
and Y =

∑n
i=1X

2
i . Then Y has a χ2-distribution with n degrees of freedom.

An easy calculation shows that MY (λ) = (1 − 2λ)−n/2 for λ ∈ [0, 1/2) and
MY (λ) is undefined for λ ≥ 1/2. By the Cramer-Chernoff method we have

P (Y ≥ n+ ε) ≤ inf
λ∈[0,1/2)

Mλ(Y) exp(−λ(n+ ε))

≤ inf
λ∈[0,1/2)

(
1

1− 2λ

)n
2

exp(−λ(n+ ε))

Choosing λ = 1
2 − n

2(n+ε) leads to P (Y ≥ n+ ε) ≤
(
1 + ε

n

)n
2 exp

(
− ε2
)
, which

turns out to be about the best you can do [Laurent and Massart, 2000].
9 Distributions for which the moment generating function is infinite for all λ > 0

are called heavy tailed. Distributions that are not heavy tailed are light
tailed.

5.4 Bibliographical remarks

We will be returning to concentration of measure many times, but note here
that it is an interesting (and still active) topic of research. What we have seen is
only the tip of the iceberg. Readers that are interested to dive into this exciting

5.5 Exercises 75

field might enjoy the book by Boucheron et al. [2013]. For matrix versions of
many standard results there is a recent book by Tropp [2015]. The survey of
McDiarmid [1998] has many of the classic results. We’ll often see concentration of
the empirical mean for random variables that are not quite independent and very
far from identically distributed. There is a useful type of concentration bound
that are ‘self-normalized’ by the variance. A nice book on this is by Peña et al.
[2008]. Another tool that is occasionally useful for deriving concentration bounds
in more unusual setups is called empirical process theory. There are several
references for this, including those by van de Geer [2000] or Dudley [2014]. Of
course these are just a few of the many textbooks (not to mention the papers).
We will return to concentration many times throughout the book, so more details
will follow, especially on martingales.

5.5 Exercises

There are too many candidate exercises to list. We heartily recommend all the
exercises in Chapter 2 of the book by Boucheron et al. [2013].

5.1 Let X1, X2, . . . , Xn be a sequence of independent and identically distributed
random variables with mean µ and variance σ2 < ∞. Let µ̂ = 1

n

∑n
t=1Xt and

show that V[µ̂] = E[(µ̂− µ)2] = σ2/n.

5.2 Prove Markov’s inequality (Lemma 5.1).

5.3 Compare the Gaussian tail probability bound on the right-hand side of (5.4)
and the one on (5.2). What values of ε make one smaller than the other? Discuss
your findings.

5.4 Let X be a random variable on R with density with respect to the Lebesgue
measure of p(x) = |x| exp(−x2/2)/2. Show that:

(a) P (|X| ≥ ε) = exp(−ε2/2).
(b) That X is not

√
(2− ε)-subgaussian for any ε > 0.

5.5 Let X1, X2, . . . , Xn be a sequence of independent and identically distributed
random variables with mean µ, variance σ2 and bounded third absolute moment

ρ = E[|X1 − µ|3] <∞ .

Let Sn =
∑n
t=1(Xt − µ)/σ. The Berry-Esseen theorem shows that
∣∣∣∣∣∣∣∣
P
(
Sn√
n
≥ x

)
− 1√

2π

∫ x

−∞
exp(−y2/2)dy

︸ ︷︷ ︸
Φ(x)

∣∣∣∣∣∣∣∣
≤ Cρ√

n
,

where C < 1/2 is a universal constant.

5.5 Exercises 76

(a) Let µ̂n = 1
n

∑n
t=1Xt and derive a tail bound from the Berry-Esseen theorem.

That is, give a bound of the form P (µ̂n ≥ µ+ ε) for positive values of ε.
(b) Compare your bound with the one that can be obtained from the Cramer-

Chernoff method. Argue pro- and contra- for the superiority of one over the
other.

5.6 We mentioned that invoking the central limit theorem to approximate the
distribution of sums of independent Bernoulli random variables using a Gaussian
can be a bad idea. Let X1, . . . , Xn ∼ B(p) be independent Bernoulli random
variables with common mean p = λ/n where λ ∈ (0, 1). For x ∈ N natural number,
let Pn(x) = P (X1 + · · ·+Xn = x).

(a) Show that limn→∞ Pn(x) = e−λλx/(x!), which is a Poisson distribution with
parameter λ.

(b) Explain why this does not contradict the CLT and discuss the implications
of the Berry-Esseen.

(c) In what way does this show that the CLT is indeed a poor approximation in
some cases?

(d) Based on Monte-Carlo simulations, plot the distribution of X1 + · · ·+Xn for
n = 30 and some well-chosen values of λ. Compare the distribution to what
you would get from the CLT. What can you conclude?

5.7 Prove Lemma 5.2.

Use Taylor series.

5.8 Let Xi be σi-subgaussian for i ∈ {1, 2} with σi ≥ 0. Prove that X1 +X2 is
(σ1 + σ2)-subgaussian. Do not assume independence of X1 and X2.

5.9 [Properties of moment/cumulant generating functions] Let X be a real-
valued random variable and let MX(λ) = E [exp(λX)] be its moment-generating
function defined over dom(MX) ⊂ R where the expectation takes on finite values.
Show that the following properties hold:

(a) MX is convex and in particular dom(MX) is an interval containing zero.
(b) MX(λ) ≥ eλE[X] for all λ ∈ dom(MX).
(c) For any λ in the interior of dom(MX), MX is infinitely many times

differentiable.
(d) Let M

(k)
X (λ) = dk

dλk
MX(λ). Then, for λ in the interior of dom(MX),

M (k)(λ) = E
[
Xk exp(λX)

]
.

(e) Assuming 0 is in the interior of dom(MX), M (k)
X (0) = E

[
Xk
]

(hence the
name of MX).

(f) ψX is convex (that is, MX is log-convex).

5.5 Exercises 77

For part (a) use the convexity of x 7→ ex.

5.10 Let X,X1, X2, . . . , Xn be a sequence of independent and identically
distributed random variables with zero mean and moment generating function
MX with dom(MX) = R. Let µ̂n = 1

n

∑n
t=1Xt.

(a) Show that for any ε > 0,

1
n

logP (µ̂n ≥ ε) ≤ −ψ∗X(ε) = − sup
λ

(λε− logMX(λ)) . (5.9)

(b) Let σ2 = V[X]. The central limit theorem says that for any x ∈ R,

lim
n→∞

P
(
µ̂n

√
n

σ2 ≥ x
)

= Φ(x) ,

where Φ(x) = 1√
2π

∫ x
−∞ exp(−y2/2)dy is the cumulative distribution of the

standard Gaussian. Let Z be a random variable distributed like a standard
Gaussian. A careless application of this result might suggest that

lim
n→∞

1
n

logP (µ̂n ≥ ε) ?= lim
n→∞

1
n

logP
(
Z ≥ ε

√
n

σ2

)
.

Evaluate the right-hand side and explain why the question-marked equality
does not hold.

As it happens, the inequality in (5.9) may be replaced by an equality as n→∞.
The assumption that the moment-generating function exists everywhere may
be relaxed significantly. We refer the interested reader to the classic text
by Dembo and Zeitouni [2009]. The function ψ∗X is called the Legendre
transform, convex conjugate or Fenchel dual of the convex function ψX .
Convexity will play a role in some of the later chapters and will be discussed
in more detail then. The standard reference is by Rockafellar [2015].

5.11 A Rademacher random variable X satisfies X ∈ {−1, 1} with P (X = 1) =
1/2 and P (X = −1) = 1/2. Prove that MX(λ) = cosh(λ) ≤ exp(λ2/2).

5.12 Prove that if X is zero-mean and a ≤ X ≤ b almost surely for some
a < 0 < b, then X is (b− a)-subgaussian.

Let X ′ be an independent copy of X and consider MX−X′ . Use MX ≥ 1,
which follows from Exercise 5.9 and then use MX−X′ = Mε(X−X′) where
ε ∈ {−1,+1} is a Rademacher random variable independent of (X,X ′). Then
use the result of the previous exercise.

5.5 Exercises 78

Since Y = X − X ′ has the same distribution as −Y (that is, Y has a
symmetric distribution), the trick of considering Y instead of X is called the
symmetrization trick or symmetrization device. The symmetrization argument
is useful in a variety of contexts, but may not give the best possible constants. In
fact, in the next exercise, you are asked to sharpen the result of Exercise 5.12.

5.13 [Hoeffding’s lemma] Suppose that X is zero-mean and X ∈ [a, b] almost
surely for constants a < b.

(a) Show that X is (b− a)/2-subgaussian.
(b) Prove Hoeffding’s inequality (5.8).

For part (a) it suffices to prove that ψX(λ) ≤ λ2(b − a)2/4. By Taylor’s
theorem, for some λ′ between 0 and λ, ψX(λ) = ψX(0)+ψ′X(0)λ+ψ′′X(λ′)λ2/2.
To bound the last term, introduce the distribution Pλ for λ ∈ R arbitrary:
Pλ(dz) = e−ψX(λ)eλzP (dz). Show that Ψ′′X(λ) = V[Z] where Z ∼ Pλ. Now,
since Z ∈ [a, b] with probability one, argue (without relying on E [Z]) that
V[Z] ≤ (b− a)2/4.

5.14 Let Xp be a Bernoulli distribution with mean p, which means that
P (X = 1) = p and P (X = 0) = 1− p.

(a) Show that Xp is 1/2-subgaussian for all p.
(b) Let Q : [0, 1] → [0, 1/2] be the function given by Q(p) =

√
1−2p

2 ln((1−p)/p)
where undefined points are defined in terms of their limits. Show that Xp is
Q(p)-subgaussian.

(c) Plot Q(p) as a function of p. How does it compare to
√
V[Xp] =

√
p(1− p)?

Readers looking for a hint to part (b) in the previous exercise might like to
look at the short paper by Ostrovsky and Sirota [2014].

5.15 In this question we try to understand the concentration of the empirical
mean for Bernoulli random variables. Let X1, X2, . . . , Xn be independent
Bernoulli random variables with mean p ∈ [0, 1] and p̂n =

∑n
t=1Xt/n. Let Zn be

normally distributed random variable with mean p and variance p(1− p)/n.

(a) Write down expressions for E[p̂n] and V[p̂n].
(b) What does the central limit theorem say about the relationship between p̂n

and Zn as n gets large?
(c) For each p ∈ {1/10, 1/2} and δ = 1/100 and ∆ = 1/10 find the minimum n

such that P (p̂n ≥ p+ ∆) ≤ δ.

5.5 Exercises 79

(d) Let p = 1/10 and ∆ = 1/10 and

n1(δ, p,∆) = min {n : P (p̂n ≥ p+ ∆) ≤ δ}
n2(δ, p,∆) = min {n : P (Zn ≥ p+ ∆) ≤ δ} .

(i) Evaluate empirically or analytically the value of

lim
δ→0

n1(δ, 1/10, 1/10)
n2(δ, 1/10, 1/10)

(ii) In light of the central limit theorem, explain why the answer you got in (i)
was not 1.

5.16 Let X1, . . . , Xn be a sequence of independent random variables with
Xt−E[Xt] ≤ b almost surely and Sn =

∑n
t=1(Xt−E[Xt]) and Vn =

∑n
t=1 V[Xt].

(a) Show that g(x) = 1
2 + x

3! + x2

4! + · · · = (exp(x) − 1 − x)/x2 is monotone
increasing.

(b) Let X be a random variable with E[X] = 0 and X ≤ b almost surely. Show
that E[exp(X)] ≤ 1 + g(b)V[X].

(c) Prove that (1 + α) log(1 + α)− α ≥ 3α2

6+2α for all α ≥ 0.
(d) Let ε > 0 and α = bε/V and prove that

P

(
n∑

t=1
(Xt − E[Xt]) ≥ ε

)
≤ exp

(
−Vn
b2

((1 + α) log(1 + α)− α)
)

≤ exp
(
− ε2

2V
(
1 + bε

3V
)
)
. (5.10)

(e) Use the previous result to show that

P


Sn ≥

√√√√2
n∑

t=1
V[Xt] log

(
1
δ

)
+ 2b

3n log
(

1
δ

)
 ≤ δ .

(f) What can be said if X1, . . . , Xn are Gaussian? Discuss empirically or
theoretically whether or not a dependence on b is avoidable or not.

The bound in Eq. (5.10) is called Bernstein’s inequality. There are several
generalizations, the most notable of which is the martingale verison that slightly
relaxes the independence assumption. We will see martingale techniques in
Chapter 20. Another useful variant (under slightly different conditions) replaces
the actual variance with the empirical variance. This is useful in the common
case that the variance is unknown. For more on this see papers by Audibert
et al. [2007], Mnih et al. [2008], Maurer and Pontil [2009] or skip ahead to
Exercise 7.7.

5.5 Exercises 80

5.17 Let X1, X2, . . . , Xn be a sequence of random variables adapted to filtration
F = (Ft)t. Abbreviate Et[·] = E[· | Ft] and µt = Et−1[Xt]. Suppose that η > 0
satisfies ηXt ≤ 1 almost surely. Prove that

P

(
n∑

t=1
(Xt − µt) ≥ η

n∑

t=1
Et−1[X2

t] + 1
η

log
(

1
δ

))
≤ δ .

Use Chernoff’s method and the fact that exp(x) ≤ 1 + x+ x2 for all x ≤ 1 and
exp(x) ≥ 1 + x for all x.

5.18 Let X1, . . . , Xn be independent random variables with P (Xt ≤ x) ≤ x for
each x ∈ [0, 1] and t ∈ [n]. Prove for any ε > 0 that

P

(
n∑

t=1
log(1/Xt) ≥ ε

)
≤
(ε
n

)n
exp(n− ε) .

5.19 Let X1, . . . , Xn be an independent and identically distributed sequence
taking values in [m]. For i ∈ [m] let p(i) = P (X1 = i) and p̂(i) =
1
n

∑n
t=1 I {Xt = i}. Show that for any δ ∈ (0, 1),

P

(
‖p− p̂‖1 ≥

√
2m log(2/δ)

n

)
≤ δ . (5.11)

This is quite a tricky exercise. The result is due to Weissman et al. [2003]. It
is worth comparing this to what can be obtained from Hoeffding’s inequality,
which implies for any i ∈ [m] and δ ∈ (0, 1) that with probability 1− δ,

|p̂(i)− p(i)| <
√

2 log(2/δ)
n

.

By a union bound this ensures that with probability 1− δ,
∑

i

|p̂(i)− p(i)| < m

√
2 log(2m/δ)

n
,

which is significantly weaker than the upper bound in (5.11). A standard
approach to deriving a stronger inequality is to use the fact that ‖p− p̂‖1 =
supx:‖x‖∞≤1〈p − p̂, x〉. Choose finite subset S ⊂ B = [−1, 1]m such that
for any point in x ∈ B there exists a y ∈ S such that ‖x − y‖∞ ≤
ε/3. Let x∗ = argmaxx∈B〈p − p̂, x〉 and s = argminu∈S ‖s − x‖∞. Then
〈p− p̂, x∗〉 = 〈p− p̂, s〉+ 〈p− p̂, s− x∗〉 ≤ 〈p− p̂, s〉+ 2 supp:‖p‖1≤1〈p, s− x∗〉 =
〈p− p̂, s〉+ 2‖s− x∗‖∞ = 〈p− p̂, s〉+ 2ε/3. By applying Hoeffding’s inequality
to 〈p− p̂, s〉 and a union bound we see that if n ≥ 2 log(|S|/δ)/ε2, then with
probability 1 − δ it holds that ‖p − p̂‖1 ≤ ε. Choosing S to have the fewest
elements gives a bound similar to that of Lemma 37.2. In particular, S can be

5.5 Exercises 81

chosen to be the regular grid with stride ε/3, giving |S| = (6/ε)m. The quantity
supx∈X〈p− p̂, x〉 is called an empirical process. Such empirical processes are
the subject of extensive study in the field of empirical process theory, which has
many applications within statistics, machine learning and also beyond these
field in almost all areas of mathematics [Vaart and Wellner, 1996, Dudley, 2014,
van de Geer, 2000].

5.20 Let X1, X2, . . . , Xn be a sequence of nonnegative random variables adapted
to filtration (Ft)nt=0 such that

∑n
t=1Xt ≤ 1 almost surely. Prove that for all

x > 1,

P

(
n∑

t=1
E[Xt | Ft−1] ≥ x

)
≤ fn(x) =





(
n−x
n−1

)n−1
if x < n

0 if x ≥ n ,

where the equality serves as the definition of fn(x).

This problem does not use the techniques introduced in the chapter. Prove that
Bernoulli random variables are the worst case and use backwards induction.
Although this result is new to our knowledge, a weaker version was derived by
Kirschner and Krause [2018] for the analysis of information directed sampling.
The bound is tight in the sense that there exists a sequence of random variables
and filtration for which equality holds.

Part II

Stochastic Bandits with
Finitely Many Arms

83

In the first part devoted entirely to bandits we introduce the fundamental
algorithms and many ideas of analysis for unstructured finite-armed bandits.
The keywords here are finite, unstructured and stochastic. The first of these
just means that the number of actions available is finite. The second is more
ambiguous, but roughly means that choosing one action yields no information
about the mean payoff of other arms. Finally, the ‘stochastic’ keyword means
that the sequence of rewards associated with each action is independent and
identically distributed according to some distribution. This latter assumption
will be relaxed in Part III.

There are several reasons to study this class of bandit problems. For one
thing, their simplicity makes them relatively easy to analyze and permits a deep
understanding of the tradeoff between exploration and exploitation. Secondly,
many of the algorithms designed for finite-armed bandits, and the principle
underlying them, can be generalized to other settings. Finally, finite-armed
bandits already have applications. Notably as a replacement to A/B testing as
discussed in the introduction.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

6 The Explore-then-Commit Algorithm

With the background on concentration out of the way, we are ready to present
the first bandit policy of the book. The policy we present is one of the simplest
one that one can imagine: It says to first explore by choosing each arm a certain
number of times and subsequently exploit by playing the arm that appeared best
after exploration.

For this chapter, as well as Chapters 7 to 9, we assume that all bandit instances
are in EKSG(1), which means the reward distribution for all arms is 1-subgaussian.

The focus on subgaussian distributions is mainly for simplicity. Many of the
techniques in the chapters that follow can be applied to other stochastic bandits
such as those listed in Table 4.1. The key difference is that new concentration
analysis is required that exploits the different assumptions. The Bernoulli case is
covered in Chapter 10 where other cases are briefly discussed along with references
to the literature. As this stage, what is important to keep in mind is that larger
environment classes correspond to harder bandit problems and we expect to see
the effect of this in the strength of results.

Notice that the subgaussian assumption restricts the subgaussian constant
to σ = 1, which saves us from endlessly writing σ. All results hold for other
subgaussian constants by scaling the rewards (see Lemma 5.2). Two points are
obscured by this simplification.

1 All the algorithms that follow rely on the knowledge of σ.
2 It may happen sometimes that Pi is subgaussian for all arms, but with a

different subgaussian constant for each arm. Algorithms are easily adapted
to this situation if the subgaussian constants are known, a process we leave
to the readers in Exercise 7.2. The situation where σ2 is not known is more
complicated and is discussed in Chapter 7 (and see Exercise 7.8).

We now describe the explore-then-commit (ETC) policy, which is
characterized by the number of times it explores each arm, denoted by a natural
number m. Because there are K actions, the algorithm will explore for mK
rounds before choosing a single action for the remaining rounds. In order to
define this policy formally we need a little more notation. Let µ̂i(t) be the average

http://banditalgs.com
mailto:tor.lattimore@gmail.com

The Explore-then-Commit Algorithm 85

pay-off received from arm i up to round t. Hence

µ̂i(t) = 1
Ti(t)

t∑

s=1
I {As = i}Xs ,

where recall that Ti(t) =
∑t
s=1 I {As = i} is the number of times action i is

chosen up to the end of round t. The vanilla version of an explore-then-commit
policy is given below. Recall for natural numbers a, b ≥ 1 that amod b is the
remainder when a is divided by b. Or equivalently, amod b = a− b ba/bc.

1: Input m ∈ N.
2: In round t choose action

At =
{
i , if (tmodK) + 1 = i and t ≤ mK ;
argmaxi µ̂i(mK) , t > mK .

(ties in the argmax are broken arbitrarily)
Algorithm 1: Explore-then-commit policy

The formal definition of the explore-then-commit policy leads rather
immediately to the analysis of its regret.

theorem 6.1 (Regret of ETC) The the expected regret of the ETC policy is
bounded by,

Rn ≤
(
m ∧

⌈ n
K

⌉) K∑

i=1
∆i + (n−mK)+

K∑

i=1
∆i exp

(
−m∆2

i

4

)
.

Proof By the decomposition given in Lemma 4.2 the regret can be written as

Rn =
K∑

i=1
∆iE [Ti(n)] .

In the first mK rounds the ETC policy is completely deterministic, choosing
each action exactly m times. Subsequently it chooses a single action that gave
the largest average payoff during exploration. Thus,

E [Ti(n)] ≤ m ∧
⌈ n
K

⌉
+ (n−mK)+ P (i = AmK+1)

≤ m ∧
⌈ n
K

⌉
+ (n−mK)+ P

(
µ̂i(mK) ≥ max

j 6=i
µ̂j(mK)

)
,

where recall that a ∧ b = min(a, b) and (x)+ = max(x, 0) denotes the positive
part of x ∈ R (thus, the second term is zero when n < mK). Now we need to
bound the probability in the second term above. For the sake of simplifying the
presentation, assume without loss of generality that the arm one is an optimal

The Explore-then-Commit Algorithm 86

arm so that µ1 = µ∗ = maxi µi (though the learner does not know this). Then

P
(
µ̂i(mK) ≥ max

j 6=i
µ̂j(mK)

)
≤ P (µ̂i(mK) ≥ µ̂1(mK))

= P (µ̂i(mK)− µi − (µ̂1(mK)− µ1) ≥ ∆i) .

The next step is to check that µ̂i(mK)−µi−(µ̂1(mK)−µ1) is
√

2/m-subgaussian,
which by the properties of subgaussian random variables follows from the
definitions of {µ̂j}j and the algorithm. Therefore, by Corollary 5.1 we have

P (µ̂i(mK)− µi − µ̂1(mK) + µ1 ≥ ∆i) ≤ exp
(
−m∆2

i

4

)

and by straightforward substitution we obtain

Rn ≤
(
m ∧

⌈ n
K

⌉) K∑

i=1
∆i + (n−mK)+

K∑

i=1
∆i exp

(
−m∆2

i

4

)
. (6.1)

Although we will discuss many disadvantages of the approach taken by ETC,
the above bound cleanly illustrates the fundamental challenge faced by the learner,
which is the trade-off between exploration and exploitation. If m is large, then
the policy explores for too long and the first term will be eventually too large.
On the other hand, if m is too small, then the probability that the algorithm
commits to the wrong arm will grow and the second term becomes too large. The
question is how to choose m? If we limit ourselves to K = 2 and if the first arm
is optimal then ∆1 = 0 and by using ∆ .= ∆2 the above display simplifies to

Rn ≤ m∆ + (n− 2m)+∆ exp
(
−m∆2

4

)
≤ m∆ + n∆ exp

(
−m∆2

4

)
. (6.2)

Provided that n is reasonably large the quantity on the right-hand side of the
above display is minimized (up to a possible rounding error) by

m = max
{

0,
⌈

4
∆2 log

(
n∆2

4

)⌉}
(6.3)

and for this choice (and any n) the regret is bounded by

Rn ≤ ∆ + 4
∆

(
1 + max

{
0, log

(
n∆2

4

)})
. (6.4)

Notice that here ∆ appears in the denominator of the regret bound, which
means that as ∆ becomes very small the regret bound grows unboundedly. Is that
reasonable and why is it happening? The explanation is simply that in the second
inequality of (6.2) we have upper bounded (n −mK)+ by n also m ∧ dn/Ke
by m, regardless of the value of n, whereas (using that K = 2) for n < 2m,
(n− 2m)+ = 0 and m∧ dn/2e ≤ dn/2e. In fact, for any n (and regardless of what

The Explore-then-Commit Algorithm 87

policy is being used!) Rn = ∆E[T2(n)] ≤ ∆n. Taking the minimum of this and
the bound shown in (6.4), we get

Rn ≤ min
{
n∆, ∆ + 4

∆

(
1 + log

(
n∆2

4

))}
. (6.5)

We leave it as an exercise to the reader to check that Rn = O(
√
n) regardless of

the value of ∆. Bounds of this nature are usually called worst-case or problem-
free or problem independent (cf. Eq. (4.2) or Eq. (4.3)). The reason is that
the regret depends only on the distributional assumption (i.e., the choice of the
environment EK), but not on the specific distribution ν ∈ EK . Sometimes bounds
of this type are also called gap-free as they do not depend on ∆. In contrast, bounds
that depend on the sub-optimality gaps are called gap/problem/distribution
dependent.

Later you will see that the bound in (6.4) is very close to optimal in a number
of ways. However, there is one big caveat. The choice of m given above (which
defines the policy) depends on both the sub-optimality gap and the horizon.
While sometimes the horizon might be known in advance, it is practically
never reasonable to assume knowledge of the sub-optimality gaps. So is there a
reasonable way to choose m that does not depend on the unknown gap, but may
depend on n? It turns out that the there is a choice that will achieve Rn = O(n2/3)
regardless of the value of ∆, i.e., in a worst-case sense (to see this, recall that
Rn ≤ ∆n). The need to know the sub-optimality gap can be overcome by allowing
m to be data-dependent. That is, the learner chooses each arm alternately until
it decides based on its observations to commit to a single arm for the remaining
rounds. We return to this point briefly in the notes at the end of the section, but
will not be cover the details because it turns out there are other algorithms that
are superior in practice and do not even need to know the horizon.

So how does this play out on actual data? To examine this question we plot the
expected regret of ETC when playing a two-armed bandit with means µ1 = 0
and µ2 = −∆. The horizon is set to n = 1000 and ∆ > 0 is varied between 0
and 1. The plot shows three curves:
(a) The theoretical upper bound given in Eq. (6.5).
(b) The regret of the ETC algorithm with m set as suggested in Eq. (6.3).
(c) The regret of the ETC algorithm with the optimal m, which may be

calculated numerically using the assumption that the noise is exactly
Gaussian.

Each data point is the average of 104 simulations, which means that error-bars
are so small that they are not visible (and hence no attempt is made to show
them).

The figure shows the actual performance of the ETC algorithm roughly tracks
the theory, and the optimally tuned version provides a modest improvement in
performance. It is important to emphasize that the optimally tuned algorithm

6.1 Notes 88

0 0.2 0.4 0.6 0.8 1

20

40

60

80

∆

Ex
pe

ct
ed

re
gr

et

Upper bound in (6.5)
ETC with m in (6.3)
ETC with optimal m

Figure 6.1 Expected regret of ETC strategies

is ‘cheating’ in an even stronger way than the choice based on (6.3) because
the calculation of the optimal m was based on a Gaussian assumption, while
the choice given in Eq. (6.3) only relied on the noise being subgaussian.

6.1 Notes

1 An algorithm is called anytime if it does not require advance knowledge of
the horizon n. As discussed, the ETC algorithm is not anytime because the
choice of commitment time depends on the horizon. This limitation can be
addressed in a general way by using the doubling trick, which is a simple
way to convert a horizon-dependent algorithm into an anytime algorithm
that does not depend on the horizon. We explain in Exercise 6.6.

2 By allowing the exploration time m to be a data-dependent random variable it
is possible to recover near-optimal regret without knowing the sub-optimality
gaps. For examples where this is done, see the articles by Auer and Ortner
[2010] and Garivier et al. [2016b] and Exercise 6.5.

6.2 Bibliographical remarks

Explore-then-commit has a long history. Robbins [1952] considered ‘certainty
equivalence with forcing’, which chooses the arm with the largest sample mean
except at a fixed set of times Tk ⊂ N when arm k is chosen for k ∈ [K]. By

6.3 Exercises 89

choosing the set of times carefully, it is shown that this policy enjoys sublinear
regret. While ETC performs all the exploration at the beginning, Robbins’s policy
spreads the exploration over time. This is advantageous if the horizon is not known,
but is disadvantageous when the horizon is known (why would want to delay
exploration when the horizon is known?). Anscombe [1963] considered exploration
and commitment in the context of medical trials or other experimental setups.
He already largely solves the problem in the Gaussian case and highlights many
of the important considerations. Besides this, the article is beautifully written
and well worth reading. Strategies based on exploration and commitment are
simple to implement and analyze. They can also generalize well to more complex
settings. For example, Langford and Zhang [2008] considers this style of policy
under the name ‘epoch-greedy’ for contextual bandits (the idea of exploring then
exploiting in epochs, or intervals, is essentially what Robbins [1952] suggested).
We’ll return to contextual bandits in Chapter 18. Abbasi-Yadkori et al. [2009] (see
also Abbasi-Yadkori 2009b) and Rusmevichientong and Tsitsiklis [2010] consider
ETC-style policies under the respective names of ‘forced exploration’ and ‘phased
exploration and greedy exploitation’ (PEGE) in the context of linear bandits
(which we shall meet in Chapter 19). Other names include ‘forced sampling’,
‘explore-first’, ‘explore-then-exploit’. Garivier et al. [2016b] have shown that ETC
policies are necessarily suboptimal in the limit of infinite data in a way that is
made precise in Chapter 16. As mentioned earlier, ε-greedy is a close relative
of ETC and can be viewed as the randomized version of Robbin’s algorithm.
One may ask why would want to randomize? The best answer is simplicity: The
policy only depends on the exploration parameter ε rather than some complicated
schedule. This can be useful in complicated settings like reinforcement learning
where many instances of the same algorithm are acting simultaneously and
communication is costly. In Chapter 11 we’ll see the role of randomization when
the bandit itself is allowed to react to the actions of the learner in a malicious
way. The history of ε-greedy is unclear, but it is a popular and widely used and
known algorithm in reinforcement learning [Sutton and Barto, 1998]. Auer et al.
[2002a] analyze the regret of ε-greedy with slowly decreasing ε (see Exercise 6.7).
There are other kinds of randomized exploration as well, including Thompson
sampling [1933] and Boltzmann exploration analyzed recently by Cesa-Bianchi
et al. [2017].

6.3 Exercises

6.1 In the proof of Theorem 6.1 we wrote: “The next step is to check that
µ̂i(mK) − µi − (µ̂1(mK) − µ1) is

√
2/m-subgaussian, which by the properties

of subgaussian random variables follows from the definitions of {µ̂j}j and the
algorithm.” Prove this in a fully rigorous manner. You can use the interaction
protocol, the assumption that rewards are 1-subgaussian, the definition of {µ̂j}j
and the definition of ETC. In particular, prove that µ̂j(mK) is the sample mean

6.3 Exercises 90

of m i.i.d. random variables chosen from Pj . Note that this is not the definition
of µ̂j(mK). Further, the interaction protocol only specifies that Xt ∼ PAt ,
independently of (A1, X1, . . . , At−1, Xt−1) given At.

6.2 Fix δ ∈ (0, 1). Modify the ETC algorithm to depend on δ and prove a bound
on the pseudo-regret R̄n = nµ∗ −∑n

t=1 µAt of ETC that holds with probability
1− δ.

6.3 Fix δ ∈ (0, 1). Prove a bound on the random regret R̂n = nµ∗ −∑n
t=1Xt of

ETC that holds with probability 1− δ. Compare this to the bound derived for
the pseudo-regret in the previous exercise. What can you conclude?

6.4 In this exercise we investigate the empirical behavior of the Explore-Then-
Commit algorithm on a two-armed Gaussian bandit with means µ1 = 0 and
µ2 = −∆. Let

R̄n =
n∑

t=1
∆At ,

which is chosen so that Rn = E[R̄n]. Complete the following:

(a) Using programming language of your choice, write a function that accepts an
integer n and ∆ > 0 and returns the value of m that exactly minimizes the
expected regret.

(b) Reproduce Fig. 6.1, which shows the expected regret of the ETC algorithm
for different choices of m as a function of ∆.

(c) Now fix ∆ = 1/10 and plot the expected regret as a function of m with
n = 2000. Your plot should resemble Fig. 6.2.

(d) Plot the variance V[R̄n] as a function of m for the same bandit as above.
Your plot should resemble Fig. 6.3.

(e) Explain the shape of the curves you observed in Parts (b), (c) and (d) and
reconcile what you see with the theoretical results.

(f) Think, experiment and plot. Is it justified to plot V[R̄n] as a summary of
how R̄n is distributed? Explain your thinking.

6.5 In this question we investigate how far we can push the ETC algorithm.
Assume for the purpose of this exercise that ETC interacts with a 2-armed
1-subgaussian bandit with means µ1, µ2 ∈ R such that ∆ = |µ1 − µ2|.

(a) Find a choice of m that depends only on the horizon n and not ∆ such the
regret of Algorithm 1 is bounded by

Rn ≤ C
(

∆ + n2/3
)
,

where C > 0 is a universal constant.
(b) Now suppose the commitment time is allowed to be data-dependent, which

means the algorithm explores each arm alternately until some condition is

6.3 Exercises 91

0 100 200 300 400

50

60

70

m

Ex
pe

ct
ed

re
gr

et

Explore-Then-Commit

Figure 6.2 Expected regret for Explore-Then-Commit over 105 trials on a Gaussian
bandit with means µ1 = 0, µ2 = −1/10

0 100 200 300 400

40

60

80

100

m

St
an

da
rd

de
vi

at
io

n
of

th
e

re
gr

et

Explore-Then-Commit

Figure 6.3 Standard deviation of the regret for ETC over 105 trials on a Gaussian
bandit with means µ1 = 0, µ2 = −1/10

met and then commits to a single arm for the remainder. Design a condition
such that the regret of the resulting algorithm can be bounded by

Rn ≤ C
(

∆ + logn
∆

)
, (6.6)

where C is a universal constant. Your condition should only depend on the
observed rewards and the time horizon. It should not depend on µ1, µ2 or ∆.

(c) Show that any algorithm for which (6.6) holds also satisfies Rn ≤ C(∆ +√
n log(n)) for suitably chosen universal constant C > 0.

6.3 Exercises 92

(d) As for part (b), but now the objective is to design a condition such that the
regret of the resulting algorithm is bounded by

Rn ≤ C
(

∆ +
log max

{
e, n∆2})

∆

)
, (6.7)

(e) Show that any algorithm for which (6.7) holds also satisfies Rn ≤ C(∆ +
√
n)

for suitably chosen universal constant C > 0.

For Part (a) start from Rn ≤ m∆ + n∆ exp(−m∆2/2) and assume that the
second term here dominates the first term. Find ∆ maximizing the resulting
regret upper bound. Based on this propose m and verify that the starting
assumption has been met by your choice regardless the values of n and ∆. For
Part (b) think about the simplest stopping policy and then make it ‘robust’ by
using confidence intervals. Tune the failure probability. For Part (c) note that
the regret can never be larger than n∆.

In the later parts of Exercise 6.5 we allowed the commitment time to be data-
dependent. This makes it a random variable and so it should be capitalized to
M instead of m. In the language of formal probability, the random variable
T = 2M is called a stopping time with respect to the filtration (Ft)t≥1 where
Ft = σ(A1, X1, . . . , At, Xt). We’ll introduce the formal definition of a stopping
time in a later chapter, but for now we mention briefly that it means that the
event {T = t} is Ft-measurable for each t. The curious reader might like to
think about what this definition means. (Hint: The algorithm cannot commit
on the basis of information it does not have!)

6.6 Let E be an arbitrary class of bandits (for example, E = EKSG). Suppose you
are given a policy A designed for E that accepts the horizon n as a parameter
and has a regret guarantee of

Rn ≤ fn(ν) , ∀ν ∈ E ,

where fn : E → [0,∞) is a sequence of functions. The purpose of this exercise is
to analyze a meta-algorithm based on the so-called doubling trick that converts
a policy depending on the horizon to a policy with similar guarantees that does
not. Let n1 < n2 < n3 < · · · be a fixed sequence of integers and consider the
policy that runs A with horizon n1 until round t = max{n, n1}. Then restarts
the algorithm with horizon n2 until t = max{n, n1 + n2}. Then restarts again
with horizon n3 until t = max{n, n1 + n2 + n3} and so-on.

(a) Let `max = min{` :
∑`
i=1 ni ≥ n}. Prove that the regret of the meta-algorithm

6.3 Exercises 93

is at most

Rn ≤
`max∑

`=1
fn`(ν) .

(b) Suppose that fn(ν) ≤ √n. Show that if n` = 2`−1, then the regret of the
meta-algorithm is at most

Rn ≤ C
√
n ,

where C > 0 is a carefully chosen universal constant.
(c) Suppose that fn(ν) = g(ν) log(n) for some function g : E → [0,∞). What is

the regret of the meta-algorithm if n` = 2`−1? Can you find a better choice
of (n`)`?

(d) In light of this idea, should we bother trying to design algorithms that do not
depend on the horizon? Are there any disadvantages to using the doubling
trick? If so, what are they?

6.7 For this exercise assume the rewards are 1-subgaussian and there are K ≥ 2
arms. The ε-greedy algorithm depends on a sequence of parameters ε1, ε2,
First it chooses each arm once and subsequently chooses At = argmaxi µ̂i(t− 1)
with probability 1− εt and otherwise chooses an arm uniformly at random.

(a) Prove that if εt = ε > 0, then lim
n→∞

Rn
n

= ε

K

K∑

i=1
∆i.

(b) Let ∆min = min {∆i : ∆i > 0} and let εt = min
{

1, CK
t∆2

min

}
where C > 0 is

a sufficiently large universal constant. Prove that there exists a universal
C ′ > 0 such that

Rn ≤ C ′
K∑

i=1

(
∆i + ∆i

∆2
min

log max
{
e,
n∆2

min
K

})
.

6.8 A simple way to generalize the ETC policy to multiple arms and overcome
the problem of tuning the commitment time is to use an elimination algorithm.
The algorithm operates in phases and maintains an active set of arms that could
be optimal. In the `th phase the algorithm aims to eliminate from the active set
all arms i for which ∆i ≥ 2−`.

Without loss of generality, assume that arm 1 is an optimal arm.

(a) Show that for any ` ≥ 1,

P (1 /∈ A`+1, 1 ∈ A`) ≤ K exp
(
−τ` 2−2`

4

)

(b) Show that if i ∈ [K] and ` ≥ 1 are such that ∆i ≥ 2−`, then

P (i ∈ A`+1, 1 ∈ A`, i ∈ A`) ≤ exp
(
−τ` (∆i − 2−`)2

4

)

6.3 Exercises 94

1: Input: K and sequences (τ`)`
2: A1 = {1, 2, . . . ,K}
3: for ` = 1, 2, 3, . . . do
4: Choose i ∈ A` each arm τ` times
5: Let µ̂i,` be the average reward for arm i from this phase
6: Update active set:

A`+1 =
{
i : µ̂i,` + 2−` ≥ max

j∈A`
µ̂j,`

}

7: end for

(c) Let `i = min
{
` ≥ 1 : 2−` ≤ ∆i/2

}
. Choose τ` in such a way that

P (∃` : 1 /∈ A`) ≤ 1/n and P (i ∈ A`i+1) ≤ 1/n.
(d) Show that your algorithm has regret at most

Rn ≤ C
∑

i:∆i>0

(
∆i + 1

∆i
log(n)

)
,

where C > 0 is a carefully chosen universal constant.
(e) Modify your choice of τ` (if necessary) to derive a regret bound

Rn ≤ C
∑

i:∆i>0

(
∆i + 1

∆i
log max

{
e, n∆2

i

})
.

6.9 For this exercise assume the rewards are 1-subgaussian. The ε-greedy
algorithm depends on a sequence of parameters ε1, ε2, First it chooses each
arm once and subsequently chooses At = argmaxi µ̂i(t−1) with probability 1−εt
and otherwise an arm uniformly at random.

(a) Prove that if εt = ε > 0, then lim
n→∞

Rn
n

= ε

K

K∑

i=1
∆i.

(b) Let ∆min = min {∆i : ∆i > 0} and let εt = min
{

1, CK
t∆2

min

}
where C > 0 is

a sufficiently large universal constant. Prove that there exists a universal
C ′ > 0 such that

Rn ≤ C ′
K∑

i=1

(
∆i + ∆i

∆2
min

log max
{
e,
n∆2

min
K

})
.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

7 The Upper Confidence Bound
Algorithm

We now describe the celebrated Upper Confidence Bound (UCB) algorithm, which
offers several advantages over the ETC algorithm introduced in the last chapter:

(a) It does not depend on advance knowledge of the suboptimality gaps.
(b) It behaves well when there are more than two arms.
(c) The version introduced here does depend on the horizon n, but in the next

chapter we will see how to eliminate that as well.

The algorithm has many different forms, depending on the distributional
assumptions on the noise. Like in the previous chapter, we assume the noise is 1-
subgaussian. A serious discussion of other options is delayed until Chapter 10. The
algorithm is based on the principle of optimism in the face of uncertainty
(OFU), which is applicable to various exploration problems not only finite-armed
stochastic bandits:

The optimism in the face of uncertainty principle states that one should choose
their actions as if the environment is as nice as plausibly possible.

To illustrate the intuition, imagine visiting a new country and making a choice
between sampling the local cuisine or visiting a well-known multinational chain.
Taking an optimistic view of the unknown local cuisine leads to exploration
because without data it could be amazing. Then, after trying the new option a
few times you can update your statistics about each choice and make a more
informed decision. On the other hand, taking a pessimistic view of the new option
discourages exploration and you may suffer significant regret if the local options
are delicious. Just how optimistic you should be is a difficult decision, which we
explore for the rest of the chapter in the context of finite-armed bandits.

For bandits the optimism principle means using the data observed so far to
assign to each arm a value called the upper confidence bound that with high
probability is an overestimate of the unknown mean. The intuitive reason why
this leads to sublinear regret is simple. Assuming the upper confidence bound
assigned to the optimal arm is indeed an overestimate, then another arm can only
be played if its upper confidence bound is larger than that of the optimal arm,
which in turn is larger than the mean of the optimal arm. And yet this cannot
happen too often because the additional data provided by playing a suboptimal

http://banditalgs.com
mailto:tor.lattimore@gmail.com

The Upper Confidence Bound Algorithm 96

arm means that the upper confidence bound for this arm will eventually fall
below that of the optimal arm.

This explains why the optimism principle will eventually get things right (that
is, why it leads to sublinear regret). But the argument does not explain why an
optimistic algorithm for finite-armed bandits should be as good (or better) than
a well-tuned ETC. Whether this holds or not hinges on the exact definition of
‘plausible’. Recall that if X1, X2, . . . , Xn are independent and 1-subgaussian with
mean µ and µ̂ =

∑n
t=1Xt/n, then by Eq. (5.6), for any δ ∈ [0, 1],

P

(
µ ≥ µ̂+

√
2 log(1/δ)

n

)
≤ δ . (7.1)

When considering its options in round t the learner has observed Ti(t−1) samples
from arm i and received rewards from that arm with an empirical mean of µ̂i(t−1).
Then a reasonable candidate for ‘as large as plausibly possible’ for the unknown
mean of the ith arm is

UCBi(t− 1, δ) .= µ̂i(t− 1) +

√
2 log(1/δ)
Ti(t− 1) . (7.2)

Great care is required when comparing (7.1) and (7.2) because in the former the
number of samples is the constant n, but in the latter it is a random variable
Ti(t− 1). By and large, however, this is merely an annoying technicality and the
intuition remains that δ is approximately an upper bound on the probability of
the event that the above quantity is an underestimate of the true mean. More
details are given in Exercise 7.1.

At last we have everything we need to state a version of the UCB algorithm,
which takes as input the number of arms and the error probability δ.

1: Input K and δ

2: Choose each action once
3: For rounds t > K choose action

At = argmaxi UCBi(t− 1, δ)

Algorithm 2: UCB(δ) algorithm

Although there are many versions of the UCB algorithm, we often do not
distinguish them by name and hope the context is clear. For the rest of this
chapter we’ll usually call UCB(δ) just UCB.

The algorithm first chooses each arm once, which is necessary because the
term inside the square root is undefined when Ti(t− 1) = 0. The value inside the
argmax is called the index of arm i. Generally speaking, an index algorithm
chooses the arm in each round that maximizes some value (the index), which

The Upper Confidence Bound Algorithm 97

usually only depends on current time-step and the samples from that arm. In the
case of UCB, the index is the sum of the empirical mean of rewards experienced
so far and the exploration bonus (also known as the confidence width).

Besides the slightly vague ‘optimism guarantees optimality or learning’ intuition
we gave before, it is worth exploring other intuitions for the choice of index. At
a very basic level, an algorithm should explore arms more often if they are (a)
promising (µ̂i(t− 1) is large) or (b) not well explored (Ti(t− 1) is small). As one
can plainly see from the definition, the index above exhibits this behavior. This
explanation is not completely satisfying, however, because it does not explain
why the form of the functions is just so.

A more refined explanation comes from thinking of what we expect from any
reasonable algorithm. Suppose in some round we have played some arm (let’s say
arm 1) much more frequently than the others. If we did a good job designing our
algorithm we would hope this is the optimal arm. Since we played it so much we
can expect that µ̂1(t− 1) ≈ µ1. To confirm the hypothesis that arm 1 is optimal
the algorithm better be highly confident that other arms are indeed worse. This
leads very naturally to confidence intervals and the requirement that Ti(t− 1)
for other arms i 6= 1 better be so large that

µ̂i(t− 1) +

√
2 log(1/δ)
Ti(t− 1) ≤ µ1 , (7.3)

because, at a confidence level of 1− δ this guarantees that µi is smaller than
µ1 and if the above inequality did not hold, the algorithm would not be justified
in choosing arm 1 much more often than arm i. Then, planning for (7.3) to hold
makes it reasonable to follow the UCB rule as this will eventually guarantee that
this inequality holds when arm 1 is indeed optimal and arm i is suboptimal. That
this rule is indeed a good one depends on two factors: The first is whether the
width of the confidence interval at a given confidence level can be significantly
decreased and the second is whether the confidence level is chosen in a reasonable
fashion. For now, we will take a leap of faith and assume that the width of
confidence intervals for subgaussian bandits cannot be significantly improved
from what we use here (we shall see that this holds in later chapters), and
concentrate on choosing the confidence level now.

Choosing the confidence level itself turns out to be a delicate problem and we
will spend quite a lot of time analyzing various choices in future chapters.

The basic difficulty is that there is a trade-off between choosing δ very small and
ensuring optimism with very high probability, and the cost of being excessively
optimistic about suboptimal arms. Note that optimism is only really required
for the optimal arm because this ensures that once the suboptimal arms have
been proven to have means less than optimal, then the optimal arm is all that
remains.

The Upper Confidence Bound Algorithm 98

Nevertheless, as a first cut, the choice of this parameter can be guided by
the following considerations. If the confidence interval fails and the index of an
optimal arm drops below its true mean, then it could happen that the algorithm
stops playing the optimal arm and suffers linear regret. This suggests we might
choose δ ≈ 1/n so that the contribution to the regret of this failure case is
relatively small. Unfortunately things are not quite this simple. As we have
already alluded to, one of the main difficulties is that the number of samples
Ti(t− 1) in the index (7.2) is a random variable and so our concentration results
cannot be immediately applied. For this reason we will see that (at least naively)
δ should be chosen a bit smaller than 1/n.

theorem 7.1 Consider UCB as shown in Algorithm 2 on a stochastic K-armed
1-subgaussian bandit problem. For any horizon n, if δ = 1/n2 then

Rn ≤ 3
K∑

i=1
∆i +

∑

i:∆i>0

16 log(n)
∆i

.

Before the proof we need a little more notation. Let (Xti)t∈[n],i∈[K] be a
collection of independent random variables with the law of Xti equal to Pi. Then
define µ̂is = 1

s

∑s
u=1Xui to be the empirical mean based on the first s samples.

We make use of the third model in Section 4.4 by assuming that the reward in
round t is

Xt = XAtTAt (t) .

Then we define µ̂i(t) = µ̂iTi(t) to be the empirical mean of the ith arm after round
t. The proof of Theorem 7.1 relies on the basic regret decomposition identity,

Rn =
K∑

i=1
∆iE [Ti(n)] . (Lemma 4.2)

The theorem will follow by showing that E [Ti(n)] is not too large for suboptimal
arms i. The key observation is that after the initial period where the algorithm
chooses each action once, action i can only be chosen if its index is higher than
that of an optimal arm. This can only happen if at least one of the following is
true:

(a) The index of action i is larger than the true mean of a specific optimal arm.
(b) The index of a specific optimal arm is smaller than its true mean.

Since with reasonably high probability the index of any arm is an upper bound
on its mean, we don’t expect the index of the optimal arm to be below its
mean. Furthermore, if the suboptimal arm i is played sufficiently often, then its
exploration bonus becomes small and simultaneously the empirical estimate of its
mean converges to the true value, putting an upper bound on the expected total
number of times when its index stays above the mean of the optimal arm. The
proof that follows is typical for the analysis of algorithms like UCB and hence we
provide quite a bit of detail so that readers can later construct their own proofs.

The Upper Confidence Bound Algorithm 99

Proof of Theorem 7.1 Without loss of generality we assume the first arm is
optimal so that µ1 = µ∗. As noted above,

Rn =
K∑

i=1
∆iE [Ti(n)] . (7.4)

The theorem will be proven by bounding E[Ti(n)] for each suboptimal arm i. We
make use of a relatively standard idea, which is to decouple the randomness from
the behavior of the UCB algorithm. Let Gi be the ‘good’ event defined by

Gi =
{
µ1 < min

t∈[n]
UCB1(t)

}
∩
{
µ̂iui +

√
2
ui

log
(

1
δ

)
< µ1

}
,

where ui ∈ [n] is a constant to be chosen later. So Gi is the event when µ1 is
never underestimated by the upper confidence bound of the first arm, while at the
same time the upper confidence bound for the mean of arm i after ui observations
are taken from this arm is below the payoff of the optimal arm. We will show
two things:

1 If Gi occurs, then Ti(n) ≤ ui.
2 The complement event Gci occurs with low probability (governed in some way

yet to be discovered by ui).

Because Ti(n) ≤ n no matter what, this will mean that

E [Ti(n)] = E [I {Gi}Ti(n)] + E [I {Gci}Ti(n)] ≤ ui + P (Gci)n . (7.5)

The next step is to complete our promise by showing that Ti(n) ≤ ui on Gi and
that P (Gci) is small. Let us first assume that Gi holds and show that Ti(n) ≤ ui,
which we do by contradiction. Suppose that Ti(n) > ui. Then, arm i was played
more than ui times over the n rounds and so there must exist a round t ∈ [n]
where Ti(t− 1) = ui and At = i. Using the definition of Gi we have:

UCBi(t− 1) = µ̂i(t− 1) +

√
2 log(1/δ)
Ti(t− 1) (definition of UCBi(t− 1))

= µ̂iui +

√
2 log(1/δ)

ui
(since Ti(t− 1) = ui)

< µ1 (definition of Gi)
< UCB1(t− 1) , (definition of Gi)

which means that At = argmaxj UCBj(t − 1) 6= i and so a contradiction is
obtained. Therefore if Gi occurs, then Ti(n) ≤ ui. Let us now turn to upper
bounding P (Gci). By its definition,

Gci =
{
µ1 ≥ min

t∈[n]
UCB1(t)

}
∪



µ̂iui +

√
2 log(1/δ)

ui
≥ µ1



 . (7.6)

The Upper Confidence Bound Algorithm 100

The first of these sets is decomposed using the definition of UCB1(t)
{
µ1 ≥ min

t∈[n]
UCB1(t)

}
⊂
{
µ1 ≥ min

s∈[n]
µ̂1s +

√
2 log(1/δ)

s

}

=
⋃

s∈[n]

{
µ1 ≥ µ̂1s +

√
2 log(1/δ)

s

}
.

Then using a union bound and the concentration bound for sums of independent
subgaussian random variables in Corollary 5.1 we obtain:

P
(
µ1 ≥ min

t∈[n]
UCB1(t)

)
≤ P


 ⋃

s∈[n]

{
µ1 ≥ µ̂1s +

√
2 log(1/δ)

s

}


≤
n∑

s=1
P

(
µ1 ≥ µ̂1s +

√
2 log(1/δ)

s

)
≤ nδ . (7.7)

The next step is to bound the probability of the second set in (7.6). Assume that
ui is chosen large enough that

∆i −
√

2 log(1/δ)
ui

≥ c∆i (7.8)

for some c ∈ (0, 1) to be chosen later. Then, since µ1 = µi + ∆i and using
Corollary 5.1,

P


µ̂iui +

√
2 log(1/δ)

ui
≥ µ1


 = P


µ̂iui − µi ≥ ∆i −

√
2 log(1/δ)

ui




≤ P (µ̂iui − µi ≥ c∆i) ≤ exp
(
−uic

2∆2
i

2

)
.

Taking this together with (7.7) and (7.6) we have

P (Gci) ≤ nδ + exp
(
−uic

2∆2
i

2

)
.

When substituted into Eq. (7.5) we obtain

E [Ti(n)] ≤ ui + n

(
nδ + exp

(
−uic

2∆2
i

2

))
. (7.9)

It remains to choose ui, which must be a positive integer and satisfy (7.8). A
natural choice is the smallest integer for which (7.8) holds, which is

ui =
⌈

2 log(1/δ)
(1− c)2∆2

i

⌉
.

Then using the assumption that δ = 1/n2 and this choice of ui leads via (7.9) to

E[Ti(n)] ≤ ui + 1 + n1−2c2/(1−c)2
=
⌈

2 log(n2)
(1− c)2∆2

i

⌉
+ 1 + n1−2c2/(1−c)2

. (7.10)

The Upper Confidence Bound Algorithm 101

All that remains is to choose c ∈ (0, 1). The second term will contribute a
polynomial dependence on n unless 2c2/(1− c)2 ≥ 1. However, if c is chosen too
close to 1, then the first term blows up. Somewhat arbitrarily we choose c = 1/2,
which leads to

E [Ti(n)] ≤ 3 + 16 log(n)
∆2
i

.

The result follows by substituting the above display in Eq. (7.4).

As we saw for the ETC strategy, the regret bound in Theorem 7.1 depends
on the reciprocal of the gaps, which may be meaningless when even a single
suboptimal action has a very small suboptimality gap. As before one can also
prove a sublinear regret bound that does not depend on the reciprocal of the
gaps.

theorem 7.2 If δ = 1/n2, then the regret of UCB, as defined in Algorithm 2,
on any ν ∈ EKSG(1) environment is bounded by

Rn ≤ 8
√
nK log(n) + 3

K∑

i=1
∆i .

Proof Let ∆ > 0 be some value to be tuned subsequently and recall from the
proof of Theorem 7.1 that for each suboptimal arm i we can bound

E[Ti(n)] ≤ 3 + 16 log(n)
∆2
i

.

Therefore using the basic regret decomposition again (Lemma 4.2), we have

Rn =
K∑

i=1
∆iE [Ti(n)] =

∑

i:∆i<∆
∆iE [Ti(n)] +

∑

i:∆i≥∆
∆iE [Ti(n)]

≤ n∆ +
∑

i:∆i≥∆

(
3∆i + 16 log(n)

∆i

)
≤ n∆ + 16K log(n)

∆ + 3
∑

i

∆i

≤ 8
√
nK log(n) + 3

K∑

i=1
∆i ,

where the first inequality follows because
∑
i:∆i<∆ Ti(n) ≤ n and the last line by

choosing ∆ =
√

16K log(n)/n.

The additive
∑
i ∆i term is unavoidable because no reasonable algorithm can

avoid playing each arm once (try to work out what would happen if it did not).
In any case, this term does not grow with the horizon n and is typically negligible.
As it happens, Theorem 7.2 is close to optimal. We will see in Chapter 15 that
no algorithm can enjoy regret smaller than O(

√
nK) over all problems in EKSG(1).

In Chapter 9 we will also see a more complicated variant of Algorithm 2 that
shaves the logarithmic term from the upper bound given above.

The Upper Confidence Bound Algorithm 102

0 0.2 0.4 0.6 0.8 1

20

40

60

80

100

∆

Ex
pe

ct
ed

re
gr

et
ETC (m = 25)
ETC (m = 50)
ETC (m = 75)
ETC (m = 100)
ETC (optimal m)
UCB

Figure 7.1 Experiment showing universality of UCB relative to fixed instances of
explore-then-commit

We promised that UCB would overcome the limitations of ETC by achieving
the same guarantees, but without prior knowledge of the suboptimality gaps.
The theory supports this claim, but just because two algorithms have similar
theoretical guarantees, does not mean they perform the same empirically. The
theoretical analysis might be loose for one algorithm (and maybe not the other,
or by a different margin). For this reason it is always wise to prove lower bounds
(which we do later) and compare the empirical performance, which we do (very
briefly) now.

The setup is the same as in Fig. 6.1, which has n = 1000 and K = 2 and
unit variance Gaussian rewards with means 0 and −∆ respectively. The plot in
Fig. 7.1 shows the expected regret of UCB relative to ETC for a variety of choices
of commitment time m. The expected regret of ETC with the optimal choice of
m (which depends on the knowledge of ∆ and that the payoffs are Gaussian, cf.
Fig. 6.1) is also shown.

The results demonstrate a common phenomenon. If ETC is tuned with the
optimal choice of commitment time for each choice of ∆ then it can outperform
the parameter-free UCB, though only by a relatively small margin. If, however,
the commitment time must be chosen without the knowledge of ∆, for ∆ getting
large, or for ∆ being bounded, n getting large, UCB arbitrarily outperforms
ETC. As it happens, a variant of UCB introduced in the next chapter actually
outperforms even the optimally tuned ETC.

7.1 Notes 103

7.1 Notes

1 The choice of δ = 1/n2 led to an easy analysis, but comes with two
disadvantages. First of all, it turns out that a slightly smaller value of δ
improves the regret (and empirical performance). Secondly, the dependence on
n means the horizon must be known in advance, which is often not reasonable.
Both of these issues are resolved in the next chapter where δ is chosen to be
smaller and to depend on the current round t rather than n. None-the-less –
as promised – Algorithm 2 with δ = 1/n2 does achieve a regret bound similar
to the ETC strategy, but without requiring knowledge of the gaps.

2 The assumption that the rewards generated by each arm are independent can
be relaxed significantly. All of the results would go through by assuming there
exists a mean reward vector µ ∈ RK such that

E[Xt | X1, A1, . . . , At−1, Xt−1, At] = µAt a.s. . (7.11)
E[exp(λ(Xt − µAt)) | X1, A1, . . . , At−1, Xt−1, At] ≤ exp(λ2/2) a.s. . (7.12)

Eq. (7.11) is just saying that the conditional mean of the reward in round t

only depends on the chosen action. Eq. (7.12) ensures that the tails of Xt are
conditionally subgaussian. That everything still goes through is proven using
martingale techniques, which we develop in detail in Chapter 20.

3 So is the optimism principle universal? Does it always give good algorithms, even
in more complicated settings? Unfortunately, the answer is no. The optimism
principle leads to reasonable algorithms when (i) any action gives feedback
about how much that action is worth, and (ii) no action gives feedback about
the value of other actions. When either of these conditions is not met (i.e., in
structured bandits, or learning problems with less-than-bandit-feedback such as
when one has to choose some action B 6= A to learn about the rewards of some
action A), the principle fails! When (i) is violated even sublinear regret may not
be guaranteed. When (ii) is violated the regret achieved by optimistic algorithm
may be too high (optimistic algorithms may miss some nontrivial optimization
opportunities). Thus, unstructured finite-armed stochastic bandits, when both
(i) and (ii) hold, are a perfect fit for optimistic algorithms. While the more
complex models where the above conditions may not be met may not make
much sense at the moment, they will be discussed quite extensively in later
chapters.

7.2 Bibliographical remarks

The use of confidence bounds and the idea of optimism first appeared in the
work by Lai and Robbins [1985] (for the curious, it is the same Robbins). They
analyzed the asymptotics for various parametric bandit problems (see the next
chapter for more details on this). The first version of UCB is by Lai [1987]. Other

7.3 Exercises 104

early work is by Katehakis and Robbins [1995], who gave a very straightforward
analysis for the Gaussian case and Agrawal [1995], who noticed that all that was
needed is an appropriate sequence of upper confidence bounds on the unknown
means. In this way, their analysis is significantly more general than what we have
done here. These researchers also focussed on the asymptotics, which at the time
was the standard approach in the statistics literature. The UCB algorithm was
independently discovered by Kaelbling [1993], although with no regret analysis
or clear advice on how to tune the confidence parameter. The version of UCB
discussed here is most similar to that analyzed by Auer et al. [2002a] under the
name UCB1, but that algorithm used t rather than n in the confidence level
(see the next chapter). Like us, they prove a finite-time regret bound. However,
rather than considering 1-subgaussian environments, Auer et al. [2002a] considers
bandits where the payoffs are confined to the [0, 1] interval, which are ensured
to be 1/2-subgaussian. See Exercise 7.2 for hints on what must change in this
situation. The basic structure of the proof of our Theorem 7.1 is essentially
the same as that of Theorem 1 of Auer et al. [2002a]. The worst-case bound in
Theorem 7.2 appeared in the book by Bubeck and Cesa-Bianchi [2012], which also
popularized the subgaussian setup. We did not have time to discuss the situation
where the subgaussian constant is unknown. There have been several works
exploring this direction. If the variance is unknown, but the noise is bounded,
then one can replace the subgaussian concentration bounds with an empirical
Bernstein inequality [Audibert et al., 2007]. For details see Exercise 7.7. If the
noise has heavy tails, then a more serious modification is required as discussed in
Exercise 7.8 and the note that follows.

7.3 Exercises

7.1 In this exercise we investigate one of the more annoying challenges when
analyzing sequential algorithms. Let X1, X2, . . . be a sequence of independent
standard Gaussian random variables defined on probability space (Ω,F ,P).
Suppose that T : Ω → {1, 2, 3, . . .} is another random variable and let
µ̂ =

∑T
t=1Xt/T be the empirical mean based on T samples.

(a) Show that if T is independent from Xt for all t, then

P

(
µ̂− µ ≥

√
2 log(1/δ)

T

)
≤ δ .

(b) We now relax the assumption that T is independent. Let Et = I {T = t} be
the event that T = t and Ft = σ(X1, . . . , Xt) be the σ-algebra generated by
the first t samples. Show there exists a T such that for all t ∈ {1, 2, 3, . . .} it

7.3 Exercises 105

holds that Et is Ft-measurable and

P

(
µ̂− µ ≥

√
2 log(1/δ)

T

)
= 1 for all δ ∈ (0, 1) .

(c) Show that

P

(
µ̂− µ ≥

√
2 log(T (T + 1)/δ)

T

)
≤ δ . (7.13)

For part (b) above you may find it useful to apply the law of the iterated
logarithm, which says if X1, X2, . . . is a sequence of independent and identically
distributed random variables with zero mean and unit variance, then

lim sup
n→∞

∑n
t=1Xt√

2n log logn
= 1 almost surely .

This result is especially remarkable because it relies on no assumptions other
than zero mean and unit finite variance. A thoughtful reader might wonder if
Eq. (7.13) might still be true if log(T (T + 1))/δ were replaced by log(log(T)/δ).
It almost can, but the proof of this fact is more sophisticated. For more details
see the paper by Garivier [2013] or Exercise 23.6.

7.2 In this chapter we assumed the payoff distributions were 1-subgaussian (that
is, ν ∈ EKSG(1)). The purpose of this exercise is to relax this assumption.

(a) First suppose that σ2 > 0 is a known constant and that ν ∈ EKSG(σ2). Modify
the UCB algorithm and state and prove an analogue of Theorems 7.1 and 7.2
for this case.

(b) Now suppose that ν = (νi)i is chosen so that νi is σi-subgaussian where (σ2
i)i

are known. Modify the UCB algorithm and state and prove an analogue of
Theorems 7.1 and 7.2 for this case.

(c) If you did things correctly, the regret bound in the previous part should not
depend on the values of {σ2

i : ∆i = 0}. Explain why not.

7.3 Recall from Chapter 4 that the pseudo-regret is defined to be the random
variable

R̄n =
n∑

t=1
∆At .

The UCB policy in Algorithm 2 depends on confidence parameter δ ∈ (0, 1] that
determines the level of optimism. State and prove a bound on the pseudo-regret
of this algorithm that holds with probability 1 − f(n,K)δ where f(n,K) is a
function that depends on n and K only. More precisely show that for bandit
ν ∈ EKSG(1) that

P
(
R̄n ≥ g(n, ν, δ)

)
≤ f(n,K)δ ,

7.3 Exercises 106

where g and f should be as small as possible (there are trade-offs – try and come
up with a natural choice).

7.4 This exercise is about the empirical behavior of UCB.

(a) Implement Algorithm 2.
(b) Reproduce Fig. 7.1.
(c) Explain the shape of the ETC curves. In particular, when m = 50 we see a

bump, a dip, and then a linear asymptote as ∆ grows. Why does the curve
look like this?

(d) Design an experiment to determine the practical effect of the choice of δ.
There are many interesting regimes where this is interesting. For example:

(1) Suppose you have a Gaussian bandit with two arms and means µ1 = 0 and
µ2 = −∆. Let n = 1000 and try to determine the optimal value of δ for
UCB as a function of ∆.

(2) What happens if you have more arms. For example, µ1 = 0 and µi = −∆
for i > K. How does the optimal choice of δ change as K increases?

(3) Justify your results pseudo-theoretically (that is, provide a theoretically
motivated justification for the results, but no proof).

7.5 Fix a 1-subgaussian K-armed bandit environment and a horizon n. Consider
the version of UCB that works in phases of exponentially increasing length of
1, 2, 4, In each phase, the algorithm uses the action that would have been
chosen by UCB at the beginning of the phase (see Algorithm 3 below).

(a) State and prove a bound on the regret for this version of UCB.
(b) Compare you result with Theorem 7.1.
(c) How would the result change if the kth phase had a length of

⌈
αk
⌉

with
α > 1?

1: Input K and δ

2: Choose each arm once
3: for ` = 1, 2, . . . do
4: Compute A` = argmaxi UCBi(t− 1, δ)
5: Choose arm A` exactly 2` times
6: end for

Algorithm 3: A phased version of UCB

7.6 Let α > 1 and consider the version of UCB that first plays each arm once.
Thereafter it operates in the same way as UCB, but rather than playing the
chosen arm just once, it plays it until the number of plays of that arm is a factor
of α larger (see Algorithm 4 below).

(a) State and prove a bound on the regret for version of UCB with α = 2
(doubling counts).

7.3 Exercises 107

(b) Compare with the result of the previous exercise and with Theorem 7.1. What
can you conclude?

(c) Repeat the analysis for α > 1. What is the role of α?
(d) Implement these algorithms and compare them empirically to UCB(δ).

1: Input K and δ

2: Choose each arm once
3: for ` = 1, 2, . . . do
4: Let t` = t

5: Compute A` = argmaxi UCBi(t` − 1, δ)
6: Choose arm A` until round t such that Ti(t) ≥ αTi(t` − 1)
7: end for

Algorithm 4: A phased version of UCB

The algorithms of the last two exercises may seem ridiculous. Why would you
wait before updating empirical estimates and choosing a new action? There
are at least two reasons:
– It can happen that the algorithm does not observe its rewards immediately,

but rather they appear asynchronously after some delay. Alternatively many
bandits algorithms may be operating simultaneously and the results must
be communicated at some cost.

– If the feedback model has a more complicated structure than what we
examined so far, then even computing the upper confidence bound just once
can be quite expensive. In these circumstances it’s comforting to know that
the loss of performance by updating the statistics only rarely is not too
severe.

7.7 Let X1, X2, . . . , Xn be a sequence of independent and identically distributed
random variables with mean µ and variance σ2 and bounded support so that
Xt ∈ [0, b] almost surely. Let µ̂ =

∑n
t=1Xt/n and σ̂2 =

∑n
t=1(µ̂−Xt)2/n. The

empirical Bernstein inequality says that for any δ ∈ (0, 1),

P

(
|µ̂− µ| ≥

√
2σ̂2

n
log
(

3
δ

)
+ 3b
n

log
(

3
δ

))
≤ δ .

(a) Show that σ̂2 = 1
n

∑n
t=1(Xt − µ)2 − (µ̂− µ)2.

(b) Show that V[(Xt − µ)2] ≤ b2σ2.
(c) Use Bernstein’s inequality (Exercise 5.16) to show that

P

(
σ̂2 ≥ σ2 +

√
2b2σ2

n
log
(

1
δ

)
+ 2b2

3n log
(

1
δ

))
≤ δ .

7.3 Exercises 108

(d) Suppose that ν = (νi)Ki=1 is a bandit where Supp(νi) ⊂ [0, b] and the variance
of the ith arm is σ2

i . Design a policy that depends on b, but not σ2
i such that

Rn ≤ C
∑

i:∆i>0

(
∆i +

(
b+ σ2

i

∆i

)
log(n)

)
,

where C > 0 is a universal constant.

If you did things correctly, then the policy you derived in Exercise 7.7 should
resemble UCB-V by Audibert et al. [2007]. The proof of the empirical Bernstein
also appears there or in the papers by Mnih et al. [2008] and Maurer and Pontil
[2009].

7.8 Let n ∈ N+ and (Ai)ki=1 be a partition of [n] so that ∪ki=1Ai = [n]
and Ai ∩ Aj = ∅ for all i 6= j. Suppose that δ ∈ (0, 1) and X1, X2, . . . , Xn

is a sequence of independent random variables with mean µ and variance σ2.
The median-of-means estimator µ̂M of µ the median of µ̂1, µ̂2, . . . , µ̂k where
µ̂i =

∑
t∈Ai Xt/|Ai| is the mean of the data in the ith block.

(a) Show that if k =
⌊
min

{
n
2 , 8 log

(
e1/8

δ

)}⌋
and Ai are chosen as equally sized

as possible, then

P

(
µ̂M +

√
192σ2

n
log
(
e1/8

δ

))
≤ δ .

(b) Use the median-of-means estimator to design an upper confidence bound
algorithm such that for all ν ∈ EKV (σ2)

Rn ≤ C
∑

i:∆i>0

(
∆i + σ2 log(n)

∆i

)
,

where C > 0 is a universal constant.

This exercise shows that unless one cares greatly about constant factors, then
the subgaussian assumption can be relaxed to requiring only finite variance.
The result is only possible by replacing the standard empirical estimator with
something more robust. The median-of-means estimator is only one way to do
this. In fact, the empirical estimator can be made robust by truncating the
observed rewards and applying the empirical Bernstein concentration inequality.
The disadvantage of this approach is that choosing the location of truncation
requires prior knowledge about the approximate location of the mean. Another
approach is Catoni’s estimator, which also exhibits excellent asymptotic
properties [Catoni, 2012]. Yet another idea is to minimize the Huber loss [Sun
et al., 2017]. This latter paper is focussing on linear models, but the results
still apply in one dimension. The application of these ideas to bandits was first

7.3 Exercises 109

made by Bubeck et al. [2013a], where the reader will find more interesting
results. Most notably, that things can still be made to work even if the variance
does not exist. In this case, however, there is a price to be paid in terms of
the regret. The median-of-means estimator is due to Alon et al. [1996]. In case
the variance is also unknown, then it may be estimated by assuming a known
bound on the kurtosis, which covers many classes of bandits (Gaussian with
arbitrary variance, exponential and many more), but not some simple cases
(Bernoulli). The policy that results from this procedure has the benefit of being
invariant under the transformations of shifting or scaling the losses [Lattimore,
2017].

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

8 The Upper Confidence Bound
Algorithm: Asymptotic Optimality

In the next few chapters we improve the regret of policies based on the optimism
principle by refining the confidence level used by UCB. Our first refinement
of Algorithm 2 improves the constants in the previous analysis and resolves
the issue of knowing the horizon in advance. As we shall eventually discover
in Chapter 16 on lower bounds, the analysis here is sufficiently tight that the
dominant logarithmic terms in the regret bound are preceded by the optimal
constants.

1: Input K

2: Choose each arm once
3: Subsequently choose

At = argmaxi

(
µ̂i(t− 1) +

√
2 log f(t)
Ti(t− 1)

)

where f(t) = 1 + t log2(t)

Algorithm 5: Asymptotically optimal UCB

The regret bound for Algorithm 5 is more complicated than what we presented
for Algorithm 2 (see Theorem 7.1). The important thing is that the dominant
terms have the same order and slightly smaller constants.

theorem 8.1 The regret of Algorithm 5 satisfies

Rn ≤
∑

i:∆i>0
inf

ε∈(0,∆i)
∆i

(
1 + 5

ε2 + 2
(∆i − ε)2

(
log f(n) +

√
π log f(n) + 3

))
.

(8.1)

Furthermore,

lim sup
n→∞

Rn
log(n) ≤

∑

i:∆i>0

2
∆i

. (8.2)

Before the proof, let us present a simpler version of the above bound, avoiding
all these epsilons and infimums that make for a confusing theorem statement. By

http://banditalgs.com
mailto:tor.lattimore@gmail.com

The Upper Confidence Bound Algorithm: Asymptotic Optimality 111

choosing ε = ∆i/2 we see that the regret of Algorithm 5 is bounded by

Rn ≤
∑

i:∆i>0

(
∆i + 1

∆i

(
8 log f(n) + 8

√
π log f(n) + 44

))
. (8.3)

Even more concretely, there exists some universal constant C > 0 such that

Rn ≤ C
∑

i:∆i>0

(
∆i + log(n)

∆i

)
,

which by the same argument as in the proof of Theorem 7.2 leads a worst-case
bound of Rn ≤ C

∑K
i=1 ∆i + 2

√
CnK log(n).

Taking the limit of the ratio of the bound in (8.3) and log(n) does not result
in the same constant as in the theorem, which is the main justification for
introducing the epsilons in the first place. We shall see in Chapter 15 that the
asymptotic bound on the regret given in (8.2), which is derived from (8.1) by
choosing ε = log−1/4(n), is unimprovable in a strong sense.

We start with a useful lemma that helps us bound the number of times the
index of a suboptimal arm will be larger than some thresh-hold above its mean.

lemma 8.1 Let X1, X2, . . . be a sequence of independent 1-subgaussian random
variables, µ̂t = 1

t

∑t
s=1Xs, ε > 0 and

κ =
n∑

t=1
I

{
µ̂t +

√
2a
t
≥ ε
}
, κ′ = u+

n∑

t=due
I

{
µ̂t +

√
2a
t
≥ ε
}
,

where u = 2aε−2. Then it holds E[κ] ≤ E[κ′] ≤ 1 + 2
ε2 (a+

√
πa+ 1).

The intuition for this result is as follows. Since the Xi are 1-subgaussian and
independent we have E[µ̂t] = 0, so we cannot expect µ̂t +

√
2a/t to be smaller

than ε until t is at least 2a/ε2. The lemma confirms that this is indeed of the
right order as an estimate for E [κ].

Proof By Corollary 5.1 we have

E[κ] ≤ E[κ′] = u+
n∑

t=due
P

(
µ̂t +

√
2a
t
≥ ε
)
≤ u+

n∑

t=due
exp


−

t
(
ε−

√
2a
t

)2

2




≤ 1 + u+
∫ ∞

u

exp


−

t
(
ε−

√
2a
t

)2

2


 dt = 1 + 2

ε2 (a+
√
πa+ 1)

as required.

The Upper Confidence Bound Algorithm: Asymptotic Optimality 112

Proof of Theorem 8.1 As usual, we start with the basic regret decomposition.

Rn =
∑

i:∆i>0
∆iE[Ti(n)] .

The rest of the proof revolves around bounding E[Ti(n)]. Let i be the index of
some sub-optimal arm (so that ∆i > 0). The main idea is to decompose Ti(n)
into two terms. The first measures the number of times the index of the optimal
arm is less than µ1 − ε. The second term measures the number of times that
At = i and its index is larger than µ1 − ε.

Ti(n) =
n∑

t=1
I {At = i}

≤
n∑

t=1
I

{
µ̂1(t− 1) +

√
2 log f(t)
T1(t− 1) ≤ µ1 − ε

}

+
n∑

t=1
I

{
µ̂i(t− 1) +

√
2 log f(t)
Ti(t− 1) ≥ µ1 − ε and At = i

}
. (8.4)

The proof of the first part of the theorem is completed by bounding the expectation
of each of these two sums. Starting with the first, we again use Corollary 5.1:

E

[
n∑

t=1
I

{
µ̂1(t− 1) +

√
2 log f(t)
T1(t− 1) ≤ µ1 − ε

}]

=
n∑

t=1
P

(
µ̂1(t− 1) +

√
2 log f(t)
T1(t− 1) ≤ µ1 − ε

)

≤
n∑

t=1

n∑

s=1
P

(
µ̂1,s +

√
2 log f(t)

s
≤ µ1 − ε

)

≤
n∑

t=1

n∑

s=1
exp


−

s

(√
2 log f(t)

s + ε

)2

2




≤
n∑

t=1

1
f(t)

n∑

s=1
exp

(
−sε

2

2

)
≤ 5
ε2 .

The first inequality follows from the union bound over all possible values of
T1(t − 1). The last inequality is an algebraic exercise (cf. Exercise 8.1). The
function f(t) was chosen precisely so this bound would hold. If f(t) = t instead,
then the sum would diverge. Since f(n) appears in the numerator below we would
like f to be large enough that its reciprocal is summable and otherwise as small

8.1 Notes 113

as possible. For the second term in (8.4) we use Lemma 8.1 to get

E

[
n∑

t=1
I

{
µ̂i(t− 1) +

√
2 log f(t)
Ti(t− 1) ≥ µ1 − ε and At = i

}]

≤ E

[
n∑

t=1
I

{
µ̂i(t− 1) +

√
2 log f(n)
Ti(t− 1) ≥ µ1 − ε and At = i

}]

≤ E

[
n∑

s=1
I

{
µ̂i,s +

√
2 log f(n)

s
≥ µ1 − ε

}]

= E

[
n∑

s=1
I

{
µ̂i,s − µi +

√
2 log f(n)

s
≥ ∆i − ε

}]

≤ 1 + 2
(∆i − ε)2

(
log f(n) +

√
π log f(n) + 1

)
.

The first part of the theorem follows by substituting the results of the previous
two displays into (8.4). The second part follows by choosing ε = log−1/4(n) and
taking the limit as n tends to infinity.

8.1 Notes

1 The improvement to the constants comes from making the confidence interval
slightly smaller, which is made possible by a more careful analysis. The main
trick is the observation that we do not need to show that µ̂1,s ≥ µ1 for all s
with high probability, but instead that µ̂1,s ≥ µ1 − ε for small ε. This idea
buys quite a lot and we will see it repeatedly in subsequent chapters.

2 The choice of f(t) = 1 + t log2(t) looks quite odd. As we pointed out in the
proof, things would not have gone through had we chosen f(t) = t. With a
slightly messier calculation we could have chosen f(t) = t logα(t) for any α > 0.
If the rewards are actually Gaussian, then a more careful concentration analysis
allows one to choose f(t) = t or even slightly smaller [Katehakis and Robbins,
1995, Lattimore, 2016a, Garivier et al., 2016b].

8.2 Bibliographic remarks

Lai and Robbins [1985] designed policies for which Eq. (8.2) held and proved lower
bounds showing that no ‘reasonable’ policy can improve on this bound for any
problem, where ‘reasonable’ means that they suffer subpolynomial regret on all
problems. We will discuss these issues in great detail in Part IV where we address
lower bounds. The policy proposed by Lai and Robbins [1985] was based on upper
confidence bounds, but was not a variant of UCB. The asymptotics for variants
of the policy presented here were given first by Katehakis and Robbins [1995] and

8.3 Exercises 114

Agrawal [1995]. Neither of these articles gave finite-time bounds like what was
presented here. When the reward distributions lie in an exponential family, then
asymptotic and finite-time bounds with the same flavor to what is presented here
are given by Cappé et al. [2013]. There are now a huge variety of asymptotically
optimal policies in a wide range of settings. Burnetas and Katehakis [1996] study
the general case and give conditions for a version of UCB to be asymptotically
optimal. Honda and Takemura [2010, 2011] analyze an algorithm called DMED
to derive asymptotic optimality for noise models where the support is bounded or
semi-bounded. Kaufmann et al. [2012b] prove asymptotic optimality for Thompson
sampling (see Chapter 35) when the rewards are Bernoulli, which is generalized
to single parameter exponential families by Korda et al. [2013]. Kaufmann [2018]
proves asymptotic optimality for the Bayes UCB class of algorithms for single
parameter exponential families. Ménard and Garivier [2017] prove asymptotic
optimality and minimax optimality for exponential families (more discussion in
Chapter 9).

8.3 Exercises

8.1 [Do the algebra needed at the end of the proof of Theorem 8.1] Show that
n∑

t=1

1
f(t)

n∑

s=1
exp

(
−sε

2

2

)
≤ 5
ε2 ,

where f(t) = 1 + t log2(t).

First bound F =
∑n
s=1 exp(−sε2/2) using a geometric series. Then show that

exp(−a)/(1− exp(−a)) ≤ 1/a holds for any a > 0 and conclude that F ≤ 2
ε2 .

Finish by bounding
∑n
t=1 1/f(t) using the fact that 1/f(t) ≤ 1/(t log(t)2) and

bounding a sum by an integral.

8.2 [One-armed bandits and UCB] Consider the one-armed bandit problem
from Exercise 4.9. Notice that this one-armed bandit problem can be formulated
as a regular bandit with two actions in which the first action corresponds to
playing the machine and the second to not playing it. The noise in this case is
1-subgaussian, which means that the theoretical guarantees of UCB are applicable.
For p = 1, evaluate

lim sup
n→∞

RUCB
p (n)

log(n) .

8.3 [Continuation of Exercise 8.2] The difference between the one and two-armed
bandit is that for one-armed bandits the mean of the second arm is known. This
additional information is not exploited by UCB. However, we can incorporate this

8.3 Exercises 115

additional information into the definition of UCB as follows: Let f(t) = 1+t log2(t)
and define a policy by

At =





1, if µ̂1(t− 1) +
√

2 log f(t)
T1(t−1) ≥ 0 ;

2, otherwise .
(8.5)

Prove that the modified UCB algorithm satisfies:

lim sup
n→∞

Rmodified-ucb
p (n)

log(n) ≤
{

0, if p ≥ 1/2;
2

1−2p , if p < 1/2 .

(Hint: Follow the analysis that we gave for UCB, but carefully adapt the proof
by using the fact that the index of the second arm is always 0. This will leave
you with a finite-time regret guarantee for the modified UCB from which the
identity above can be derived.)

8.4 [Continuation of Exercise 8.3] The purpose of this question is to compare
UCB and the modified version in (8.5).

(a) Implement a simulator for the one-armed bandit problem and two algorithms.
UCB and the modified version analysed in Exercise 8.3.

(b) Use your simulator to estimate the expected regret of each algorithm for a
horizon of n = 1000 and p ∈ {0, 1/20, 2/20, . . . , 19/20, 1}.

(c) Plot your results with p on the x-axis and the estimated expected regret on
the y-axis. Don’t forget to label the axis and include error bars and a legend.

(d) Explain the results. Why do the curves look the way they do?
(e) In your plot, for what values of p does the worst-case expected regret for each

algorithm occur? What is the worst-case expected regret for each algorithm?

8.5 Let σ2 ∈ [0,∞)K be known and suppose that the reward is Xt ∼ N (µAt , σ2
At

).
Design an algorithm (that depends on σ2) for which the asymptotic regret is

lim sup
n→∞

Rn
log(n) =

∑

i:∆i>0

2σ2
i

∆i
.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

9 The Upper Confidence Bound
Algorithm: Minimax Optimality (†)

The variants of UCB analyzed in the last two chapters have a distribution free
regret bound of Rn = O(

√
Kn log(n)). The factor of

√
log(n) can be removed

by modifying the confidence level of the algorithm. The directly named Minimax
Optimal Strategy in the Stochastic case algorithm (MOSS) was the first to make
this modification and is presented below. MOSS again depends on prior knowledge
of the horizon, a requirement that may be relaxed as we explain in the notes.

The term minimax is used because, except for constant factors, the distribution
free bound proven in this chapter cannot be improved upon by any algorithm.
The lower bounds are deferred to Part IV.

1: Input n and K

2: Choose each arm once
3: Subsequently choose

At = argmaxi µ̂i(t− 1) +

√
4

Ti(t− 1) log+
(

n

KTi(t− 1)

)
,

where log+(x) = log max {1, x} .

Algorithm 6: MOSS

theorem 9.1 The regret of Algorithm 6 is bounded by Rn ≤ 34
√
Kn+

K∑

i=1
∆i.

Before the proof we need a strengthened version of Corollary 5.1.

theorem 9.2 Let X1, X2, . . . , Xn be a sequence of independent 1-subgaussian
random variables and St =

∑t
s=1Xs. Then,

P (exists t ≤ n : St ≥ ε) ≤ exp
(
− ε

2

2n

)
. (9.1)

The bound in Eq. (9.1) is the same as the bound on P (Sn ≥ ε) that appears
in a simple reformulation of Corollary 5.1, so this new result is strictly stronger.

http://banditalgs.com
mailto:tor.lattimore@gmail.com

The Upper Confidence Bound Algorithm: Minimax Optimality (†) 117

Proof From the definition of subgaussian random variables and Lemma 5.2,

E [exp (λSn)] ≤ exp
(
nσ2λ2

2

)
.

Then choosing λ = ε/(nσ2) leads to

P (exists t ≤ n : St ≥ ε) = P
(

max
t≤n

exp (λSt) ≥ exp (λε)
)

≤ E [exp (λSn)]
exp (λε) ≤ exp

(
nσ2λ2

2 − λε
)

= exp
(
− ε2

2nσ2

)
.

The novel step is the first inequality, which follows from the maximal inequality
(Theorem 3.5) and the fact that exp(λSt) is a supermartingale with respect to
the filtration generated by X1, X2, . . . , Xn (Exercise 9.1).

Before the proof of Theorem 9.1 we need one more lemma to bound the
probability that the index of the optimal arm ever drops too far below the actual
mean of the optimal arm. The proof of this lemma relies on a tool called the
peeling device, which is an important technique in probability theory and has
many applications beyond bandits. For example, it can be used to prove the law
of the iterated logarithm.

lemma 9.1 Let δ ∈ (0, 1) and X1, X2, . . . be independent and 1-subgaussian
and µ̂t = 1

t

∑t
s=1Xs. Then for any ∆ > 0,

P

(
exists s ≥ 1 : µ̂s +

√
4
s

log+
(

1
sδ

)
+ ∆ ≤ 0

)
≤ 16δ

∆2 .

Proof Let St = tµ̂t. Then

P

(
exists s ≥ 1 : µ̂s +

√
4
s

log+
(

1
sδ

)
+ ∆ ≤ 0

)

= P

(
exists s ≥ 1 : Ss +

√
4s log+

(
1
sδ

)
+ s∆ ≤ 0

)

≤
∞∑

k=0
P

(
exists s ∈ [2k, 2k+1] : Ss +

√
4s log+

(
1
sδ

)
+ s∆ ≤ 0

)

≤
∞∑

k=0
P

(
exists s ≤ 2k+1 : Ss +

√
4 · 2k log+

(
1

2k+1δ

)
+ 2k∆ ≤ 0

)

≤
∞∑

k=0
exp


−

(√
2k+2 log+(1

2k+1δ

)
+ 2k∆

)2

2k+2


 .

In the first inequality we used the union bound, but rather than applying it on
every time step as we did in the proof of Theorem 8.1, we apply it on a geometric

The Upper Confidence Bound Algorithm: Minimax Optimality (†) 118

grid. The second step is straightforward, but important because it sets up to
apply Theorem 9.2. The rest is purely algebraic.

∞∑

k=0
exp


−

(√
2k+2 log+(1

2k+1δ

)
+ 2k∆

)2

2k+2


 ≤ δ

∞∑

k=0
2k+1 exp

(
−∆22k−2)

≤ 8δ
∆2 +

∫ ∞

0
2s+1 exp

(
−∆22s−2) ds ≤ 16δ

∆2 ,

where the first inequality follows since (a + b)2 ≥ a2 + b2 for a, b ≥ 0
and the second last step follows by noting that the integrand is unimodal
and has a maximum value of 8δ/∆2. For such functions f one may bound∑b
k=a f(k) ≤ maxs∈[a,b] f(s) +

∫ b
a
f(s)ds.

Proof of Theorem 9.1 As usual, we assume without loss of generality that the
first arm is optimal, so µ1 = µ∗. Define a random variable ∆ that measures how
far below the index of the optimal arm drops below its true mean.

∆ =
(
µ1 −min

s≤n

(
µ̂1s +

√
4
s

log+
(n

Ks

)))+

.

Using the basic regret decomposition (Lemma 4.2) and splitting the actions based
on whether or not their suboptimality gap is smaller or larger than 2∆ leads to

Rν(n) =
∑

i:∆i>0
∆iE[Ti(n)] ≤ 2n∆ +

∑

i:∆i>2∆
∆iE[Ti(n)]

≤ 2n∆ + 8
√
Kn+

∑

i:∆i>max
{

2∆,8
√
K/n
}∆iE[Ti(n)] .

The first term is easily bounded using Proposition 2.3 and Lemma 9.1.

E[2n∆] = 2nE[∆] = 2n
∫ ∞

0
P (∆ ≥ x) dx ≤ 2n

∫ ∞

0
min

{
1, 16K
nx2

}
dx = 16

√
Kn .

For suboptimal arm i define

κi =
n∑

s=1
I

{
µ̂is +

√
4
s

log+
(n

Ks

)
≥ µi + ∆i/2

}
.

The reason for choosing κi in this way is that for arms i with ∆i > 2∆ it holds
that the index of the optimal arm is always larger than µi + ∆i/2 so κi is an
upper bound on the number of times arm i is played, Ti(n). If ∆i ≥ 8(K/n)1/2,

9.1 Notes 119

then the expectation of ∆iκi is bounded using Lemma 8.1 by

∆iE[κi] ≤
1

∆i
+ ∆iE

[
n∑

s=1
I

{
µ̂is +

√
4
s

log+
(
n∆2

i

K

)
≥ µi + ∆i/2

}]

≤ ∆i + 8
∆i

(
2 log+

(
n∆2

i

K

)
+

√
2π log+

(
n∆2

i

K

)
+ 2
)

≤ ∆i +
√
n

K

(
2 log 8 +

√
2π log 8 + 2

)
≤ ∆i + 10

√
n

K
,

where the first inequality follows by replacing the s in the logarithm with 1/∆2
i

and adding the ∆i×1/∆2
i correction term to compensate for the first ∆−2

i rounds
where this doesn’t actually hold. Then we use Lemma 8.1 and the monotonicity
of x→ 1/x log+(ax2) for p ∈ [0, 1] and ax2 ≥ e2. The last inequality follows by
naively bounding 2 log 8 +

√
2π log 8 + 2 ≤ 10. Then

∑

i:∆i>max
{

2∆,8
√
K/n
}∆iE[Ti(n)] ≤

∑

i:∆i>max
{

2∆,8
√
K/n
}∆iE[κi]

≤
∑

i:∆i>max
{

2∆,8
√
K/n
}

(
∆i + 10

√
n

K

)
≤ 10

√
nK +

K∑

i=1
∆i .

Combining all the results we have Rn ≤ 34
√
Kn+

∑K
i=1 ∆i.

9.1 Notes

1 One may also prove an asymptotic upper bound on the regret of MOSS that is
rather close to optimal. Specifically, one can show that

lim sup
n→∞

Rn
log(n) ≤

∑

i:∆i>0

4
∆i

.

By modifying the algorithm slightly it is even possible to replace the 4 with a 2
and so recover the optimal asymptotic regret. The trick is to increase g slightly
and replace the 4 in the exploration bonus by 2. The major task is then to
re-prove Lemma 9.1, which is done by replacing the intervals [2k, 2k+1] with
smaller intervals [ξk, ξk+1] where ξ is tuned subsequently to be fractionally
larger than 1. This procedure is explained in detail by Garivier [2013]. When
the reward distributions are actually Gaussian there is a more elegant technique
that avoids peeling altogether (Exercise 9.4).

2 Although it is not obvious from the bounds proven in this chapter, all versions of
MOSS can be arbitrarily worse than UCB in some regimes. This unpleasantness
is hidden by both the minimax and asymptotic optimality criteria, which
highlights the importance of fully finite-time upper and lower bounds. The
counter-example witnessing the failure is quite simple. Let the rewards for all

9.1 Notes 120

arms be Gaussian with unit variance and n = K3, µ1 = 0, µ2 = −
√
K/n and

µi = −1 for all i > 2. From Theorem 8.1 we have that

RUCB
n = O(K logK) ,

while it turns out that MOSS has a regret of

RMOSS
n = Ω(

√
Kn) = Ω(K2) .

A rigorous proof of this claim is quite delicate, but we encourage readers to try
to understand why it holds intuitively.

3 The easy way to deal with this problem is to replace the index used by MOSS
with a less aggressive confidence level.

µ̂i(t− 1) +

√
4

Ti(t− 1) log+
(

n

Ti(t− 1)

)
. (9.2)

The resulting algorithm is never worse than UCB and you will show in
Exercise 9.3 that it has has a distribution free regret of O(

√
nK log(K)).

An algorithm that does almost the same thing in disguise is called Improved
UCB, which operates in phases and eliminates arms for which the upper
confidence bound drops below a lower confidence bound for some arm [Auer
and Ortner, 2010]. In practice this algorithm does not perform very well and
it is not asymptotically optimal, but the analysis highlights the role of the
confidence level in the regret.

4 Overcoming the weakness of MOSS without sacrificing minimax optimality
is possible by using an adaptive confidence level that tunes the amount of
optimism to match the instance. One of the authors has proposed two ways to
do this using the following indices.

µ̂i(t− 1) +

√
2(1 + ε)
Ti(t− 1) log

(n
t

)
. (9.3)

µ̂i(t− 1) +

√√√√ 2
Ti(t− 1) log

(
n

∑K
j=1 min{Ti(t− 1),

√
Ti(t− 1)Tj(t− 1)}

)
.

The first of these algorithms is called the Optimally Confidence UCB [Lattimore,
2015b] while the second is UCB† Lattimore [2018]. Both algorithms are minimax
optimal up to constant factors and never worse than UCB. The latter is also
asymptotically optimal. If the horizon is unknown, then UCB† can be modified
by replacing n with t. It remains a challenge to provide a straightforward
analysis for these algorithms.

5 There is a hidden cost of pushing too hard to reduce the expected regret, which
is that the variance of the regret can grow significantly. We will analyze this
trade-off formally in a future chapter, but explain now the intuition. Consider
the two-armed case with suboptimality gap ∆ and Gaussian noise. Then the

9.2 Bibliographic remarks 121

regret of a carefully tuned algorithm is approximately

Rn = O

(
n∆δ + 1

∆ log
(

1
δ

))
,

where δ is a parameter of the policy that determines the likelihood that the
optimal arm is misidentified. The choice of δ that minimizes the expected regret
depends on ∆ and is approximately 1/(n∆2). With this choice the regret is

Rn = O

(
1
∆
(
1 + log

(
n∆2))

)
.

Of course ∆ is not known in advance, but it can be estimated online so that the
above bound is actually realizable by an adaptive policy that does not know ∆
in advance (Exercise 9.3). The problem is that with the above choice the second
moment of the regret will be at least δ(n∆)2 = n, which is uncomfortably large.
On the other hand, choosing δ = (n∆)−2 leads to a marginally larger regret of

Rn = O

(
1
∆

(
1
n

+ log
(
n2∆2)

))
.

The second moment for this choice, however, is O(log2(n)). A discussion of
these issues, including empirical results, may also be found in the article by
Audibert et al. [2007].

9.2 Bibliographic remarks

The MOSS algorithm is due to Audibert and Bubeck [2009], while an anytime
modification is by Degenne and Perchet [2016]. The proof that MOSS is
asymptotically optimal may be found in the article by Ménard and Garivier [2017].
Optimally Confidence UCB and its friends are by one of the authors Lattimore
[2015b, 2016b, 2018]. The idea to modify the confidence level has been seen in
several places, with the earliest by Lai [1987] and more recently by Honda and
Takemura [2010]. Kaufmann [2018] also used a confidence level like in Eq. (9.2)
to derive an algorithm based on Bayesian upper confidence bounds.

9.3 Exercises

9.1 Let X1, X2, . . . , Xn be adapted to filtration F = (Ft)t with E[Xt | Ft−1] = 0
almost surely. Prove that Mt = exp(λ

∑t
s=1Xs) is a F-supermartingale for any

λ ∈ R.

9.2 Let ∆min = mini:∆i>0 ∆i. Show there exists a universal constant C > 0 such

9.3 Exercises 122

that the regret of MOSS is bounded by

Rn ≤
CK

∆min
log+

(
n∆2

min
K

)
+

K∑

i=1
∆i .

9.3 Suppose we modify the index used by MOSS to be

µ̂i(t− 1) +

√
4

Ti(t− 1) log+
(

n

Ti(t− 1)

)
.

(a) Show that for all 1-subgaussian bandits this new policy suffers regret at most

Rn ≤ C


 ∑

i:∆i>0
∆i + 1

∆i
log+(n∆2

i)


 ,

where C > 0 is a universal constant.
(b) Under the same conditions as the previous part show there exists a universal

constant C > 0 such that

Rn ≤ C
√
Kn log(K) +

K∑

i=1
∆i .

(c) Repeat parts (a) and (b) using the index

µ̂i(t− 1) +

√
4

Ti(t− 1) log+
(

t

Ti(t− 1)

)
.

9.4 Let g(t) = at+ b with b > 0 and

u(x, t) = 1√
2πt

exp
(
−x

2

2t

)
− 1√

2πt
exp

(
−2ab− (x− 2b)2

2t

)

(a) Show that u(x, t) > 0 for x ∈ (−∞, g(t)) and u(x, t) = 0 for x = g(t).
(b) Show that u(x, t) satisfies the heat equation:

∂

∂t
u(x, t) = 1

2
∂2

∂x2u(x, t) .

(c) Let Bt be a standard Brownian motion, which for any fixed t has density
with respect to the Lebesgue measure.

pt(x) = 1√
2πt

exp
(
−x

2

2t

)
.

Define τg = min{t : Bt = g(t)} be the first time the Brownian motion hits
the boundary. Put on your physicists hat (or work hard) to argue that

P (τg ≥ t) =
∫ g(t)

−∞
u(x, t)dx .

9.3 Exercises 123

(d) Let qg(t) be the density of time τ with respect to the Lebesgue measure so
that P (τg ≤ t) =

∫ t
0 q(t)dt. Show that

qg(t) = g(0)√
2πt3

exp
(
−g(t)2

2t

)

(e) In the last part we established the exact density of the hitting time of a
Brownian motion approaching a linear boundary. We now generalize this
to nonlinear boundaries, but at the cost that now we only have a bound.
Suppose that f : [0,∞) → [0,∞) is concave and differentiable and let
λt : R→ R be the tangent to f at t given by λt(x) = f(t) + f ′(t)(x− t). Let
τf = min{t : Bt = f(t)} and qf (t) be the density of τf . Show that

qf (t) ≤ qλt(t) .

(f) Suppose that X1, X2, . . . is a sequence of independent standard Gaussian
random variables. Show that

P

(
exists t ≤ ∞ :

t∑

s=1
Xs ≥ f(t)

)
≤
∫ n

0

λt(0)√
2πt3

exp
(
−f(t)2

2t

)
dt .

(g) Let h : (0,∞)→ (1,∞) be a concave monotone increasing function such that√
log(h(a))/h(a) ≤ c/a for constant c > 0 and f(t) =

√
2t log h(1/tδ) + t∆.

Show that

P

(
exists t ≤ ∞ :

t∑

s=1
Xs ≥ f(t)

)
≤ 2cδ√

π∆2 .

(h) Show that h(a) = 1 + (1 + a)
√

log(1 + a) satisfies the requirements of the
previous part with c = 11/10.

(i) Use your results to modify MOSS for the case when the rewards are Gaussian.
Compare the algorithms empirically.

(j) Prove for your modified algorithm that

lim sup
n→∞

Rn
log(n) ≤

∑

i:∆i>0

2
∆i

.

The above exercise has several challenging components and assumes prior
knowledge of Brownian motion and its interpretation in terms of the heat
equation. We recommend the book by Lerche [1986] as a nice reference on
hitting times for Brownian motion against concave barriers. The equation you
derived in part (d) is called the Bachelier-Levy formula and the technique
for doing so is the method of images. The use of this theory in bandits was
introduced by one of the authors [Lattimore, 2018], which readers might find
useful when working through these questions.

9.3 Exercises 124

9.5 In the last exercise you modified MOSS to show asymptotic optimality
when the noise is Gaussian. This is also possible for subgaussian noise. Follow the
advice in the notes of this chapter to adapt MOSS so that for all 1-subgaussian
bandits it holds that

lim sup
n→∞

Rn
log(n) ≤

∑

i:∆i>0

2
∆i

,

while maintaining the property that Rn ≤ C
√
Kn for universal constant C > 0.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

10 The Upper Confidence Bound
Algorithm: Bernoulli Noise (†)

In previous chapters we assumed the noise of the rewards was σ-subgaussian for
some known σ > 0. This has the advantage of simplicity and relative generality,
but stronger assumptions are sometimes justified and often lead to stronger
results. In this chapter we consider the case where the rewards are Bernoulli
(Xt ∈ {0, 1}). This is a fundamental setting found in many applications. For
example, in click-through prediction the user either clicks on the link or not and
so the reward is either zero or one. A Bernoulli bandit is characterized by the
mean payoffs for each arm, µ1, . . . , µK ∈ [0, 1] and the reward observed in round
t is Xt ∼ B(µAt).

We saw in Chapter 5 that the Bernoulli distribution is 1/2-subgaussian
regardless of its mean, which means that UCB and its variants would enjoy
logarithmic regret guarantees. However, the additional knowledge that the rewards
are Bernoulli is not being fully exploited by these algorithms. The reason is
essentially that the variance of a Bernoulli random variable depends on its mean,
and when the variance is small the empirical mean concentrates faster, a fact
that should be used to make the confidence intervals smaller.

10.1 Concentration for sums of Bernoulli random variables

Again we divert our attention away from bandits towards the concentration of
the empirical mean towards the true value for sums of Bernoulli random variables.
First we need to define a concept from information theory called the relative
entropy or Kullback-Leibler divergence, which is a measure of similarity
between distributions that for now we specify to the Bernoulli case. We defer
the intuition for this concept until Chapter 14 where we give an introduction to
information theory and specifically relative entropy.

definition 10.1 (Relative entropy between Bernoulli distributions) Let
p, q ∈ [0, 1]. Then the relative entropy between Bernoulli distributions with
parameters p and q respectively is defined to be

d(p, q) = p log(p/q) + (1− p) log((1− p)/(1− q)) ,

where the singularities are defined by taking limits so for q ∈ [0, 1], d(0, q) =
log(1/(1− q)), d(1, q) = log(1/q), and d(p, 0) = d(p, 1) =∞ for p ∈ (0, 1).

http://banditalgs.com
mailto:tor.lattimore@gmail.com

10.1 Concentration for sums of Bernoulli random variables 126

Notice that d(p, q) = 0 if and only if p = q and d(p, q) ≥ 0 for all p and
q. So d(·, ·) is almost a metric except it is not symmetric and does not satisfy
the triangle inequality. Some authors call such functions premetrics, but the
nomenclature has not been standardized. The following lemma gives some useful
properties of the relative entropy.

lemma 10.1 Let p, q, ε ∈ [0, 1]. The following hold:

(a) The functions d(·, q) and d(p, ·) are convex and have unique minimizers at q
and p respectively.

(b) d(p, q) ≥ 2(p− q)2 (Pinsker’s inequality).
(c) If p ≤ q − ε ≤ q, then d(p, q − ε) ≤ d(p, q)− d(q − ε, q) ≤ d(p, q)− 2ε2.

The first inequality in (c) is a specialized version of the Pythagorean inequality
for Bregman divergences. This is not important here, but see Chapter 26 for more
details.

Proof For (a): d(·, q) is the sum of the negative binary entropy function
h(p) = p log p+ (1− p) log(1− p) and a linear function. The second derivative
of h is h′′(p) = 1/p + 1/(1 − p), which is positive and hence h is convex. For
fixed p the function d(p, ·) is the sum of h(p) and convex functions p log(1/q) and
(1 − p) log(1/(1 − q)). Hence d(p, ·) is convex. The minimizer property follows
because d(p, q) > 0 unless p = q in which case d(p, p) = d(q, q) = 0. A more
general version of (b) is given in Chapter 15. A proof of the simple version here
follows by considering the function g(x) = d(p, p + x) − 2x2, which obviously
satisfies g(0) = 0. The proof is finished by showing that this is the unique
minimizer of g over the interval [−p, 1− p]. The details are left to Exercise 10.1.
For (c) notice that

h(p) = d(p, q − ε)− d(p, q) = p log q

q − ε + (1− p) log 1− q
1− q + ε

.

It is easy to see then that h is linear and increasing in its argument. Therefore,
since p ≤ q − ε,

h(p) ≤ h(q − ε) = −d(q − ε, q)

as required for the first inequality of (c). The second inequality follows by using
the result in (b).

The next lemma controls the concentration of the sample mean of a sequence
of independent and identically distributed Bernoulli random variables.

lemma 10.2 (Chernoff’s bound) Let X1, X2, . . . , Xn be a sequence of
independent random variables that are Bernoulli distributed with mean µ and let
µ̂ = 1

n

∑n
t=1Xt be the sample mean. Then for ε ∈ [0, 1− µ] it holds that

P (µ̂ ≥ µ+ ε) ≤ exp (−nd(µ+ ε, µ)) (10.1)

10.1 Concentration for sums of Bernoulli random variables 127

and for ε ∈ [0, µ] it holds that

P (µ̂ ≤ µ− ε) ≤ exp (−nd(µ− ε, µ)) . (10.2)

Proof We will again use Chernoff’s method. Let λ > 0 be some constant to be
chosen later. Then

P (µ̂ ≥ µ+ ε) = P

(
exp

(
λ

n∑

t=1
(Xt − µ)

)
≥ exp (λnε)

)

≤ E [exp (λ
∑n
t=1(Xt − µ))]

exp (λnε)
= (µ exp(λ(1− µ− ε)) + (1− µ) exp(−λ(µ+ ε)))n .

This expression is minimized by λ = log (µ+ε)(1−µ)
µ(1−µ−ε) . Therefore

P (µ̂ ≥ µ+ ε)

≤
(
µ

(
(µ+ ε)(1− µ)
µ(1− µ− ε)

)1−µ−ε
+ (1− µ)

(
(µ+ ε)(1− µ)
µ(1− µ− ε)

)−µ−ε)n

=
(

µ

µ+ ε

(
(µ+ ε)(1− µ)
µ(1− µ− ε)

)1−µ−ε)n

= exp (−nd(µ+ ε, µ)) .

The bound on the left tail is proven identically.

Using Pinsker’s inequality, it follows that P (µ̂ ≥ µ+ ε) ,P (µ̂ ≤ µ− ε) ≤
exp(−2nε2), which is the same as what can be obtained from Hoeffding’s lemma
(see (5.8)). Solving exp(−2nε2) = δ we recover the usual 1− δ confidence upper
bound. In fact, this cannot be improved when µ ≈ 1/2, but the Chernoff bound
is much stronger for µ is close to either zero or one. Can we invert the Chernoff
tail bound to get confidence intervals which get tighter automatically as µ (or µ̂)
approaches zero or one? The following corollary shows how to do this.

corollary 10.1 Let µ, µ̂, n be as above. Then, for any a ≥ 0,

P (d(µ̂, µ) ≥ a, µ̂ ≤ µ) ≤ exp(−na) , (10.3)

and

P (d(µ̂, µ) ≥ a, µ̂ ≥ µ) ≤ exp(−na) . (10.4)

Furthermore, defining

U(a) = max{u ∈ [0, 1] : d(µ̂, u) ≤ a} ,

it follows that with probability 1− exp(−na), µ < U(a). Similarly, letting

L(a) = min{u ∈ [0, 1] : d(µ̂, u) ≤ a} ,

with probability 1− exp(−na), µ > L(a) holds.

10.2 The KL-UCB algorithm 128

Proof First, we prove (10.3). Note that d(·, µ) is decreasing on [0, µ], and thus,
for 0 ≤ a ≤ d(0, µ), {d(µ̂, µ) ≥ a, µ̂ ≤ µ} = {µ̂ ≤ µ − x, µ̂ ≤ µ} = {µ̂ ≤ µ − x},
where x is the unique solution to d(µ− x, µ) = a on [0, µ]. Hence, by Eq. (10.2)
of Lemma 10.2, P (d(µ̂, µ) ≥ a, µ̂ ≤ µ) ≤ exp(−na). When a ≥ d(0, µ), the
inequality trivially holds. The proof of (10.4) is entirely analogous and hence
is omitted. For the second part of the corollary fix a and let U = U(a).
First notice that U ≥ µ̂ and d(µ̂, ·) is strictly increasing on [µ̂, 1]. Hence,
{µ ≥ U} = {µ ≥ U, µ ≥ µ̂} = {d(µ̂, µ) ≥ d(µ̂, U), µ ≥ µ̂} = {d(µ̂, µ) ≥ a, µ ≥ µ̂},
where the last equality follows by d(µ̂, U) = a, which holds by the definition
of U . Taking probabilities and using the first part of the corollary shows that
P (µ ≥ U) ≤ exp(−na). The statement concerning L = L(a) follows with a similar
reasoning.

Note that for δ ∈ (0, 1), U = U(log(1/δ)/n) and L = L(log(1/δ)/n) are,
respectively, upper and lower confidence bounds for µ. While U and L are defined
implicitly in terms of an optimization problem. Although the relatively entropy
has no closed form inverse, the optimization can be solved to a high degree
of accuracy using Newton’s method (the relative entropy d is convex in its
second argument). The advantage of this confidence interval to the one based
on Hoeffding’s interval is now clear: As µ̂ approaches one, the width of the
interval, U(a)− µ̂ approaches zero, whereas the width of our previous interval
stays

√
log(1/δ)/(2n), a constant. The same holds for µ̂− L(a) as µ̂→ 0.

example 10.1 Fig. 10.1 shows a plot of d(3/4, x) and the lower bound given
by Pinsker’s inequality. The approximation degrades as |x − 3/4| grows large,
especially for x > 3/4. As explained in Corollary 10.1, the graph of d(µ̂, ·) can
be used to derive confidence bounds by solving for d(µ̂, x) = a = log(1/δ)/n.
Assuming µ̂ = 3/4 is observed, a confidence level of 90% with n = 10, a ≈ 0.23.
The confidence interval ends can then be read out from the figure by finding
those values where the horizontal dashed black line intersects the solid blue line.
The resulting confidence interval will be highly asymmetric. Note that in this
scenario the lower confidence bounds produced by both Hoeffding’s inequality
and Chernoff’s bound are similar while the upper bound provided by Hoeffding’s
bound is vacuous.

10.2 The KL-UCB algorithm

The KL-UCB algorithm is nothing more than UCB, but with Chernoff’s bound
used to define the upper confidence bound, rather than Lemma 5.1.

theorem 10.1 If the reward in round t is Xt ∼ B(µAt), then the regret of

10.2 The KL-UCB algorithm 129

0 0.25 0.5 0.75 1

0

0.2

0.4

0.6

x

d(3/4, x)
2(x − 3/4)2

a = 0.23

Figure 10.1 Relative entropy and Pinsker’s inequality

1: Input K

2: Choose each arm once
3: Subsequently choose

At = argmaxi max
{
µ̃ ∈ [0, 1] : d(µ̂i(t− 1), µ̃) ≤ log f(t)

Ti(t− 1)

}
,

where f(t) = 1 + t log2(t) .

Algorithm 7: KL-UCB

Algorithm 7 is bounded by

Rn ≤
∑

i:∆i>0
inf

ε1,ε2>0
ε1+ε2∈(0,∆i)

∆i

(
f(n)

d(µi + ε1, µ∗ − ε2) + 1
2ε2

1
+ 1 + 1

ε2
2

)
.

Furthermore, lim sup
n→∞

Rn
log(n) ≤

∑

i:∆i>0

∆i

d(µi, µ∗)
.

Let us now compare the asymptotic result above to that given for UCB
in Theorem 8.1. Specializing this result for Bernoulli rewards (which are 1/2-
subgaussian), we get

lim sup
n→∞

Rn
log(n) ≤

∑

i:∆i>0

1
2∆i

.

By Pinsker’s inequality (part (b) of Lemma 10.1) we see that d(µi, µ∗) ≥
2(µ∗ − µi)2 = 2∆2

i , which means that the asymptotic regret of KL-UCB is
never worse than that of UCB. On the other hand, a Taylor’s expansion shows
that when µi and µ∗ are close (the hard case in the asymptotic regime), we have

d(µi, µ∗) = ∆2
i

2µi(1− µi)
+ o(∆2

i) ,

10.2 The KL-UCB algorithm 130

indicating that the regret of KL-UCB is approximately

lim sup
n→∞

Rn
log(n) ≈

∑

i:∆i>0

2µi(1− µi)
∆i

. (10.5)

We might not be so surprised to notice that µi(1−µi) is the variance of a Bernoulli
distribution with mean µi. Now µi(1− µi) ≤ 1/4, which shows that KL-UCB is
never worse than the asymptotically optimal variant of UCB presented in the
last chapter. But when µi is close to either zero or one, then KL-UCB is a big
improvement.

The proof of Theorem 10.1 relies on two lemmas. The first is used to show
that the index of the optimal arm is never too far below its true value, while the
second shows that the index of any other arm is not often much larger than the
same value. These results mirror those given for UCB, but things are complicated
by the non-symmetric and hard-to-invert divergence function.

For the next results we define d+(p, q) = d(p, q)I {p < q}, p, q ∈ [0, 1].

lemma 10.3 Let X1, X2, . . . , Xn be independent Bernoulli random variables
with mean µ ∈ [0, 1], ε > 0 and

τ = min
{
t : max

1≤s≤n
d+(µ̂s, µ− ε)−

log f(t)
s

≤ 0
}
.

Then, E[τ] ≤ 2
ε2 .

Proof We start with a high probability bound and then integrate to control the
expectation:

P (τ > t) ≤ P
(
∃1 ≤ s ≤ n : d+(µ̂s, µ− ε) >

log f(t)
s

)

≤
n∑

s=1
P
(
d+(µ̂s, µ− ε) >

log f(t)
s

)

=
n∑

s=1
P
(
d(µ̂s, µ− ε) >

log f(t)
s

, µ̂s < µ− ε
)

≤
n∑

s=1
P
(
d(µ̂s, µ) > log f(t)

s
+ 2ε2, µ̂s < µ

)
((c) of Lemma 10.1)

≤
n∑

s=1
exp

(
−s
(

2ε2 + log f(t)
s

))
(Eq. (10.3) of Corollary 10.1)

≤ 1
f(t)

n∑

s=1
exp

(
−2sε2)

≤ 1
2f(t)ε2 .

10.2 The KL-UCB algorithm 131

To finish, we integrate the tail:

E[τ] ≤
∫ ∞

0
P (τ ≥ t) dt ≤ 1

2ε2

∫ ∞

0

dt

f(t) ≤
2
ε2 .

lemma 10.4 Let X1, X2, . . . , Xn be independent Bernoulli random variables
with mean µ. Further, let ∆ > 0, a > 0 and define

κ =
n∑

s=1
I
{
d(µ̂s, µ+ ∆) ≤ a

s

}
.

Then, E[κ] ≤ inf
ε∈(0,∆)

(
1 + a

d(µ+ ε, µ+ ∆) + 1
2ε2

)
.

Proof Let ε ∈ (0,∆) and u = a/d(µ+ ε, µ+ ∆). Then

E[κ] =
n∑

s=1
P
(
d(µ̂s, µ+ ∆) ≤ a

s

)

≤
n∑

s=1
P
(
µ̂s ≥ µ+ ε or d(µ+ ε, µ+ ∆) ≤ a

s

)

(d(·, µ+ ∆) is decreasing on [0, µ+ ∆])

≤ u+
n∑

s=due
P (µ̂s ≥ µ+ ε)

≤ u+
∞∑

s=1
exp (−sd(µ+ ε, µ)) (Lemma 10.2)

≤ 1 + a

d(µ+ ε, µ+ ∆) + 1
d(µ+ ε, µ)

≤ 1 + a

d(µ+ ε, µ+ ∆) + 1
2ε2 (Pinsker’s inequality/Lemma 10.1(b))

as required.

Proof of Theorem 10.1 As in other proofs we assume without loss of generality
that µ1 = µ∗ and bound E[Ti(n)] for suboptimal arms i. To this end, fix a
suboptimal arm i and let ε1 + ε2 ∈ (0,∆i) with both ε1 and ε2 positive. Define

τ = min
{
t : max

1≤s≤n
d+(µ̂1s, µ1 − ε2)− log f(t)

s
≤ 0
}
, and

κ =
n∑

s=1
I
{
d(µ̂is, µi + ∆i − ε2) ≤ log f(n)

s

}
.

10.3 Notes 132

Then, by a similar reasoning as in the proof of Theorem 8.1,

E[Ti(n)] = E

[
n∑

t=1
I {At = i}

]

≤ E[τ] + E

[
n∑

t=τ+1
I {At = i}

]

≤ E[τ] + E

[
n∑

t=1
I
{
At = i and d(µ̂i,Ti(t−1), µ1 − ε2) ≤ log f(t)

Ti(t− 1)

}]

≤ E[τ] + E[κ]

≤ 1 + 2
ε2

2
+ f(n)
d(µi + ε1, µ∗ − ε2) + 1

2ε2
1
,

where the second inequality follows since by the definition of τ , if t > τ , then
the index of the optimal arm is at least as large as µ1 − ε2. The third inequality
follows from the definition of κ as in the proof of Theorem 8.1. The final inequality
follows from Lemmas 10.3 and 10.4. The first claim of the theorem is completed
by substituting the above into the standard regret decomposition

Rn =
k∑

i=1
∆iE[Ti(n)] .

The asymptotic claim is left as an exercise.

10.3 Notes

1 The new concentration inequality (Lemma 10.2) actually holds more generally
for any sequence of independent and identically distributed random variables
X1, X2, . . . , Xn provided only that Xt ∈ [0, 1] almost surely. Therefore all
results in this section also hold if the assumption that the noise is Bernoulli
is relaxed to the case where it is simply supported in [0, 1] (or other bounded
sets by shifting/scaling).

2 Expanding on the previous note, all that is required is a bound on the moment
generating function for random variables X where X ∈ [0, 1] almost surely.
Garivier and Cappé [2011, Lemma 9] noted that f(x) = exp(λx)− x(exp(λ)−
1)− 1 is negative on [0, 1] and so

E [exp(λX)] ≤ E [X(exp(λ)− 1) + 1] = µ exp(λ) + 1− µ ,

which is precisely the moment generating function of the Bernoulli distribution
with mean µ. Then the remainder of the proof of Lemma 10.2 goes through
unchanged. This shows that for any bandit ν = (Pi)i with Supp(Pi) ∈ [0, 1] for

10.4 Bibliographic remarks 133

all i the regret of the policy in Algorithm 7 satisfies

lim sup
n→∞

Rn
log(n) ≤

∑

i:∆i>0

∆i

d(µi, µ∗)
.

3 The bounds obtained using the argument in the previous note are not quite
tight. Specifically one can show there exists an algorithm such that for all
bandits ν = (Pi)i with Pi the reward distribution of the ith arm supported on
[0, 1], then

lim sup
n→∞

Rn
log(n) =

∑

i:∆i>0

∆i

d[0,1](Pi, µ∗)
,

where

d[0,1](Pi, µ∗) = inf{D(Pi, P) : µ(P) > µ∗ and Supp(P) ⊂ [0, 1]} .

This last quantity is never smaller than d(µi, µ∗). For details on this we refer
the reader to the paper by Honda and Takemura [2010].

4 The approximation in Eq. (10.5) was used to show that the regret for KL-UCB
is closely related to the variance of the Bernoulli distribution. It is natural to
ask whether or not this result could be derived, at least asymptotically, by
appealing to the central limit theorem. The answer is no! First, the quality of
the approximation in Eq. (10.5) does not depend on n, so asymptotically it is
not true that the Bernoulli bandit behaves like a Gaussian bandit with variances
tuned to match. The reason is that as n tends to infinity, the confidence level
should be chosen so that the risk of failure also tends to zero. But the central
limit theorem does not provide information about the tails with probability
mass less than O(n−1/2). See Note 1 in Chapter 10.

5 This style of analysis is easily generalized to a wide range of alternative
noise models, with the easiest being single parameter exponential families
(Exercise 10.4).

6 Chernoff credits Lemma 10.2 to his friend Herman Rubin [Chernoff, 2014], but
the name seems to have stuck.

10.4 Bibliographic remarks

Several authors have worked on Bernoulli bandits and the asymptotics have
been well-understood since the article by Lai and Robbins [1985]. The earliest
version of the algorithm presented in this chapter is due to Lai [1987] who
provided asymptotic analysis. The finite-time analysis of KL-UCB was given by
two groups simultaneously (and published in the same conference!) by Garivier
and Cappé [2011] and Maillard et al. [2011] (see also the combined journal
article: Cappé et al. 2013). Two alternatives are the DMED Honda and Takemura
[2010] and IMED [Honda and Takemura, 2015] algorithms. These works go
after the problem of understanding the asymptotic regret for the more general

10.5 Exercises 134

situation where the rewards lie in a bounded interval (see Note 3). The latter work
covers even the semi-bounded case where the rewards are almost surely upper
bounded. Both algorithms are asymptotically optimal. Ménard and Garivier
[2017] combined MOSS and KL-UCB to derive an algorithm that is minimax
optimal and asymptotically optimal for single parameter exponential families.
While the subgaussian and Bernoulli examples are very fundamental, there has
also been work on more generic setups where the unknown reward distribution for
each arm is known to lie in some class F . The article by Burnetas and Katehakis
[1996] gives the most generic (albeit, asymptotic) results. These generic setups
remain wide open for further work.

10.5 Exercises

10.1 [Pinsker’s inequality] Prove Lemma 10.1(b).

Consider the function g(x) = d(p, p+ x)− 2x2 over the [−p, 1− p] interval. By
taking derivatives, show that g ≥ 0.

10.2 Let F = (Ft)t be a filtration, (Xt)t be [0, 1]-valued, F-adapted sequence,
such that E [Xt | Ft−1] = µt for some µ1, . . . , µn ∈ [0, 1] non-random numbers.
Define µ = 1

n

∑n
t=1 µt, µ̂ = 1

n

∑n
t=1Xt. Prove that the conclusion of Lemma 10.2

still holds.

Read note 2 at the end of this chapter. Let g(·, µ) be the cumulant generating
function of the µ-parameter Bernoulli distribution: For X ∼ B(µ), λ ∈ R,
g(λ, µ) = logE [exp(λX)]. Show that g(λ, ·) is concave. Next, use this and the
tower rule to show that E [exp(λn(µ̂− µ))] ≤ g(λ, µ)n.

The bound of the previous exercise is most useful when all µt are either all
close to 0 or they are all close to 1. In particular, if half of the {µt} is close to
zero, half of them is close to one, the bound will degrade to Hoeffding’s bound.
Irrespective of this, it is useful to notice that the claims made in Corollary 10.1
continue to hold for µ̂, µ as defined in the exercise.

10.3 Prove the asymptotic claim in Theorem 10.1.

Choose ε1, ε2 to decrease slowly with n and use the first part of the theorem.

10.4 Let h be a measure on (R,B(R)) and T : R→ R. The function T is called

10.5 Exercises 135

the sufficient statistic. Define
dPθ
dh

(x) = exp(θT (x)−A(θ)) ,

where A(θ) is the log partition function given by

A(θ) = log
∫

R
exp(θT (x))dh(x) .

Let Θ = {θ ∈ R : A(θ) exists}. The set {Pθ : θ ∈ Θ} is called an exponential
family. For more details see the note after the exercise.

(a) Prove that for θ ∈ Θ the function Pθ : B(R)→ [0, 1] given by

Pθ(A) =
∫

A

dPθ
dh

(x)dh(x)

is a probability measure on (R,B(R)).
(b) Let Eθ denote expectations with respect to Pθ and show that A′(θ) =

Eθ[T (x)].
(c) Find a choice of h and T such that {Pθ : θ ∈ Θ} is the family of Bernoulli

distributions.
(d) Find a choice of h and T such that {Pθ : θ ∈ Θ} is the family of Gaussian

distributions with unit variance means in R.
(e) Let θ ∈ Θ and X ∼ Pθ. Show that

Eθ[exp(λT (X))] = exp(A(λ+ θ)−A(θ)) .

(f) Given θ, θ′ ∈ Θ, show that

d(θ, θ′) = Eθ
[
log
(
pθ(X)
pθ′(X)

)]
= A(θ′)−A(θ)− (θ′ − θ)A′(θ) .

(g) Let θ, θ′ ∈ Θ be such that A′(θ′) ≥ A′(θ) and X1, . . . , Xn be independent
and identically distributed and T̂ = 1

n

∑n
t=1 T (Xt). Show that

P
(
T̂ ≥ A′(θ′)

)
≤ exp (−nd(θ, θ′)) ,

(h) Let E be the set of all bandits with reward distributions in family {Pθ : θ ∈ Θ}.
Design a policy π such that for all ν ∈ E it holds that

lim
n→∞

Rn(π, ν)
log(n) ≤

∑

i:∆i>0

∆i

d(θi, θi∗)
,

where θi is such that Pθi is the distribution of the rewards for arm i and i∗ is
the optimal arm.

10.5 Exercises 136

Exponential families represent a wide range of statistical models. We discuss
them in more detail in Chapter 34. The function d(θ, θ′) is called the relative
entropy between Pθ and Pθ′ . We discuss this concept more in Chapter 14.
The bound in the last part of the exercise cannot be improved as we explain in
Chapter 16.

10.5 In this exercise you compare KL-UCB and UCB empirically.

(a) Implement Algorithm 7 and Algorithm 5 where the latter algorithm should
be tuned for 1/2-subgaussian bandits so that

At = argmaxi∈[K] µ̂i(t− 1) +

√
log(f(t))
2Ti(t− 1) .

(b) Let n = 10000 and K = 2. Plot the expected regret of each algorithm as a
function of ∆ when µ1 = 1/2 and µ2 = 1/2 + ∆.

(c) Repeat the above experiment with µ1 = 1/10 and µ1 = 9/10.
(d) Discuss your results.

Part III

Adversarial Bandits with
Finitely Many Arms

138

Statistician George E. P. Box is famous for writing “All models are wrong,
but some are useful”. In the stochastic bandit model we assumed the learner’s
reward is generated at random from a distribution that depends only on the
chosen action. It does not take much thought to realize this model is almost
always wrong. At the macroscopic level typically considered in bandit problems
there is not much that is stochastic about the world. And even if there was, it is
hard to rule out the existence of other factors (observed or otherwise) influencing
the rewards.

The quotation suggests we should not care whether or not the stochastic bandit
model is right. Instead, we should ask if it is useful. In science, models are used for
predicting the outcomes of future experiments and their usefulness is measured by
the quality of the predictions. But how can this be applied to bandit problems?
What predictions can be made based on bandit models? In this respect, we
postulate the following.

The point of bandit models is to predict the performance of algorithms on
future problem instances.

A model can fail in two fundamentally different ways. It can be too specific,
imposing assumptions that are so detached from reality that a catastrophic
mismatch between actual and predicted performance may arise.

Not all assumptions are equally important. It is a critical assumption in
stochastic bandits that the mean reward of individual arms does not change
(significantly) over time. On the other hand, the assumption that a single,
arm-dependent distribution generates the rewards for a given arm plays a
relatively insignificant role. The reader is encouraged to think of cases when the
constancy of arm-distributions plays no role, and also of cases when it does. And
furthermore, to decide to what extent the algorithms can tolerate deviations
from the assumption that the means of arms stay the same. Stochastic bandits
where the means of the arms are changing over time are called nonstationary
and are the topic of Chapter 31.

The second mode of failure occurs when a model is too general, which makes
the resulting algorithm overly cautious and harms performance.

If a highly specialized model is actually correct, then the resulting algorithms
usually dominate algorithms derived for a more general model. This is a general
manifestation of the bias-variance tradeoff, well known in supervised learning
and statistics. The holy grail is to find algorithms that work ‘optimally’ across
a range of models. The reader should think about examples from the previous
chapters that illustrate these points.

139

The usefulness of the stochastic model depends on the setting. In particular,
the designer of the bandit algorithm must carefully evaluate whether stochasticity,
stability of the mean and independence are reasonable assumptions. For some
applications the answer will probably by yes, while in others the practitioner may
seek something more robust. This latter situation is the topic of the next few
chapters.

Adversarial bandits

The adversarial bandit model abandons almost all the assumptions on how the
rewards are generated, so much so that the ‘environment’ is now often called the
‘adversary’. The adversary has a great deal of power in this model, including the
ability to examine the code of the proposed algorithms and choose the rewards
accordingly. All that is kept from the previous chapters is that the objective will
be framed in terms of how well an algorithm is able to compete with the best
action in hindsight.

At first sight it seems remarkable that one can say anything at all about such
a general model. And yet, it turns out that this model is not much harder than
than the stochastic bandit problem. Why this holds and how to design algorithms
that achieve these guarantees will be explained in the following chapters.

To give you a glimmer of hope, imagine playing the following simple bandit
game with a friend. The horizon is n = 1 and you have two actions. The game
proceeds as follows:

1 You tell your friend your strategy for choosing an action.
2 Your friend secretly chooses rewards x1 ∈ {0, 1} and x2 ∈ {0, 1}.
3 You implement your strategy to select A ∈ {1, 2} and receive reward xA.
4 The regret is R = max{x1, x2} − xA.

Clearly if your friend chooses x1 = x2, then your regret is zero no matter what.
Now lets suppose you implement the deterministic strategy A = 1. Then your
friend can choose x1 = 0 and x2 = 1 and your regret is R = 1. The trick to
improve on this is to randomize. If you tell your friend: “I will choose A = 1 with
probability one half”, then the best she can do is choose x1 = 1 and x2 = 0 (or
reversed) and your expected regret is R = 1/2. You are forgiven if you did not
settle on this solution yourself because we did not tell you that a strategy may
be randomized. With such a short horizon you cannot do better than this, but
for longer games the relative advantage of the adversary decreases.

Notes

1 Having derived a bandit algorithm one can ask how much it takes to break
the guarantees. For example, under what circumstances is the regret of UCB

140

bounded by C
√
nK log(n)? The lazy way is to push part of the proof into the

assumptions. For UCB this might mean replacing a subgaussian assumption
with a condition that the data generating processes satisfies the conclusion
of the core concentration result (Corollary 5.1). A more ambitious goal is to
define the subset of rewards for which the regret is bounded by some value
and try to characterize this set. To our knowledge these ideas have not been
explored in bandits and barely at all in machine learning more broadly.

Bibliographic remarks

The quote by George Box was used several times with different phrasings [Box,
1976, 1979]. The adversarial framework has its roots in game theory with familiar
names like Hannan [1957] and Blackwell [1954] producing some of the early
work. The nonstatistical approach has enjoyed enormous popularity since the
1990’s and has been adopted wholeheartedly by the theoretical computer science
community [Vovk, 1990, Littlestone and Warmuth, 1994, and many many others].
For bandits the earliest work that we know of is by Auer et al. [1995]. There is
now a big literature on adversarial bandits, which we will cover in more depth in
the chapters that follow.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

11 The Exp3 Algorithm

Let K > 1 be the number of arms. A K-armed adversarial bandit is an
arbitrary sequence of reward vectors ν = (x1, . . . , xn) where xt ∈ [0, 1]K for each
t ∈ [n]. In each round the learner chooses an action At ∈ [K] and observes reward
Xt = xtAt . We do not capitalize the reward vectors (xt) because they are not
random. The learner will usually randomize their decisions so that At and Xt

are random variables and hence capitalized.
Like in the stochastic setting, a policy can be viewed as a mapping from

interaction sequences to a distribution over the actions. For stochastic bandits
we did not yet make use a randomized policy, but for adversarial bandits this
is crucial. Given a policy π the conditional distribution over the actions having
observed A1, X1, . . . , At−1, Xt−1 is Pt = π(· | A1, X1, . . . , At−1, Xt−1) ∈ PK−1.

The performance of a policy π on environment ν is measured by the expected
regret, which is the expected loss in revenue of the policy relative to the best
fixed action in hindsight.

Rn(π, ν) = max
i

n∑

t=1
xti − E

[
n∑

t=1
xtAt

]
. (11.1)

When π and ν are clear from the context we may just write Rn in place of
Rn(π, ν).

The only source of randomness in the regret comes from the randomness in
the actions of the learner. Of course the interaction with the environment
means the action chosen in round t may depend on actions s < t as well as the
observed rewards until round t.

Like in the stochastic setting, we are often interested in the worst-case regret
over all environments, which is

R∗n(π) = sup
ν∈[0,1]nK

Rn(π, ν) .

The main question is whether or not there exist policies π for which R∗n(π) is
sublinear in n. In Exercise 11.2 you will show that for deterministic policies
R∗n(π) ≥ n(1− 1/K), which follows by constructing a bandit so that xtAt = 0 for

http://banditalgs.com
mailto:tor.lattimore@gmail.com

The Exp3 Algorithm 142

all t and xti = 1 for i 6= At. Because of this, sublinear worst-case regret is only
possible by using a randomized policy.

Readers familiar with game theory will not be surprised by the need for
randomization. The interaction between learner and adversarial bandit can be
framed as a two-player zero-sum game between the environment and learner.
The moves for the environment are the possible reward sequences and for the
player they are the set of policies. The payoff for the environment/learner is
the regret and its negation respectively. Since the player goes first, the only
way to avoid being exploited is to choose a policy that randomizes.

While stochastic and adversarial bandits seem quite different, it turns out
that the optimal worst case regret is the same up to constant factors and that
lower bounds for adversarial bandits are invariably derived in the same manner
as for stochastic bandits (see Part IV). In this chapter we present a simple
algorithm for which the worst-case regret is suboptimal by just a logarithmic
factor. First though, we explore the differences and similarities between stochastic
and adversarial environments.

We already noted that deterministic strategies will have linear regret for some
adversarial bandit. Since all the strategies in Part II were deterministic, they are
not well suited for the adversarial setting. This immediately implies that policies
that are good for stochastic bandit can be very suboptimal in the adversarial
setting. What about the other direction? Will an adversarial bandit strategy have
small expected regret in the stochastic setting? Let π be an adversarial bandit
policy and ν = (ν1, . . . , νK) be a stochastic bandit with νi supported on a subset
of [0, 1] for each i. Next let Xti be sampled from νi for each i ∈ [K] and t ∈ [n]
and assume these random variables are mutually independent. Then by Jensen’s
inequality and convexity of the maximum function we have

Rn(ν, π) = max
i

E

[
n∑

t=1
(Xti −XtAt)

]
≤ E

[
max
i

n∑

t=1
(Xti −XtAt)

]

= E [Rn(π, (Xti))] ≤ R∗n(π) ,

where the regret in the first line is the stochastic regret and in the last it is the
adversarial regret. Therefore the worst-case stochastic regret is upper bounded
by the worst-case adversarial regret. Going the other way, the above inequality
also implies the worst-case regret for adversarial problems is lower bounded by
the worst-case regret on stochastic problems with rewards bounded in [0, 1]. In
Chapter 15 we prove the worst-case regret regret for stochastic bandits is at
least c

√
nK, where c > 0 is a universal constant. And so for the same universal

constant the minimax regret for adversarial bandits satisfies

R∗n = inf
π

sup
ν∈[0,1]nK

Rn(π, ν) ≥ c
√
nK .

11.1 Importance-weighted estimators 143

11.1 Importance-weighted estimators

A key ingredient of all adversarial bandit algorithms is a mechanism for estimating
the reward of unplayed arms. Recall that Pt is the conditional distribution of the
action played in round t and let Pti denote the conditional probability that the
policy chooses action At = i,

Pti = P (At = i | X1, . . . , Xt−1, A1, . . . , At−1) ,

In what follows we assume that Pti > 0 almost surely, which is true for all policies
considered in this chapter. Until you know how to do it, estimating the reward
for all arms simultaneously using only Pt and the observed reward seems like
a hopeless endeavor. The idea is to use the importance-weighted estimator
given by

X̂ti = I {At = i}Xt

Pti
. (11.2)

One way to get a first impression about the quality of an estimator is to
calculate its mean and variance. Is the mean of X̂ti close to xti? Does X̂ti have a
small variance? Let Et[·] = E[· | A1, X1, . . . , At−1, Xt−1] denote the conditional
expectation given the history up to time t. Then the conditional expectation of
X̂ti satisfies

Et[X̂ti] = xti , (11.3)

which means that X̂ti is an unbiased estimate of xti given whatever history
has been generated. To see why Eq. (11.3) holds, let Ati = I {At = i} so that
XtAti = xtiAti and

X̂ti = Ati
Pti

xti .

Now Et[Ati] = Pti and since Pti is a function of A1, X1, . . . , At−1, Xt−1, we get

Et[X̂ti] = Et
[
Ati
Pti

xti

]
= xti
Pti

Et[Ati] = xti
Pti

Pti = xti .

By the tower rule for conditional expectation, (11.3) also implies that E[X̂ti] =
E[Et[X̂ti]] = xti. For the variance we proceed in the same manner by considering
the conditional variance Vt[X̂ti], which for arbitrary random variable U is

Vt[U] = Et
[
(U − Et[U])2] .

So Vt[X̂ti] is a random variable that measures the variance of X̂ti conditioned
on the past. Calculating the conditional variance using the definition of X̂ti and
Eq. (11.3) shows that

Vt[X̂ti] = Et[X̂2
ti]− x2

ti = Et
[
Atix

2
ti

P 2
ti

]
− x2

ti = x2
ti(1− Pti)
Pti

. (11.4)

11.1 Importance-weighted estimators 144

This can be extremely large when Pti is small and xti is bounded away from zero.
In the notes and exercises we shall see to what extent this can cause trouble. The
estimator in (11.2) is the first that comes to mind, but there are alternatives. For
example,

X̂ti = 1− I {At = i}
Pti

(1−Xt) . (11.5)

This estimator is still unbiased. Rewriting the formula in terms of yti = 1− xti
and Yt = 1−Xt and Ŷti = 1− X̂ti leads to

Ŷti = I {At = i}
Pti

Yt .

This is the same as (11.2) except that Yt has replaced Xt. The terms yti, Yt and
Ŷti should be interpreted as losses. Had we started with losses to begin with then
this would have been the estimator that first came to mind. For obvious reasons,
the estimator in Eq. (11.5) is called the loss-based importance-weighted
estimator. The conditional variance of this estimator is essentially the same as
Eq. (11.4):

Vt[X̂ti] = Vt[Ŷti] = y2
ti

1− Pti
Pti

.

The only difference is that the variance now depends on y2
ti rather than x2

ti.
Which is better then depends on the rewards for arm i, with smaller rewards
suggesting the superiority of the first estimator and larger rewards (or small
losses) suggesting the superiority of the second estimator. At this stage, one
could be suspicious about the role of zero in this argument. Can we change the
estimator (either one of them) so that it is more accurate for actions whose
reward is close to some specific value v? Of course! Just change the estimator so
that v is subtracted from the observed reward (or loss), then use the importance
sampling formula, and subsequently add back v. The problem is that the optimal
value of v depends on the unknown quantity being estimated. Also note that the
dependence of the variance on Pti is the same for both estimators and since the
rewards are bounded it is this term that usually contributes most significantly.
In Exericise 11.4 we ask you to show that all unbiased estimators in this setting
are importance-weighted estimators.

Although the two estimators seem quite similar, it should be noted that the
first estimator in takes values in [0,∞) while the second takes values in (−∞, 1].
Soon we will see that this difference has a big impact on the usefulness of these
estimators when used in the Exp3 algorithm.

11.2 The Exp3 algorithm 145

11.2 The Exp3 algorithm

The importance weighted estimator provides us with the means to estimate the
reward. The next step is to choose the distribution over actions Pt = (Pti)i.
The simplest algorithm for adversarial bandits is called Exp3, which stands for
“Exponential-weight algorithm for Exploration and Exploitation”. The reason
for this name will become clear after the explanation of the algorithm. Let
Ŝti =

∑t
s=1 X̂si be the total estimated reward by the end of round t. It seems

natural to choose the action-selection probabilities so that actions with larger
estimated reward receive more weight. While there are many ways to map Ŝti
into probabilities, a simple and popular choice is called exponential weighting,
which for tuning parameter η > 0 sets

Pti = exp(ηŜt−1,i)∑
j exp(ηŜt−1,j)

. (11.6)

The parameter η is called the learning rate and its role is to control how
aggressively Pti is pushed towards arms for which the estimated cumulative
reward is highest. As η → ∞, the probability mass in Pt quickly concentrates
on argmaxi Ŝt−1,i. It is here that the exploration/exploitation dilemma raises its
head. If η is large, then the resulting policy will explore with low probability.
But when Pti is small, then the variance of the importance-weighted estimator is
large and the estimates for these arms could be very poor. The consequence is
the usual tension. Large η leads to overconfident policies and small η leads to
excessive exploration.

There are many ways to set η, including allowing it to vary with time. In this
chapter we restrict our attention to the simplest case by choosing η to depend
only on the number of actions K and the horizon n. Since the algorithm depends
on η this means that the horizon must be known in advance. This is relaxed in
subsequent chapters.

For practical implementations it is useful to note that Pt can be calculated
incrementally by

Pt+1,i = Pti exp(ηX̂ti)∑K
j=1 Ptj exp(ηX̂tj)

. (11.7)

Computing the summation in the denominator can be numerically unstable
because its terms can vary by several orders of magnitude. There are a variety
of approaches for summing floats in a numerically stable way. One of the
simplest is Kahan’s algorithm [Kahan, 1965]. An even better approach is to
note that Eq. (11.7) does not change if all Ŝti are translated by some fixed

11.3 Regret analysis 146

1: Input: n, K, η
2: Set Ŝ0i = 0 for all i
3: for t = 1, . . . , n do
4: Calculate the sampling distribution Pt:

Pti =
exp

(
ηŜt−1,i

)

∑K
j=1 exp

(
ηŜt−1,j

)

5: Sample At ∼ Pt and observe reward Xt

6: Calculate Ŝti:

Ŝti = Ŝt−1,i + 1− I {At = i} (1−Xt)
Pti

7: end for
Algorithm 8: Exp3

amount. Let S̃ti = Ŝti −minj Ŝtj so that

Pt+1,i = exp(ηS̃ti)∑K
j=1 exp(ηS̃tj)

.

Care is still required for the summation in the denominator, but the number
of floating point multiplications has been reduced significantly.

11.3 Regret analysis

We are now ready to bound the expected regret of Exp3 (Algorithm 8).

theorem 11.1 Let ν = (xti) ∈ [0, 1]nK be an arbitrary adversarial bandit and
π be the policy of Exp3 (Algorithm 8) with learning rate η =

√
log(K)/(nK).

Then

Rn(π, ν) ≤ 2
√
nK log(K) .

Proof For any arm i define

Rni =
n∑

t=1
xti − E

[
n∑

t=1
Xt

]
,

which is the expected regret relative to using action i in all the rounds. The
result will follow by bounding Rni for all i, including the optimal arm. For the
remainder of the proof, let i be some fixed arm. By the unbiasedness property of

11.3 Regret analysis 147

X̂ti,

E[Ŝni] =
n∑

t=1
xti and also Et[Xt] =

K∑

i=1
Ptixti =

K∑

i=1
PtiEt[X̂ti] .

The tower rule says that E[Et[Xt]] = E[Xt], which together with the linearity of
expectation and the above display means that

Rni = E
[
Ŝni

]
− E

[
n∑

t=1

K∑

i=1
PtiX̂ti

]
= E

[
Ŝni − Ŝn

]
, (11.8)

where the last equality serves as the definition of Ŝn =
∑
t,i PtiX̂ti. To bound the

right hand side of Eq. (11.8) let

Wt =
K∑

j=1
exp

(
ηŜtj

)
.

By convention an empty sum is zero, which means that S0j = 0 and W0 = K.
Then

exp(ηŜni) ≤
K∑

j=1
exp(ηŜnj) = Wn = W0

W1
W0

. . .
Wn

Wn−1
= K

n∏

t=1

Wt

Wt−1
.

The ratio in the product can be rewritten in terms of Pt by

Wt

Wt−1
=

K∑

j=1

exp(ηŜt−1,j)
Wt−1

exp(ηX̂tj) =
K∑

j=1
Ptj exp(ηX̂tj) . (11.9)

We need the following facts:

exp(x) ≤ 1 + x+ x2 for all x ≤ 1 and 1 + x ≤ exp(x) for all x ∈ R .

Using these two inequalities leads to

Wt

Wt−1
≤ 1 + η

K∑

j=1
PtjX̂tj + η2

K∑

j=1
PtjX̂

2
tj ≤ exp


η

K∑

j=1
PtjX̂tj + η2

K∑

j=1
PtjX̂

2
tj


 .

Notice that this was only possible because X̂tj is defined by Eq. (11.5), which
ensures that X̂tj ≤ 1 and would not have been true had we used Eq. (11.2).
Putting the inequalities together we get

exp
(
ηŜni

)
≤ K exp


ηŜn + η2

n∑

t=1

K∑

j=1
PtjX̂

2
tj


 .

Taking the logarithm of both sides, dividing by η > 0 and reordering gives

Ŝni − Ŝn ≤
log(K)
η

+ η

n∑

t=1

K∑

j=1
PtjX̂

2
tj . (11.10)

As noted earlier, the expectation of the left-hand side is Rni. The first term on

11.3 Regret analysis 148

the right-hand side is a constant, which leaves us to bound the expectation of the
second term. Letting ytj = 1−xtj and Yt = 1−Xt, then expanding the definition
of X̂2

tj leads to

E


∑

t,j

PtjX̂
2
tj


 = E




n∑

t=1

K∑

j=1
Ptj

(
1− I {At = j} ytj

Ptj

)2



=
n∑

t=1
E



K∑

j=1
Ptj

(
1− 2 I {At = j} ytj

Ptj
+

I {At = j} y2
tj

P 2
tj

)


=
n∑

t=1
E


1− 2Yt + Et



K∑

j=1

I {At = j} y2
tj

Ptj






=
n∑

t=1
E


1− 2Yt +

K∑

j=1
y2
tj




=
n∑

t=1
E


(1− Yt)2 +

∑

j 6=At
y2
tj




≤ nK .

By substituting this into Eq. (11.10), we get

Rni ≤
log(K)
η

+ ηnK = 2
√
nK log(K) ,

where the equality follows by substituting η =
√

log(K)/(nK), which was chosen
to optimize this bound.

At the heart of the proof are the inequalities:

1 + x ≤ exp(x) for all x ∈ R and exp(x) ≤ 1 + x+ x2 for x ≤ 1 .

Attentive readers will notice that the former of these inequalities is an ansatz
derived from the first order Taylor expansion of exp(x) about x = 0. The latter,
however, is not the second order Taylor expansion, which would be 1 + x+ x2/2.
The problem is that the second order Taylor series is not an upper bound on
exp(x) for x ≤ 1, but only for x ≤ 0:

exp(x) ≤ 1 + x+ 1
2x

2 for all x ≤ 0 . (11.11)

But it is nearly an upper bound, and this can be exploited to improve the bound
in Theorem 11.1. The mentioned upper and lower bounds on exp(x) are shown
in Fig. 11.1, from which it is quite obvious that the new bound is significantly
tighter when x ≤ 0.

Let us now put Eq. (11.11) to use in proving the following improved version
of Theorem 11.1 for which the regret is smaller by a factor of

√
2. This looks

quite insignificant, but in relative terms shaves off approximately thirty percent

11.3 Regret analysis 149

0−0.5 0.5

−0.1

0

0.1

x

exp(x) − (1 + x)
exp(x) − (1 + x + x2)
exp(x) − (1 + x + x2/2)

Figure 11.1 Approximations for exp(x) on [−1/2, 1/2].

of the previous bound. The algorithm is unchanged except for a slightly increased
learning rate.

theorem 11.2 Let ν = (xti) ∈ [0, 1]nK be an adversarial bandit and π be the
policy of Exp3 with learning rate η =

√
2 log(K)/(nK). Then

Rn(π, ν) ≤
√

2nK log(K) .

Proof By construction X̂tj ≤ 1. Therefore

exp
(
ηX̂tj

)
= exp(η) exp

(
η(X̂tj − 1)

)

≤ exp(η)
{

1 + η(X̂tj − 1) + η2

2 (X̂tj − 1)2
}
.

Using the fact that
∑
j Ptj = 1 and the inequality 1 + x ≤ exp(x) we get

Wt

Wt−1
=

K∑

j=1
Ptj exp(ηX̂tj) ≤ exp


η

K∑

j=1
PtjX̂tj + η2

2

K∑

j=1
Ptj(X̂tj − 1)2


 ,

where the equality is from Eq. (11.9). We see that here we need to bound∑
j Ptj(X̂tj − 1)2. Let Ŷtj = 1− X̂tj . Then

Ptj(X̂tj − 1)2 = Ptj Ŷtj Ŷtj = I {At = j} ytj Ŷtj ≤ Ŷtj ,

where the last inequality used Ŷtj ≥ 0 and ytj ≤ 1. Thus,
K∑

j=1
Ptj(X̂tj − 1)2 ≤

K∑

j=1
Ŷtj .

With the same calculations as before, we get

Ŝni − Ŝn ≤
log(K)
η

+ η

2

n∑

t=1

K∑

j=1
Ŷtj . (11.12)

11.4 Notes 150

The result is completed by taking expectations of both sides, using E
∑
t,j Ŷtj =

E
∑
t,j EtŶtj = E

∑
t,j ytj ≤ nK, and then substituting the learning rate.

11.4 Notes

1 The expected regret of Exp3 cannot be improved significantly, but the
distribution of its regret is poorly behaved. Define the random regret to be
the random variable measuring the actual deficit of the learner relative to the
best arm in hindsight:

R̂n = max
i∈[K]

n∑

t=1
xti −

n∑

t=1
Xt

︸ ︷︷ ︸
in terms of rewards

=
n∑

t=1
Yt − min

i∈[K]

n∑

t=1
yti

︸ ︷︷ ︸
in terms of losses

,

In Exercise 11.5 you will show that for all large enough n and reasonable
choices of η there exists a bandit such that the random regret of Exp3 satisfies
P(R̂n ≥ n/4) > 1/131. This is quite a troubling result and motivates the
introduction of algorithms in the next chapter for which the distribution of R̂n
is well behaved.

2 What happens when the range of the rewards is unbounded? This has been
studied by Allenberg et al. [2006], where some (necessarily much weaker)
positive results are presented.

3 A more basic problem than the one considered here is when the learner receives
all (xti)i at the end of round t, but the reward is still xtAt . This setting is
called the full-information setting or prediction with expert advice.
Exponential weighting is still a good idea, but the estimated rewards can now
be replaced by the actual rewards. The resulting algorithm is sometimes called
Hedge or the Exponential Weights Algorithm (EWA). The proof as written
goes through in almost the same way, but one should replace the polynomial
upper bound on exp(x) with Hoeffding’s lemma. This analysis gives a regret
of
√
n log(K)/2, which is optimal in an asymptotic sense [Cesa-Bianchi and

Lugosi, 2006].
4 A more sophisticated algorithm and analysis shaves a factor of

√
log(K) from

the regret upper bound [Audibert and Bubeck, 2009, 2010a, Bubeck and
Cesa-Bianchi, 2012]. The algorithm is an instantiation of the mirror descent
algorithm from convex optimization, which we present in Chapter 28 for the
more general adversarial linear bandit problem. Exercise 28.10 in that chapter
explains the steps needed to solve this problem.

5 The initial distribution (the ‘prior’) P1 does not have to be uniform. By biasing
the prior towards a specific action the regret can be reduced when the favored
action turns out to be optimal. There is a price for this, however, if the optimal
arm is not favored [Lattimore, 2015a].

6 It was assumed in this chapter that the environment chose the rewards

11.4 Notes 151

at the start of the game. Such environments are called oblivious because
the choices of the environment do not depend on those of the learner. A
reactive environment is one where xt is allowed to depend on the history
a1, x1, . . . , at−1, xt−1. Despite the fact that this is clearly a harder problem the
result we obtained can be generalized to this setting without changes to the
analysis. It is another question whether the definition of regret makes sense for
such reactive environments.

7 Building on the previous note, suppose the reward vector in round t is
Xt = ft(A1, . . . , At) and f1, . . . , fn are a sequence of functions chosen in
advance by the adversary with ft : [K]t → [0, 1]. Let Π ⊂ [K]n be a set of
action-sequences. Then the expected policy regret with respect to Π is

max
a1,...,an∈Π

n∑

t=1
ft(a1, . . . , at)− E

[
n∑

t=1
ft(A1, . . . , At)

]
.

Even if Π only consists of constant sequences, there still does not exist a policy
guaranteeing sublinear regret. The reason is simple. Consider the two candidate
choices of f1, . . . , fn. In the first choice ft(a1, . . . , at) = I {a1 = 1} and in the
second we have ft(a1, . . . , at) = I {a1 = 2}. Clearly the learner must suffer
linear regret in at least one of these two reactive bandit environments. The
problem is that the learner’s decision in the first round determines the rewards
available in all subsequent rounds and there is no time for learning. By making
additional assumptions sublinear regret is possible, however. For example, by
assuming the adversary has limited memory [Arora et al., 2012].

8 There is a common misconception that the adversarial framework is a good
fit for nonstationary environments. While the framework does not assume the
rewards are stationary, the regret concept used in this chapter has stationarity
built in. An algorithm that keeps the regret (as defined here) small is unsuitable
for nonstationary environments because the best single action in hindsight is
seldom a good benchmark when the environment is changing over time. Hence,
the goal should be to compete with the sequence of actions in hindsight. For
more on nonstationary bandits see Chapter 31.

9 The estimators in Eq. (11.2) and Eq. (11.5) both have conditional variance
Vt[X̂ti] ≈ 1/Pti, which blows up for small Pti. It is instructive to think about
whether and how Pti can take on very small values. Consider the loss-based
estimator given by (11.5). For this estimator, when PtAt and Xt are both small,
X̂tAt can take on a large negative value. Through the update formula (11.6)
this then translates into Pt+1,At being squashed aggressively towards zero.
A similar issue arises with the reward-based estimator given by (11.2). The
difference is that now it will be a ‘positive surprise’ (PtAt small, Xt large) that
pushes the probabilities towards zero. But note that in this case Pt+1,i is pushed
towards zero for all i 6= At. This means that dangerously small probabilities
are expected to be more frequent for the gains estimator Eq. (11.2).

10 We argued at the beginning of the chapter that deterministic policies are

11.5 Bibliographic remarks 152

no good for adversarial bandit problems, which rules out all of the policies
analyzed in Part II. We also showed the regret of Exp3 grows with at most the
square root of the horizon on both stochastic and nonstochastic bandits. One
might wonder if there exists a policy with (near-)optimal regret for adversarial
bandits and logarithmic regret for stochastic bandits. There is a line of work
addressing this question, which shows that such algorithm do exist [Bubeck and
Slivkins, 2012, Seldin and Slivkins, 2014, Auer and Chiang, 2016, Seldin and
Lugosi, 2017]. There are some complications, however, depending on whether
or not the adversary is oblivious or not. The situation is best summarized by
Auer and Chiang [2016], where the authors present upper and lower bounds on
what is possible in various scenarios.

11 Exp3 requires advance knowledge of the horizon. The doubling trick can be
used to overcome this issue, but perhaps a more elegant solution is to use a
decreasing learning rate. The analysis in this chapter can be adapted to this
case. More discussion is provided in the notes and exercises of Chapter 28
where we give a more generic solution to this problem.

12 There is a connection between adversarial learning and simultaneous-action
zero sum games. This is discussed in a little more detail in the notes and
exercises of Chapter 28.

11.5 Bibliographic remarks

Exponential weighting has been a standard tool in online learning since the
papers by Vovk [1990] and Littlestone and Warmuth [1994]. Exp3 and several
variations were introduced by Auer et al. [1995], which was also the first paper to
study bandits in the adversarial framework. The algorithm and analysis presented
here differs slightly because we do not add any additional exploration, while the
version of Exp3 in that paper explores uniformly with low probability. The fact
that additional exploration is not required was observed by Stoltz [2005].

11.6 Exercises

11.1 In order to implement Exp3 you need a way to sample from the
exponential weights distribution. Many programming language provide a standard
way to do this. For example in Python you can use the Numpy library and
numpy.random.multinomial. In more basic languages, however, you only have
access to a function rand() that returns a floating point number ‘uniformly’
distributed in [0, 1]. Describe an algorithm that takes as input a probability vector
p ∈ Pd−1 and uses a single call to rand() to return X ∈ [d] with P (X = i) = pi.

11.6 Exercises 153

Of course, on most computers rand() will return a pseudo-random number
and since there are only finitely many floating point numbers the resulting
distribution will not really be uniform on [0, 1]. Thinking about these issues is a
worthy endeavour, and sometimes it really matters. For this exercise you may
ignore these issues, however.

11.2 Show that for any deterministic policy π there exists an environment ν
such that Rn(π, ν) ≥ n(1− 1/K). What does your result say about the policies
design in Part II?

11.3 Suppose we had defined the regret by

Rtrack
n (π, ν) = E

[
n∑

t=1
max
i∈[K]

xti −
n∑

t=1
xtAt

]
.

At first sight this definition seems like the right thing because it measures what
you actually care about. Unfortunately, however, it gives the adversary too much
power. Show that for any policy π (randomised or not) there exists a ν ∈ [0, 1]Kn
such that

Rtrack
n (π, ν) ≥ n

(
1− 1

K

)
.

11.4 Let P ∈ PK−1 be a probability vector and suppose X̂ : [K]× R→ R is a
function such that for all x ∈ RK ,

E[X̂(i, xi)] =
K∑

i=1
PiX̂(i, xi) = x1 .

Show there exists an a ∈ R such that X̂(i, x) = a+ I {i = 1}x1 − a
P1

.

11.5 In this exercise you will show that if η ∈ [n−p, 1] for some p ∈ (0, 1),
then for sufficiently large n there exists bandits on which Exp3 has a constant
probability of suffering linear regret and hence the variance of its regret is Ω(n2).
Let x ∈ [1/4, 1/2] be a constant to be tuned subsequently and define two-armed
adversarial bandit in terms of its losses by

yt1 =
{

0 if t ≤ n/2
1 otherwise

and yt2 =
{
x if t ≤ n/2
0 otherwise .

We are interested in analyzing the algorithm that samples At ∼ Pt where
Pti ∝ exp(−η∑t−1

s=1 Ŷsi) with Ŷsi = ysiAsi/Psi.

(a) Define sequence of real-valued functions q1, . . . , qn on domain [1/4, 1/2]
inductively by q0(x) = 1/2 and

qs+1(x) = qs(x) exp(−ηx/qs(x))
1− qs(x) + qs(x) exp(−ηx/qs(x)) .

11.6 Exercises 154

Show for t ≤ 1 + n/2 that Pt2 = qT2(t−1)(x).
(b) Show that qs is continuous on its domain and that d

dxqs(x) ≤ 0 for all s ≥ 0.
(c) Let s = min{u : qu(1/2) < 1/(8n)}. Show that for s ≥ 4 there exists an

x ∈ [1/4, 1/2] such that qs(x) = 1/(8n).
(d) Let s and x be as in the previous part. Show for large enough n it holds that∑s−1

u=1 1/qu(x) ≤ n/8.
(e) Let N(t) be a discrete counting process with N(1) = 0 and N(t+ 1)−N(t) ∈
{0, 1} almost surely and P (N(t+ 1)−N(t) = 1 | N(t)) = qN(t)(x). Prove
that

P

(
X

(
2

s∑

u=1
1/qu(x)

)
≥ s
)
≥ 1

2 .

(f) Prove that P (T2(n/4) ≥ s) ≥ 1
2 .

(g) Let E be the event that
∑n/2
t=1 Ŷt2 ≥ 2n. Prove that

P




n∑

t=n/2+1

I {At = 1} ≥ n/2
∣∣∣∣∣ E


 ≥ 1− n exp(−ηn) .

(h) Prove that P (E) ≥ 1
2 (1− exp(−1/32)).

(i) Prove that P(R̂n ≥ n
4) ≥ 1

2 (1− exp(−1/32))(1− n exp(−ηn)).
(j) You have shown that for large enough n, P(R̂n ≥ cn) ≥ c for some

universal constant c. Explain why does this not contradict the proof that
Rn = E[R̂n] = O(

√
n).

(k) Let n = 105 and η =
√

2 log(2)/(2n). Find the value of x satisfying the
conditions in Part (c) and simulate Exp3 to demonstrate linear regret with
constant probability.

11.6 Show that Theorem 11.1 stays valid for an adversarially stopped Exp3. That
is, imagine that an adversary is given the power to stop Exp3 at some random
time τ ∈ [n]. The adversary is restricted in this decision in that while it can use
A1, . . . , At when deciding about whether Exp3 should be stopped in t, it cannot
use At+1, . . . , An. That is, {τ = t} must be Ft = σ(A1, . . . , At)-measurable. Show
that E

[
R̂τ

]
≤ 2

√
nK log(K), where R̂n =

∑n
t=1 xti −

∑n
t=1Xt is the random

regret of Exp3.

Use the identity
∑τ
t=1 Ut =

∑n
t=1 I {t ≤ τ}Ut, the tower rule and argue that

{t ≤ τ} is Ft−1-measurable.

11.7 Let a1, . . . , aK be positive real values and U1, . . . , UK be a sequence of
independent and identically distributed uniform random variables. Then let
Gi = − log(− log(Ui)), which follows a standard Gumbel distribution. Prove

11.6 Exercises 155

that

P
(

log(ai) +Gi = max
k∈[K]

(log(ak) +Gk)
)

= ai∑K
k=1 ak

.

Let (Zti)ti be a collection of independent and identically distributed random
variables. The follow the perturbed leader algorithm chooses

At = argmaxi∈[K]

(
Zti − η

t−1∑

s=1

ˆ̀
ti

)
.

The previous exercise shows that choosing the distribution of Zti to be a
standard Gumbel distribution makes follow the perturbed leader the same as
exponential weights. This viewpoint will prove extremely useful when we tackle
combinatorial bandits in Chapter 30.

11.8 In this exercise we compare UCB and Exp3 on stochastic data. Suppose
we have a two-armed stochastic Bernoulli bandit with µ1 = 0.5 and µ2 = µ1 + ∆
with ∆ = 0.05.

(a) Plot the regret of UCB and Exp3 on the same plot as a function of the
horizon n using the learning rate from Theorem 11.2.

(b) Now fix the horizon to n = 105 and plot the regret as a function of the
learning rate. Your plot should look like Fig. 11.2.

(c) Investigate how the shape of this graph changes as you change ∆.
(d) Find empirically the choice of η that minimizes the worst-case regret over all

reasonable choices of ∆ and compare to the value proposed by the theory.
(e) What can you conclude from all this? Tell an interesting story.

The performance of UCB depends greatly on which version you use. For best
results remember that Bernoulli distributions are 1/2-subgaussian or use the
KL-UCB algorithm from Chapter 10.

11.9 Stress test your implementation of Exp3 from the previous exercise. What
happens when K = 2 and the sequence of rewards is xt1 = I {t ≤ n/4} and
xt2 = I {t > n/4}?

11.6 Exercises 156

0 0.1

100

150

200

250

η

Ex
pe

ct
ed

re
gr

et

Exp3

Figure 11.2 Expected regret for Exp3 for different learning rates over n = 105 rounds
on a Bernoulli bandit with means µ1 = 0.5 and µ2 = 0.55.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

12 The Exp3-IX Algorithm

In the last chapter we proved a sublinear bound on the expected regret of Exp3,
but with a dishearteningly large variance. The objective of this chapter is to
modify Exp3 so that the regret stays small in expectation and is simultaneously
well concentrated about its mean. Such results are called high probability
bounds.

One way to make Exp3 more robust is to make sure that Pti is never too small.
The first thing that comes to mind is to mix Pt with the uniform distribution.
This is an explicit way of forcing exploration, which after further modification
can be made to work. The resulting algorithm is called Exp3.P and we ask you
to analyze it in Exercise 12.1. In this chapter we explore a similar idea that leads
to an algorithm that is both simpler and empirically superior. The idea is to
change the reward estimates to control the variance at the price of introducing
some bias.

We start by summarizing what we know about the behaviour of the random
regret of Exp3. Because we want to use the loss-based estimator it is more
convenient to switch to losses, which we do for the remainder of the chapter.
Rewriting Eq. (11.12) in terms of losses,

L̂n − L̂ni ≤
log(K)
η

+ η

2

K∑

j=1
L̂nj , (12.1)

where L̂n and L̂ni are defined using the loss estimator Ŷtj by

L̂n =
n∑

t=1

K∑

j=1
Ptj Ŷtj and L̂ni =

n∑

t=1
Ŷti .

Eq. (12.1) holds no matter how the loss estimators are chosen provided they
satisfy Ŷti ≥ 0 for all t and i. Of course the left-hand side of Eq. (12.1) is not
close to the regret unless Ŷti is a reasonable estimator of the loss yti,

We also need to define the sum of losses observed by the learner and for each
fixed action, which are

L̃n =
n∑

t=1
ytAt and Lni =

n∑

t=1
yti

http://banditalgs.com
mailto:tor.lattimore@gmail.com

12.1 Regret analysis 158

Like in the previous chapter we need to define the (random) regret with respect
to a given arm i as follows:

R̂ni =
n∑

t=1
xti −

n∑

t=1
Xt = L̃n − Lni . (12.2)

By subsituting the above definitions into Eq. (12.1) and rearranging the regret
with respect to any arm i is bounded by

R̂ni = L̃n − Lni = (L̃n − L̂n) + (L̂n − L̂ni) + (L̂ni − Lni)

≤ log(K)
η

+ (L̃n − L̂n) + (L̂ni − Lni) + η

2

K∑

j=1
L̂nj . (12.3)

This means the random regret can be bounded by controlling L̃n − L̂n and
L̂nj − Lnj and L̂nj . As promised we now modify the loss estimate. Let γ > 0 be
a small constant to be chosen later and define the biased estimator

Ŷti = I {At = i}Yt
Pti + γ

. (12.4)

As γ increases the predictable variance decreases, but the bias increases. The
optimal choice of γ depends on finding the sweet spot, which we will do once the
dust has settled in the analysis. When Eq. (12.4) is used in the exponential update
in Exp3, the resulting algorithm is called Exp3-IX (Algorithm 9). The suffix
‘IX’ stands for implicit exploration, a name justified by the following argument.
A simple calculation shows that

Et[Ŷti] = Ptiyti
Pti + γ

= yti −
γyti

Pti + γ
≤ yti .

Since small losses correspond to large rewards, the estimator is optimistically
biased. The effect is a smoothing of Pt so that actions with large losses for which
Exp3 would assign negligable probability are still chosen occasionally. As a result,
Exp3-IX will explore more than the standard Exp3 algorithm (see Exercise 12.3).
The reason for calling the exploration implicit is that it is a consequence of
modifying the loss estimates, rather than directly altering Pt. This approach is
more elegant mathematically and has nicer properties than the version that mixes
Pt with the uniform distribution.

12.1 Regret analysis

We now prove the following theorem bounding the random regret of Exp3-IX
with high probability.

theorem 12.1 Let δ ∈ (0, 1) and define

η1 =
√

2 log(K + 1)
nK

and η2 =

√
log(K) + log(K+1

δ)
nK

.

12.1 Regret analysis 159

1: Input: n, K, η, γ
2: Set L̂0i = 0 for all i
3: for t = 1, . . . , n do
4: Calculate the sampling distribution Pt:

Pti =
exp

(
−ηL̂t−1,i

)

∑K
j=1 exp

(
−ηL̂t−1,j

)

5: Sample At ∼ Pt and observe reward Xt

6: Calculate L̂ti = L̂t−1,i + I {At = i} (1−Xt)
Pt−1,i + γ

7: end for
Algorithm 9: Exp3-IX

The following hold:

1 If Exp3-IX is run with parameters η = η1 and γ = η/2, then

P

(
R̂n ≥

√
8.5nK log(K + 1) +

(√
nK

2 log(K + 1) + 1
)

log(1/δ)
)
≤ δ .

(12.5)

2 If Exp3-IX is run with parameters η = η2 and γ = η/2, then

P
(
R̂n ≥ 2

√
(2 log(K + 1) + log(1/δ))nK + log

(
K + 1
δ

))
≤ δ . (12.6)

The value of η1 is independent of δ, which means that using this choice of
learning rate leads to a single algorithm with a high probability bound for all δ.
On the other hand, η2 does depend on δ so the user must choose a confidence
level from the beginning. The advantage is that the bound is improved, but
only for the specified confidence level. We will show in Chapter 17 that this
tradeoff is unavoidable.

The proof follows by bounding each the terms in Eq. (12.3), which we do via a
series of lemmas. The first of these lemmas is a new concentration bound, the
statement of which requires us to introduce the notion of adapted and predictable
sequences of random variables.

lemma 12.1 Let F = (Ft)0≤t≤n be a filtration and for i ∈ [K] let (Ỹti)t be
F-adapted such that:

1 For any S ⊂ [K] with |S| > 2, E
[∏

i∈S Ỹti
∣∣Ft−1

]
≤ 0.

2 E
[
Ỹti
∣∣Ft−1

]
= yti for all t ∈ [n] and i ∈ [K].

12.1 Regret analysis 160

Furthermore, let (αti)ti and (λti)ti be real-valued Ft-predictable random sequences
such that for all t, i it holds that 0 ≤ αtiỸti ≤ 2λti. Then for all δ ∈ (0, 1),

P

(
n∑

t=1

K∑

i=1
αti

(
Ỹti

1 + λti
− yti

)
≥ log

(
1
δ

))
≤ δ .

The proof relies on Chernoff’s method and is deferred until the end of the
chapter. Equipped with this result we can easily bound the terms L̂ni − Lni.

lemma 12.2 Let δ ∈ (0, 1). With probability at least 1 − δ the following
inequalities hold simultaneously:

max
i∈[K]

(
L̂ni − Lni

)
≤ log(K+1

δ)
2γ and

K∑

i=1

(
L̂ni − Lni

)
≤ log(K+1

δ)
2γ .

(12.7)

Proof Fix δ′ ∈ (0, 1) to be chosen later. Then

K∑

i=1
(L̂ni − Lni) =

∑

t,i

(
Atiyti
Pti + γ

− yti
)

= 1
2γ
∑

t,i

2γ
(

1
1 + γ

Pti

Atiyti
Pti

− yti
)
.

Introduce λti = γ
Pti

, Ỹti = Atiyti
Pti

and αti = 2γ. It is not hard to see then that the
conditions of Lemma 12.1 are satisfied. In particular, for any S ⊂ [K], |S| > 1,∏
i∈S Ati = 0, implying

∏
i∈S Ỹti = 0. Therefore

P

(
K∑

i=1
(L̂ni − Lni) ≥

log(1/δ′)
2γ

)
≤ δ′ . (12.8)

Similarly, for any fixed i,

P
(
L̂ni − Lni ≥

log(1/δ′)
2γ

)
≤ δ′ . (12.9)

To see this use the previous argument with αtj = I {j = i} 2γ. The result follows
by choosing δ′ = δ/(K + 1) and the union bound.

lemma 12.3 L̃n − L̂n = γ
∑K
j=1 L̂nj .

Proof Let Ati = I {At = i} as before. Writing Yt =
∑
j Atjytj , we calculate

Yt −
K∑

j=1
Ptj Ŷtj =

K∑

j=1

(
1− Ptj

Ptj + γ

)
Atjytj = γ

K∑

j=1

Atj
Ptj + γ

ytj = γ

K∑

j=1
Ŷtj .

Therefore L̃n − L̂n = γ
∑K
j=1 L̂nj as required.

12.1 Regret analysis 161

Proof of Theorem 12.1 By Eq. (12.3) and Lemma 12.3 we have

R̂n ≤
log(K)
η

+ (L̃n − L̂n) + max
i∈[K]

(L̂ni − Lni) + η

2

K∑

j=1
L̂nj

= log(K)
η

+ max
i∈[K]

(L̂ni − Lni) +
(η

2 + γ
) K∑

j=1
L̂nj .

Therefore by Lemma 12.2, with probability at least 1− δ it holds that

R̂n ≤
log(K)
η

+
log
(
K+1
δ

)

2γ +
(
γ + η

2

)



K∑

j=1
Lnj +

log
(
K+1
δ

)

2γ




≤ log(K)
η

+
(
γ + η

2

)
nK +

(
γ + η

2 + 1
)

log
(
K + 1
δ

)
,

where the second inequality follows since Lnj ≤ n for all j. The result follows by
substituting the definitions of η ∈ {η1, η2} and γ = η/2.

12.1.1 Proof of Lemma 12.1

We start with a technical inequality.

lemma 12.4 For any 0 ≤ x ≤ 2λ it holds that exp
(

x

1 + λ

)
≤ 1 + x .

Note that 1+x ≤ exp(x). What the lemma shows is that by slightly discounting
the argument of the exponential function, in a bounded neighborhood of zero,
1 + x can be an upper bound for the resulting function. Or, equivalently, slightly
inflating the linear term in 1+x, the linear lower bound becomes an upper bound.

Proof of Lemma 12.4 We rely on algebraic inequalities. The first is 2u
1+u ≤

log(1+2u) which holds for u ≥ 0. The second states that x log(1+y) ≤ log(1+xy),
which holds for any x ∈ [0, 1] and y > −1. Thanks to these inequalities,

x

1 + λ
= x

2λ
2λ

1 + λ
≤ x

2λ log(1 + 2λ) ≤ log
(

1 + 2λ x2λ

)
= log(1 + x) .

And the proof is completed by exponentiating both sides.

Proof of Lemma 12.1 Fix t ∈ [n] and let Et[·] = E[·|Ft] denote the conditional
expectation with respect to Ft. By Lemma 12.4 and the assumption that
0 ≤ αtiỸti ≤ 2λti we have

exp
(
αtiỸti
1 + λti

)
≤ (1 + αtiỸti) .

12.2 Notes 162

Taking the product of these inequalities over i,

Et−1

[
exp

(
K∑

i=1

αtiỸti
1 + λti

)]
≤ Et−1

[
K∏

i=1
(1 + αtiỸti)

]
≤ 1 + Et−1

[
K∑

i=1
αtiỸti

]

= 1 +
K∑

i=1
αtiyti ≤ exp

(
K∑

i=1
αtiyti

)
, (12.10)

where the second inequality follows from the assumption that for S ⊂ [K] with
|S| > 1, Et−1

∏
i∈S Ỹti ≤ 0, the third one follows from the assumption that

Et−1Ỹti = yti, while the last one follows from 1 + x ≤ exp(x). Define

Zt = exp
(∑

i

αti

(
Ỹti

1 + λti
− yti

))

and let Mt = Z1 . . . Zt, t ∈ [n] with M0 = 1. By (12.10), Et−1[Zt] ≤ 1. Therefore

E[Mt] = E[Et−1[Mt]] = E[Mt−1Et−1[Zt]] ≤ E[Mt−1] ≤ · · · ≤ E[M0] = 1 .

Setting t = n and combining the above display with Markov’s inequality leads to
P (log(Mn) ≥ log(1/δ)) = P (Mnδ ≥ 1) ≤ E [Mn] δ ≤ δ.

12.2 Notes

1 An upper bound on the expected regret of Exp3-IX can be obtained by
integrating the tail.

Rn ≤ E[(R̂n)+] =
∫ ∞

0
P
(

(R̂n)+ ≥ x
)
dx ≤

∫ ∞

0
P
(
R̂n ≥ x

)
dx ,

where the first equality follows from Proposition 2.3. The result is completed
using either high probability bound in Theorem 12.1 and by straightforward
integration. We leave the details to the reader in Exercise 12.4.

2 The analysis presented here uses a fixed learning rate that depends on the
horizon. Replacing η and γ with ηt =

√
log(K)/(Kt) and γt = ηt/2 leads to

an anytime algorithm with about the same regret [Neu, 2015a].
3 There is another advantage of the modified importance-weighted estimators

used by Exp3-IX, which leads to an improved regret in the special case that
one of the arms has small losses. Specifically, it is possible to show that

Rn = O

(√
K min

i∈[K]
Lin log(K)

)
.

In the worst case Lin is linear in n and the usual bound is recovered. But if
the optimal arm enjoys low cumulative regret, then the above can be a big
improvement over the bounds given in Theorem 12.1. Bounds of this kind are
called first order bounds. We refer the interested reader to the papers by
Allenberg et al. [2006], Abernethy et al. [2012], Neu [2015b].

12.3 Bibliographic remarks 163

4 Another situation where one might hope to have a smaller regret is when the
rewards/losses for each arm do not deviate too far from their averages. Define
the quadratic variation by

Qn =
n∑

t=1

√√√√
K∑

i=1
(xti − µi)2 , where µi = 1

n

n∑

t=1
xti .

Hazan and Kale [2011] gave an algorithm for which Rn = O(K2√Qt), which
can be better than the worst case bound of Exp3 or Exp3-IX when the quadratic
variation is very small. The factor of K2 is suboptimal and can be removed
using a careful instantiation of the mirror descent algorithm [Bubeck et al.,
2018]. We do not cover this exact algorithm in this book, but the techniques
based on mirror descent are presented in Chapter 28.

5 An alternative to the algorithm presented here is to mix the probability
distribution computed using exponential weights with the uniform distribution,
while biasing the estimates. This leads to the Exp3.P algorithm due to Auer
et al. [2002b] who considered the case where δ is given and derived a bound
that is similar to Eq. (12.6) of Theorem 12.1. With an appropriate modification
of their proof it is possible to derive a weaker bound similar to Eq. (12.5) where
the knowledge of δ is not needed by the algorithm. This has been explored by
Beygelzimer et al. [2010] in the context of a related algorithm, which will be
considered in Chapter 18. One advantage of this approach is that it generalizes
to the case where the loss estimators are sometimes negative, a situation that
can arise in more complicated settings. For technical details we advise the
reader to work through Exercise 12.1.

12.3 Bibliographic remarks

The Exp3-IX algorithm is due to Kocák et al. [2014], who also introduced the
biased loss estimators. The focus of that paper was to improve algorithms for
more complex models with potentially large action-sets and side information,
though their analysis can still be applied to the model studied in this chapter. The
observation that this algorithm also leads to high probability bounds appeared in
a followup paper by Neu [2015a]. High probability bounds for adversarial bandits
were first provided by Auer et al. [2002b] and explored in a more generic way by
Abernethy and Rakhlin [2009]. The idea to reduce the variance of importance-
weighted estimators is not new and seems to have been applied in various forms
[Uchibe and Doya, 2004, Wawrzynski and Pacut, 2007, Ionides, 2008, Bottou
et al., 2013]. All of these papers are based on truncating the estimators, which
makes the resulting estimator less smooth. Surprisingly, the variance reduction
technique used in this chapter seems to be recent [Kocák et al., 2014].

12.4 Exercises 164

12.4 Exercises

12.1 In this exercise we ask you to analyze the Exp3.P algorithm, which as we
mentioned in the notes is another way to obtain high probability bounds. The
idea is to modify Exp3 by biasing the estimators and introducing some forced
exploration. Let Ŷti = Atiyti/Pti − η/Pti be a biased version of the loss-based
importance-weighted estimator that was used in the previous chapter. Define
L̂ti =

∑t
s=1 Ŷsi and consider the policy that samples At ∼ Pt where

Pti = (1− γ)P̃ti + γ

K
with P̃ti =

exp
(
−ηL̂t−1,i

)

∑K
j=1 exp

(
−ηL̂t−1,j

) .

(a) Let δ ∈ (0, 1) and i ∈ [K]. Show that with probability 1 − δ, the random
regret R̂ni against i (cf. (12.2)) satisfies

R̂ni < nγ + (1− γ)
n∑

t=1

K∑

j=1
P̃tj(Ŷtj − yti) +

n∑

t=1

β

PtAt
+
√
n log(1/δ)

2 .

(b) Show that
n∑

t=1

K∑

j=1
P̃tj(Ŷtj − yti) =

n∑

t=1

K∑

j=1
P̃tj(Ŷtj − Ŷti) +

n∑

t=1
(Ŷti − yti) .

(c) Show that
n∑

t=1

K∑

j=1
P̃tj(Ŷtj − Ŷti) ≤

log(K)
η

+ η

n∑

t=1

K∑

j=1
P̃tj Ŷ

2
tj .

(d) Show that
n∑

t=1

K∑

j=1
P̃tj Ŷ

2
tj ≤

nK2β2

γ
+

n∑

t=1

1
PtAt

.

(e) Apply the result of Exercise 5.17 to show that for any δ ∈ (0, 1), the following
hold:

P

(
n∑

t=1

1
PtAt

≥ 2nK + K

γ
log
(

1
δ

))
≤ δ .

P

(
n∑

t=1
Ŷti − yti ≥

1
β

log
(

1
δ

))
≤ δ .

(f) Combining the previous steps, show that there exists a universal constant
C > 0 such that for any δ ∈ (0, 1), for an appropriate choice of η, γ and β,
with probability at least 1 − δ it holds that that the random regret R̂n of
Exp3.P satisfies

R̂n ≤ C
√
nK log(K/δ)

12.4 Exercises 165

(g) In which step did you use the modified estimators?
(h) Show a bound where the algorithm parameters η, γ, β can only depend on

n,K, but not on δ.
(i) Compare the bounds with the analogous bounds for Exp3-IX in Theorem 12.1.

12.2 This exercise is concerned with a generalization of the core idea underlying
Exp3.P of the previous exercise in that rather than giving explicit expressions
for the biased loss estimates, we focus on the key properties of these that makes
Exp3.P “tick”. To reduce clutter we assume for the remainder that t ranges in [n]
and a ∈ [K]. Let (Ω,F ,G .= (Gt)nt=0,P) be a filtered probability space. Let (Zt),
(Ẑt), (Z̃t), (βt) be sequences of random elements in RK , where Z̃t = Ẑt − βt and
(Zt), (βt) are G-predictable, whereas (Ẑt) and therefore also (Z̃t) are G-adapted
(think of Ẑt as the estimate of Zt that uses randomization, and βt is the bias as
in the previous exercise). Given positive constant η define the probability vector
Pt ∈ PK−1 by

Pta =
exp

(
−η∑t−1

s=1 Z̃sa

)

∑K
b=1 exp

(
−η∑t−1

s=1 Z̃sb

) .

Let Et−1[·] = E [·|Gt−1]. Assume the following hold for all a ∈ [K]:

(a) η|Ẑta| ≤ 1 , (b) ηβta ≤ 1 ,
(c) ηEt−1[Ẑ2

ta] ≤ βta almost surely , (d) Et−1[Ẑta] = Zta almost surely .

Let A∗ = argmina∈[K]
∑n
t=1 Zta and Rn =

n∑

t=1

K∑

a=1
Pta(Zta − ZtA∗).

(a) Show that
n∑

t=1

K∑

a=1
Pta(Zta − ZtA∗)

=
n∑

t=1

K∑

a=1
Pta(Z̃ta − Z̃tA∗)

︸ ︷︷ ︸
(A)

+
n∑

t=1

K∑

a=1
Pta(Zta − Z̃ta)

︸ ︷︷ ︸
(B)

+
n∑

t=1
(Z̃tA∗ − ZtA∗)

︸ ︷︷ ︸
(C)

.

(b) Show that

(A) ≤ log(K)
η

+ η

n∑

t=1

K∑

a=1
PtaẐ

2
ta + 3

n∑

t=1

K∑

a=1
Ptaβta .

(c) Show that with probability at least 1− δ,

(B) ≤ 2
n∑

t=1

K∑

a=1
Ptaβta + log(1/δ)

η
.

12.4 Exercises 166

(d) Show that with probability at least 1−Kδ,

(C) ≤ log(1/δ)
η

.

(e) Conclude that for any δ ≤ 1/(K + 1), with probability at least 1− (K + 1)δ,

Rn ≤
3 log(1/δ)

η
+ η

n∑

t=1

K∑

a=1
PtaẐ

2
ta + 5

n∑

t=1

K∑

a=1
Ptaβta .

This is a long and challenging exercise. You may find it helpful to use the result
in Exercise 5.17. The solution is also available.

12.3 Consider the Bernoulli bandit with K = 5 arms and n = 104 with means
µ1 = 1/2 and µi = 1/2−∆ for i > 1. Plot the regret of Exp3 and Exp3-IX for
∆ ∈ [0, 1/2]. You should get something similar to the graph in Fig. 12.1. Does
the result surprise you? Repeat the experiment in Part (k) of Exercise 11.5 with
Exp3-IX and convince yourself that this algorithm is more robust than Exp3.

0 0.1 0.2 0.3 0.4 0.5
100

150

200

250

300

∆

R
eg

re
t

Exp3
Exp3-IX

Figure 12.1 Comparison between Exp3 and Exp3-IX on Bernoulli bandit

12.4 In this exercise you will complete the steps explained in Note 1 to prove a
bound on the expected regret of Exp3-IX.

(a) Find a choice of η and universal constant C > 0 such that

Rn ≤ C
√
Kn log(K) .

(b) What happens as η grows? Write a bound on the expected regret of Exp3-IX
in terms of η and K and n.

Part IV

Lower Bounds for Bandits
with Finitely Many Arms

168

Until now we have indulged ourselves by presenting algorithms and upper
bounds on their regret. As satisfying as this is, the real truth of a problem is
usually to be found in the lower bounds. There are several reasons for this:

1 An upper bound does not tell you much about what you could be missing
out on. The only way to demonstrate that your algorithm really is (close to)
optimal is to prove a lower bound showing that no algorithm can do better.

2 The second reason that lower bounds are often more informative in the sense
that it usually turns out to be easier to get the lower bound right than the upper
bound. History shows a list of algorithms with steadily improving guarantees
until eventually someone hits upon the idea for which the upper bound matches
some known lower bound.

3 Finally, thinking about lower bounds forces you to understand what is hard
about the problem. This is so useful that the best place to start when attacking
a new problem is usually to try and prove lower bounds. Too often we have
not heeded our own advice and started trying to design an algorithm, only
to discover later that had we tackled the lower bound first, then the right
algorithm would have fallen in our laps with almost no effort at all.

So what is the form of a typical lower bound? In the chapters that follow we
will see roughly two flavours. The first is the worst case lower bound, which
corresponds to a claim of the form

“For any policy you give me, I will give you an instance of a bandit problem ν on which
the regret is at least L” .

Results of this kind have an adversarial flavour, which makes them suitable for
understanding the robustness of a policy. The second type is a lower bound on
the regret of an algorithm for specific instances. These bounds have a different
form that usually reads like the following:

“If you give me a reasonable policy, then its regret on any instance ν is at least L(ν)” .

The statement only holds for some policies – the ‘reasonable’ ones, whatever that
means. But the guarantee is also more refined because bound controls the regret
for these policies on every instance by a function that depends on this instance.
This kind of bound will allow us to show that the instance-dependent bounds
for stochastic bandits of O(

∑
i:∆i>0 ∆i + log(n)/∆i) are not improvable. The

inclusion of the word ‘reasonable’ is unfortunately necessary. For every bandit
instance ν there is a policy that just chooses the optimal action in ν. Such
policies are not reasonable because they have linear regret for bandits with a
different optimal arm. In the chapters that follow we will see various ways to
define ‘reasonable’ in a way that is simultaneously rigorous and, well, reasonable.

The contents of this part is roughly as follows. First we introduce the definition
of worst case regret and discuss the line of attack for proving lower bounds
(Chapter 13). The next chapter takes us on a brief excursion into information
theory where we explain the necessary mathematical tools (Chapter 14). Readers

169

familiar with information theory could skim this chapter. The final three chapters
are devoted to applying information theory to prove lower bounds on the regret
for both stochastic and adversarial bandits.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

13 Lower Bounds: Basic Ideas

We start the block on lower bounds by considering stochastic bandits. Let E be a
set of stochastic bandits and π be a policy. The worst case regret of policy π
on environment class E is

Rn(π, E) = sup
ν∈EK

Rn(π, ν) .

Let Π be the set of all policies. The minimax regret is

R∗n(E) = inf
π∈Π

Rn(π, E) = inf
π∈Π

sup
ν∈E

Rn(π, ν) .

A policy is called minimax optimal for E if Rn(π, EK) = R∗n(E). The value
R∗n(E) is of interest by itself. A small value of R∗n(E) indicates that the underlying
bandit problem is less challenging in the worst-case sense. A core activity in
bandit theory is to understand what makes R∗n(E) large or small, often focusing
on its behavior as a function of the number of rounds n.

Minimax optimality is not a property of a policy alone. It is a property of a
policy together with a set of environments and a horizon.

Finding a minimax policy is generally too computationally expensive to be
practical. For this reason we almost always settle for a policy that is nearly
minimax optimal. One of the main results of this part is a proof of the following
theorem, which together with Theorem 9.1 shows that Algorithm 6 from Chapter 9
is minimax optimal up to constant factors for 1-subgaussian bandits with
suboptimality gaps in [0, 1].

theorem 13.1 Let EK be the set of K-armed Gaussian bandits with unit
variance and means µ ∈ [0, 1]K . Then there exists a constant c > 0 such that for
all K > 1 and n ≥ K it holds that

R∗n(EK) ≥ c
√

(K − 1)n .

We will prove this theorem in Chapter 15, but first we given an informal
justification. LetX1, X2, . . . , Xn be an observed sequence of independent Gaussian
random variables with unknown mean µ and known variance 1. Assume you are
told that µ takes on one of two values: µ = 0 or µ = ∆ for some known ∆ > 0.

http://banditalgs.com
mailto:tor.lattimore@gmail.com

Lower Bounds: Basic Ideas 171

Your task is to guess the value of µ. Let µ̂ = 1
n

∑n
i=1Xi be the sample mean,

which is Gaussian with mean µ and variance 1/n. While it is not immediately
obvious how easy this task is, intuitively we expect the optimal decision is to
predict that µ = 0 if µ̂ is closer to 0 than to ∆, and otherwise to predict µ = ∆.
For large n we expect our prediction will probably be correct. Supposing that
µ = 0 (the other case is symmetric), then the prediction will be wrong only if
µ̂ ≥ ∆/2. Using the fact that µ̂ is Gaussian with mean µ = 0 and variance 1/n,
combined with known bounds on the Gaussian tail probabilities (see Abramowitz
and Stegun, 1964) leads to

1√
n∆2 +

√
n∆2 + 4

√
2
π

exp
(
−n∆2

8

)
≤ P

(
µ̂ ≥ ∆

2

)

≤ 1√
n∆2 +

√
n∆2 + 8/π

√
2
π

exp
(
−n∆2

8

)
.

The upper and lower bounds are incredibly close, differing only in the constant in
the square root of the denominator. One might believe that the decision procedure
could be improved, but the symmetry of the problem makes this seem improbable.
The formula exhibits the expected behaviour, which is that once n is large relative
to 8/∆2, then the probability that this procedure fails drops exponentially with
further increases in n. But the lower bound also shows that if n is small relative
to 8/∆2, then the procedure fails with constant probability.

The problem described is called hypothesis testing and the ideas underlying
the argument above are core to many impossibility result in statistics. The next
task is to reduce our bandit problem to hypothesis testing. The high level idea
is to select two bandit problem instances in such a way that the following two
conditions hold simultaenously:

1 Competition: A sequence of actions that is good for one bandit is not good for
the other.

2 Similarity: The instances are ‘close’ enough that the policy interacting with
either of the two instances cannot statistically identify the true bandit with
reasonable statistical accuracy.

The two requirements are clearly conflicting. The first makes us want to choose
instances with means µ, µ′ ∈ [0, 1]K that are far from each other, while the second
requirement makes us want to choose them to be close to each other. The lower
bound will follow by optimizing this tradeoff.

Let us start to make things concrete by choosing bandits ν = (Pi)Ki=1 and
ν′ = (P ′i)Ki=1 where Pi = N (µi, 1) and P ′i = N (µ′i, 1) are Gaussian and
µ, µ′ ∈ [0, 1]K . In order to prove a lower bound it suffices to show that for
every strategy π there exists a choice of µ and µ′ such that

max {Rn(π, ν), Rn(π, ν′)} ≥ c
√
Kn ,

where c > 0 is a universal constant. Let ∆ > 0 be a constant to be tuned

Lower Bounds: Basic Ideas 172

subsequently and choose µ = (∆, 0, 0, . . . , 0), which means that the first arm is
optimal in instance ν and

Rn(π, ν) = (n− E[T1(n)])∆ , (13.1)

where the expectation is taken with respect to the induced measure on the
sequence of outcomes when π interacts with ν. Now we need to choose µ′ to
satisfy the two requirements above. Since we want ν and ν′ to be hard to
distinguish and yet have different optimal actions, we should make µ′ as close to
µ except in a coordinate where π expects to explore the least. To this end, let

i = argmini>1 E[Ti(n)]

be the suboptimal arm in ν that π expects to play least often. By the pidgeonhole
principle and the fact that

∑
i E[Ti(n)] = n, it must hold that

E[Ti(n)] ≤ n

K − 1 .

Then define µ′ ∈ RK by

µ′j =
{
µj if j 6= i

2∆ otherwise .

The regret in this bandit is

Rn(π, ν′) = ∆E′[T1(n)] +
∑

j /∈1,i

2∆E′[Tj(n)] ≥ ∆E′[T1(n)] , (13.2)

where E′[·] is the expectation operator on the sequence of outcomes when π

interacts with ν′. So now we have the following situation: The strategy π interacts
with either ν or ν′ and when interacting with ν it expects to play arm i at most
n/(K − 1) times. But the two instances only differ when playing arm i. The
time has come to tune ∆. Because the strategy expects to play arm i only about
n/(K−1) times, taking inspiration from the previous discussion on distinguishing
samples from Gaussian distributions with different means, we will choose

∆ =
√

1
E[Ti(n)] ≥

√
K − 1
n

.

If we are prepared to ignore the fact that Ti(n) is a random variable and take
for granted the claims in the first part of the chapter, then with this choice of ∆
the strategy cannot distinguish between instances ν and ν′ and in particular we
expect that E[T1(n)] ≈ E′[T1(n)]. If E[T1(n)] ≤ n/2, then by Eq. (13.1) we have

Rn(π, ν) = ∆E[Ti(n)] ≥ n

2

√
K − 1
n

= 1
2
√
n(K − 1) .

On the other hand, if E[Ti(n)] ≥ n/2, then

Rn(π, ν′) ≥ ∆E′[Ti(n)] ≈ ∆E[Ti(n)] ≥ 1
2
√
n(K − 1) ,

13.1 Notes 173

which completes our heuristic argument that there exists a universal constant
c > 0 such that

R∗n(EK) ≥ c
√
nK .

We have been sloppy in many places: The claims in the first part of the chapter
have not been proven yet and Ti(n) is a random variable. Before we can present
the rigorous argument we need a chapter to introduce some ideas from information
theory. Readers already familiar with these concepts can skip to Chapter 15 for
the proof of Theorem 13.1.

13.1 Notes

1 The worst-case regret has a game-theoretic interpretation. Imagine a game
between a protagonist and an antagonist that works as follows: For K > 1 and
n ≥ K the protagonist proposes a bandit policy π. The antagonist looks at the
policy and chooses a bandit ν from the class of environments considered. The
utility for the antagonist is the expected regret and for the protagonist it is the
negation of the expected regret, which makes this a zero-sum game. Both players
aim to maximizing their payoffs. The game is completely described by n and E .
One characteristic value in a game is its minimax value. As described above,
this is a sequential game (the protagonist moves first, then the antagonist). The
minimax value of this game from the perspective of the antagonist is exactly
R∗n(E), while for the protagonist is supπ infν(−Rn(π, ν)) = −R∗n(E).

2 We mentioned that finding the minimax optimal policy is usually
computationally infeasible. In fact it is not clear we should even try. In classical
statistics it often turns out that minimizing the worst case leads to a flat
risk profile. In the language of bandits this would mean that the regret is the
same for every bandit (where possible). What we usually want in practice
is to have low regret against ’easy’ bandits and larger regret against ‘hard’
bandits. The analysis in Part II suggests that easy bandits are those where the
suboptimality gaps are large or very small. There is evidence to suggest that
the exact minimax optimal strategy may not exploit these easy instances, so
in practice one might prefer to find a policy that is nearly minimax optimal
and has much smaller regret on easy bandits. We will tackle questions of this
nature in Chapter 16.

3 The regret on a class of bandits E is a multi-objective criteria. Some policies will
be good for some instances and bad on others, and there are clear trade-offs.
One way to analyze the performance in a multi-objective setting is called
Pareto optimality. A policy is Pareto optimal if there does not exist another
policy that is a strict improvement. More precisely, if there does not exist a π′
such that Rn(π′, ν) ≤ Rn(π, ν) for all ν ∈ E and Rn(π′, ν) < Rn(π, ν) for at
least one instance ν ∈ E .

13.2 Exercises 174

4 When we say a policy is minimax optimal up to constant factors for finite-armed
1-subgaussian bandits with suboptimality gaps in [0, 1] we mean there exists a
C > 0 such that

Rn(π, EK)
R∗n(EK) ≤ C for all K and n ,

where EK is the set of K-armed 1-subgaussian bandits with suboptiality gaps
in [0, 1]. We often say a policy is minimax optimal up to logarithmic factors,
by which we mean that

Rn(π, EK)
R∗n(EK) ≤ C(n,K) for all K and n ,

where C(n,K) is logarithmic in n and K. We hope the reader will forgive us
for not always specifying in the text exactly what is meant and promise that
statements of theorems will always be precise.

13.2 Exercises

13.1 Let Pµ = N (µ, 1) be the Gaussian measure on (R,B(R)) with mean
µ ∈ {0,∆} and unit variance. Let X : R → R be the identity random variable
(X(ω) = ω). For decision rule d : R→ {0,∆} define risk

R(d) = max
µ∈{0,∆}

Pµ(d(X) 6= µ) ,

Prove that R(d) is minimized by d(x) = argminµ̃∈{0,µ} |X − µ̃| .

13.2 Let K > 1 and E = EKN (1) be the set of Gaussian bandits with unit variance.
Find a Pareto optimal policy for this class.

Think about simple policies (not necessarily good ones) and use the definition.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

14 Foundations of Information Theory
(†)

To make the arguments in the previous chapter rigorous and generalizable to
other settings we need some classic tools from information theory and statistics.
In particular, we will need the concept of relative entropy, also known as
the Kullback-Leibler divergence named for Solomon Kullback and Richard
Leibler (KL divergence, for short).

The relative entropy has several interpretations. The one we will focus on
here comes from the situation encountered by Alice, who wants to communicate
with Bob. She wants to tell Bob the outcome of a sequence of independent
random variables sampled from known distribution Q. Alice and Bob agree to
communicate using a code that is fixed in advance in such a way that the expected
message length is minimized. Then the entropy of Q is the expected length of
the optimal code. The relative entropy between distributions P and Q is the
price in terms of expected message length that Alice and Bob have to pay if they
believe the random variables are sampled from Q, when in fact they are sampled
from P .

Let X be a random variable that takes finitely many values, which without loss
of generality we will assume is X ∈ [N]. We abbreviate pi = P (X = i). Let us
first discuss how to define the amount of information that observing X conveys.
One way to start is to define information as the amount of communication needed
if we want to tell a friend about the value we observed. We’ll assume that Alice
observes the value of X and wants to tell Bob what value she observed using a
binary code that they agree upon in advance. For example, if N = 4, then they
might agree on the following code: 1→ 00, 2→ 01, 3→ 10, 4→ 11. Then if Alice
observes a 3, she sends Bob a message containing 10. For our purposes, a code is
a function c : [N]→ {0, 1}∗ where {0, 1}∗ is the set of finite sequences of zeros
and ones.

Of course we demand that c is injective so that no two numbers (or symbols)
have the same code. We also require that c is prefix free, which means that no
code should be the prefix of any other. This is justified by supposing that Alice
would like to tell Bob about multiple samples. Then Bob needs to know where
the message for one symbol starts and ends, and he would like to do this with no
back-tracking.

The easiest choice is to use dlog2(N)e bits no matter the value of X. This simple
code is sometimes effective, but is not entirely satisfactory if X is far from uniform.

http://banditalgs.com
mailto:tor.lattimore@gmail.com

Foundations of Information Theory (†) 176

To understand why, suppose that N is extremely large and P (X = 1) = 0.99 and
the remaining probability mass is uniform over [N]−{1}. Then it seems preferable
to have a short code for 1 and slightly longer codes for the alternatives. With
this in mind, a natural objective is to find a code that minimizes the expected
code length. That is

c = argminc
N∑

i=1
pi`(c(i)) , (14.1)

where the argmin is taken over valid codes and `(·) is a function that returns
the length of a code. The optimization problem in (14.1) can be solved in using
Huffman coding and the value lies within the following range

H2(P) ≤ min
c

N∑

i=1
pi`(c(i)) ≤ H2(P) + 1 ,

where H2(P) is defined by

H2(P) =
∑

i∈[N]:pi>0

pi log2

(
1
pi

)
.

Notice that if P is uniform, then pi = 1/N and the naive idea of using a code of
uniform length is recovered, but for non-uniform distributions the code adapts to
assign shorter codes to symbols with high probability. What is not apparent from
the expression above is that the code length for symbol i when using Huffman
coding is never longer than log(1/pi) + 1. It is also worth pointing out that
the sum is only over outcomes that occur with non-zero probability, which is
motivated by observing that limx→0 x log(1/x) = 0 or by thinking of the entropy
as an expectation of the log-probability with respect to P and expectations should
not change when the value of the random variable is perturbed on a measure
zero set.

It turns out that H2(P) is not just an approximation on the expected length
of the Huffman code, but is itself a fundamental quantity. We will not go into
this in detail, but imagine that Alice wants to send a long string of symbols to
Bob. She could use a Huffman code to send Bob each symbol one at a time, but
this introduces ‘rounding errors’ that accumulate as the message length grows.
Instead they can agree on a procedure, which Bob can still interpret sequentially
without backtracking, and for which the expected average code-length averaged
over the whole message tends towards H2(P) as the length of the message grows.
Furthermore, the celebrated source coding theorem says that you cannot do
better than this! For reference, a procedure for achieving this called arithmetic
coding, but for our purposes we do not actually want to code messages, but
rather to understand the meaning of information.

Before moving on, we will replace the base 2 logarithm with its natural

14.1 The relative entropy 177

counterpart and define the entropy of a random variable X by

H(P) =
∑

i∈[N]:pi>0

pi log
(

1
pi

)
. (14.2)

This is nothing more than a scaling of the H2 that is ultimately mathematically
more convenient. Measuring information using base 2 logarithms has a unit of
bits and for the natural logarithm it is called nats.

We hope you agree that H(P) measures the (expected) information content of
observing random variables sampled from P , at least in the long run. We now
move towards defining the relative entropy.

14.1 The relative entropy

Suppose that Alice and Bob agree to use a code that is optimal when X is
sampled from distribution Q. Unbeknownst to them, however, let us suppose
that actually X is sampled from distribution P . The relative entropy between
P and Q measures how much longer the messages are expected to be using the
optimal code for Q than what would be obtained using the optimal code for P .
Letting pi = P (X = i) and qi = Q(X = i) and working out the math leads to
the definition of the relative entropy as

D(P,Q) =
∑

i∈[N]:pi>0

pi log
(

1
qi

)
−

∑

i∈[N]:pi>0

pi log
(

1
pi

)
=

∑

i∈[N]:pi>0

pi log
(
pi
qi

)

(14.3)

If this quantity is large, then we expect to be able to tell that P 6= Q with fewer
independent observations sharing P than if this quantity was smaller. For example,
if there exists an i with pi > 0 and qi = 0, then the first time we see symbol i,
we can tell with certainty that the symbol was not sampled from Q. Looking at
the definition of the relative entropy shows that in this case, D(P,Q) =∞.

Still poking around the definition, what happens when qi = 0 and pi = 0?
This means that the symbol i is superfluous and the value of D(P,Q) should
not be impacted by introducing superfluous symbols. And again, it does not by
the definition of the expectations. We also see that the sufficient and necessary
condition for D(P,Q) < ∞ is that for each i such that qi = 0, we also have
that pi = 0. The condition we discovered is also expressed as saying that P is
absolutely continuous with respect to Q, which is also written as P � Q. Note
that absolute continuity only implies a finite relative entropy when X takes on
finitely many values. If instead X ∈ {2, 3, 4, . . .} and P (X = i) ∝ 1/(i log2(i)),
then H(X) =∞.

More generally, for two measures P,Q on a common measurable space (Ω,F),
we say that P is absolutely continuous with respect to Q (and write P � Q)
if for any A ∈ F , Q(A) = 0 implies that P (A) = 0 (intuitively, � is like ≤ except

14.1 The relative entropy 178

that it only constrains the values when the right-hand side is also zero). This
brings us back to defining relative entropy between two arbitrary probability
distributions P,Q defined over a common probability space. The difficulty we
face is that if X ∼ P takes on uncountably infinitely many values then we cannot
really use the ideas that use communication because no matter what coding we
use, we would need infinitely many symbols to describe some values of X. How can
then be the entropy of X be defined at all? This seems to be a truly fundamental
difficulty! Luckily, this impasse gets resolved automatically if we only consider
relative entropy. While we cannot communicate X, for any finite ‘discretization’
of the the possible values that X can take on, the discretized values can be
communicated finitely and all our definitions will work. Formally, if X takes
values in the measurable space (X ,G), with X possibly having uncountably many
elements, a discretization to [N] levels would be specified using some function
f : X → [N] that is G/2[N]-measurable map. Then, the entropy of P relative Q,
D(P,Q) can be defined as

D(P,Q) = sup
f

D(Pf , Qf) ,

where Pf is the distribution of Y = f(X) when X ∼ P and Qf is the distribution
of Y = f(X) when X ∼ Q and the supremum is for all N ∈ N+ and all maps f
as defined above. In words, we take all possible discretizations f (with no limit on
the ‘fineness’ of the discretization) and define D(P,Q) as the excess information
when expecting to see f(X) with X ∼ Q while reality is X ∼ P . If this is finite,
then we expect this to be a reasonable definition. As we shall see it soon, it is
indeed a reasonable definition.

theorem 14.1 Let (Ω,F) be a measurable space and let P and Q be measures
on this space. Then,

D(P,Q) =





∫
log
(
dP
dQ (ω)

)
dP (ω) , if P � Q ;

∞ , otherwise .

Note that by our earlier remark, this reduces to (14.3) for discrete measures. If
λ is a common dominating σ-finite measure for P and Q (that is, P � λ and
Q� λ both hold) then letting p = dP

dλ and q = dQ
dλ , if also P � Q, the chain rule

gives dP
dQ

dQ
dλ = dP

dλ , which lets us write

D(P,Q) =
∫
p log

(
p

q

)
dλ ,

which is perhaps the best known expression for relative entropy and is also often
used as a definition. Note that for probability measures, a common dominating
σ-finite measure can always be bound. For example, λ = P +Q always dominates
both P and Q.

Relative entropy is a kind of ‘distance’ measure between distributions P and
Q. In particular, if P = Q, then D(P,Q) = 0 and otherwise D(P,Q) > 0. Strictly

14.1 The relative entropy 179

speaking, the relative entropy is not a distance because it satisfies neither the
triangle inequality nor is it symmetric. Nevertheless, it serves the same purpose.

The relative entropy between many standard distributions is often quite easy
to compute. For example, the relative entropy between two Gaussians with means
µ1, µ2 ∈ R and common variance σ2 is

D(N (µ1, σ
2),N (µ2, σ

2)) = (µ1 − µ2)2

2σ2 .

The dependence on the difference in means and the variance is consistent with
our intuition. If µ1 is close to µ2, then the ‘difference’ between the distributions
should be small, but if the variance is very small, then there is little overlap and
the difference is large. The relative entropy between two Bernoulli distributions
with means p, q ∈ [0, 1]

D(B(p),B(q)) = p log
(
p

q

)
+ (1− p) log

(
1− p
1− q

)
,

where 0 log(·) = 0.
We are nearing the end of our whirlwind tour of relative entropy. It remains to

state the key lemma, sometimes called the high probability Pinsker inequality,
that connects the relative entropy to the hardness of hypothesis testing.

theorem 14.2 Let P and Q be probability measures on the same measurable
space (Ω,F) and let A ∈ F be an arbitrary event. Then,

P (A) +Q(Ac) ≥ 1
2 exp (−D(P,Q)) , (14.4)

where Ac = Ω \A is the complement of A.

The proof may be found at the end of the chapter, but first some interpretation
and a simple application. Suppose that D(P,Q) is small, then P is ‘close’ to Q
in some sense. Since P is a probability measure we have P (A) + P (Ac) = 1. If Q
is close to P , then we might expect P (A) +Q(Ac) should be large. The purpose
of the theorem is to quantify just how large. Note that if P is not absolutely
continuous with respect to Q then D(P,Q) =∞ and the result is vacuous. Also
note that the result is symmetric. We could replace D(P,Q) with D(Q,P), which
sometimes leads to a stronger result because the relative entropy is not symmetric.

Returning to the hypothesis testing problem described in the previous chapter.
Let X be normally distributed with unknown mean µ ∈ {0,∆} and variance
σ2 > 0. We want to bound the quality of a rule for deciding what is the real mean
from a single observation. The decision rule is characterized be a measurable
set A ⊆ R on which the predictor guesses µ = ∆ (it predicts µ = 0 on the
complement of A). Let P = N (0, σ2) and Q = N (∆, σ2). Then the probability
of an error under P is P (A) and the probability of error under Q is Q(Ac). The
reader surely knows what to do next. By Theorem 14.2 we have

P (A) +Q(Ac) ≥ 1
2 exp (−D(P,Q)) = 1

2 exp
(
− ∆2

2σ2

)
.

14.1 The relative entropy 180

If we assume that the signal to noise ratio is small, ∆2/σ2 ≤ 1, then

P (A) +Q(Ac) ≥ 1
2 exp

(
−1

2

)
≥ 3

10 ,

which implies max {P (A), Q(Ac)} ≥ 3/20. This means that no matter how we
chose our decision rule, we simply do not have enough data to make a decision
for which the probability of error on either P or Q is smaller than 3/20.

P (A) +Q(Ac) ≥ 1−
√

1
2 D(P,Q)

Proof of Theorem 14.2 For reals a, b we abbreviate max {a, b} = a ∨ b and
min {a, b} = a ∧ b. The result is trivial if D(P,Q) =∞. On the other hand, by
Theorem 14.1, D(P,Q) <∞ implies that P � Q. Let ν = P +Q. Then P,Q� ν,
which by Theorem 2.5 ensures the existence of the Radon-Nikodym derivatives
p = dP

dν and q = dQ
dν . The chain rule gives

dP

dQ

dQ

dν
= dP

dν
and dP

dQ
=

dP
dν
dQ
dν

.

Therefore

D(P,Q) =
∫
p log

(
p

q

)
dν .

For brevity, when writing integrals with respect to ν, in this proof, we will drop
dν. Thus, we will write, for example

∫
p log(p/q) for the above integral. Instead

of (14.4), we prove the stronger result that
∫
p ∧ q ≥ 1

2 exp(−D(P,Q)) . (14.5)

This indeed is sufficient since
∫
p ∧ q =

∫
A
p ∧ q +

∫
Ac
p ∧ q ≤

∫
A
p +

∫
Ac
q =

P (A) +Q(Ac). We start with an inequality attributed to French mathematician
Lucien Le Cam, which lower bounds the left-hand side of Eq. (14.5). The inequality
states that

∫
p ∧ q ≥ 1

2

(∫ √
pq

)2
. (14.6)

Starting from the right-hand side above using pq = (p ∧ q)(p ∨ q) and Cauchy-
Schwartz we get

(∫ √
pq

)2
=
(∫ √

(p ∧ q)(p ∨ q)
)2
≤
(∫

p ∧ q
) (∫

p ∨ q
)
.

Now, using p ∧ q + p ∨ q = p + q, the proof is finished by substituting∫
p ∨ q = 2−

∫
p ∧ q ≤ 2 and dividing both sides by two.

Thus, it remains to lower bound the right-hand side of (14.6). For this, we use

14.2 Notes 181

Jensen’s inequality. First, we write (·)2 as exp(2 log(·)) and then move the log
inside the integral:

(∫ √
pq

)2
= exp

(
2 log

∫ √
pq

)
= exp

(
2 log

∫
p

√
q

p

)

≥ exp
(

2
∫
p

1
2 log

(
q

p

))
= exp

(
−
∫

pq>0
p log

(
p

q

))

= exp
(
−
∫
p log

(
p

q

))
= exp (−D(P,Q)) .

In the fourth and the last step we used that since P � Q, q = 0 implies p = 0
and so p > 0, which implies q > 0, and eventually pq > 0. The result is completed
by chaining the inequalities.

14.2 Notes

1 Theorem 14.1 connects our definition of relative entropies to densities (the
‘classic definition’). It can be found in Section 5.2 of the book by Gray [2011].

2 How tight is Theorem 14.2? We remarked already that D(P,Q) = 0 if and only
if P = Q. But in this case Theorem 14.2 only gives

1 = P (A) +Q(Ac) ≥ 1
2 exp (−D(P,Q)) = 1

2 ,

which does not seem so strong. From where does the weakness arise? The
answer is in Eq. (14.6), which can be refined by

(∫ √
pq

)2
≤
(∫

p ∧ q
)(∫

p ∨ q
)

=
(∫

p ∧ q
)(

2−
∫
p ∧ q

)

By solving the quadratic inequality we have

P (A) +Q(Ac) ≥
∫
p ∧ q ≥ 1−

√
1−

(∫ √
pq

)2

≥ 1−
√

1− exp (−D(P,Q)) , (14.7)

which gives a modest improvement on Theorem 14.2 that becomes more
pronounced when D(P,Q) is close to zero as demonstrated by Fig. 14.1. This
stronger bound might be useful for fractionally improving constant factors in
lower bounds, but we do not know of any application for which it is really
crucial and the more complicated form makes it cumbersome to use. Part of
the reason for this is that the situation where D(P,Q) is small is better dealt
with using an even stronger inequality (for just that case). See the next note!

3 Another inequality from information theory is Pinsker’s inequality, which
states for measures P and Q on the same probability space (Ω,F) that

δ(P,Q) = sup
A∈F

P (A)−Q(A) ≤
√

1
2 D(P,Q) . (14.8)

14.2 Notes 182

0 1

−0.5

0

0.5

1

x

x/2
1−√1− x

1−
√

log(1/x)/2

Figure 14.1 Tightening the inequality of Le Cam

As an aside, the quantity on the left hand side is call the total variation
distance between P and Q, which actually is a distance on the space of
probability measures (on the same probability space, of course). From this we
can derive for any measurable A ∈ F that

P (A) +Q(Ac) ≥ 1−
√

1
2 D(P,Q) = 1−

√
1
2 log

(
1

exp(−D(P,Q))

)
.

Examining Fig. 14.1 shows that this is an improvement on Eq. (14.7) when
D(P,Q) is small.

4 We saw the total variation distance in Eq. (14.8). There are two other ‘distances’
that are occasionally useful. These are the Hellinger distance and the χ2-
distance, which using the notation in the proof of Theorem 14.2 are defined
by defined by

h(P,Q) =

√∫
(√p−√q)2 =

√
2
(

1−
∫ √

pq

)
(14.9)

χ2(P,Q) =
∫ (p− q)2

q
=
∫
p2

q
− 1 . (14.10)

Notice that h(P,Q) is bounded and exists for all probability measures P and
Q, while a necessary condition for the χ2-distance to exist is that P � Q. Like
the total variation distance, the Hellinger distance is actually a distance (it is
symmetric and satisfies triangle inequality), but the χ2-‘distance’ is not. It is
possible to show (see Chapter 2 of the book by Tsybakov [2008]) that

δ(P,Q)2 ≤ h(P,Q)2 ≤ D(P,Q) ≤ χ2(P,Q) . (14.11)

Each of the inequalities are tight for some choices of P and Q, but the examples

14.3 Bibliographic remarks 183

do not chain together as evidenced by Pinsker’s inequality, which shows that
δ(P,Q)2 ≤ D(P,Q)/2 (which is also tight for some P and Q).

5 Let P = (pi)i be a distribution on [N]. Another interpretation of the entropy
H(P) is as a measure of the amount of uncertainty in P . But what do we mean
by uncertainty? One approach to define uncertainty is to think of how much
one should be surprised to see a particular value of X (sampled from P). If x
is deterministic, then there is no surprise at all and so the uncertainty measure
should be zero. And indeed, H(P) = 0 when P is a Dirac measure. On the
other hand, if X is uniformly distributed, then we should be equally surprised
by any value, which provides some support defining the amount of ‘surprise’
when observing X = i by log(1/pi). Then entropy is the ‘expected surprise’.
Long story short, it turns out that reasonable definitions of uncertainty actually
give rise to the definition of H in Eq. (14.2).

6 The entropy for distribution P was defined as H(P) in Eq. (14.2). If X is a
random variable, then H(X) is defined to be the entropy of the law of X. This
is a convenient notation because it allows one to write H(f(X)) and H(XY)
and similar expressions.

14.3 Bibliographic remarks

There are many references for information theory. Most well known (and
comprehensive) is the book by Cover and Thomas [2012]. Another famous book
is the elementary and enjoyable introduction by MacKay [2003]. The approach
we have taken for defining and understanding the relative entropy is inspired by
an excellent shorter book by Gray [2011].

14.4 Exercises

14.1 Let (Ω,F) be a measurable space and let P,Q : F → [0, 1] be probability
measures. Let a < b and X : Ω → [a, b] be a F-measurable random variable.
Prove that ∣∣∣∣

∫

Ω
X(ω)dP (ω)−

∫

Ω
X(ω)dQ(ω)

∣∣∣∣ ≤ (b− a)δ(P,Q) .

14.2 Prove that each of the inequalities in Eq. (14.11) is tight.

14.3 Let Ω be a countable set and p : Ω → [0, 1] be a distribution on Ω so
that

∑
ω∈Ω p(ω) = 1. Let P be the measure associated with p, which means that

P (A) =
∑
ω∈A p(ω). The counting measure µ is the measure on (Ω, 2Ω) given

by µ(A) = |A| if A is finite and µ(A) =∞ otherwise.

(a) Show that P is absolutely continuous with respect to µ.
(b) Show that the Radon-Nykodim dP/dµ exists and that dP/dµ(ω) = p(ω).

14.4 Exercises 184

14.4 For each i ∈ {1, 2} let µi ∈ R, σ2
i > 0 and Pi = N (µi, σ2

i). Show that

D(P1, P2) = 1
2

(
log
(
σ2

2
σ2

1

)
+ σ2

1
σ2

2
− 1
)

+ (µ1 − µ2)2

2σ2
2

.

14.5 Let (R,L) be a measurable space with L the Lebesgue σ-algebra and let λ
be the Lebesgue measure. Find:

(a) a probability measure (R,L) that is not absolutely continuous with respect
to λ.

(b) a probability measure P on (R,L) that is absolutely continuous to λ with
D(P,Q) =∞ where Q = N (0, 1) is the standard Gaussian measure.

14.6 Let P and Q be measures on (Ω,F) and let G be a sub-σ-algebra of F and PG
and QG be the restrictions of P and Q to (Ω,G). Show that D(PG , QG) ≤ D(P,Q).

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

15 Minimax Lower Bounds

After the short excursion into information theory, let us return to the world
of K-armed stochastic bandits. In what follows we fix the horizon n > 0 and
the number of actions K > 1. This chapter has two components. The first is
an exact calculation of the relative entropy between measures in the canonical
bandit model for a fixed policy and different bandits. In the second component
we prove a minimax lower bound that formalizes the intuitive arguments given
in Chapter 13.

15.1 Relative entropy between bandits

The following result will be used repeatedly. Some generalizations are provided
in the notes and exercises.

lemma 15.1 (Divergence decomposition) Let ν = (P1, . . . , PK) be the reward
distributions associated with one K-armed bandit, and let ν′ = (P ′1, . . . , P ′K) be
the reward distributions associated with the another K-armed bandit. Fix some
policy π and let Pν = Pνπ and Pν′ = Pν′π be the measures on the canonical bandit
model (Section 4.4) induced by the interconnection of π and ν (respectively, π
and ν′). Then

D(Pν ,Pν′) =
K∑

i=1
Eν [Ti(n)] D(Pi, P ′i) . (15.1)

Proof Assume that D(Pi, P ′i) < ∞ for all i ∈ [K]. From this it follows
that Pi � P ′i . Define λ =

∑K
i=1 Pi + P ′i , which is the measure defined by

λ(A) =
∑K
i=1(Pi(A) + P ′i (A)) for any measurable set A. Recalling that ρ is the

counting measure on [K], Theorem 14.1 shows that

D(Pν ,Pν′) = Eν
[
log
(
dPν
dPν′

)]
.

The Nikodym derivative of Pν with respect to the product measure (ρ× λ)n is
given in Eq. (4.5) as

pνπ(a1, x1, . . . , an, xn) =
n∏

t=1
πt(at | a1, x1, . . . , at−1, xt−1)pat(xt) .

http://banditalgs.com
mailto:tor.lattimore@gmail.com

15.2 Minimax lower bounds 186

The density of Pν′ is identical except that pat is replaced by p′at . Then

log dPν
dPν′

(a1, x1, . . . , an, xn) =
n∑

t=1
log pat(xt)

p′at(xt)
,

where we used the chain rule for Radon-Nikodym derivatives and the fact that
the terms involving the policy cancel. Taking expectations of both sides:

Eν
[
log dPν

dPν′
(At, Xt)

]
=

n∑

t=1
Eν
[
log pAt(Xt)

p′At(Xt)

]
,

and

Eν
[
log pAt(Xt)

p′At(Xt)

]
= Eν

[
Eν

[
log pAt(Xt)

p′At(Xt)

∣∣∣∣∣At
]]

= Eν
[
D(PAt , P ′At)

]
,

where in the second equality we used that under Pν(·|At) the distribution of Xt

is dPAt = pAtdλ. Plugging back into the previous display,

Eν
[
log dPν

dPν′
(A1, X1, . . . , An, Xn)

]
=

n∑

t=1
Eν
[
log pAt(Xt)

p′At(Xt)

]

=
n∑

t=1
Eν
[
D(PAt , P ′At)

]
=

K∑

i=1
Eν

[
n∑

t=1
I {At = i}D(PAt , P ′At)

]

=
K∑

i=1
Eν [Ti(n)] D(Pi, P ′i) .

When the right-hand side of (15.1) is infinite, by our previous calculation, it is
not hard to see that the left-hand side will also be infinite.

15.2 Minimax lower bounds

Recall that EKN (1) is the class of Gaussian bandits with unit variance, which can
be parameterized by their mean vector µ ∈ RK . Given µ ∈ RK let νµ be the
Gaussian bandit for which the ith arm has reward distribution N (µi, 1).

theorem 15.1 Let K > 1 and n ≥ K − 1. Then for any policy π there exists
a mean vector µ ∈ [0, 1]K such that

Rn(π, νµ) ≥ 1
27
√

(K − 1)n .

Since νµ ∈ EK , it follows that the minimax regret for EK is lower bounded by
the right-hand side of the above display as soon as n ≥ K − 1:

R∗n(EK) ≥ 1
27
√

(K − 1)n .

The idea of the proof is illustrated in Fig. 15.1.

15.2 Minimax lower bounds 187

Figure 15.1 The idea of the minimax lower bound. Given a policy and one environment,
the evil antagonist picks another environment so that the policy will suffer a large
regret in at least one environment

Proof Fix a policy π. Let ∆ ∈ [0, 1/2] be some constant to be chosen later. As
suggested in Chapter 13 we start with a Gaussian bandit with unit variance
and mean vector µ = (∆, 0, 0, . . . , 0). This environment and π gives rise to the
distribution Pνµ,π on the canonical bandit model (Hn,Fn). For brevity we will
use Pµ in place of Pνµ,π and expectations under Pµ will be denoted by Eµ. To
choose the second environment, let

i = argminj>1 Eµ[Tj(n)] .

Since
∑K
j=1 Eµ[Tj(n)] = n, it holds that Eµ[Ti(n)] ≤ n/(K − 1). The second

bandit is also Gaussian with unit variance and means

µ′ = (∆, 0, 0, . . . , 0, 2∆, 0, . . . , 0) ,

where specifically µ′i = 2∆. Therefore µj = µ′j except at index i and the optimal
optimal arm in νµ is the first arm and in i in νµ′ . We abbreviate Pµ′ = Pνµ′ ,π.
Lemma 4.2 and a simple calculation leads to

Rn(π, νµ) ≥ Pµ(T1(n) ≤ n/2)n∆
2 and Rn(π, νµ′) > Pµ′(T1(n) > n/2) n∆

2 .

Then applying the high probability Pinsker inequality from the previous chapter
(Theorem 14.2),

Rn(π, νµ) +Rn(π, νµ′) >
n∆
2 (Pµ(T1(n) ≤ n/2) + Pµ′(T1(n) > n/2))

≥ n∆
4 exp(−D(Pµ,Pµ′)) .

It remains to upper bound D(Pµ,Pµ′). For this, we use Lemma 15.1 and the

15.3 Notes 188

definitions of µ and µ′ to get

D(Pµ,Pµ′) = Eµ[Ti(n)] D(N (0, 1),N (2∆, 1)) = Eµ[Ti(n)] (2∆)2

2 ≤ 2n∆2

K − 1 .

Plugging this into the previous display, we find that

Rn(π, νµ) +Rn(π, νµ′) ≥
n∆
4 exp

(
− 2n∆2

K − 1

)
.

The result is completed by choosing ∆ =
√

(K − 1)/4n ≤ 1/2, where the
inequality follows from the assumptions in the theorem statement. The final steps
are lower bounding exp(−1/2) and using 2 max(a, b) ≥ a+ b.

We encourage readers to go through the alternative proof outlined in
Exercise 15.1, which takes a slightly different path.

15.3 Notes

1 We used the Gaussian noise model because the KL divergences are so easily
calculated in this case, but all that we actually used was that D(Pi, P ′i) =
O((µi − µ′i)2) when the gap between the means ∆ = µi − µ′i is small. While
this is certainly not true for all distributions, it very often is. Why is that? Let
{Pµ : µ ∈ R} be some parametric family of distributions on Ω and assume that
distribution Pµ has mean µ. Assuming the densities are twice differentiable
and that everything is sufficiently nice that integrals and derivatives can be
exchanged (as is almost always the case), we can use a Taylor expansion about
µ to show that

D(Pµ, Pµ+∆) ≈ ∂

∂∆ D(Pµ, Pµ+∆)
∣∣∣∣
∆=0

∆ + 1
2

∂2

∂∆2 D(Pµ, Pµ+∆)
∣∣∣∣
∆=0

∆2

= ∂

∂∆

∫

Ω
log
(

dPµ
dPµ+∆

)
dPµ

∣∣∣∣
∆=0

∆ + 1
2I(µ)∆2

= −
∫

Ω

∂

∂∆ log
(
dPµ+∆
dPµ

)∣∣∣∣
∆=0

dPµ∆ + 1
2I(µ)∆2

= −
∫

Ω

∂

∂∆
dPµ+∆
dPµ

∣∣∣∣
∆=0

dPµ∆ + 1
2I(µ)∆2

= − ∂

∂∆

∫

Ω

dPµ+∆
dPµ

dPµ

∣∣∣∣
∆=0

∆ + 1
2I(µ)∆2

= − ∂

∂∆

∫

Ω
dPµ+∆

∣∣∣∣
∆=0

∆ + 1
2I(µ)∆2

= 1
2I(µ)∆2 ,

where I(µ), introduced in the second line, is called the Fisher information
of the family (Pµ)µ at µ. Note that if λ is a common dominating measure for

15.4 Bibliographic remarks 189

(Pµ+∆) for ∆ small, dPµ+∆ = pµ+∆dλ and we can write

I(µ) = −
∫

∂2

∂∆2 log pµ+∆

∣∣∣∣
∆=0

pµdλ ,

which is the form that is usually given in elementary texts. The upshot of all
this is that D(Pµ, Pµ+∆) for ∆ small is indeed quadratic in ∆, with the scaling
provided by I(µ), and as a result the worst-case regret is always O(

√
nK),

provided the class of distributions considered is sufficiently rich and not too
bizarre.

2 We have now shown a lower bound that is Ω(
√
nK), while many of the upper

bounds were O(log(n)). There is no contradiction because the logarithmic
bounds depended on the inverse suboptimality gaps, which may be vary large.

3 Our lower bound was only proven for n ≥ K − 1. In Exercise 15.2 we ask you
to show that when n < K − 1 there exists a bandit such that

Rn ≥
n(2K − n− 1)

2K >
n

2 .

15.4 Bibliographic remarks

The first work on lower bounds that we know of was the remarkably precise
minimax analysis of two-armed Gaussian bandits by Vogel [1960]. The high
probability Pinsker inequality (Theorem 14.2) was first used for bandits by
Bubeck et al. [2013b], but the theorem has other applications. As far as we
can tell, the earliest proof is due to Bretagnolle and Huber [1979], but we also
recommend the book by Tsybakov [2008]. The proof of Theorem 15.1 uses the
same ideas as Gerchinovitz and Lattimore [2016], while the alternative proof
in Exercise 15.1 is essentially due to Auer et al. [1995], who analyzed the more
difficult case where the rewards are Bernoulli (see Exercise 15.3).

15.5 Exercises

15.1 There is another way to prove Theorem 15.1. Let c > 0 and ∆ = 2c
√
K/n

and for each i ∈ {0, 1, . . . ,K} let µ(i) ∈ RK satisfy µ
(i)
k = I {i = k}∆. Further

abbreviate the notation in the proof of Theorem 15.1 by letting Ei[·] = Eµ(i) [·].

(a) Use Pinsker’s inequality (Eq. 14.8) and Lemma 15.1 and the result of
Exercise 14.1 to show

Ei[Ti(n)] ≤ E0[Ti(n)] + n

√
1
4∆2E0[Ti(n)] = E0[Ti(n)] + c

√
nKE0[Ti(n)] .

15.5 Exercises 190

(b) Using the previous part, Jensen’s inequality and the identity
∑K
i=1 E0[Ti(n)] =

n, show that
K∑

i=1
Ei[Ti(n)] ≤ n+ c

K∑

i=1

√
nKE0[Ti(n)] ≤ n+ cKn .

(c) Let Ri = Rn(π,Gµ(i)). Find a choice of c > 0 for which
K∑

i=1
Ri = ∆

K∑

i=1
(n− Ei[Ti(n)]) ≥ ∆i (nK − n− cKn)

= 2c
√
K

n
(nK − n− cKn) ≥ nK

8

√
K

n

(d) Conclude there exists an i ∈ [K] such that

Ri ≥
1
8
√
Kn .

15.2 Let K > 1 and n < K. Prove that for any policy π there exists a
Gaussian bandit with unit variance and means µ ∈ [0, 1]K such that Rn(π, νµ) ≥
n(2K − n− 1)/(2K) > n/2.

15.3 Recall from Table 4.1 that EKB is the set of K-armed Bernoulli bandits.
Show that there exists a universal constant c > 0 such that for any 2 ≤ K ≤ n it
holds that:

R∗n(EBK) = inf
π

sup
ν∈EKB

Rn(π, ν) ≥ c
√
nK .

Use the fact that KL divergence is upper bounded by the χ2-distance (14.11).

15.4 In Chapter 9 we proved that if π is the MOSS policy and ν ∈ EKSG(1), then

Rn(π, ν) ≤ C


√Kn+

∑

i:∆i>0
∆i


 ,

where C > 0 is a universal constant. Prove that the dependence on the sum
cannot be eliminated.

You will have to use that Ti(t) is an integer for all t.

15.5 Let ETCnm be the Explore-Then-Commit policy with inputs n and m

respectively (Algorithm 1). Prove that for all m there exists a µ ∈ [0, 1]K such
that

Rn(ETCnm, νµ) ≥ cmin
{
n, n2/3K1/3

}
,

15.5 Exercises 191

where c > 0 is a universal constant.

15.6 Consider the setting of Lemma 15.1 and let X be a random variable and
PνX and Pν′X be the distributions of X induced by Pν and Pν′ respectively. Let
Ft = σ(A1, X1, . . . , At, Xt) and τ be a Ft-measurable stopping time. Show that
if X is Fτ -measurable, then

D(PνX ,Pν′X) ≤
K∑

i=1
Eν [Ti(τ)] D(Pi, P ′i) .

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

16 Instance Dependent Lower Bounds

In the last chapter we proved a lower bound on the minimax regret for subgaussian
bandits with suboptimality gaps in [0, 1]. Such bounds serve as a useful measure
of the robustness of a policy, but are often excessively conservative. This chapter
is devoted to understanding instance-dependence lower bounds, which try to
capture the optimal performance of a policy on a specific bandit instance.

Because the regret is a multi-objective criteria, an algorithm designer might
try and design algorithms that perform well on one kind of instance or another.
An extreme example is the policy that chooses At = 1 for all t, which suffers
zero regret when the first arm is optimal and linear regret otherwise. This is a
harsh tradeoff with the price for reducing the regret from logarithmic to zero
on just a few instances being linear regret on the remainder. Surprisingly, this
is the nature of the game in bandits. One can assign a measure of difficulty to
each instance such that policies performing overly well relative to this measure
on some instances pay a steep price on others. The situation is illustrated in the
figure below.

√
n

n

minimax optimal

reasonable, not instance optimal

instance optimal

overly specified

Instances

R
eg

re
t

On the x-axis the instances are ordered according to the measure of difficulty and
the y-axis shows the regret (on some scale). In the previous chapter we proved
that no policy can be entirely below the horizontal ‘minimax optimal’ line. The
results in this chapter show that if the regret of a policy is below the ‘instance
optimal’ line at any point, then it must have regret above the shaded region
for other instances. For example, the ‘overly specified’ policy. In finite-time the

http://banditalgs.com
mailto:tor.lattimore@gmail.com

16.1 Asymptotic bounds 193

situation is a little messy, but if one pushes these ideas to the limit, then for
many classes of bandits one can define a precise notion of instance-dependent
optimality.

16.1 Asymptotic bounds

We need to define exactly what is meant by a reasonable policy. If one is only
concerned with asymptotics, then a rather conservative definition suffices.

definition 16.1 A policy π is called consistent over a class of bandits E if
for all ν ∈ E and p > 0 it holds that

lim
n→∞

Rn(π, ν)
np

= 0 . (16.1)

The class of consistent policies over E is denoted by Πcons(E).

Theorem 7.1 shows that UCB is consistent over EKSG(1). The strategy that
always chooses the first action is not consistent on any class E unless K = 1 or E
is so restrictive that the first arm is optimal action for every ν ∈ E .

Consistency is an asymptotic notion. A policy could be consistent and yet
play At = 1 for all t ≤ 10100. For this reason an assumption on consistency
is insufficient to derive nonasymptotic lower bounds. Later we introduce a
finite-time version of consistency that allows us to prove finite-time instance-
dependent lower bounds.

A class E of stochastic bandits is unstructured if E = C1 × · · · × CK with
C1, . . . , CK sets of distributions. The main theorem of this chapter is a generic
lower bound that applies to any unstructured class of stochastic bandits. After
the proof we will see some applications to specific classes. Let C be a set of
distributions with finite means and let µ : C → R be the function that maps
P ∈ C to its mean. Let α ∈ R and P ∈ C have P (µ) < α and define

dC(P, α) = inf
P ′∈C

{D(P, P ′) : µ(P ′) > α} .

Recall that Pi(ν) is the distribution of rewards for the ith arm of bandit ν and
µi(ν) is its mean and µ∗(ν) = maxi µi(ν) and ∆i(ν) = µ∗(ν)− µi(ν).

theorem 16.1 Let E = C1 × · · · × CK and π ∈ Πcons(E) be a consistent policy
over E. Then for all ν ∈ E it holds that

lim inf
n→∞

Rn
log(n) ≥ c

∗(ν, E) =
∑

i:∆i(ν)>0

∆i(ν)
dCi(Pi(ν), µ∗(ν)) . (16.2)

16.1 Asymptotic bounds 194

Proof Abbreviate Pi = Pi(ν) and µi = µi(ν) and ∆i = ∆i(ν) and µ∗ = µ∗(ν)
and di = dCi(Pi, µ∗). The result will follow from Lemma 4.2 and by showing that
for any suboptimal arm i it holds that

lim inf
n→∞

Eνπ[Ti(n)]
log(n) ≥ 1

di
.

Fix a suboptimal arm i and let ε > 0 be arbitrary and ν′ ∈ E be a bandit
with Pj(ν′) = Pj for j 6= i and Pi(ν′) be such that D(Pi, P ′i) ≤ di + ε and
µ(P ′i) > µ∗, which exists by the definition of di. Then by Lemma 15.1 we have
D(Pνπ,Pν′,π) ≤ Eνπ[Ti(n)](di + ε) and by Theorem 14.2 for any event A

Pνπ(A) + Pν′,π(A) ≥ 1
2 exp (−D(Pνπ,Pν′,π)) ≥ 1

2 exp (−Eνπ[Ti(n)](di + ε)) .

Now choose A = {Ti(n) > n/2} and let Rn = Rn(π, ν) and R′n = Rn(π, ν′). Then

Rn +R′n ≥
n

2 (Pνπ(A)∆i + Pν′,π(Ac)(µ′i − µ∗))

≥ n

2 min {∆i, µ
′
i − µ∗} (Pνπ(A) + Pν′,π(Ac))

≥ n

2 min {∆i, µ
′
i − µ∗} exp (−Eνπ[Ti(n)](di + ε)) .

Rearranging and taking the limit inferior leads to

lim inf
n→∞

Eνπ[Ti(n)]
log(n) ≥ 1

di + ε
lim inf
n→∞

log
(
nmin{∆i,µ

′
i−µ∗}

2(Rn+R′n)

)

log(n)

= 1
di + ε

(
1− lim sup

n→∞

log (Rn +R′n)
log(n)

)
= 1
di + ε

,

where the last equality follows from the definition of consistency, which says
that for any p > 0 there exists a constant Cp such that for sufficiently large n,
Rn +R′n ≤ Cpnp, which implies that

lim sup
n→∞

log (Rn +R′n)
log(n) ≤ lim sup

n→∞

p log(n) + log(Cp)
log(n) = p ,

which gives the result since p > 0 was arbitrary and by taking the limit as ε
tends to zero.

The next theorem gives dC(P, α) for common choices of C.

theorem 16.2 The following hold:

(a) Let σ2 > 0 and C =
{
N (µ, σ2) : µ ∈ R

}
, then

dC(N (µ, σ2), α) = (µ− α)2

2σ2 .

(b) Let C =
{
N (µ, σ2) : µ ∈ R, σ2 > 0

}
, then

dC(N (µ, σ2), α) = 1
2 log

(
1 + (µ− α)2

σ2

)
.

16.2 Finite-time bounds 195

(c) Let C = {B(µ) : µ ∈ [0, 1]}, then

dC(B(µ), α) = µ log
(µ
α

)
+ (1− µ) log

(
1− µ
1− α

)
.

(d) Let C = {U(a, b) : a, b ∈ R}, then

dC(U(a, b), α) = log
(

1 + 2((a+ b)/2− α)2

b− a

)
.

Proof of part (a) Fix σ2 > 0 and note that the class C =
{
N (µ, σ2) : µ ∈ R

}
is

parameterised by the mean. Therefore for any µ ∈ R and α > µ we have

dC(N (µ, σ2), α) = inf
θ>α

D(N (µ, σ2),N (θ, σ2)) = inf
θ>α

(µ− θ)2

2σ2 = (µ− α)2

2σ2 .

The reader is asked to complete the remaining parts in Exercise 16.1. It appears
that the lower bound and definition of c∗(ν, E) are quite fundamental quantities
in the sense that for most classes E it appears there exists a policy π for which

lim
n→∞

Rn(π, ν)
log(n) = c∗(ν, E) for all ν ∈ E . (16.3)

This justifies calling a policy asymptotically optimal on class E if Eq. (16.3)
holds. For example, UCB from Chapter 8 and KL-UCB from Chapter 10 are
asymptotically optimal for EKN (1) and EKB respectively.

16.2 Finite-time bounds

The proofs that follow use the same technique as what we already saw. For
future reference we extract the common part, which summarizes what can be
obtained by chaining the high-probability Pinsker inequality with the divergence
decomposition lemma.

lemma 16.1 Let ν = (Pi) and ν′ = (P ′i) be K-action stochastic bandits that
differ only in the distribution of the reward for action i ∈ [K]. Assume that i is
suboptimal in ν and uniquely optimal in ν′. Let λ = µi(ν′)− µi(ν). Then for any
policy π,

Eνπ[Ti(n)] ≥
log
(

min{λ−∆i(ν),∆i(ν)}
4

)
+ log(n)− log(Rn(ν) +Rn(ν′))

D(Pi, P ′i)
. (16.4)

The lemma holds for finite n and any ν and can be used to derive finite-
time instance-dependent lower bounds for any environment class E that is rich
enough. The following result provides a finite-time instance-dependence bound
for Gaussian bandits where the asymptotic notion of consistency is replaced by
an assumption that the minimax regret is not too large. This assumption alone
is enough to show that no policy that is remotely close to minimax optimal can
be much better than UCB on any instance.

16.3 Notes 196

theorem 16.3 Let C, p > 0 and π be a policy such that Rn(π, ν) ≤ Cnp for
all ν ∈ EKN . Then for any ν ∈ EKN and ε ∈ (1, 2) it holds that

Rn(π, ν) ≥ 2
∑

i:∆i>0

(
(1− p) log(n) + log(ε∆i

8C)
∆i

)+

, (16.5)

where (x)+ = max(x, 0) is the positive part of x ∈ R.

Proof Let i be suboptimal in ν and choose ν′ ∈ EKN such that µj(ν′) = µj(ν)
for j 6= i and µj(ν′) = µi + ∆i(1 + ε). Then by Lemma 16.1 with λ = ∆i(1 + ε),

Eνπ[Ti(n)] ≥ 2
∆2
i (1 + ε)2

(
log
(n

2Cnp
)

+ log
(

min {λ−∆i,∆i}
4

))

= 2
∆2
i (1 + ε)2

(
(1− p) log (n) + log

(
ε∆i

8C

))
.

Plugging this into the basic regret decomposition identity (Lemma 4.2) gives the
result.

When p = 1/2 the leading term in this lower bound is approximately half that
of the asymptotic bound. This effect may be real: the class of policies considered
is larger than in the asymptotic lower bound and so there is the possibility that
the policy that is best tuned for a given environment achieves a smaller regret.

16.3 Notes

1 We mentioned that for most classes E there is a policy satisfying Eq. (16.3).
Its form is derived from the lower bound, and by making some additional
assumptions on the underlying distributions. For details, see the article
by Burnetas and Katehakis [1996], which is also the original source of
Theorem 16.1.

2 The analysis in this chapter only works for unstructured classes. Without this
assumption a policy can potentially learn about the reward from one arm
by playing other arms and this greatly reduces the regret. Lower bounds for
structured bandits are more delicate and will be covered on a case-by-case
basis in subsequent chapters.

3 The classes analyzed in Theorem 16.2 are all parametric, which makes the
calculation possible analytically. There has been relatively little analysis in
the non-parametric case, but we know of three exceptions for which we
simply refer the reader to the appropriate source. The first is the class of
distributions with bounded support: C = {P : Supp(P) ⊆ [0, 1]}, which has
been analyzed exactly [Honda and Takemura, 2010]. The second is the class
of distributions with semi-bounded support, C = {P : Supp(P) ⊆ (−∞, 1]}
[Honda and Takemura, 2015]. The third is the class of distributions with
bounded kurtosis, C = {P : KurtX∼P [X] ≤ κ}. For details see Lattimore [2017].

16.4 Bibliographic remarks 197

16.4 Bibliographic remarks

Asymptotic optimality via a consistency assumption first appeared in the seminal
paper by Lai and Robbins [1985], which was later generalized by Burnetas and
Katehakis [1996]. In terms of upper bounds, there now exist policies that are
asymptotic optimal for single-parameter exponential families [Cappé et al., 2013].
Until recently, there were no results on asymptotic optimality for multi-parameter
classes of reward distributions. There has been some progress on this issue recently
for the Gaussian distribution with unknown mean and variance [Cowan et al.,
2015] and for the uniform distribution [Cowan and Katehakis, 2015]. There
are plenty of open questions related to asymptotically optimal strategies for
nonparametric classes of reward distributions. When the reward distributions
are discrete and finitely supported an asymptotically optimal policy is given by
Burnetas and Katehakis [1996], though the precise constant is hard to interpret. A
relatively complete solution is available for classes with bounded support [Honda
and Takemura, 2010]. Already for the semi-bounded case things are getting murky
[Honda and Takemura, 2015]. One of the authors thinks that classes with bounded
kurtosis are quite interesting, but here things are only understood up to constant
factors [Lattimore, 2017]. An asymptotic variant of Theorem 16.3 is by Salomon
et al. [2013]. Finite-time instance-dependent lower bounds have been proposed by
several authors including Kulkarni and Lugosi [2000] for two arms and Garivier
et al. [2016c], Lattimore [2018] for the general case.

16.5 Exercises

16.1 Prove parts (b), (c) and (d) of Theorem 16.2.

16.2 Let R(µ) be the shifted Rademacher distribution, which for µ ∈ R and
X ∼ R(µ) is characterized by P (X = µ+ 1) = P (X = µ− 1) = 1/2.

(a) Show that dC(R(µ), α) =∞ for any µ < α.
(b) Design a policy π for bandits with shifted Rademacher rewards such that the

regret is bounded by

Rn(π, ν) ≤ CK for all n and ν ∈ ×C ,

where C > 0 is a universal constant.
(c) The results from parts (a) and (b) seem to contradict the heuristic analysis

in Note 1 at the end of Chapter 15. Explain.

16.3 Let π be a consistent policy for a single parameter exponential family as
explained in Exercise 10.4 in Chapter 10. Prove the upper bound given in part
(h) is tight.

16.4 Let C =
{
P : there exists a σ2 ≥ 0 such that P is σ2-subgaussian

}
.

16.5 Exercises 198

(a) Find a distribution P such that P /∈ C.
(b) Suppose that P ∈ C has mean µ ∈ R. Prove that dC(P, α) = 0 for all α > µ.
(c) Let E = {(Pi) : Pi ∈ C for all 1 ≤ i ≤ K}. Prove that if K > 1, then for all

consistent policies π,

lim inf
n→∞

Rn(π, ν)
log(n) =∞ for all ν ∈ E .

(d) Let f : N → [0,∞) be any monotone increasing function with
limn→∞ f(n)/ log(n) =∞. Prove there exists a policy π such that

lim sup
n→∞

Rn(π, ν)
f(n) = 0 for all ν ∈ E ,

where E is as in the previous part.
(e) Conclude there exists a consistent policy for E .

16.5 Use Lemma 16.1 to prove Theorem 15.1, possibly with different constants.

16.6 Let K = 2 and for ν ∈ E2
N let ∆(ν) = max{∆1(ν),∆2(ν)}. Suppose that π

is a policy such that for all ν ∈ E2
N with ∆(ν) ≤ 1 it holds that

Rn(π, ν) ≤ C log(n)
∆(ν) . (16.6)

(a) Give an example of a policy satisfying Eq. (16.6).
(b) Assume that i = 2 is suboptimal for ν and α ∈ (0, 1) be such that

Eνπ[T2(n)] = 1
2∆(ν)2 log(α). Let ν′ be the alternative environment where

µ1(ν′) = µ1(ν) and µ2(ν′) = µ1(ν) + 2∆(ν). Show that

exp(−D(Pνπ,Pν′π)) = 1
α
.

(c) Let A be the event that T2(n) ≥ n/2. Show that

Pνπ(A) ≤ 2C log(n)
n∆2 and Pν′π(A) ≥ 1

2α −
2C log(n)
n∆2 .

(d) Show that

Rn(π, ν′) ≥ n∆
2

(
1

2α −
2C log(n)
n∆2

)
.

(e) Show that α ≥ n∆2

8C log(n) and conclude that

Rn(π, ν) ≥ 1
2∆(ν) log

(
n∆2

8C log(n)

)
.

(f) Generalize the argument to an arbitrary number of arms.

16.5 Exercises 199

16.7 Let K > 1 and p ∈ [0, 1) and π be a policy such that for all EKN so that for
all ν ∈ EKN it holds that

lim sup
n→∞

Rn(π, ν)
log(n) =

∑

i:∆i>0

2(1 + p)
∆i

.

Let R̂n(π, ν) = nµ∗(ν)−∑n
t=1 µAt(ν) be the random regret and prove that

lim sup
n→∞

sup
ν∈En

log(V[R̂n(π, ν)])
(1− p) log(n) ≥ 1 .

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

17 High Probability Lower Bounds

The lower bounds proven in the last two chapters were for stochastic bandits.
In this chapter we prove high probability lower bounds for both stochastic and
adversarial bandits. Recall that for adversarial bandit x ∈ [0, 1]nK and policy π
the random regret is

R̂n(π, x) = max
i∈[K]

n∑

t=1
xti − xtAt

and the (expected) regret is Rn(π, x) = E[R̂n(π, x)]. To set expectations,
remember that in Chapter 12 we proved two high probability upper bounds
on the regret of Exp3-IX. In the first we showed there exists a policy π such that
for all adversarial bandits x ∈ [0, 1]nK and δ ∈ (0, 1) it holds with probability at
least 1− δ that

R̂n(π, x) = O

(
√
Kn log(K) +

√
Kn

log(K) log
(

1
δ

))
. (17.1)

We also gave a version of the algorithm that depended on δ ∈ (0, 1) for which
with probability at least 1− δ,

R̂n(π, x) = O

(√
Kn log

(
K

δ

))
. (17.2)

The important difference is the order of quantifiers. In the first we have a
single algorithm and a high-probability guarantee that holds simultaneously for
any confidence level. The second algorithm needs the confidence level to be
specified in advance. The price for using the generic algorithm appears to be√

log(1/δ)/ log(K), which is usually quite small but not totally insignificant. We
will see that both bounds are tight up to constant factors, which implies that
knowing the desired confidence level in advance really does help. One reason
why choosing the confidence level in advance is not ideal is that the resulting
high-probability bound cannot be integrated to prove a bound in expectation.
For algorithms satisfying (17.1) the expected regret can be bounded by

Rn(π, x) ≤
∫ ∞

0
P
(
R̂n ≥ x

)
dx = O(

√
Kn log(K)) . (17.3)

http://banditalgs.com
mailto:tor.lattimore@gmail.com

17.1 Stochastic bandits 201

On the other hand, if the high-probability bound only holds for a single δ as in
(17.2), then it seems hard to do much better than

Rn ≤ nδ +O

(√
Kn log

(
K

δ

))
,

which with the best choice of δ leads to a bound of O(
√
Kn log(n)). It turns

out that this argument cannot be strengthened and algorithms with the strong
high-probability regret cannot be near-optimal in expectation. For simplicity we
start with the stochastic setting before explaining how to convert the arguments
to the adversarial model.

17.1 Stochastic bandits

There is no randomness in the expected regret, so in order to derive a high
probability bound we define the random pseudo regret by

R̃n =
K∑

i=1
Ti(n)∆i ,

which is a random variable through the pull counts Ti(n).

For all results in this section we let EK ⊂ EKN denote the set of K-armed
Gaussian bandits with suboptimality gaps bounded by one. For µ ∈ [0, 1]d we
let νµ ∈ EK be the Gaussian bandit with means µ.

theorem 17.1 Let n ≥ 1 and K ≥ 2 and B > 0 and π be a policy such that
for any ν ∈ EK ,

Rn(π, ν) ≤ B
√

(K − 1)n . (17.4)

Let δ ∈ (0, 1). Then there exists a bandit ν in EK such that

P
(
R̃n(π, ν) ≥ 1

4 min
{
n,

1
B

√
(K − 1)n log

(
1
4δ

)})
≥ δ .

Proof Let ∆ ∈ (0, 1/2] be a constant to be tuned subsequently and ν = νµ where
the mean vector µ ∈ Rd is defined by µ1 = ∆ and µi = 0 for i > 1. abbreviate
Rn = Rn(π, ν) andP = Pνπ and E = Eνπ. Let i = argmini>1 E[Ti(n)]. Then by
Lemma 4.2 and the assumption in Eq. (17.4),

E[Ti(n)] ≤ Rn
∆ ≤ B

∆

√
n

K − 1 . (17.5)

Define alternative bandit ν′ = νµ′ where µ′ ∈ Rd is equal to µ except µ′i = µi+2∆.
Abbreviate P′ = Pν′π and R̃n = R̃n(π, ν) and R̃′n = R̃n(π, ν′). By Lemma 4.2

17.1 Stochastic bandits 202

and Pinsker’s inequality (Theorem 14.2) and the divergence decomposition
(Lemma 15.1) we have

P
(
R̃n ≥

∆n
2

)
+ P

(
R̃′n ≥

∆n
2

)
≥ P

(
Ti(n) ≥ n

2

)
+ P

(
Ti(n) < n

2

)

≥ 1
2 exp (−D(P,P′)) ≥ 1

2 exp
(
−2B∆

√
n

K − 1

)
≥ 2δ ,

where the last line follows by choosing

∆ = min
{

1
2 ,

1
2B

√
K − 1
n

log
(

1
4δ

)}
.

The result follows since max{a, b} ≥ (a+ b)/2.

corollary 17.1 Let n ≥ 1 and K ≥ 2. Then for any policy π and δ ∈ (0, 1)
such that

nδ ≤
√
n(K − 1) log

(
1
4δ

)
(17.6)

there exists a bandit problem ν ∈ EK such that

P

(
R̃n(π, ν) ≥ 1

4 min
{
n,

√
n(K − 1)

2 log
(

1
4δ

)})
≥ δ . (17.7)

Proof We prove the result by contradiction. Assume that the conclusion does
not holds for π and let δ ∈ (0, 1) satisfy (17.6). Then for any bandit problem
ν ∈ EK the expected regret of π is bounded by

Rn(π, ν) ≤ nδ +

√
n(K − 1)

2 log
(

1
4δ

)
≤
√

2n(K − 1) log
(

1
4δ

)
.

Therefore π satisfies the conditions of Theorem 17.1 with B =
√

2 log(1/(4δ)),
which implies that there exists some bandit problem ν ∈ EK such that (17.7)
holds, contradicting our assumption.

corollary 17.2 Let K ≥ 2 and p ∈ (0, 1) and B > 0. Then there does not
exist a policy π such that for all n ≥ 1, δ ∈ (0, 1) and ν ∈ EK ,

P
(
R̃n(π, ν) ≥ B

√
(K − 1)n logp

(
1
δ

))
< δ

Proof We proceed by contradiction. Suppose that such a policy exists. Choosing
δ sufficiently small and n sufficiently large ensures that

1
B

log
(

1
4δ

)
≥ B logp

(
1
δ

)
and 1

B

√
n(K − 1) log

(
1
4δ

)
≤ n .

17.2 Adversarial bandits 203

Now by assumption for any ν ∈ EK we have

Rn(π, ν) ≤
∫ ∞

0
P
(
R̃n(π, ν) ≥ x

)
dx

≤ B
√
n(K − 1)

∫ ∞

0
exp

(
−x1/p

)
dx ≤ B

√
n(K − 1) .

Therefore by the Theorem 17.1 there exists a bandit ν ∈ EK such that

P
(
R̃n(π, ν) ≥ B

√
n(K − 1) log

(
1
δ

))

≥ P
(
R̃n(π, ν) ≥ 1

4 min
{
n,

1
B

√
n(K − 1) log

(
1
4δ

)})
≥ δ ,

which contradicts our assumption and completes the proof.

We suspect there exists a policy π and universal constant B > 0 such that for
all ν ∈ EK ,

P
(
R̃n(π, ν) ≥ B

√
Kn log

(
1
δ

))
≤ δ .

Except for the issue of unbounded rewards we would have this for Exp3-IX
and suspect the analysis of that algorithm could more-or-less be adapted to
this setting. Care would be required to deal with the unbounded rewards, but
we expect the math to go through with minor adaptations to the algorithm.

17.2 Adversarial bandits

We now explain how to translate the ideas in the previous section to the adversarial
model. Throughout we assume a fixed policy π. Let Ω = [0, 1]nK and let x ∈ Ω
be an adversarial bandit environment. Recall the random regret is

R̂n(x) = max
i∈[K]

n∑

t=1
(xti − xtAt) ,

where the randomness in R̂n is due to the policy only.

theorem 17.2 Let c, C > 0 be sufficiently small/large universal constants and
K ≥ 2, n ≥ 1 and δ ∈ (0, 1) be such that n ≥ CK log(1/(2δ)). Then there exists
a reward sequence x ∈ [0, 1]nK such that

P

(
R̂n(x) ≥ c

√
nK log

(
1
2δ

))
≥ δ .

The proof is technical and messy, but also contains some nuggets of interest.
For the sake of brevity we explain only the high level ideas and refer the

17.2 Adversarial bandits 204

reader elsewhere for the gory details. There are two difficulties in translating the
arguments in the previous section to the adversarial model. First, in the adversarial
model we need the rewards to be bounded in [0, 1]. The second difficulty is we
now analyse the adversarial regret rather than the random pseudo-regret.

Suppose we sample X ∈ Ω from distribution Q on (Ω,B(Ω)) and let PQ be
the distribution of R̂n(X).

claim 17.1 Let Px be the distribution of R̂n(x) and u > 0. If PQ(R̂n(X) ≥
u) ≥ δ, then there exists an x ∈ Ω such that Px(R̂n(x) ≥ u).

The next step is to choose Q and argue that P(R̂n(X) ≥ u) ≥ δ for sufficiently
large u. To do this we need a truncated normal distribution. Defining clipping
function

clip[0,1](x) =





1 if x > 1
0 if x < 0
x otherwise .

Let σ,∆ > 0 be constants that we’ll tune later and η1, . . . , ηn a sequence of
independent random variables with ηt ∼ N (1/2, σ2). For each i ∈ [K] let Qi be
the distribution of X ∈ Ω where

Xtj =





clip[0,1](ηt + ∆) if j = 1
clip[0,1](ηt + ∆) if j = i and i 6= 1
clip[0,1](ηt) otherwise ,

Notice that under any Qi for fixed t the random variables Xt1, . . . , XtK are not
independent, but for fixed j the random variables X1j , . . . , Xtj are independent
and identically distributed. We will let the reader justify for themselves that this
is equivalent to a stochastic bandit model.

claim 17.2 If σ > 0 and ∆ = σ
√

K−1
2n log

(1
6δ
)
, then there exists an arm i such

that

PQ1(Ti(n) < n/2) ≥ 2δ .

The proof of this claim follows along the same lines as the theorems in the
previous section. All that changes is the calculation of the relative entropy. The
last step is to relate Ti(n) to the random regret. In the stochastic model this was
straightforward, but for adversarial bandits there is an additional step. Notice
that under Qi it holds that Xti −XtAt ≥ 0 and that if Xti, XtAt ∈ (0, 1), then
Xti−XtAt = ∆. In other words, if no clipping occurs, then Xti−XtAt = ∆. The
following claim upper bounds the number of rounds in which clipping occurs with
high probability.

17.3 Notes 205

claim 17.3 If σ = 1/10 and ∆ < 1/8 and n ≥ 32 log(2/δ), then

PQi

(
n∑

t=1
I {Xti, XtAt ∈ (0, 1)} ≥ 3n

4

)
≥ 1− δ .

By combining the first two claims with a union bound we know there exists an
arm i such that

PQi
(
R̂n ≥

n∆
4

)
≥ δ ,

which by the definition of ∆ and Claim 17.1 implies the first part of the theorem.

17.3 Notes

1 The adversarial bandits used in Section 17.2 had the interesting property that
the same arm has the best reward in every round (not just the best mean). It
is perhaps a little surprising that algorithms cannot exploit this fact.

2 In Theorem 17.2 we did not make any assumptions on the algorithm. If we
had assumed the algorithm enjoyed an expected regret bound of Rn ≤ B

√
Kn,

then we could conclude that for each sufficiently small δ ∈ (0, 1) there exists
an adversarial bandit such that

P
(
R̂n ≥

c

B

√
Kn log

(
1
2δ

))
≥ δ ,

which shows that our high probability upper bounds for Exp3-IX are nearly
tight.

17.4 Bibliographic remarks

Though none of the results are terribly surprising, we do not known of any
references except the recent paper by Gerchinovitz and Lattimore [2016].

17.5 Exercises

17.1 Prove each of the claims in Section 17.2.

Part V

Contextual and Linear
Bandits

207

Suppose you want to use a bandit algorithm to decide which ads to display
on your website. Can you reasonably do this with one of the models/algorithms
proposed so far? A simple idea is to treat each available ad as an arm and for each
arriving user choose the ad using your favourite bandit algorithm. The reward is
one if they click on the ad and zero otherwise. No doubt you immediately realize
that this is not exactly a perfect fit. In fact there are many problems:

– (Delayed rewards) You don’t actually observe a user not clicking an ad. Maybe
you give zero reward if the click does not happen soon, but this introduces
delays and you cannot update the statistics between plays.

– (Non-stationarity) Unless the time period is very short, then there is significant
non-stationarity in the preferences of users. None of the algorithms discussed
so far behave well in this situation.

– (Ignoring information) If the number of available ads is large (it usually is),
then treating each action independently is probably not a good idea. Users
interested in ads for Mercedes might also be interested in other car ads. In
many cases there is also information available about the user, such as prior
purchasing decisions, and this too should be taken into account when deciding
which ad is chosen to each user.

The challenge of delayed rewards and non-stationarity will be discussed elsewhere.
The purpose of this part is to focus on the situation where (a) the algorithm
has access to contextual information at the beginning of each round and (b) the
outcome of playing one arm may yield information about other arms. For example,
in the display ad problem the contextual information might consist of summary
statistics of the current user and the ads in the action set might be classified into
different categories. Exactly how to encode the additional structures is a non-
trivial problem. As usual there is a trade-off between using models rich enough
to model (almost) any world and using simple models for which generalization is
easy, but for which the assumptions imposed on the world through the model are
more severe.

Except for the first chapter, which is generic, the focus of this part will be
on the special case that the expected reward of each arm is a linear function of
some feature vector in a way that will made precise in Chapter 19. Along the
way we will discuss many generalizations and give references to the literature.
One aspect that will play a far larger role is computation. While finite-armed
bandits with few arms present few challenges in this respect, when the number
of actions is very large or the information structure of the feedback model is not
so easily separable, then computation can be a serious challenge.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

18 Contextual Bandits

In many bandit problems the learner has access to additional information
at the beginning of each round. Consider the problem of designing a movie
recommendation system. Clearly it would be inadvisable to ignore demographic
information about the user making the request, or any other contextual history
such as previously watched movies or ratings. None of the algorithms presented so
far can take this kind of additional information into account and the benchmark
(regret) also does not measure performance relative to other sources of information.
Imagine the results of trying to find the best single movie in hindsight for all users.
In this chapter we will present an augmented framework and regret definition
that better models the many real-world problems where contextual information
is available.

Whenever you design a new benchmark, there are several factors to consider.
Competing with a poor benchmark does not make sense, since even an algorithm
that perfectly matches the benchmark will perform poorly. At the same time,
competing with a better benchmark can be harder from a learning point of
view and this penalty must be offset against the benefits.

The tradeoff just described is fundamental to all machine learning problems.
In statistical estimation, the analogue tradeoff is known as the bias-variance
tradeoff. We will not attempt to answer the question of how to resolve this
tradeoff in this chapter because first we need to see how to effectively compete
with improved benchmarks.

18.1 Contextual bandits: one bandit per context

In a contextual bandit problem everything works the same as in a bandit problem
except the learner receives a context at the beginning of each round. The hope
is that specializing the action to the context can help collect more reward.
While contextual bandits can be studied in both the adversarial and stochastic
frameworks, in this chapter we focus on the adversarial model. To remind the
reader of the notation, let xtk ∈ [0, 1] be the reward for arm k in round t, which

http://banditalgs.com
mailto:tor.lattimore@gmail.com

18.1 Contextual bandits: one bandit per context 209

is chosen in advance by the adversary. The interaction model is what you would
expect:

For rounds t = 1, 2, . . . , n:

1 Learner observes context ct ∈ C where C is an arbitrary fixed set of contexts.
2 Learner selects distribution Pt on [K] and samples At from Pt.
3 Learner observes reward Xt = xtAt .

A natural way to define the regret is by

Rn = E


∑

c∈C
max
k∈[K]

∑

t∈[n]:ct=c

(xtk −Xt)


 . (18.1)

The difference is that now we are trying to compete with the best context-
dependent policy in hindsight, rather than the best fixed action. If the set of
possible contexts is finite, then a simple approach is to use a separate instance of
Exp3 for each context. Let

Rnc = E


max
k∈[K]

∑

t∈[n]:ct=c

(xtk −Xt)




be the regret due to context c ∈ C. When using a separate instance of Exp3 for
each context we can use the results of Chapter 11 to bound

Rnc ≤ 2

√√√√K

n∑

t=1
I {ct = c} log(K) , (18.2)

where the sum inside the square root counts the number of times context c ∈ C is
observed. Because this is not known in advance it is important to use an anytime
version of Exp3 for which the above regret bound holds without needing to tune
a learning rate that depends on the number of times the context is observed (see
Exercise 28.9). Substituting (18.2) into the regret leads to

Rn =
∑

c∈C
Rnc ≤ 2

∑

c∈C

√√√√K log(K)
n∑

t=1
I {ct = c} . (18.3)

The magnitude of the right-hand side depends on the distribution of observed
contexts. On one extreme there is only one observed context and the bound is
the same as the standard finite-armed bandit problem. The other extreme occurs
when all contexts are observed equally often, in which case we have

Rn ≤ 2
√
nK|C| log(K) . (18.4)

Jensen’s inequality applied to Eq. (18.3) shows that this really is the worst case
(Exercise 18.1).

18.2 Bandits with expert advice 210

It is important to emphasize that the regret in Eq. (18.4) is different than the
regret studied in Chapter 11. If we ignore the context and run the standard Exp3
algorithm, then we would have

E

[
n∑

t=1
Xt

]
≥ max
i∈[K]

n∑

t=1
xti − 2

√
Kn log(K) .

Using one version of Exp3 per context leads to

E

[
n∑

t=1
Xt

]
≥
∑

c∈C
max
i∈[K]

∑

t∈[n]:ct=c

xti − 2
√
Kn|C| log(K) .

Which of these bounds is preferable depends on the magnitude of n and how
useful the context is. When n is very large the second bound is more likely to
be preferable. On the other hand, the second bound is completely vacuous when
n ≤ 4K|C| log(K).

18.2 Bandits with expert advice

For large context sets using one bandit algorithm per context will almost always
be a poor choice because the additional precision is wasted unless the amount of
data is enormous. Fortunately, however, it is seldom the case that the context set
is both large and unstructured. To illustrate a common situation we return to
the movie recommendation theme where the actions are movies and the context
contains user information such as age, gender and recent movie preferences. In this
case the context space is combinatorially large, but there is clearly a significant
amount of structure inherited from the fact that the space of movies is highly
structured and users in similar demographics are more likely to have similar
preferences.

Another way to write Eq. (18.1) is to let Φ be the set of all functions from
C → [K]. Then

Rn = E

[
max
φ∈Φ

n∑

t=1
(xtφ(ct) −Xt)

]
. (18.5)

The discussion above suggests we might prefer to choose Φ to be a slightly smaller
set. There are many ways to do this, some of which we describe below:

Partitions
Let P ⊂ 2C be a partition of C, which means that sets in P are disjoint and
∪P∈PP = C. Then define Φ to be the set of functions from C to [K] that are
constant on each partition of P. In this case we can run a version of Exp3 for
each partition, which means the regret depends on the number of parts |P| rather
than on the number of contexts.

18.2 Bandits with expert advice 211

Similarity functions
Let s : C × C → [0, 1] be a function that we think of as measuring the similarity
between pairs of contexts on the [0, 1]-scale. Then let Φ be the set of functions
φ : C → [K] such that the average dissimilarity

1
|C|2

∑

c,d∈C
(1− s(c, d))I {φ(c) 6= φ(d)}

is below a user-tuned threshold θ ∈ (0, 1). It is not clear anymore that we can
control the regret (18.5) using some simple meta algorithm on Exp3, but keeping
the regret small is still a meaningful objective.

From supervised learning to bandits with expert advice
Yet another option is to run your favorite supervised learning method, training on
batch data to find a collection of predictors φ1, . . . , φM : C → [K]. Then we could
use a bandit algorithm to compete with the best of these in an online fashion.
This has the advantage that the offline training procedure can bring in the power
of batch data and the whole army of supervised learning, without relying on
potentially inaccurate evaluation methods that aim to pick the best of the pack.
And why pick if one does not need to?

The possibilities are endless, but in any case, we would end up with a set of
functions Φ with the goal of competing with the best of them. This suggests
the idea that perhaps we should think more generally about some subset Φ of
functions without necessarily considering the internal structure of Φ. This is the
viewpoint that we will take. In fact, we will bring this one step further by noticing
that once Φ has been chosen the contexts themselves play very little role. All we
need in each round is the output of each function. This leads to a setting called
bandits with expert advice.

In this model there are M experts. At the beginning of each round the experts
announce their predictions of which actions are the most promising. For the sake
of generality, we allow the experts to report not only a single prediction, but a
probability distribution over the actions. The interpretation of this probability
distribution is that the expert, if the decision was left to them, would choose the
action for the round at random from the probability distribution it reported. As
discussed before, in an adversarial setting it is natural to consider randomized
algorithms, hence one should not be too surprised that the experts are also allowed
to randomize. An application to an important practical problem is illustrated in
Fig. 18.1.

The predictions of the M experts in round t is represented by a matrix
E(t) ∈ [0, 1]M×K where the mth row E

(t)
m , a probability distribution of K, is

the recommendation of expert m for round t. The learner and the environment,
including the expert interact as follows:

18.2 Bandits with expert advice 212

Figure 18.1 Prediction with expert advice. The experts, upon seeing a foot give expert
advice on what socks should fit it best. If the owner of the foot is happy, the
recommendation system earns a cookie!

For rounds t = 1, 2, 3, . . . , n:

1 Learner observes predictions of all experts, E(t).
2 Learner selects a distribution Pt on [K] in some way.
3 Action At is sampled from Pt and the reward is Xt = xtAt .

The regret of the learner is with respect to the total expected reward of the best expert:

Rn = E

[
max

m∈[M]

n∑

t=1

E(t)
m xt −

n∑

t=1

Xt

]
. (18.6)

There is a delicate choice to be made about whether to allow the experts
predictions of the experts to depend on the actions of the learner. Or whether
they should be fixed from the beginning of the game in an oblivious manner.
While the framework does allow learning experts, the regret definition above is
not really meaningful in this case because the total reward of any of the experts
will also depend on the actions chosen by the learner (through E(t)) and in this
case a more meaningful benchmark is to compare with the total reward of the
experts computed under the assumption that the learner chooses some fixed
action all the time. Chapter 37 will consider this type of regret for a specific
problem class. However, in this chapter we restrict ourselves to non-learning,
oblivious experts.

18.3 Can it go higher? Exp4 213

1: Input: n, K, M , η, γ
2: Set Q1 = (1/M, . . . , 1/M) ∈ [0, 1]1×M (a row vector)
3: for t = 1, . . . , n do
4: Receive advice E(t)

5: Choose the action At ∼ Pt, where Pt = QtE
(t)

6: Receive the reward Xt = xtAt
7: Estimate the action rewards: X̂ti = 1− I{At=i}

Pti+γ (1−Xt)
8: Propagate the rewards to the experts: X̃t = E(t)X̂t

9: Update the distribution Qt using exponential weighting:

Qt+1,i = exp(ηX̃ti)Qti∑
j exp(ηX̃tj)Qtj

for all i ∈ [M]

10: end for
Algorithm 10: Exp4 algorithm

18.3 Can it go higher? Exp4

Exp4 is not just an increased version number, but stands for Exponential weighting
for Exploration and Exploitation with Experts. The idea of the algorithm is
very simple. Since exponential weighting worked so well in the standard bandit
problem we should adopt it to the problem at hand. However, since the goal is to
compete with the best expert in hindsight, it is not the actions that we should
score, but the experts. The algorithm maintains a probability distribution Qt
over experts and use this to come up with the next action. Once the action is
chosen, we use our favorite reward estimation procedure to estimate the rewards
for all the actions, which is then used to estimate how much total reward the
individual experts would have made so far. The reward estimates are then used
to update Qt using exponential weighting. The pseudocode of the algorithm is
given in Algorithm 10.

Note that At can be chosen in two steps, first sampling Mt ∈ [M] from Qt and
then choosing At ∈ [K] from E

(t)
Mt,·. The reader can verify that (given the past)

the probability distribution of the so-selected action is also Pt. The algorithm uses
O(M) memory and O(MK) computation per round. Hence it is only practical
when M and K are reasonable.

18.4 Regret analysis

We restrict our attention to the case when γ = 0, which is the original algorithm.
The version where γ > 0 is called Exp4-IX and its analysis is left to the reader in
Exercise 18.3.

theorem 18.1 Let γ = 0 and η =
√

2 log(M)/(nK) and denote by Rn the

18.4 Regret analysis 214

expected regret of Exp4 defined in Algorithm 10 after n rounds. Assume that the
experts are deterministic and oblivious. Then,

Rn ≤
√

2nK log(M) . (18.7)

The proof will use the following lemma:

lemma 18.1 For any m∗ ∈ [M] it holds that

n∑

t=1
X̃tm∗ −

n∑

t=1

M∑

m=1
QtmX̃tm ≤

log(M)
η

+ η

2

n∑

t=1

M∑

m=1
Ptm(1− X̂tm)2 .

After translating the notation, the proof of Lemma 18.1 can be extracted from
the analysis of Exp3 in the proof of Theorem 11.2, a task that we leave to the
reader in Exercise 18.2.

Proof of Theorem 18.1 Let m∗ be the index of the best performing expert in
hindsight:

m∗ = argmaxm∈[M]

n∑

t=1
E(t)
m xt . (18.8)

Applying Lemma 18.1 shows that

n∑

t=1
X̃tm∗ −

n∑

t=1

M∑

m=1
QtmX̃tm ≤

log(M)
η

+ η

2

M∑

t=1

M∑

m=1
Qtm(1− X̃tm)2 . (18.9)

Let Ft = σ(E(1), A1, E
(2), A2, . . . , At−1, E

(t)), and introduce Et[·] = E[·|Ft].
When γ = 0 the estimator X̂ti is unbiased so that Et[X̂t] = xt and

Et[X̃t] = Et[E(t)X̂t] = E(t)E[X̂t] = E(t)xt . (18.10)

Since Qt is Ft-measurable, using the tower rule for conditional expectation, taking
expectations of both sides of Eq. (18.9) we get

Rn ≤
log(M)

η
+ η

2

n∑

t=1

M∑

m=1
E
[
Qtm(1− X̃tm)2] , (18.11)

where we also used the assumption that the experts are oblivious, and hence m∗
is non-random.

Like in Chapter 11, losses are more convenient than rewards to work with. Let
Ŷti = 1− X̂ti, yti = 1− xti and Ỹtm = 1− X̃tm. Note that Ỹt = E(t)Ŷt and recall
also the notation Ati = I {At = i}, which means that Ŷti = Atiyti

Pti
and

Et[Ỹ 2
tm] = Et



(
E

(t)
mAt

ytAt
PtAt

)2
 =

K∑

i=1

(
E

(t)
miyti

)2

Pti
≤

K∑

i=1

E
(t)
mi

Pti
. (18.12)

18.4 Regret analysis 215

Therefore using the definition of Pti,

E

[
M∑

m=1
Qtm(1− X̃tm)2

]
≤ E

[
M∑

m=1
Qtm

K∑

i=1

E
(t)
mi

Pti

]

= E

[
K∑

i=1

∑M
m=1QtmE

(t)
mi

Pti

]
= K .

Substituting into Eq. (18.11) leads to

Rn ≤
log(M)

η
+ ηnK

2 =
√

2nK log(M) .

Let us see how this theorem can be applied to the contextual bandit where
C is a finite set and Φ is the set of all functions from C → [K]. To each of
these functions φ ∈ Φ we associate an expert m with E

(t)
mi = I {φ(ct) = i}. Then

M = KC and Theorem 18.1 says that

Rn ≤
√

2nK|C| log(K) ,

which is the same bound we derived using an independent copy of Exp3 for each
context. More generally, if C is arbitrary (possibly infinite) and Φ is a finite set
of functions from C to [K], then the theorem ensures that

Rn ≤
√

2nK log(|Φ|) .

These results seem quite promising already, but in fact there is another
improvement possible. Define random variable E∗t by

E∗t =
t∑

s=1

K∑

i=1
max
m∈[M]

E
(s)
mi .

By modifying the algorithm to use an adaptive learning rate of ηt =
√

log(M)/E∗t
one can prove the following theorem.

theorem 18.2 Assume the same conditions as in Theorem 18.1, except that
let ηt =

√
log(M)/E∗t . Then, there exists a universal constant C > 0 such that

Rn ≤ C
√
E∗n log(M) .

The proof of this result is not hard and is left to the reader in Exercise 18.4.
The bound on the right-hand side of the above inequality is data-dependent since
it depends on E∗n. It is not hard to see (Exercise 18.7) that

E∗n ≤ nmin(K,M) (18.13)

and as such this bound is much better than the bound of Theorem 18.1 when
M ≤ K. One can think of E∗n/n as the effective number of experts which depends
on the degree of disagreement, or diversity in the experts’ recommendations. The
bound tells us that Exp4 with the suggested learning rate is able to adapt to the
degree of disagreement between the experts. In fact, it is reasonable that learning

18.5 Notes 216

becomes easier (and the regret bound will be smaller) when the experts tend to
agree. At the same time, what is the use of having many experts if they tend to
agree? This is another manifestation of the bias-variance tradeoff mentioned at
the beginning. That Exp4 with the proposed adaptive learning rate is able to
speed up learning when there is a chance to do so should be is reassuring.

18.5 Notes

1 Perhaps the most important point of this chapter beyond the algorithms is to
understand that there are tradeoffs between having a larger competitor class
and a more meaningful definition of the regret that this entails. This is very
similar to the tradeoff involved in considering algorithms tuned for a specific
environment class (e.g., considering Bernoulli bandits, as opposed to bandits
with subgaussian noise). Indeed, similarly to what happens when a smaller
competiro class is chosen, a more restricted environment class usually allows
faster learning, but tuning to a more restricted class runs the risk of losing on
performance when the environment that the bandit algorithm runs on does
not belong to the restricted class. (The lack of proved guarantees should not
be mistaken for the lack of guarantees!)

2 The Exp4 algorithm serves as a tremendous building block for other bandit
problems by defining your own experts. The best example of this is the
application of Exp4 to nonstationary bandits that we explore in Chapter 31.
Here, a combinatorially large set of experts is considered, and yet a fast
implementation of Exp4 can be demonstrated to exist. That this is possible is
more the exception than the rule. In the lack of such an efficient implementation,
Exp4 can still be useful when working with a combinatorially large set of
experts just to demonstrate an upper bound on the regret (for an example see
Exercise 18.5).

3 The bandits with expert advice framework is clearly more general than
contextual bandits. With the terminology of the bandits with expert advice
framework, the contextual bandit problem arises when the experts are given
by static C → [K] maps.

4 A significant challenge is that a naive implementation of Exp4 has running time
O(MK) per round, which can be enormous if either M or K is large. In general
there is no solution to this problem, but in some cases the computation can be
reduced significantly. One situation where this is possible is when the learner
has access to an optimization oracle that for any context/reward sequence
that returns the expert that would collect the most reward in this sequence (this
is equivalent to solving the offline problem Eq. (18.8)). In Chapter 30 we show
how to use an offline optimization oracle to learn efficiently in combinatorial
bandit problems. The idea is to solve a randomly perturbed optimization
problem and then show that the randomness in the outputs provides sufficient
exploration.

18.5 Notes 217

5 In the stochastic contextual bandit problem it is assumed that the context
and reward vector form a sequence of independent and identically distributed
random variables. Let Φ be a set of C → [K] maps and suppose the learner has
access to an optimization oracle capable of finding

argmaxφ∈Φ

t∑

s=1
xsφ(cs)

for any sequence of reward vectors x1, . . . , xt and contexts c1, . . . , ct. Under
these circumstances there exists a polynomial-time algorithm for which the
regret is essentially as the bound in Theorem 18.1.

With access to such an oracle, for stochastic contextual bandit problems
there exists a polynomial-time algorithm for which the regret is essentially the
same as that stated in Theorem 18.1 [Agarwal et al., 2014]. The algorithm
computes importance-weighted estimates of the rewards in each round. These
are used to estimate the regret of all the experts. Based on this, a distribution
over the experts (with a small support) is computed by solving a feasibility
problem: the distribution is constrained so that the importance weights will not
be too large, while the regret estimates averaged over the chosen distribution
will stay small. To reduce the computation cost, this distribution is updated
periodically with the length of the interval between the updates exponentially
growing. The significance of this result is that it reduces contextual bandits
to (cost-sensitive) empirical risk-minimization (ERM), which means that any
advance in solving cost-sensitive ERM problems automatically translates to
bandits.

6 The development of efficient algorithms for ERM is a major topic in supervised
learning. Note that ERM can be NP-hard even in simple cases like linear
classification [Shalev-Shwartz and Ben-David, 2009, §8.7].

7 As noted earlier, the bound on the regret stated in Theorem 18.2 is data-
dependent. Thinking of an instance of an adversarial bandit prediction with
expert advice problem as the joint choice of the rewards (x1, x2, . . .) and
the expert predictions (E(1), E(2), . . .) we may also call the bound instance-
dependent. These two expressions are in fact synonyms of each other, but
the stochastic bandit literature mostly uses instance-dependent, while the
adversarial online learning literature mostly uses the term data-dependent. In
any case, as explained earlier, when a data, or instance-dependent bound is
tight enough to imply the worst-case optimal bounds, they are preferred as
they give us more information about the algorithm, or, when paired with a
matching or nearly matching lower bound, about the problem class.

8 There are many points we have not developed in detail. One is high probability
bounds, which we saw in Chapter 12 and can also be derived here. We also
have not mentioned lower bounds. The degree to which the bounds are tight
depends on whether or not there is additional structure in the experts. In later

18.6 Bibliographic remarks 218

chapters we will see examples where the results are essentially tight, but there
are also cases where they are not.

18.6 Bibliographic remarks

For a good account on the history of contextual bandits see the article by Tewari
and Murphy [2017]. The Exp4 algorithm was introduced by Auer et al. [2002b]
and Theorem 18.1 essentially matches Theorem 7.1 of this paper (with a slightly
better constant). McMahan and Streeter [2009] noticed that neither the number
of experts nor the size of the action set are what really matters for the regret,
but rather the extent to which the experts tend to agree. McMahan and Streeter
[2009] also introduced the idea of solving a linear program to find an exploration
policy that computes a distribution over the actions such that for any action i

and round t the computed probability of i is lower bound by the maximum of a
constant multiple of Pt(i). This is meant to ensure sufficient exploration while
staying close to the output of the exponential weights distribution. The idea of
explicitly optimizing a probability distribution with these objectives in mind is at
the heart of several works [Agarwal et al., 2014, for example]. While Theorem 18.2
is inspired by this work, the result appears to be new and goes beyond the work of
McMahan and Streeter [2009] because it shows that all one needs is to adapt the
learning rate based on the degree of agreement amongst the experts. Neu [2015a]
proves high probability bounds for Exp4-IX. You can follow in his footsteps by
solving Exercise 18.3. Another way to get high probability bounds is to generalize
Exp3.P, which was done by Beygelzimer et al. [2011]. As we mentioned in Item 5,
there exist efficient algorithms for stochastic contextual bandit problems when a
suitable optimization oracle is available [Agarwal et al., 2014]. An earlier attempt
to address the problem of reducing contextual bandits to cost-sensitive ERM is
by Dudik et al. [2011]. The adversarial case of static experts is considered by
Syrgkanis et al. [2016] who prove suboptimal (worse than

√
n) regret bounds

under various conditions for follow the perturbed leader for the transductive
setting when the contexts are available at the start. The case when the contexts
are independent and identically distributed, but the reward is adversarial has
been studied by Lazaric and Munos [2009] for the finite expert case, while Rakhlin
and Sridharan [2016] considered the case when an ERM oracle is available. The
paper of Rakhlin and Sridharan [2016] also considers the more realistic case when
only an approximation oracle is available for the ERM problem. What is notable
about this work is they demonstrate regret bounds with a moderate blow-up,
but without changing the definition. Kakade et al. [2008] consider contextual
bandit problems with adversarial context-loss sequences, where all but one action
suffers a loss of one in every round. This can also be seen as an instance of
multiclass classification with bandit feedback where labels to be predicted
are identified with actions and the only feedback received is whether the label
predicted was correct, with the goal of making as few mistakes as possible. Since

18.7 Exercises 219

minimizing the regret is in general hard in this non-convex setting, just like most
of the machine learning literature on classification, Kakade et al. [2008] provide
results in the form of mistake bounds for linear classifiers where the baseline is
not the number of mistakes of the best linear classifier, but is a convex upper
bound on it. The recent book by Shalev-Shwartz and Ben-David [2009] lists some
hardness results for ERM. For a more comprehensive treatment, the reader can
consult the book by Kearns and Vazirani [1994].

18.7 Exercises

18.1 Let C be a finite context set and let c1, . . . , cn ∈ C be an arbitrary sequence
of contexts.

(a) Show that
∑

c∈C

√√√√
n∑

t=1
I {ct = c} ≤

√
n|C|.

(b) Assume that n is an integer multiple of |C|. Show that the choice that
maximizes the right-hand side of the previous inequality is the one when each
context occurs n/|C| times.

18.2 Prove Lemma 18.1.

18.3 In this exercise you will prove an analogue of Theorem 12.1 for Exp4-IX.
In the contextual setting the random regret is

R̂n = max
m∈[M]

n∑

t=1

(
E(t)
m xt −Xt

)
.

Design an algorithm accepting parameter δ ∈ (0, 1) such that

P

(
R̂n ≥ C

(
√
nK log(K) +

√
nK

log(K) log
(

1
δ

)))
≤ δ .

18.4 Prove Theorem 18.2.

18.5 Let x1, . . . , xn be a sequence of reward vectors chosen in advance by
an adversary with xt ∈ [0, 1]K . Furthermore, let o1, . . . , on be a sequence of
observations, also chosen in advance by an adversary with ot ∈ [O] for some fixed
O ∈ N+. Then let H be the set of functions φ : [O]m → [K] where m ∈ N+.
In each round the learner observes ot should choose an action At based on
o1, A1, X1, . . . , ot−1, At−1, Xt−1, ot and the regret is

Rn = min
φ∈H

n∑

t=1
xtAt − xtφ(ot,ot−1,...,ot−m ,

where ot = 1 for t ≤ 0. This means the learner is competing with the best

18.7 Exercises 220

predictor in hindsight that uses only the last m observations. Prove there exists
an algorithm such that

E[Rn] ≤
√

2nmK log(O) .

18.6 In this problem we consider non-oblivious experts. Consider the following
modified regret definition:

R′n = max
m∈[M]

E

[
n∑

t=1
E(t)
m xt −

n∑

t=1
Xt

]
.

Show that:

(a) R′n ≤ Rn regardless of whether the experts are oblivious or not.
(b) Theorem 18.1 remains valid for non-oblivious experts if in Eq. (18.7) we

replace Rn with R′n. In particular, explain how to modify the proof.
(c) Research question: Give a non-trivial bound on Rn.

18.7 Prove Eq. (18.13).

18.8 [The epoch-greedy algorithm, [Langford and Zhang, 2008]] Consider a
stochastic contextual bandit environment, where the context-reward pairs (Ct, Xt)
form an i.i.d. sequence, with Ct ∈ C and Xt ∈ [0, 1]K . Let Φ ⊂ {φ : φ : C → [K]}
be a set of static experts and assume that we have access to an oracle O(x, c) that
can compute argmaxφ∈Φ

∑t
s=1 xt,φ(ct) for any x = (xs)s, c = (cs)s sequences of

reward-vectors and contexts (xs ∈ RK , cs ∈ C).
The epoch-greedy algorithm works in phases of length 1 < τ1 < τ2 < . . . of

increasing length. In the first round of phase m = 1, 2, . . . , the algorithm receives
context C̃m and then performs an exploration step: An action Ãm ∈ [K] is chosen
uniformly at random. Let X̃m denote the reward received in response. Next, the
algorithm constructs the reward estimates X̂m,k = 1

K I
{
Ãm = k

}
X̃m and finds

the expert φm whose usage so far would have incurred the most total reward:
φm = argmaxφ∈Φ

∑m
p=1 X̂p,φ(C̃p). In the remaining τm − 1 rounds of phase m,

the advice of φm is followed: Upon receiving context Ct in round t (during this
phase), action At = φm(Ct) is used.

(a) Let Φ be finite. Show that with an appropriate choice of (τm)m, the expected
regret Rn of epoch-greedy after n steps is Rn ≤ O(n2/3|Φ|1/3).

(b) Extension to VC-dimension!
(c) Can the result be extended to the case when the context sequence (ct)t is an

arbitrary fixed sequence, but Xt ∼ Pct for some family (Pc)c of distributions?

18.9 [Experimenting] Different exploration strategies? McMahan-Streeter...

18.10 [Application of Exp4] Fill this in..

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

19 Stochastic Linear Bandits

Contextual bandits generalize the finite-armed setting by allowing the learner
to make use of side information. This chapter focusses on a specific type of
contextual bandit problem in the stochastic setup where the reward is assumed
to have a linear structure that allows for learning to transfer from one context to
another. This leads to a useful and rich model that will be the topic of the next
few chapters. To begin we describe the stochastic linear bandit problem and
start the process of generalizing the upper confidence bound algorithm.

19.1 Stochastic contextual bandits

The stochastic contextual bandit problem mirrors the adversarial contextual
bandit setup discussed in Chapter 18. At the beginning of round t the learner
observes a context Ct ∈ C, which may be random or not. Having observed the
context, the learner chooses their action At ∈ [K] based on the information
available. So far everything is the same as the adversarial setting. The difference
comes from the assumption that the reward Xt satisfies

Xt = r(Ct, At) + ηt ,

where r : C × [K]→ R is called the reward function and ηt is the noise, which
we will assume is conditionally 1-subgaussian. Precisely, let

Ft = σ(C1, A1, X1, . . . , Ct−1, At−1, Xt−1, Ct, At)

be the σ-field summarizing the information available just before Xt is observed.
Then we assume that

E [exp(ληt) | Ft] ≤ exp
(
λ2

2

)
almost surely .

The noise could have been chosen to be σ-subgaussian for any known σ2, but
like in earlier chapters we save ourselves some ink by fixing its value to σ2 = 1.
Remember from Chapter 5 that subgaussian random variables have zero mean,
so the assumption also implies that E [ηt | Ft] = 0 and E [Xt | Ft] = r(Ct, At).

If r was given, then the action in round t with the largest expected return
is A∗t ∈ argmaxa∈[K] r(Ct, a). Notice that this action is now a random variable

http://banditalgs.com
mailto:tor.lattimore@gmail.com

19.1 Stochastic contextual bandits 222

because it depends on the context Ct. The loss due to the lack of knowledge of r
makes the learner incur the (expected) regret

Rn = E

[
n∑

t=1
max
a∈[K]

r(Ct, a)−
n∑

t=1
Xt

]
.

Like in the adversarial setting, there is one big caveat in this definition of the
regret. Since we did not make any restrictions on how the contexts are chosen, it
could be that choosing a low-rewarding action in the first round might change
the contexts observed in subsequent rounds. Then the learner could potentially
achieve an even higher cumulative reward by choosing a ‘suboptimal’ arm initially.
As a consequence, this definition of the regret is most meaningful when the actions
of the learner do not greatly affect subsequent contexts.

One way to eventually learn an optimal policy is to estimate r(c, a) for each
(c, a) ∈ C × [K] pair. As in the adversarial setting, this is ineffective when the
number of context-action pairs is large. In particular, the worst-case regret over
all possible contextual problems with M contexts and mean reward in [0, 1] is at
least Ω(

√
nMK). While this may not look bad, M is often exponentially large

(for example, 2100). The argument for proving such worst-case lower bounds
relies on designing a problem where knowledge of r(c, ·) for context c provides
no useful information about r(c′, ·) for some different context c′. Fortunately, in
most interesting applications the set of contexts is highly structured, which can
often be captured by some kind of smoothness of r(·, ·).

A very simple idea is to assume the learner has access to a map ψ : C×[K]→ Rd
and that there exists an unknown parameter vector θ∗ ∈ Rd such that

r(c, a) = 〈ψ(c, a), θ∗〉 , ∀(c, a) ∈ C × [K] . (19.1)

The map ψ is called a feature-map, which is the standard nomenclature in
machine learning. The idea of feature maps is best illustrated with an example.
Suppose the context denotes the visitor of a website selling books, the actions are
books to recommend and the reward is the revenue on a book sold. The features
could indicate the interests of the visitors as well as the domain and topic of the
book. If the visitors and books are assigned to finitely many categories, indicator
variables of all possible combinations of these categories could be used to create
the feature map. Of course, many other possibilities exist. For example you can
train a neural network (deep or not) on historical data to predict the revenue
and use the nonlinear map that we obtained by removing the last layer of the
neural network. The subspace Ψ spanned by the feature vectors {ψ(c, a)}c,a in
Rd is called the feature-space.

If ‖ · ‖ is a norm on Rd, then an assumption on ‖θ∗‖ encodes smoothness of
r. In particular, from Hölder’s inequality,

|r(c, a)− r(c′, a′)| ≤ ‖θ∗‖‖ψ(c, a)− ψ(c′, a′)‖∗ ,
where ‖ · ‖∗ denotes the dual of ‖ · ‖. Restrictions on ‖θ∗‖ have a similar effect to
assuming that the dimensionality d. In fact, one may push this to the extreme

19.2 Stochastic linear bandits 223

and allow d to be infinite, an approach which can buy tremendous flexibility and
makes the linearity assumption less limiting.

19.2 Stochastic linear bandits

Stochastic linear bandits arise from realizing that when the reward is given by
Eq. (19.1), then the identity of the actions becomes secondary. All that matters is
the feature vector that results from choosing a given action. This justifies studying
the following simplified model: In round t, the learner is given the decision set
At ⊂ Rd from which it chooses its action At ∈ At and receives reward

Xt = 〈At, θ∗〉+ ηt ,

where ηt is 1-subgaussian given A1, A1, X1, . . . ,At−1, At−1, Xt−1,At and At. The
random regret and regret are defined by

R̂n =
n∑

t=1
max
a∈At
〈a, θ∗〉 −

n∑

t=1
Xt .

Rn = E
[
R̂n

]
= E

[
n∑

t=1
max
a∈At
〈a, θ∗〉 −

n∑

t=1
Xt

]
.

Different choices of At lead to different settings, some of which we have seen before.
For example, if (ei)i are the unit vectors and At = {e1, . . . , ed}, then the resulting
stochastic linear bandit problem reduces to the finite-armed setting. On the
other hand, if At = {ψ(Ct, k) : k ∈ [K]}, then we have a contextual linear bandit.
Yet another possibility is a combinatorial action set like At ⊆ {0, 1}d. Many
combinatorial problems (such as matching, least-cost problems in directed graphs
and choosing spanning trees) can be written as linear optimization problems
over some combinatorial set A obtained from considering incidence vectors
often associated with some graph. Some of these topics will be covered later in
Chapter 30.

As we have seen in earlier chapters, the UCB algorithm is an attractive approach
for finite-action stochastic bandits. Its best variants are nearly minimax optimal,
instance optimal and exactly optimal asymptotically. With these merits in mind,
it seems quite natural to try and generalize the idea to the linear setting.

The generalization is based on the view that UCB implements the ‘optimism
in the face of uncertainty’ principle, which is to act in each round as if the
environment is as nice as plausibly possible. In finite-action stochastic bandits
this means choosing the action with the largest upper confidence bound. In the
case of linear bandits the idea remains the same, but the form of the confidence
bound is more complicated because rewards received yield information about
more than just the arm played.

The first step is to construct a confidence set Ct ⊂ Rd based on
(A1, X1, . . . , At−1, Xt−1) that contains the unknown parameter vector θ∗ with

19.2 Stochastic linear bandits 224

high probability. Leaving the details of how the confidence set is constructed
aside for a moment and assuming that the confidence set indeed contains θ∗, then
for any given action a ∈ Rd,

UCBt(a) = max
θ∈Ct
〈a, θ〉 (19.2)

will be an upper bound on the mean payoff of a, which is 〈a, θ∗〉. The UCB
algorithm that uses the confidence set Ct at time t then selects

At = argmaxa∈At UCBt(a) . (19.3)

Depending on the authors, UCB applied to linear bandits is known by many
names, including LinRel (Linear Reinforcement Learning), LinUCB and OFUL
(Optimism in the Face of Uncertainty for Linear bandits).

The main question is how to choose the confidence set Ct ⊂ Rd. As usual, there
are conflicting desirable properties:

(a) Ct should contain θ∗ with high probability.
(b) Ct should be as small as possible.

At first sight it is not at all obvious what Ct should look like. After all, it is a
subset of Rd, not just an interval like the confidence intervals about the empirical
estimate of the mean reward for a single action that we saw in the previous
chapters. We will leave the details to the next chapter, but sketch the basic
approach here. Following the idea for UCB, we need an analogue for the empirical
estimate of the unknown quantity, which in this case is θ∗. There are several
principles one might use for deriving such an estimate. For now we use the
regularized least-squares estimator, which is

θ̂t = argminθ∈Rd
(

t∑

s=1
(Xs − 〈As, θ〉)2 + λ‖θ‖22

)
, (19.4)

where λ ≥ 0 is called the penalty factor. Choosing λ > 0 helps because it
ensures that the loss function has a unique minimizer even when A1, . . . , At do
not span Rd, which simplifies the math. The solution to Eq. (19.4) is obtained
easily by differentiation and is

θ̂t = V −1
t

t∑

s=1
AsXs , (19.5)

where Vt is a d× d matrices given by

V0 = λI and Vt = V0 +
t∑

s=1
AsA

>
s .

The matrix Vt − V0 is called the Grammian while Vt is sometimes called the
regularized Grammian. So θ̂t is an estimate of θ∗, which makes it natural to

19.3 Regret analysis 225

choose Ct to be centered at θ̂t−1. For what follows we will simply assume that
the confidence set Ct is closed and satisfies

Ct ⊆ Et =
{
θ ∈ Rd : ‖θ − θ̂t−1‖2Vt−1 ≤ βt

}
, (19.6)

where (βt)t is a sequence of monotone nondecreasing constants with β1 ≥ 1 and
for positive-definite matrix A ∈ Rd×d and x ∈ Rd we define ‖x‖2A = x>Ax, a
notation which is justified by the fact that ‖ · ‖A is indeed a norm. The set Et is
an ellipsoid centered at θ̂t−1 and with principle axis being the eigenvectors of Vt
with corresponding lengths being the reciprocal of the eigenvalues. Notice that as
t grows the matrix Vt has increasing eigenvalues, which means the volume of the
ellipse is also shrinking (at least, provided βt does not grow too fast). In the next
chapter we will see that Ct = Et is a natural choice for carefully chosen βt, but
for the rest of this chapter we will simply examine the consequence of using a
confidence set satisfying Eq. (19.6) and assume all the desirable properties.

19.3 Regret analysis

We prove a regret bound for LinUCB under the assumption that the confidence
intervals indeed contain the true parameter with high probability and boundedness
conditions on the action set and rewards.

assumption 19.1 The following hold:

(a) |〈a, θ∗〉| ≤ 1 for any a ∈ ∪tAt.
(b) For any a ∈ ∪tAt, ‖a‖2 ≤ L.
(c) There exists a δ ∈ (0, 1) such that with probability 1 − δ, for all t ∈ [n],

θ∗ ∈ Ct where Ct satisfies Eq. (19.6).

theorem 19.1 Under the conditions of Assumption 19.1 with probability 1− δ
the regret of LinUCB satisfies

R̂n ≤
√

8nβn log
(

detVn
detV0

)
≤

√√√√8dnβn log
(

trace(V0) + nL2

ddet
1
d (V0)

)
.

Provided that βn has polylogarithmic growth, then R̂n = Õ(
√
n), which

matches the worst-case rate for finite-armed bandits except for logarithmic
factors. We can also get a bound on the (expected) regret Rn if δ ≤ c/√n and
by combining the theorem with trivial fact that R̂n ≤ 2n, which follows from our
assumption that the magnitude of the immediate reward is bounded by one. The
proof of Theorem 19.1 depends on the following lemma.

lemma 19.1 Let V0 be positive definite and v0 = trace(V0) and x1, . . . , xn ∈ Rd

19.3 Regret analysis 226

be a sequence of vectors with ‖xt‖2 ≤ L <∞ for all t ∈ [n]. Then
n∑

t=1

(
1 ∧ ‖xt‖2V −1

t−1

)
≤ 2 log

(
detVn
detV0

)
≤ 2d log

(
v0 + nL2

ddet1/d(V0)

)
.

Proof Using that for any u ∈ [0, 1], u ∧ 1 ≤ 2 ln(1 + u), we get
n∑

t=1

(
1 ∧ ‖xt‖2V −1

t−1

)
≤ 2

∑

t

log
(

1 + ‖xt‖2V −1
t−1

)
.

We now argue that this last expression is log
(

detVn
detV0

)
. For t ≥ 1 we have

Vt = Vt−1 + xtx
>
t = V

1/2
t−1 (I + V

−1/2
t−1 xtx

>
t V
−1/2
t−1)V 1/2

t−1 .

Hence

det(Vt) = det(Vt−1) det
(
I + V

−1/2
t−1 xtx

>
t V
−1/2
t−1

)
= det(Vt−1)

(
1 + ‖xt‖2V −1

t−1

)
,

where the second equality follows because the matrix I + yy> has eigenvalues
1 + ‖y‖22 and 1 as well as the fact that the determinant of a matrix is the product
of its eigenvalues. Putting things together we see that

det(Vn) = det(V0)
n∏

t=1

(
1 + ‖xt‖2V −1

t−1

)
,

which is equivalent to the first inequality that we wanted to prove. To get the
second inequality note that by the inequality of arithmetic and geometric means,

det(Vn) =
d∏

i=1
λi ≤

(
1
d

traceVn
)d
≤
(
v0 + nL2

d

)d
,

where λ1, . . . , λd are the eigenvalues of Vn.

Proof of Theorem 19.1 By part (c) of Assumption 19.1 it suffices to prove the
bound on the event that θ∗ ∈ Ct for all rounds t ∈ [n]. Let A∗t = argmaxa∈At〈a, θ∗〉
be an optimal action for round t and rt be the instantaneous regret in round t

defined by

rt = 〈A∗t −At, θ∗〉 .

Let θ̃t ∈ Ct be the parameter in the confidence set for which 〈At, θ̃t〉 = UCBt(At).
Then using the fact that θ∗ ∈ Ct and the definition of the algorithm leads to

〈A∗t , θ∗〉 ≤ UCBt(A∗t) ≤ UCBt(At) = 〈At, θ̃t〉 .

Using Cauchy-Schwartz inequality and the assumption that θ∗ ∈ Ct and facts
that θ̃t ∈ Ct and Ct ⊆ Et leads to

rt = 〈A∗t −At, θ∗〉 ≤ 〈At, θ̃t − θ∗〉 ≤ ‖At‖V −1
t−1
‖θ̃t − θ∗‖Vt−1 ≤ 2‖At‖V −1

t−1
βt .

19.4 Notes 227

By part (a) we also have rt ≤ 2, which combined with βn ≥ max{1, βt} yields

rt ≤ 2 ∧ 2
√
βt‖At‖V −1

t−1
≤ 2
√
βn(1 ∧ ‖At‖V −1

t−1
) .

Jensen’s inequality shows that

R̂n =
n∑

t=1
rt ≤

√√√√n

n∑

t=1
r2
t ≤ 2

√√√√nβn

n∑

t=1
(1 ∧ ‖At‖2V −1

t−1
) .

The result is completed using Lemma 19.1, which depends on part (b) of
Assumption 19.1.

19.4 Notes

1 It was mentioned that ψ may map its arguments to an infinite dimensional
space. There are several issues that arise in this setting. The first is whether or
not the algorithm can be computed efficiently, which is usually tackled via the
kernel trick, which assumes the existence of an efficiently computable kernel
function κ : (C × [K])× (C × [K])→ R such that

〈ψ(c, a), ψ(c′, a′)〉 = κ((c, a), (c′, a′)) .

Then all operations are written in terms of the kernel function so that ψ(c, a)
never needs to be computed or stored. The second issue is that the statement
of Theorem 19.1 depends on the dimension d and becomes vacuous when d

is large or infinite. This dependence arises from Lemma 19.1, which must be
replaced with a data-dependent quantity that measures the ‘effective dimension’
of the image of the data under φ. The final challenge is to define an appropriate
confidence set. These issues have not yet been resolved in a complete way. See
the bibliographic remarks for further references.

2 The bound given in Theorem 19.1 is essentially a worst-case style of bound,
with little dependence on the parameter θ∗ or the geometry of the action-set.
Instance-dependent bounds for linear bandits are still an open topic of research,
and the asymptotics are only understood in the special case where the action
set is finite and unchanging (Chapter 25).

3 An obvious question is whether or not the optimization problem in Eq. (19.3)
can be solved efficiently. First note that that computation of At can also be
written as

(At, θ̃t) = argmax(a,θ)∈At×Ct〈a, θ〉 . (19.7)

This is a bilinear optimization problem over the set At×Ct. In general, nothing
much can be said about the computational efficiency of solving this problem.
There are two notable special cases:

19.4 Notes 228

(c) If the linear optimization problem maxa∈At〈a, θ〉 can be efficiently solved
for any θ and Ct is the convex hull of a small number of vertices:
Ct = co(ct1, . . . , ctp). Then it is easy to verify that the solution to Eq. (19.7)
has the form (a, cti) for some i ∈ [p]. Hence the solution may be found by
solving maxa∈At〈a, ct1〉, . . . ,maxa∈At〈a, ctp〉.

(c) If Ct = Et is the ellipsoid given in Eq. (19.6) and At is a small finite set.
Then the action At from Eq. (19.7) can be found using

At = argmaxa〈a, θ̂t〉+
√
βt‖a‖V −1

t−1
, (19.8)

which may be solved by simply iterating over the arms and calculating the
term inside the argmax.

4 The previous note highlights the fact that the algorithm presented in this section
has more than just a passing resemblance to the UCB algorithm introduced in
earlier chapters on finite-armed bandits. The term 〈a, θ̂t〉 may be interpreted
as an empirical estimate of the reward from choosing action a and

√
βt‖a‖V −1

t−1
is a bonus term that ensures sufficient exploration. If the penalty term vanishes
(λ = 0) and At = {e1, . . . , ed} for all t ∈ [n], then θ̂i becomes the empirical
mean of action ei and the matrix Vt is diagonal with its i diagonal entry being
the number of times action ei is used up to and including round t. Then the
bonus term has order

√
βt‖ei‖V −1

t−1
=

√
βt

Ti(t− 1) ,

where Ti(t− 1) is the number of times action eii has been chosen before the tth
round. So UCB for finite-armed bandits is recovered by choosing βt = 2 log(·),
where the term inside the logarithm can be chosen in a variety of ways as
discussed in earlier chapters. Notice now that the simple analysis given in this
chapter leads to a regret bound of O(

√
dn log(·)), which is quite close to the

highly specialized analysis given in Chapters 7 to 9.
5 A practical extension of the linear model is the generalized linear model

where the reward is

Xt = g−1(〈At, θ∗〉+ ηt) , (19.9)

where g : R → R is called the link function. A common choice is
g(p) = log(p/(1 − p)), which yields the sigmoid function as the inverse:
g−1(x) = 1/(1 + exp(−x)). Bandits with rewards from a generalized linear
model have been studied by Filippi et al. [2010], who prove a bound with a
similar form as Theorem 19.1. Unfortunately, however, the bound depends in a
slightly unpleasant manner on the form of the link function and it seems there
may be significant room for improvement.

19.5 Bibliographic remarks 229

19.5 Bibliographic remarks

Stochastic linear bandits were introduced by Abe and Long [1999]. The first paper
to consider algorithms based on the optimism principle for linear bandits is by
Auer [2002], who considered the case when the number of actions is finite. The
core ideas of the analysis of optimistic algorithms (and more) is already present in
this paper. An algorithm based on confidence ellipsoids is described in the papers
by Dani et al. [2008], Rusmevichientong and Tsitsiklis [2010], Abbasi-yadkori et al.
[2011]. The regret analysis presented here and the discussion of the computational
questions is largely based on the former of these works, which also stresses that
an expected regret of Õ(d

√
n) can be achieved regardless of the shape of the

decision sets At as long as the means are guaranteed to lie in a bounded interval.
Rusmevichientong and Tsitsiklis [2010] consider both optimistic and explore-then-
commit strategies which they call “phased exploration and greedy exploitation”
(PEGE). They focus on the case where At is the unit ball and show that PEGE
is optimal up to logarithmic factors. The observation that explore-then-commit
works for the unit ball (and other action sets with a smooth boundary) was
independently made by Abbasi-Yadkori et al. [2009], Abbasi-Yadkori [2009a].
Generalized linear models are credited to Nelder and Wedderburn [1972]. We
mentioned already that LinUCB was generalized to this model by Filippi et al.
[2010]. A more computationally efficient algorithm has recently been proposed by
Jun et al. [2017]. Nonlinear structured bandits where the payoff function belongs
to a known set has also been studied [Anantharam et al., 1987, Russo and Roy,
2013, Lattimore and Munos, 2014]. The kernelized version of UCB is by Valko
et al. [2013b]. We mentioned early in the chapter that making assumptions on the
norm θ∗ is related to smoothness of the reward function with smoother functions
leading to stronger guarantees. For an example of where this is done see the
paper on ‘spectral bandits’ by Valko et al. [2014].

19.6 Exercises

19.1 Prove that the solution given in Eq. (19.5) is indeed the minimizer of
Eq. (19.4).

19.2 Let V0 = λI and x1, . . . , xn ∈ Rd be a sequence of vectors with ‖xt‖2 ≤ L
for all t ∈ [n]. Then let Vt = V0 +

∑t
s=1 xsx

>
s and show that the number of times

‖xt‖V −1
t−1
≥ 1 is at most

3d
log(2) log

(
1 + L2

λ log(2)

)
.

19.6 Exercises 230

The proof of Theorem 19.1 depended on part (a) of Assumption 19.1, which asserts
that the mean rewards are bounded by 1. Suppose we replace this assumption
with the relaxation that there exists a B > 0 such that

max
t∈[n]

sup
a,b∈At

〈a− b, θ∗〉 ≤ B .

Then the previous exercise allows you to bound the number of rounds when
‖xt‖V −1

t−1
≥ 1 and in these rounds the naive bound of rt ≤ B is used. For the

remaining rounds the analysis of Theorem 19.1 goes through unaltered. As a
consequence we see that the dependence on B is an additive constant term that
does not grow with the horizon.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

20 Confidence Bounds for Least
Squares Estimators

In the last chapter we derived a regret bound for a version of the upper confidence
bound algorithm that depended on a particular kind of confidence set. The
purpose of this chapter is to justify these choices.

Suppose that at the end of round t a bandit algorithm has chosen actions
A1, . . . , At ∈ Rd and received the respective payoffs X1, . . . , Xt. Recall from
the previous chapter that the penalized least-squares (or ridge regression)
estimate of θ∗ is the minimizer of the penalized squared empirical loss,

Lt(θ) =
t∑

s=1
(Xs − 〈As, θ〉)2 + λ‖θ‖22 ,

where λ ≥ 0 is the penalty factor. This is minimized by

θ̂t = Vt(λ)−1
t∑

s=1
XsAs with Vt(λ) = λI +

t∑

s=1
AsA

>
s . (20.1)

It is convenient for the remainder to abbreviate Vt = Vt(0).
Designing a confidence set about θ̂t when A1, . . . , At have been chosen by a

bandit algorithm is a surprisingly delicate matter. The difficulty stems from
the fact that the actions (As)s<t are neither fixed nor independent, but are
intricately correlated via the rewards. We spend the first section of this chapter
building intuition by making some simplifying assumptions. Eager readers may
skip directly to Section 20.1. For the rest of this section we assume that:

1 Nonsingular Grammian: λ = 0 and Vt is invertible.
2 Independent subgaussian noise: (ηs)s are independent and 1-subgaussian.
3 Fixed design: A1, . . . , At are deterministically chosen without the knowledge of
X1, . . . , Xt.

None of these assumptions is plausible in the bandit setting, but the simplification
eases the analysis and provides insight. To emphasize that A1, . . . , At are
determinist we use as in place of As so that

Vt =
t∑

s=1
asa
>
s and θ̂t = V −1

t

t∑

s=1
asXs .

Note that for Vt to be non-singular it is neccessary that the actions (as)ts=1 span

http://banditalgs.com
mailto:tor.lattimore@gmail.com

Confidence Bounds for Least Squares Estimators 232

Rd, which of course implies that t ≥ d. Comparing θ∗ and θ̂t in the direction
x ∈ Rd we have

〈x, θ̂t − θ∗〉 =
〈
x, V −1

t

t∑

s=1
asXs − θ∗

〉
=
〈
x, V −1

t

t∑

s=1
as
(
a>s θ∗ + ηs

)
− θ∗

〉

=
〈
x, V −1

t

t∑

s=1
ηsas

〉
=

t∑

s=1

〈
x, V −1

t as
〉
ηs .

Since (ηs)s are independent and 1-subgaussian, by Lemma 5.2 and Theorem 5.1,

P



〈
x, θ̂t − θ∗

〉
≥

√√√√2
t∑

s=1

〈
x, V −1

t as
〉2 log

(
1
δ

)
 ≤ δ .

A little linear algebra shows that
∑t
s=1

〈
x, V −1

t as
〉2 = ‖x‖2

V −1
t

, which means that

P

(
〈x, θ̂t − θ∗〉 ≥

√
2‖x‖2

V −1
t

log
(

1
δ

))
≤ δ . (20.2)

The next step is to convert the above bound on 〈x, θ̂t − θ∗〉 to a bound on
‖θ̂t − θ∗‖Vt . To begin this process notice that

‖θ̂t − θ∗‖Vt = 〈V 1/2
t X, θ̂t − θ∗〉 , where X = V

1/2
t (θ̂t − θ∗)
‖θ̂t − θ∗‖Vt

.

The problem is that X is random while we have only proven (20.2) for
deterministic x. The standard way of addressing problems like this is to use
a covering argument. First we identify a finite set Cε ⊂ Rd such that whatever
value X takes, there exists some x ∈ Cε that is ε-close to X. Then a union
bound and a triangle inequality allows one to finish. By its definition we have
‖X‖22 = X>X = 1, which means that X ∈ Sd−1 = {x ∈ Rd : ‖x‖2 = 1}. Using
that X ∈ §d−1 we see it suffices to “cover” Sd−1. For this we have the following
result:

lemma 20.1 There exists a set Cε ⊂ Rd with |Cε| ≤ (3/ε)d such that for all
x ∈ Sd−1 there exists a y ∈ Cε with ‖x− y‖2 ≤ ε.

The proof of this lemma requires a bit work, but nothing really deep is needed.
This work is deferred to the exercisesExercises 20.1 and 20.2.

Letting Cε be the covering set given by the lemma and applying a union bound
and Eq. (20.2) shows that

P

(
exists x ∈ Cε :

〈
V

1/2
t x, θ̂t − θ∗

〉
≥
√

2‖x‖2
V −1
t

log
(|Cε|

δ

))
≤ δ .

20.1 Martingale noise and Laplace’s method 233

Then assuming the event inside the probability does not occur and using Cauchy-
Schwarz inequality,

‖θ̂t − θ∗‖Vt = max
x∈Sd−1

〈
V

1/2
t x, θ̂t − θ∗

〉

= max
x∈Sd−1

min
y∈Cε

[〈
V

1/2
t (x− y), θ̂t − θ∗

〉
+
〈
V

1/2
t y, θ̂t − θ∗

〉]

< max
x∈Sd−1

min
y∈Cε

[
‖θ̂t − θ∗‖Vt‖x− y‖2 +

√
2‖V 1/2

t y‖2
V −1
t

log
(|Cε|

δ

)]

≤ ε‖θ̂t − θ∗‖Vt +

√
2 log

(|Cε|
δ

)
.

Rearranging yields

‖θ̂t − θ∗‖Vt ≤
1

1− ε

√
2 log

(|Cε|
δ

)
.

And now there is a tension in the choice of ε > 0. The term in the denominator
suggests that ε should be small, but by Lemma 20.1 the cardinality of Cε grows
rapidly as ε tends to zero. By lazily choosing ε = 1/2,

P

(
‖θ̂t − θ∗‖Vt ≥ 2

√
2
(
d log(6) + log

(
1
δ

)))
≤ δ . (20.3)

Except for constants and other minor differences, this turns out to be about as
good as you can get. Unfortunately, however, this analysis only works because Vt
was assumed to be deterministic. In the active case, where A1, . . . , An are chosen
by a bandit algorithm, this assumption does not hold and the ideas need to be
modified.

20.1 Martingale noise and Laplace’s method

We now remove all of the limiting assumptions in the previous section. Of course
we still need some conditions on the noise. In particular, we assume that η1, . . . , ηt
are conditionally 1-subgaussian:

E [exp(αηs) | η1, . . . , ηs−1] ≤ exp
(
α2

2

)
, for all α ∈ R and s ∈ [t] . (20.4)

We have now dropped the assumption that A1, A2, . . . are fixed in advance and so
return to the usual capitalization. We also allow arbitrary penalty factors λ > 0
and relax the assumption that Vt be invertible (though Vt(λ) is now invertible
because λ > 0). Can we still get a confidence set like what appears in (20.3)?
Before diving in, we need to introduce another concept from probability theory.

definition 20.1 (Martingale difference process) Let F = (Fs)s be a filtration

20.1 Martingale noise and Laplace’s method 234

over a probability space (Ω,F ,P). A sequence of random variables (Us)s is an
F-adapted martingale difference process if for all s it holds that E [Us] exists and
Us is Fs-measurable and E [Us | Fs−1] = 0.

As usual, the filtration is often not explicitly mentioned if it is obvious from the
context. The name is justified by the fact that if (Us)s is a martingale difference
process, then the partial sums Mt =

∑t
s=1 Us define a martingale. A more

descriptive and informal name for a martingale difference process is martingale
noise.

In the linear bandit model (ηs)s is martingale noise with the filtration given
by Fs = {A1, X1, . . . , As−1, Xs−1, As}. Note the inclusion of As in the definition
of Fs. The martingale noise assumption allows the noise ηs to depend on past
choices, including the most recent action. This is often essential. For example, if
the rewards are Bernoulli. Let us return to the construction of confidence sets.
Since we want exponentially decaying tail probabilities one is tempted to try
Chernoff’s method:

P
(
‖θ̂t − θ∗‖Vt ≥ u

)
≤ inf
λ>0

E
[
exp

(
λ‖θ̂t − θ∗‖Vt − λu

)]
.

Sadly, we do not know how to bound this expectation. Can we still somehow use
Chernoff’s method? Let St =

∑t
s=1 ηsAs and apply the ‘linearization trick’ to

show that

1
2‖θ̂t − θ∗‖

2
Vt = max

x∈Rd

(
〈x, St〉 −

1
2‖x‖

2
Vt

)
.

The exponential of the term inside the maximum is a supermartingale.

lemma 20.2 For all x ∈ Rd the process Mt(x) = exp(〈x, St〉 − 1
2‖x‖2Vt) is a

F-adapted supermartingale.

Proof of Lemma 20.2 That Mt(x) is Ft-measurable for all t is immediate from
the definition. We need to show that E[Mt(x) | Ft−1] ≤Mt−1(x) almost surely.
The fact that (ηs) is martingale noise with respect to filtration (Fs) means that

E
[
exp (ηs 〈x,As〉)

∣∣ Fs
]
≤ exp

(
〈x,As〉2

2

)
= exp

(
‖x‖2AsA>s

2

)
a.s.

Hence

E[Mt(x) | Ft−1] = E
[
exp

(
〈x, St〉 −

1
2‖x‖

2
Vt

) ∣∣∣ Ft−1

]

= Mt−1(x)E
[
exp

(
ηt〈x,At〉 −

1
2‖x‖

2
AtA>t

) ∣∣∣ Ft−1

]

≤Mt−1(x) a.s.

Combining the lemma and the linearization idea almost works. Chernoff’s

20.1 Martingale noise and Laplace’s method 235

method leads to

P
(

1
2‖θ̂t − θ∗‖

2
Vt ≥ log(1/δ)

)
= P

(
exp

(
max
x∈Rd
〈x, St〉 −

1
2‖x‖

2
Vt

)
≥ 1/δ

)

≤ δE
[
exp

(
max
x∈Rd
〈x, St〉 −

1
2‖x‖

2
Vt

)]

= δE
[
max
x∈Rd

Mt(x)
]
. (20.5)

Now Lemma 20.2 shows that E[Mt(x)] ≤ 1. This seems quite promising, but the
presence of the maximum is a setback because Jensen’s inequality implies that
E[maxx∈RdMt(x)] ≥ maxx∈Rd E[Mt(x)], which is the wrong direction to be used
above. This means we cannot directly use the lemma to bound Eq. (20.5). There
are two natural ways to attack this problem. The first idea is to define a finite
covering set Cε ⊂ Rd so that

E
[
max
x∈Rd

Mt(x)
]

= E
[
max
x∈Rd

min
y∈Cε

Mt(x)−Mt(y) +Mt(y)
]

≤ E
[
max
x∈Rd

min
y∈Cε
|Mt(x)−Mt(y)|

]
+ E

[
max
y∈Cε

Mt(y)
]

≤ E
[
max
x∈Rd

min
y∈Cε
|Mt(x)−Mt(y)|

]
+
∑

y∈Cε
E [Mt(y)]

≤ ε+ |Cε| . (20.6)

The last inequality follows from a careful choice of Cε, and as usual the size of
the covering set must be balanced against the required accuracy. Choosing Cε is
quite non-trivial because Mt(x)−Mt(y) is random, even for fixed x and y. We
leave the ‘last few steps’ as an exercise (see Exercise 20.3). The second approach
actually does not require us to bound Eq. (20.5), but uses it for inspiration when
combined with Laplace’s method for approximating integrals of well-behaved
exponentials.

Laplace’s method (†)
We briefly review Laplace’s method for one-dimension functions. Assume that
f : [a, b] → R is twice differentiable and has a unique maximum at x0 ∈ (a, b)
with −q = f ′′(x0) < 0. Laplace’s method for approximating f(x0) is to compute
the integral

Is =
∫ b

a

exp(sf(x))dx

for some large value of s > 0. From a Taylor expansion we may write

f(x) = f(x0)− q

2(x− x0)2 +R(x) ,

20.1 Martingale noise and Laplace’s method 236

Figure 20.1 Laplace’s method

where R(x) = o((x− x0)2). Under appropriate technical assumptions,

Is ∼ exp(sf(x0))
∫ b

a

exp
(
−sq(x− x0)2

2

)
dx as s→∞ .

Furthermore, as s gets large
∫ b

a

exp
(
−sq(x− x0)2

2

)
dx ∼

∫ ∞

−∞
exp

(
−sq(x− x0)2

2

)
dx =

√
2π
sq

and hence

Is ∼ exp(sf(x0))
√

2π
sq

.

Intuitively, the dominant term in the integral Is is exp(sf(x0)). It should also be
clear that the fact that we integrate with respect the Lebesgue measure does not
matter much. We could have integrated with respect to any other measure as
long as that measure puts a positive mass on the neighborhood of the maximizer.
The method is illustrated on the figure shown below. The take home message of
this is that if we integrate the exponential of a function that has a pronounced
maximum then we can expect that the integral will be close to the exponential
function of the maximum.

Method of mixtures
Laplace’s approximation suggests that

max
x

Mt(x) ≈
∫

Rd
Mt(x)dh(x) , (20.7)

where h is some measure on Rd chosen so that the integral can be calculated
in closed form. This is not a requirement of the method, but it does make the

20.1 Martingale noise and Laplace’s method 237

argument shorter. The main benefit of replacing the maximum with an integral
is that we obtain the following lemma, which you will prove in Exercise 20.4.

lemma 20.3 Let h be a probability measure on Rd, then M̄t =
∫
RdMt(x)dh(x)

is a F-adapted supermartingale.

theorem 20.1 For all λ > 0 and δ ∈ (0, 1),

P
(

exists t ≤ n : ‖St‖2Vt(λ)−1 ≥ 2 log
(

1
δ

)
+ log

(
det(Vt(λ))

λd

))
≤ δ .

Proof Let H = λI and h = N (0, H) and

M̄t =
∫

Rd
Mt(x)dh(x)

= 1√
(2π)d det(H−1)

∫

Rd
exp

(
〈x, St〉 −

1
2‖x‖

2
Vt −

1
2‖x‖

2
H

)
dx .

Completing the square,

〈x, St〉 −
1
2‖x‖

2
Vt −

1
2‖x‖

2
H = 1

2‖St‖
2
(H+Vt)−1 − 1

2‖x− (H + Vt)−1St‖2H+Vt .

The first term ‖St‖2(H+Vt)−1 does not depend on x and can be moved outside the
integral, which leaves a quadratic ‘Gaussian’ term that may be integrated exactly
and results in

M̄t =
(

det(H)
det(H + V)

)1/2
exp

(
1
2‖St‖

2
(H+Vt)−1

)
. (20.8)

And things have worked out beautifully. Since M̄t is a nonnegative
supermartingale, the maximal inequality (Theorem 3.5) shows that

P

(
sup

t∈{0,...,n}
log(M̄t) ≥ log

(
1
δ

))
= P

(
sup

t∈{0,...,n}
M̄t ≥

1
δ

)
≤ δ .

The result follows by substituting Eq. (20.8) into the above display and
rearranging.

theorem 20.2 Assuming δ ∈ (0, 1), then with probability at least 1− δ it holds
that for all t ∈ {0, 1, . . . , n},

‖θ̂t − θ∗‖Vt(λ) <
√
λ‖θ∗‖+

√
2 log

(
1
δ

)
+ log

(
detVt(λ)

λd

)
.

Furthermore, if ‖θ∗‖ ≤ S, then P (exists t ∈ [n] : θ∗ /∈ Ct) ≤ δ with

Ct =
{
θ ∈ Rd : ‖θ̂t−1 − θ‖Vt−1(λ) ≤

√
λS +

√
2 log

(
1
δ

)
+ log

(
detVt−1(λ)

λd

)}
.

20.2 Notes 238

Proof We only have to compare ‖St‖Vt(λ)−1 and ‖θ̂t − θ∗‖Vt(λ).

‖θ̂t − θ∗‖Vt(λ) = ‖Vt(λ)−1St + (Vt(λ)−1Vt − I)θ∗‖Vt(λ)

= ‖St‖Vt(λ)−1 + (θ>∗ (Vt(λ)−1Vt − I)Vt(λ)(Vt(λ)−1Vt − I)θ∗)1/2

= ‖St‖Vt(λ)−1 + λ1/2(θ>∗ (I − Vt(λ)−1Vt)θ∗)1/2

≤ ‖St‖Vt(λ)−1 + λ1/2‖θ∗‖ .

And the result follows from Theorem 20.1.

20.2 Notes

1 An alternative to the 2-norm based construction is to use 1-norms. In the
fixed design setting, under the independent Gaussian noise assumption, using
Chernoff’s method this leads to

Ct+1 =
{
θ ∈ Rd : ‖V 1/2(θ̂t − θ)‖1 ≤

√
2 log(2)d2 + 2d log(1/δ)

}
. (20.9)

2 Supermartingales come up all the time in proofs relying on Chernoff’s method.
Just one example is the proof of Lemma 12.1. One could rewrite most the
proofs involving sums of random variables relying on Chernoff’s method in
a way that it would become clear that proof hinges on the supermartingale
property of an appropriate sequence.

20.3 Bibliographic remarks

Laplace’s method is also called the ‘Method of Mixtures’ [Peña et al., 2008]
and its use goes back to the work of Robbins and Siegmund [1970]. In practice,
the improvement that results from using Laplace’s method as compared to the
previous ellipsoidal constructions that are based on covering arguments is quite
large. A historical account of martingale methods in sequential analysis is by
Lai [2009]. A simple proof of Lemma 20.1 appears as Lemma 2.5 in the book by
van de Geer [2000]. Calculating covering numbers (or related packing numbers)
is a whole field by itself, with open questions even in the most obvious examples.
The main reference is by Rogers [1964], which by now is a little old, but still
interesting.

20.4 Exercises

For Exercise 20.2 where we ask you to prove Lemma 20.1 a few standard definitions
will be useful.

20.4 Exercises 239

definition 20.2 (Covering and Packing) LetA ⊂ Rd. A subset C ⊂ A is said to
be an ε-cover of A if A ⊂ ∪x∈CB(x, ε), where B(x, ε) = {y ∈ Rd : ‖x− y‖ ≤ ε}
is the ε ball centered at x. An ε-packing of A is a subset P ⊂ A such that for any
x, y ∈ P , ‖x− y‖ > ε (note the strict inequality). The ε-covering number of A
is N(A, ε) = min{|C| : C is an ε-covering of A}, while the ε-packing number
of A is M(A, ε) = max{|P| : P is an ε-packing of A}, where we allow for both
the covering and packing numbers to take on the value of +∞.

There are various generalizations of these definitions, which do not change their
essence. For one, the definitions can be repeated for arbitrarily pseudo-metric
spaces (instead of Rd with the Euclidean distance, we can consider a set X
with a d : X × X → [0,∞) function on it which is symmetric and satisfies
the triangle inequality and that d(x, x) = 0 for any x ∈ X). The basic results
concerning covering and packing stated in the next exercise remain valid with
this more general definition. In applications we often need the logarithm of the
covering and packing numbers, which are then given the new name the set’s
metric entropy (at a scale ε). As we shall see these are often close no matter
whether we consider packing or covering.

We separate a useful set of a results concerning packing and covering:

20.1 [Coverings and Packings] Let A ⊂ Rd, B the unit ball of Rd, vol(·) the usual
volume (measure under the Lebesgue measure). For brevity let N(ε) = N(A, ε)
and M(ε) = M(A, ε). Show that the following hold:

(a) ε→ N(ε) is increasing as ε ≥ 0 is decreasing.
(b) M(2ε) ≤ N(ε) ≤M(ε).
(c) We have

(
1
ε

)d vol(A)
vol(B) ≤ N(ε) ≤M(ε) ≤ vol(A+ ε

2B)
vol(ε2B)

(∗)
≤ vol(3

2A)
vol(ε2B) ≤

(
3
ε

)d vol(A)
vol(B) ,

where (∗) holds under the assumption that εB ⊂ A and that A is convex
and for U, V ⊂ Rd, c ∈ R, U + V = {u + v : u ∈ U , v ∈ V } and
cU = {cu : u ∈ U};

(d) Fix ε > 0. Then N(ε) < +∞ if and only if A is bounded. The same holds for
M(ε).

20.2 Use the results of the previous exercise to prove Lemma 20.1.

20.3 Complete the steps to show Eq. (20.6).

20.4 Prove Lemma 20.3.

20.5 [Hoeffding–Azuma] Let X1, . . . , Xn be a sequence of random variables
adapted to filtration F = (Ft)t. Suppose that |Xt| ∈ [at, bt] almost surely for

20.4 Exercises 240

arbitrary fixed sequences (at) and (bt) with at ≤ bt for all t ∈ [n]. Show that for
any ε > 0,

P

(
n∑

t=1
(Xt − E[Xt | Ft]) ≥ ε

)
≤ exp

(
− 2n2ε2
∑n
t=1(bt − at)2

)
.

It may help to recall Hoeffding’s lemma from Note 7 in Chapter 5, which states
that for random variable X ∈ [a, b] the moment generating function satisfies

MX(λ) ≤ exp(λ2(b− a)2/8) .

20.6 The following simple extension of Hoeffding–Azuma is often useful. Let
n ∈ N+ and (at) and (bt) be fixed sequences with at ≤ bt for all t ∈ [n]. Let
X1, . . . , Xn be a sequence of random variables adapted to filtration F = (Ft)t
and A be an event. Assume that P (exists t ∈ [n] : A and Xt /∈ [at, bt]) = 0 and
ε > 0 and show that

(a) P

(
A ∩

n∑

t=1
(Xt − E[Xt | Ft]) ≥ ε

)
≤ exp

(
− 2n2ε2
∑n
t=1(bt − at)2

)
.

(b) P

(
n∑

t=1
(Xt − E[Xt | Ft]) ≥ ε

)
≤ P (Ac) + exp

(
− 2n2ε2
∑n
t=1(bt − at)2

)
.

The utility of this result comes from the fact that very often the range of
some adapted sequence is itself random and could be arbitrarily large with low
probability (when A does not hold). A reference for the above result is the
survey by McDiarmid [1998].

20.7 Let F = (Ft)nt=0 be a filtration and X1, X2, . . . , Xn be a sequence of F-
adapted random variables with Xt ∈ {−1, 0, 1} and µt = E[Xt | Ft−1, Xt 6= 0],
which we define to be zero whenever P (Xt 6= 0 | Ft−1) = 0. Then with St =∑t

s=1(Xs − µs|Xs|) and Nt =
∑t
s=1 |Xs|,

P


exists t ≤ n : |St| ≥

√
2Nt log

(
c
√
Nt
δ

)
and Nt > 0


 ≤ δ ,

where c > 0 is a universal constant.

This result appeared in a paper by the authors and others with the constant
c = 4

√
2/π/ erf(

√
2) ≈ 3.43 [Lattimore et al., 2018].

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

21 Optimal Design for Least Squares
Estimators

In the preceeding chapters we introduced the linear bandit and showed how to
construct confidence intervals for least squares estimators. We now study the
problem of choosing actions for which these confidence intervals are small, which
plays an important role in the analysis of stochastic linear bandits with finitey
many arms (Chapter 22) or adversarial linear bandits (Part VI).

Let η1, . . . , ηn be a sequence of independent 1-subgaussian random variables and
A1, . . . , An ∈ Rd be a fixed sequence with span(A1, . . . , An) = Rd and Y1, . . . , Yn
be given by Yt = 〈At, θ∗〉+ ηt for some θ∗ ∈ Rd. Recall from the previous chapter
that the least square estimator is θ̂ = V −1∑n

t=1AtYt with V =
∑n
t=1AtA

>
t the

design matrix.

Unlike in previous chapters the least squares estimators used here are not
regularized. This eases the calculations and the lack of regularization will not
harm us in future applications.

For this choice we showed that for any a ∈ Rd it holds that

P

(
〈θ̂ − θ∗, a〉 ≥

√
2‖a‖2V −1 log

(
1
δ

))
≤ δ . (21.1)

For our purposes, both At and x will usually be actions from some (possibly
infinite) set A ⊂ Rd and the question of interest is finding the shortest sequence
of exploratory actions A1, . . . , An such that the confidence bound in the previous
display is smaller than some threshold for all a ∈ A. To solve this exactly is
likely an intractable exercise in integer programming. But a highly accurate
approximation turns out to be efficient for a broad class of action sets. Let
π : A → [0, 1] be a distribution on A so that

∑
a∈A π(a) = 1 and V (π) ∈ Rd×d

and g(π) ∈ R be given by

V (π) =
∑

a∈A
π(a)aa> , g(π) = max

a∈A
‖a‖2V (π)−1 . (21.2)

In the subfield of statistics called optimal experimental design, the distribution π
is called a design and the problem of finding the π that minimizes g is called the
G-optimal design problem. So how to use this? Suppose that π is a design

http://banditalgs.com
mailto:tor.lattimore@gmail.com

21.1 Proof of Kiefer–Wolfowitz (†) 242

and a ∈ Supp(π) and

na =
⌈
π(a)g(π)

ε2 log
(

1
δ

)⌉
. (21.3)

Then choosing each action a ∈ Supp(π) exactly na times is enough to ensure that

V =
∑

a∈Supp(π)

naaa
> ≥ g(π)

ε2 log
(

1
δ

)
V (π) ,

which by Eq. (21.1) means that for any a ∈ A, with probability 1− δ,

〈θ̂ − θ∗, a〉 ≤
√
‖a‖2V −1 log

(
1
δ

)
≤ ε .

By Eq. (21.3) the total number of actions required to ensure a confidence width
of no more than ε is bounded by

n =
∑

a∈Supp(π)

na =
∑

a∈Supp(π)

⌈
π(a)g(π)

ε2 log
(

1
δ

)⌉
≤ |Supp(π)|+ g(π)

ε2 log
(

1
δ

)
.

So how big are |Supp(π)| and g(π)? As we will now show, there exists a π∗ that
minimizes g(π) such that g(π) = d and |Supp(π)| ≤ d(d + 3)/2. The first of
these facts follows from the following theorem, while the latter is explained in
Section 21.2.

theorem 21.1 (Kiefer–Wolfowitz) The following are equivalent:

1 π∗ is a minimizer of g.
2 π∗ is a minimizer of f(π) = − log detV (π).
3 g(π∗) = d.

The theorem shows that G-optimal design is equivalent to the D-optimal
design problem (D for ‘determinant’), which is the objective in item (2) and
(as we shall soon see) has a useful geometric interpretation.

21.1 Proof of Kiefer–Wolfowitz (†)

We follow the original proof by Kiefer and Wolfowitz [1960], which is direct and
relies only on elementary linear algebra, convexity and calculus. Nevertheless,
this section is not core to the rest of the book and could be skipped on a first
pass. To begin we note that since no matter how the exploration distribution π is
chosen it holds that

∑
a π(a)‖a‖2V (π)−1 = d. Hence for all π there exists an a ∈ A

such that ‖a‖2V (π)−1 ≥ d. The proof will follow by showing that if π maximizes
log det(V (π)), then ‖a‖2V (π)−1 ≤ d for all a ∈ A. Suppose that π is a distribution

21.2 Minimum volume ellipsoids and John’s theorem (†) 243

such that detV (π) > 0 and

∂

∂α
log detV ((1− α)π + απ′)

∣∣∣∣∣
α=0

≤ 0 for all distributions π′ . (21.4)

Let us momentarily fix an alternative distribution π′ and let A be a matrix such
that AV (π)A> = I and AV (π′)A> = B where B is diagonal with elements
b1, . . . , bd (such a matrix exists by simultaneous diagonalization. Then

detV ((1− α)π + απ′) =
∏d
i=1(1− α+ αbi)

(detA)2 .

By noting that the sum of concave functions is concave and checking that
log(1− α+ αbi) is concave it follows that log detV ((1− α)π + απ′) is concave in
α ∈ [0, 1]. It follows that for π with detV (π) > 0 and satisfying Eq. (21.4) that
π = argmaxπ log det(V (π)). The next step is a direct calculation of the derivative
in Eq. (21.4) (details see Exercise 21.1):

∂

∂α
log detV ((1− α)π + απ′)

∣∣∣∣∣
α=0

=
∑

ij

V (π)−1
ij V (π′)ij − d . (21.5)

By letting π′(a) = 1 for some a ∈ A we have ‖a‖2V (π)−1 =
∑
ij V (π)−1

ij V (π′)ij ≤ d.

21.2 Minimum volume ellipsoids and John’s theorem (†)

This section depends on a little background on convex optimization and especially
the notion of duality. The classic reference is by Boyd and Vandenberghe [2004,
Chap 5]. Let Sd++ be the space of (symmetric) positive definite matrices and recall
that a d-dimensional ellipsoid is determined by its center x◦ ∈ Rd and a positive
definite matrix H ∈ Sd++ and defined by E(x◦, H) = {x ∈ Rd : ‖x−x◦‖H−1 ≤ 1}.
Given a closed convex set K ⊂ Rd it is a problem in convex geometry to find the
ellipsoid E of smallest volume such that K ⊆ E. Such an ellipsoid is called the
minimum-volume enclosing ellipsoid (MVEE). The volume of an ellipsoid
is easily evaluated by noting that if L =

√
H, then vol(E(x◦, H)) = vol(E(0, H))

and E(0, H) = LBd2 where Bd2 = {x ∈ Rd : ‖x‖2 ≤ 1} is the unit ball and
LBd2 = {Lx : x ∈ Bd2} ⊂ Rd. Therefore

vol(E(x◦, H)) = vol(Bd2) det(L) = vol(Bd2)
√

det(H) .

To make the connection to optimal design we consider a modification of the
problem of finding the MVEE by adding the restriction that the ellipsoid must be
centered (x◦ = 0), which is written as the following convex optimization problem:

min
H∈Sd++

log det(H)

subject to K ⊆ E(0, H) .

21.2 Minimum volume ellipsoids and John’s theorem (†) 244

If K = co(A) is the convex hull of A, then the dual of this problem is equivalent
to the D-optimal design problem where the Lagrange multipliers play the role of
the design π. The dual is

max log det
(∑

a∈A
λ(a)aa>

)
−
∑

a∈A
λ(a) + d

subject to λ(a) ≥ 0 for all a ∈ A . (21.6)

As it happens this is one situation where strong duality holds, so the optimization
problems are essentially equivalent. By introducing π(a) = λ(a)/

∑
a′∈A λ(a′) it

is easy to check (again by duality) that the above is equivalent to

max log det
(∑

a∈A
π(a)aa>

)
+ d log d

subject to π being a distribution on A .

Of course d log d does not depend on π, so this optimization problem is now
equivalent to the D-optimal design problem that appeared in Theorem 21.1. Fritz
John’s celebrated result concerns the properties of the MVEE with no restriction
on the center.

theorem 21.2 (John’s theorem) Let K ⊂ Rd be convex, closed and assume
that span(K) = Rd. Then there exists a unique MVEE of K. Furthermore, this
MVEE is the unit ball Bd2 if and only if there exists m ≤ d(d+3)/2 contact points
(“the core set”) u1, . . . , um that belong to both K and the surface of Bd2 and there
also exist positive reals c1, . . . , cm such that

∑

i

ciui = 0 and
∑

i

ciuiu
>
i = I, (21.7)

To apply John’s theorem we first massage the action set so that the MVEE
provided by the theorem is centered, but without affecting the optimal design.
Let A′ = {a : a ∈ A or − a ∈ A} and K = co(A′) be the convex hull of A′. Now
take E = E(x◦, H) to be the MVEE of K, which by construction is centered
so that x◦ = 0. If L =

√
H, then the image of E under L−1 is Bd2 , which

is the MVEE of convex set L−1K. Therefore by John’s theorem there exists
u1, . . . , um ∈ L−1K∩∂Bd2 and positive reals c1, . . . , cm such that Eq. (21.7) holds.
In fact, by the curvature of the ellipse we have ui ∈ L−1A′ ∩ ∂Bd2 . Since the trace
of a matrix is invariant under rotation,

d = trace
(∑

i

ciuiu
>
i

)
=
∑

i

ci trace(uiu>i) =
∑

i

ci .

This allows us to take

π(a) = 1
d

∑

i

ciI {Lui = a ∨ (Lui = −a ∧ −a /∈ A)} ,

21.3 Notes 245

Figure 21.1 John’s ellipsoid for the convex polytope (dashed line) over a small action
set. The core set is marked in red. Actions on the boundary of the polytope (and not
the core set) are blue, while the green actions are called interior points.

where the complicated expression is due to the fact that a and −a might sometimes
both be in A. Therefore V (π) = LL>/d and so

sup
a∈A
‖a‖2V (π)−1 ≤ sup

u:‖u‖2=1
‖L−1(a)‖2V (π)−1 = d sup

u:‖u‖2=1
u>L−1LL>(L>)−1u = d .

None of this is terribly surprising in light of Kiefer–Wolfowitz theorem, but John’s
theorem also provides a guarantee on the size of the core set, which means that
the support of the G-optimal design π can be assumed to have cardinality at
most d(d+ 3)/2.

21.3 Notes

1 In no applications will we require an exact solution to the design problem. In
fact, finding a distribution π such that g(π) ≤ (1 + ε)g(π∗) will increase the
regret of our algorithms by a factor of just (1 + ε)1/2.

2 When the action set is finite the computation of the optimal design is a convex
problem for which there are numerous efficient approximation algorithms. The
Franke-Wolfe algorithm is one such algorithm, which is known as Wynn’s
method in optimal experimental design and can be used to find a near-optimal
solution for modestly sized problems. More sophisticated methods have also
been investigated. A good place to start is: Vandenberghe et al. [1998]. If the
action set is infinite, then the optimal design can often still be approximated
efficiently. The most notable case is when there exists an efficient algorithm (a
‘membership oracle’) for the function I {x ∈ K} for any x ∈ Rd. For details on

21.4 Bibliographic remarks 246

this (and many other interesting algorithms involving convexity) see the book
by Grötschel et al. [2012].

3 While the proof of Theorem 21.1 is sufficiently elementary to include here, we
do not know of a simple proof of John’s theorem. Perhaps a reason for the
additional difficulty is that John’s proof implicitly shows that the cardinality
of the core set is at most d(d + 3)/2, which is not revealed at all by Kiefer–
Wolfowitz. A proof of John’s theorem may be found in the short book by Ball
[1997].

21.4 Bibliographic remarks

According to our best knowledge, the connection to optimal experimental design
through the Kiefer-Wolfowitz theorem and the proof that solely relied on this
result has not been pointed out in the literature beforehand, though the connection
between the Kiefer-Wolfowitz theorem and MVEEs is well known. Besides the
previously mentioned book by Boyd and Vandenberghe [2004] there is also a
recent book by Todd [2016] that discusses algorithmic issues as well as the duality.
The theorem of Kiefer and Wolfowitz is due to them: Kiefer and Wolfowitz [1960].
John’s theorem is due to John [1948]. The duality mentioned in the text was
proved by Silvey and Sibson [1972].

21.5 Exercises

21.1 Prove the correctness of the derivative in Eq. (21.5).

Use the fact that the inverse of matrix A is A−1 = M/det(A) where M is the
matrix of cofactors of A.

21.2 Find John’s ellipsoid for each of the following sets and use it to derive the
G-optimal design.

(a) The simplex: K = co{e1, . . . , ed}.
(b) The hypercube: K = {x : ‖x‖∞ ≤ 1}.

21.3 Write a program that accepts as parameters a finite set A ⊂ Rd and returns
the G-optimal design π : A → [0, 1] that minimizes g(π) given in Eq. (21.2).

The easiest ‘pure’ way to do this is to implement the Franke-Wolfe algorithm
(see the notes). For more robust results we suggest a convex optimization
library be used.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

22 Stochastic Linear Bandits with
Finitely Many Arms

The optimal design problem has immediate applications to stochastic linear
bandits. In Chapter 19 we developed a linear version of the upper confidence
bound algorithm that achieves a regret of Rn = Õ(d

√
n). The only required

assumptions were that the sequence of available action-sets were bounded. In
this short chapter we consider a more restricted setting where:

1 Fixed finite action set: The set of actions available in round t is A ⊂ Rd and
|A| = K for some natural number K.

2 Subgaussian rewards: The reward is Xt = 〈θ∗, At〉+ ηt where ηt is conditionally
1-subgaussian:

E[exp(ληt)|A1, η1, . . . , At−1] ≤ exp(λ2/2) almost surely for all λ ∈ R .

3 Bounded mean rewards: ∆a = maxb∈A〈θ∗, b− a〉 ≤ 1 for all a ∈ A.

The key difference is that now the set of actions is finite and does not change
with time. Under these conditions it becomes possible to design a policy such
that

Rn = O
(√

dn log(nK)
)
.

When K is small this bound improves the regret by a factor of d1/2, which in
some regimes is large enough to be worth the effort. The core idea is to introduce
phases of determinisim into the algorithm so that within each phase the actions
are chosen independently from the rewards. This decoupling allows us to make use
of the tighter confidence bounds available in the fixed design setting as discussed
in the previous chapter. The choice of policy within each phase uses the solution
to an optimal design problem to minimize the number of required samples to
eliminate arms that are far from optimal.

theorem 22.1 With probability at least 1− δ the regret of Algorithm 11 is at
most:

Rn ≤ C
√
nd log

(
K log(n)

δ

)
,

where C > 0 is a universal constant. If δ = O(1/n), then E[Rn] ≤ C
√
nd log(Kn)

for appropriately chosen universal constant C > 0.

http://banditalgs.com
mailto:tor.lattimore@gmail.com

22.1 Bibliographic remarks 248

Input A ⊂ Rd and δ

Step 0 Set ` = 1 and let A1 = A
Step 1 Let t` = t be the current timestep and find G-optimal design π` : A` →

[0, 1] that maximizes

log detV (π`) subject to
∑

a∈A`
π`(a) = 1

Step 2 Let ε` = 2−` and

T`(a) =
⌈

2π(a)
ε2
`

log
(
K`(`+ 1)

δ

)⌉
and T` =

∑

a∈A`
T`(a)

Step 3 Choose each action a ∈ A` exactly Ta(`) times
Step 4 Calculate empirical estimate:

θ̂ = V −1
`

t`+T`∑

t=t`

AtXt

Step 5 Eliminate low rewarding arms:

A`+1 =
{
a ∈ A` : max

b∈A`
〈θ̂`, b− a〉 ≥ 2ε`

}
.

Algorithm 11: Phased elimination with G-optimal exploration

The proof of this theorem follows relatively directly from the high-probability
correctness of the confidence intervals used to eliminate low-rewarding arms. We
leave the details to the reader in Exercise 22.1.

22.1 Bibliographic remarks

Algorithm 11 is a combination of several existing ideas. The use of phases to
decouple the dependence of the design and the outcomes is originally due to Auer
[2002], where a more complicated version of the presented problem is solved in
which the action set is permitted to change with time. The complexity of the
analysis unfortunately prohibited us from presenting these ideas here. Phased
approaches have since appeared in many places, but the most similar is the
work on spectral bandits by Valko et al. [2014]. Neither of these works used the
Kiefer–Wolfowitz theorem. This idea is taken from the literature on adversarial
linear bandits where John’s ellipsoid has been used to define exploration policies
[Bubeck et al., 2012]. For more details on adversarial linear bandits read on to
Part VI.

SupLinRel, LinRel, Chu et al. [2011].

22.2 Exercises 249

22.2 Exercises

22.1 In this exercise you will prove Theorem 22.1.

(a) The first step is to use Theorem 21.1 (and the preceding comments) to show
that the length of the `th phase is bounded by

T` ≤
2d
ε2
`

log
(
K`(`+ 1)

δ

)
+ d(d+ 3)

2

(b) Let a∗ ∈ argmaxa∈A〈a, θ∗〉 be the optimal arm and use Theorem 21.1 to show
that

P (exists phase ` such that a∗ /∈ A`) ≤
δ

K
.

(c) For action a define `a = min{` : ∆a < 2ε`} to be the first phase where the
suboptimality gap of arm a is smaller than 2ε`. Show that

P (a ∈ A`a) ≤ δ

K

(d) Show that with probability at least 1− δ the regret is bounded by

Rn ≤ C
√
dn log

(
K

δ

)
,

where C > 0 is a universal constant.
(e) Show that this implies Theorem 22.1 for the given choice of δ.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

23 Stochastic Linear Bandits with
Sparsity

In Chapter 19 we showed the linear variant of UCB has regret bounded by

Rn = O(d
√
n log(n)) ,

which for fixed finite action sets can be improved to

Rn = Õ(
√
dn log(nK)) .

For moderately sized action sets these approaches lead to a big improvement over
what could be obtained by using the policies that do not make use of the linear
structure.

The situation is still not perfect though. In typical applications d is the
dimension of the feature space in which the actions are embedded. The features
are chosen by the users of the system and one can easily imagine the user has
many candidate features and little knowledge about which will be most useful.
This presents the user with a challenging tradeoff. If they include many features,
then the regret bound will be large. But if a useful feature is omitted, then the
linear model will almost certainly be quite wrong. Ideally, one should be able
to add features without suffering much additional regret if the feature added
does not contribute in a significant way. This can be captured by the notion of
sparsity, which is the central theme of this chapter.

23.1 Sparse linear stochastic bandits

The sparse linear stochastic bandit problem is the same as the stochastic linear
bandit problem with a small difference. Just like in the standard setting, at the
beginning of a round with index t the learner receives a decision set At ⊂ Rd.
They then choose an action At ∈ At and receives the reward

Xt = 〈At, θ∗〉+ ηt , (23.1)

where (ηt)t is zero-mean noise and θ∗ ∈ Rd is an unknown vector. The only
difference in the sparse setting is that the parameter vector θ is assumed to have
many zero entries. Given θ ∈ Rd let

‖θ‖0 =
d∑

i=1
I {θi 6= 0} ,

http://banditalgs.com
mailto:tor.lattimore@gmail.com

23.2 Elimination on the hypercube 251

which is sometimes call the 0-“norm” (quotations because it is not really a norm,
see Exercise 23.1). For the remainder of this chapter we will assume that

1 (Sparse parameter) There exist known constants M0 and M2 such that
‖θ∗‖0 ≤M0 and ‖θ∗‖2 ≤M2.

2 (Bounded mean rewards): 〈a, θ∗〉 ≤ 1 for all a ∈ At and all rounds t.
3 (Subgaussian noise): The reward is Xt = 〈At, θ∗〉+ηt where ηt|Ft−1 ∼ subG(1)

for Ft = σ(A1, η1, . . . , At, ηt).

Much ink has been spilled on what can be said about the speed of learning in
linear models like (23.1) when (At)t are passively generated and the parameter
vector is known to be sparse. Most results are phrased about recovering θ∗, but
there also exist a few results that quantify the speed at which good predictions
can be made. The ideal outcome would be that the learning speed depends
mostly on M0, while the dependence on d becomes less severe. Almost all the
results come under the assumption that the Grammian of the actions (At)t is
well-conditioned.

The condition number of a positive definite matrix A is the ratio of its
largest and smallest eigenvalues. A matrix is well conditioned if it has a
small condition number.

The details are a bit more complicated than just the conditioning, but the
main point is that the usual assumptions imposed on the Grammian for passive
learning are never satisfied when the actions are chosen by a good bandit policy.
The reason is simple. Bandit algorithms want to choose the optimal action as
often as possible, which means the Grammian will have an eigenvector that points
(approximately) towards to optimal action with a large corresponding eigenvalue.
We need some approach that does not rely on such strong assumptions.

23.2 Elimination on the hypercube

As a warmup problem we consider the special case where the action set is the
d-dimensional hypercube: A = [−1, 1]d. To reduce clutter we will denote the true
parameter vector by θ. As usual, in each round t the learner chooses At ∈ A and
receives reward Xt = 〈At, θ〉+ ηt. We make the following standard assumptions:

1 (Bounded mean rewards): ‖θ‖1 ≤ 1, which ensures that 〈a, θ〉| ≤ 1 for all a ∈ A.
2 (Subgaussian noise): ηt is conditionally 1-subgaussian given the past:

E [exp(ληt)|Ft−1] ≤ exp
(
λ2

2

)
almost surely for all λ ∈ R ,

where Ft−1 = σ(A1, X1, . . . , At−1, Xt−1, At).

23.2 Elimination on the hypercube 252

Since conditional subgaussianity comes up frequently, we introduce a notation for
it. When X is σ-subgaussian given some σ-field F we will write X|F ∼ subG(σ).
Our earlier statement that the sum of independent subgaussian random variables
is subgaussian with a subgaussianity factor that is the sum of the two factors
also holds for conditionally subgaussian random variables.

The hypercube is notable as an action set because it enjoys perfect separability.
For each dimension i ∈ [d] the value of Ati ∈ [−1, 1] can be chosen without regard
to the choice of Atj for other dimensions j. The first consequence of this is that
the optimal action is a∗ = sign(θ) where

sign(θ)i = sign(θi) =





1 if θi > 0
0 if θi = 0
−1 if θi < 0 .

So learning the optimal action amounts to learning the sign of θi for each
dimension. A disadvantage of this structure is that in the worst case the sign
of each θi must be learned independently, which in Chapter 24 we show leads
to a worst case regret of Rn = Ω(d

√
n). On the positive side, the seperability

means that θi can be estimated in each dimension independently while paying
absolutely no price for this experimentation when θi = 0. It turns out that this
allows us to design a policy whose regret scales with O(‖θ‖0

√
n) even without

knowing the value of ‖θ‖0.
Let Gt = σ(A1, X1, . . . , At−1, Xt−1) be the σ-algebra containing information up

to time t−1 (this differs from Ft, which also includes information about the action
chosen). Now suppose that (Ati)i are chosen to be conditionally independent
given Gt and further assume for some specific i ∈ [d] that Ati is sampled from a
Rademacher distribution so that P (Ati = 1|Gt) = P (Ati = −1) = 1/2. Then

E[AtiXt|Gt] = E


Ati




d∑

j=1
Atjθj + ηt






= θiE[A2
ti|Gt] +

∑

j 6=i
θjE[AtjAti|Gt] + E[ηt|Gt] = θi ,

where the first equality is the definition of Xt = 〈At, θ〉 + ηt, the second by
linearity of expectation and the third by the conditional independence of (Ati)i
and the fact that E[Ati|Gt] = 0 and E[A2

ti|Gt] = 1. This looks quite promising,
but we should also check the variance. Using our assumptions we have: E[η] = 0
and E[η2] ≤ 1 and 〈a, θ〉 ≤ 1 for all actions a we have

V[AtiXt|Gt] = E[A2
tiX

2
t |Gt]− θ2

i = E[(〈At, θ〉+ η)2 |Gt]− θ2
i ≤ 2 . (23.2)

And now we have cause for celebration. The value of θi can be estimated by
choosing Ati to be a Rademacher random variable independent of the choices in

23.2 Elimination on the hypercube 253

other dimensions. All the policy does is treat all dimensions independently. For a
particular dimension (say i) it explores by choosing Ati ∈ {−1, 1} uniformly at
random until its estimate is sufficiently accurate to commit to either Ati = 1 or
Ati = −1 for all future rounds. How long this takes depends on |θi|, but note that
if |θi| is small, then the price of exploring is also limited. The policy that results
from this idea is called Selective Explore-Then-Commit (Algorithm 12, SETC).

1: Input n and d

2: Set E1,i = 1 and C1,i = R for all i ∈ [d]
3: for t = 1, . . . , n do
4: For each i ∈ [d] sample Bti ∼ Rademacher
5: Choose action:

(∀i) Ati =





Bti if 0 ∈ Cti
1 if Cti ⊂ (0,∞]
−1 if Cti ⊂ [−∞, 0) .

6: Play At and observe Xt

7: Construct empirical estimators:

(∀i) Ti(t) =
t∑

s=1
Esi θ̂ti =

∑t
s=1EsiAsiXs

Ti(t)

8: Construct confidence intervals:

(∀i) Wti = 2

√(
1

Ti(t)
+ 1
Ti(t)2

)
log
(
n
√

2Ti(t) + 1
)

(∀i) Ct+1,i =
[
θ̂ti −Wti, θ̂ti +Wti

]

9: Update exploration parameters:

(∀i) Et+1,i =
{

0 if 0 /∈ Ct+1,i or Eti = 0
1 otherwise .

10: end for
Algorithm 12: Selective Explore-Then-Commit

theorem 23.1 There exists a universal constant C > 0 such that the regret of
SETC satisfies:

Rn ≤ 2‖θ‖1 + C
∑

i:θi 6=0

log(n)
|θi|

.

Furthermore Rn ≤ C‖θ‖0
√
n log(n).

By appealing to the central limit theorem and the variance calculation in

23.2 Elimination on the hypercube 254

Eq. (23.2) we should be hopeful that the confidence intervals used by the algorithm
are sufficiently large to contain the true θi with high probability, but this still
needs to be proven.

lemma 23.1 Define τi = n∧max{t : Eti = 1} and Fi = I {τi ≤ n ∧ θi /∈ Cτi+1,i}
be the event that θi is not in the confidence interval constructed at time τi. Then
P (Fi) ≤ 1/n.

Leaving the proof of Lemma 23.1 to the next section, we first use it to prove
Theorem 23.1.

Proof of Theorem 23.1 Recalling the definition of the regret and using the fact
that the optimal action is a∗ = sign(θ) we have the following regret decomposition.

Rn = max
a∈A
〈a, θ〉 − E

[
n∑

t=1
〈At, θ〉

]
=

d∑

i=1

(
n|θi| − E

[
n∑

t=1
Atiθi

])

︸ ︷︷ ︸
Rni

. (23.3)

Clearly if θi = 0, then Rni = 0. And so it suffices to bound Rni for each i with
|θi| > 0. Suppose that |θi| > 0 for some i and the failure event Fi given in
Lemma 23.1 does not occur. Then θi ∈ Cτi+1,t and by definition of the algorithm
Ati = sign(θi) for all t ≥ τi. Therefore

Rni = n|θi| − E

[
n∑

t=1
Atiθi

]
= E

[
n∑

t=1
|θi| (1−Ati sign(θi))

]

≤ n|θi|P (Fi) + |θi|E [I {F ci } τi] (23.4)

Since τi is the last round t when 0 /∈ Ct+1,i it follows that if Fi does not occur,
then θ ∈ Cτi,i and 0 ∈ Cτi,i. Thus the width of the confidence interval Cτi,i must
be at least |θi| and so

2Wτi−1 = 4

√(
1

τi − 1 + 1
(τi − 1)2

)
log
(
n
√

2τi − 1
)
≥ |θi| ,

which after rearranging shows for some universal constant C > 0 that

I {F ci } (τi − 1) ≤ 1 + C log(n)
θ2
i

.

Combining this result with Eq. (23.4) leads to

Rni ≤ n|θi|P (Fi) + |θi|+
C log(n)
|θi|

.

Using Lemma 23.1 to bound P (Fi) and substituting into the decomposition
Eq. (23.3) completes the proof of the first part. The second part is left as an
exercise to the reader.

23.3 Proof of technical lemma 255

23.3 Proof of technical lemma

We start with a simple variation on the self-normalized concentration inequality
of Theorem 20.1.

lemma 23.2 Let δ ∈ (0, 1) and (Ft)t∈[n] be a filtration and (Zt)t∈[n] be Ft-
adapted such that Zt|Ft−1 ∼ subG(σ). Then for any stopping time τ ∈ [n] it
holds that

P


exists t ≤ τ : |St| ≥

√√√√2σ2(t+ 1) log
(√

tσ2 + 1
δ

)
 ≤ δ .

Proof Let f(λ) = 1√
2π exp(−λ2/2) be the density of the standard Gaussian and

define supermartingale Mt by

Mt =
∫

R
f(λ) exp

(
λSt −

tσ2λ2

2

)
dλ = 1√

tσ2 + 1
exp

(
S2
t

2σ2(t+ 1)

)
.

Since E[Mτ] = M0 = 1, by the maximal inequality P
(
supt≤τ Mt ≥ 1/δ

)
≤ δ.

Rearranging yields the claim.

P


exists t ≤ τ : |St| ≥

√√√√2σ2(t+ 1) log
(√

tσ2 + 1
δ

)
 ≤ δ .

One might question whether or not the choice of Gaussian for mixing
distribution f is optimal. In fact it is nothing more than a convenient choice that
allows for an easy evaluation of the integral. By selecting a more appropriate
mixing distribution one can show a result that is reminiscent of the law of the
iterated logarithm. For details see Exercise 23.6.

Proof of Lemma 23.1 Let Zti = Atiηi + Ati
∑
j 6=iAtjθj . Setting Ft =

σ(A1, X1, . . . , At, Xt), we see that Zti is Ft-adapted. Letting Sti =
∑
j 6=iAtjθj

and expanding Zti = AtiSti + Atiηt. The first step is to check that Zti|Ft−1 ∼
subG(

√
2).

E [exp(λZti)|Ft−1] = E [E [exp(λZti)|Ft−1, At] |Ft−1]
= E [exp(λAtiSti)E [exp(λAtiηt)|Ft−1, At] |Ft−1]

≤ E

[
exp(λAtiSti) exp

(
λ2

2

) ∣∣∣∣∣Ft−1

]

= exp
(
λ2

2

)
E [E [exp(λAtiSti)|Ft−1, Sti] |Ft−1]

≤ exp
(
λ2

2

)
E

[
exp

(
λ2S2

ti

2

) ∣∣∣∣∣Ft−1

]

≤ exp(λ2) ,

23.4 UCB with sparsity 256

where the first inequality used that ηt and At are conditionally independent given
Ft−1 and that ηt|Ft−1 ∼ subG(1), the second to last inequality used that Sti and
Ati are conditionally independent given Ft−1 and that Ati|Ft−1 ∼ subG(1), the
last step used that |Sti| ≤ 1. From this we conclude that Zti|Ft−1 ∼ subG(

√
2).

The result follows by applying Lemma 23.2 with stopping time τi = n ∧max{t :
Eti = 1}. Then P (Fi) = P (θi /∈ Cτi,i) ≤ 1/n.

23.4 UCB with sparsity

A new plan is needed to relax the assumption that the action set is a hypercube.
The idea is to modify the ellipsoidal confidence set used in Chapter 19 to have
a smaller radius, which is made possible by exploiting the lower variance of the
least-squares estimator when the unknown parameter is sparse. We will see that
modifying the algorithm in Chapter 19 to use the smaller confidence intervals
improves the regret to Rn = O(

√
dpn log(n)).

Without assumptions on the action-set one cannot hope to have a regret smaller
than O(

√
dn). To see this, recall that d-armed bandits can be represented as

linear bandits with At = {e1, . . . , ed}. For these problems Theorem 15.1 shows
that for any policy there exists a d-armed bandit for which Rn = Ω(

√
dn).

Checking the proof reveals that when adapted to the linear setting the parameter
vector is 2-sparse.

23.5 Online to confidence set conversion

The construction that follows makes use of a kind of duality between online
prediction and confidence sets. While we will only apply the idea to the sparse
linear case, the approach is generic. Unless otherwise mentioned, for the remainder
of the chapter we make the following assumptions:

The prediction problem considered is online linear prediction where the
prediction error is measured by the squared loss. This is also known as online
linear regression. The learner interacts with an environment in a sequential
manner where in each round t ∈ N+:

1 The environment chooses Xt ∈ R and At ∈ Rd in an arbitrary fashion.
2 The value of At is revealed to the learner (but not Xt).
3 The learner produces a real-valued prediction X̂t in some way.
4 The environment reveals Xt to the learner and the loss is (Xt − X̂t)2.

The learner’s goal is to produce predictions whose total loss is not much worse

23.5 Online to confidence set conversion 257

than the loss suffered by any of the linear predictors in some set Θ ⊂ Rd. The
regret of the learner relative to a linear predictor that uses the weights θ ∈ Rd is

ρn(θ) =
n∑

t=1
(Xt − X̂t)2 −

n∑

t=1
(Xt − 〈At, θ〉)2 . (23.5)

We say that the learner enjoys a regret guarantee Bn relative to Θ if for any
strategy of the environment,

sup
θ∈Θ

ρn(θ) ≤ Bn . (23.6)

The online learning literature in machine learning has a number of powerful
algorithms for this learning problem with equally powerful regret guarantees.
Later we will give a specific result for the sparse case when Θ = {x : ‖x‖0 ≤M0},
but first we show how to use such a learning algorithm to construct a confidence
set. Take any learner for online linear regression and assume the environment
generates Xt in a stochastic manner like in linear bandits:

Xt = 〈At, θ∗〉+ ηt , (23.7)

Combining Eqs. (23.5) to (23.7) with elementary algebra,

Qt =
n∑

t=1
(X̂t − 〈At, θ∗〉)2 = ρn(θ∗) + 2

n∑

t=1
ηt(X̂t − 〈At, θ∗〉)

≤ Bn + 2
n∑

t=1
ηt(X̂t − 〈At, θ∗〉) , (23.8)

where the first equality serves as the definition of Qt. Let us now take stock for a
moment. If we could somehow remove the dependence on the noise ηt in the right
hand side, then we could define a confidence set consisting of all θ that satisfy
the equation. Of course the noise has zero mean and is conditionally independent
of its multiplier, so the expectation of this term is zero. If we can control the
fluctuations with high probability, then we will have made some progress. Let

Zt =
t∑

s=1
ηt(X̂t − 〈At, θ∗〉)

Since X̂t is chosen based on information available at the beginning of the round,
X̂t is Ft−1-measurable and so

(Zt − Zt−1)|Ft−1 ∼ subG(σt) , where σ2
t = (X̂t − 〈At, θ∗〉)2 .

The uniform self-normalized tail bound (Theorem 20.1) with λ = 1 implies that,

P

(
exists t ≥ 0 such that |Zt| ≥

√
(1 +Qt) log

(
1 +Qt
δ2

))
≤ δ .

23.5 Online to confidence set conversion 258

Provided this low probability event does not occur, then from Eq. (23.8) we have

Qt ≤ Bt + 2

√
(1 +Qt) log

(
1 +Qt
δ2

)
. (23.9)

While both sides depend on Qt, the left hand side grows linearly, while the right
hand side grows sublinearly in Qt. This means that the largest value of Qt that
satisfies the above inequality is finite. A tedious calculation then shows this value
must be less than

βt(δ) = 1 + 2Bt + 32 log
(√

8 +
√

1 +Bt
δ

)
. (23.10)

By piecing together the parts we conclude that with probability at least 1− δ
the following holds for all t:

Qt =
t∑

s=1
(X̂s − 〈As, θ∗〉)2 ≤ βt(δ) .

We could define Ct+1 to be the set of all θ such that the above holds with θ∗
replaced by θ, but there is one additionally subtlety, which is that the resulting
confidence interval may be unbounded (think about the case that

∑t
s=1AsA

>
s is

not invertible). In Chapter 19 we overcame this problem by regularizing the least
squares estimator. Since we have assumed that ‖θ∗‖2 ≤M2 the previous display
implies that

‖θ∗‖22 +
t∑

s=1
(X̂s − 〈As, θ∗〉)2 ≤M2

2 + βt(δ) .

All together we have the following theorem.

theorem 23.2 Let δ ∈ (0, 1) and assume that θ∗ ∈ Θ and supθ∈Θ ρt(θ) ≤ Bt.
If

Ct+1 =
{
θ ∈ Rd : ‖θ‖22 +

t∑

s=1
(X̂s − 〈As, θ〉)2 ≤M2

2 + βt(δ)
}
,

then P (exists t ∈ N such that θ∗ 6∈ Ct+1) ≤ δ .

The confidence set in Theorem 23.2 is not in the most convenient form. By
defining Vt = I +

∑t
s=1AsA

>
s and St =

∑t
s=1AsX̂s and θ̂t = V −1

t St and
performing an algebraic calculation that we leave to the reader (see Exercise 23.5)
one can see that

‖θ‖22 +
t∑

s=1
(X̂s − 〈As, θ〉)2 = ‖θ − θ̂t‖2Vt +

t∑

s=1
(X̂s − 〈θ̂t, As〉)2 + ‖θ̂t‖22 . (23.11)

Using this, the confidence set can be rewritten in the familiar form of an ellipsoid:

Ct+1 =
{
θ ∈ Rd : ‖θ − θ̂t‖2Vt ≤M2

2 + βt(δ)− ‖θ̂t‖22 −
t∑

s=1
(X̂2

s − 〈θ̂t, As〉)2

}
.

23.6 Sparse online linear prediction 259

1: Input Online linear predictor and regret bound Bt, confidence parameter
δ ∈ (0, 1)

2: for t = 1, . . . , n do
3: Receive action set At
4: Computer confidence set:

Ct =
{
θ ∈ Rd : ‖θ‖22 +

t−1∑

s=1
(X̂s − 〈As, θ〉)2 ≤M2

2 + βt(δ)
}

5: Calculate optimistic action

At = argmaxa∈At max
θ∈Ct
〈a, θ〉

6: Feed At to the online linear predictor and obtain prediction X̂t

7: Play At and receive reward Xt

8: Feed Xt to online linear predictor as feedback
9: end for

Algorithm 13: Online Linear Predictor UCB

It is not obvious that Ct+1 is not empty because the radius could be negative.
Theorem 23.2 shows, however, that with high probability θ∗ ∈ Ct+1. At last we
have established all the conditions required for Theorem 19.1, which implies the
following theorem bounding the regret of Algorithm 13.

theorem 23.3 With probability at least 1− δ the pseudo-regret of OLR-UCB
satisfies

R̂n ≤
√

8dn (M2
2 + βn−1(δ)) log

(
1 + n

d

)
.

23.6 Sparse online linear prediction

theorem 23.4 There exists a strategy π for the learner such that for any
θ ∈ Rd, the regret ρn(θ) of π against any strategic environment such that
maxt∈[n] ‖At‖2 ≤ L and maxt∈[n] |Xt| ≤ X satisfies

ρn(θ) ≤ cX2‖θ‖0
{

log(e+ n1/2L) + Cn log(1 + ‖θ‖1
‖θ‖0

)
}

+ (1 +X2)Cn ,

where c > 0 is some universal constant and Cn = 2 + log2 log(e+ n1/2L).

The strategy is a variant of the exponential weights method except that the
method is now adjusted so that the set of experts is now Rd. An appropriate
sparsity prior is used and when predicting an appropriate truncation strategy
is used. The details of the procedure are less important at this stage for our
purposes and are thus left out. A reference to the work containing the missing
details will be given at the end of the chapter.

23.7 Notes 260

Note that An = O(log log(n)). Hence, dropping the dependence on X and L,
for p > 0, supθ:‖θ‖0≤p,‖θ‖2≤L ρn(θ) = O(p log(n)). Note how strong this is: The
guarantee hold no matter what strategy the environment uses!

Now, in sparse linear bandits with subgaussian noise, the noise (ηt)t is not
necessarily bounded, and as a consequence the rewards (Xt)t are also not
necessarily bounded. However, the subgaussian property implies with probability
1 − δ, |ηt| ≤ log(2/δ). Now, choosing δ = 1/n2, we thus see that for problems
with bounded mean reward, maxt∈[n] |Xt| ≤ X .= 1 + log(2n2) with probability
at least 1− 1/n. Putting things together then yields the announced result. The
expected regret of OLR-UCB when using the strategy π from above satisfies

Rn = Õ(
√
dpn) .

23.7 Notes

1 The strategy achieving the bound in Theorem 23.4 is not computationally
efficient. In fact we do not know of any polynomial time algorithm with
logarithmic regret for this problem. The consequence is that Algorithm 13 does
not yet have an efficient implementation.

2 While we focused on the sparse case, the results and techniques apply to other
settings. For example, we can also get alternative confidence sets from results
in online learning even for the standard non-sparse case. Or one may consider
additional or different structural assumptions on θ (for example, θ that when
reshaped into a matrix, could have a low spectral norm).

3 When the online linear regression results are applied it is important to use the
tightest possible, data-dependent regret bounds Bn. In online learning most
regret bounds start as tight, data-dependent bounds, which are then loosened to
get further insight into the structure of problems. For our application, naturally
one should use the tightest available regret bounds (or one should attempt to
modify the existing proofs to get tighter data-dependent bounds). The gains
from using data-dependent bounds can be significant.

4 We need to emphasize that the sparsity parameter p must be known in advance
and that no algorithm can simultaneously enjoy a regret of Ω(

√
dpn) for all p

simultaneously. This will be seen shortly in Chapter 24 that focuses exclusively
on lower bounds for stochastic linear bandits.

23.8 Bibliographical Remarks

The Selective Explore-Then-Commit algorithm is due to the authors [Lattimore
et al., 2015]. The construction for the sparse case is from another paper co-
authored by one of the authors [Abbasi-Yadkori et al., 2012]. The online
linear predictor that competes with sparse parameter vectors and its analysis

23.9 Exercises 261

summarized in Theorem 23.4 is due to [Gerchinovitz, 2013, Thm. 10]. A recent
paper by Rakhlin and Sridharan [2017] also discusses relationship between online
learning regret bounds and self-normalized tail bounds of the type given here.
Interestingly, what they show is that the relationship goes in both directions: Tail
inequalities imply regret bounds and regret bounds imply tail inequalities. We are
told by Francesco Orabona that techniques similar to used here for constructing
confidence bounds have been used earlier in a series of papers by Claudio Gentile
and friends. For completeness, here is the list for further exploration: Dekel
et al. [2010, 2012], Crammer and Gentile [2013], Gentile and Orabona [2012,
2014]. Carpentier and Munos [2012] have also published a paper on sparse linear
stochastic bandits, but with the action-set restricted to the (d−1)-sphere. Like the
hypercube, it turns out that this makes it possible to avoid the poor dependence
on the dimension and their regret bound is Rn = O(p

√
n log(d)). The online-

to-confidence set construction idea has recently been used for designing more
efficient algorithms for generalized linear bandits [Jun et al., 2017].

23.9 Exercises

23.1 A norm on Rd is a function ‖ · ‖ : Rd → R such that for all a ∈ R and
x, y ∈ Rd it holds that: (a) ‖x‖ = 0 if and only if x = 0 and (b) ‖ax‖ = |a|‖x‖
and (c) ‖x + y‖ ≤ ‖x‖ + ‖y‖ and (d) ‖x‖ ≥ 0. Show that ‖ · ‖0 given by
‖x‖0 =

∑d
i=1 I {xi 6= 0} is not a norm.

23.2 Prove the second part of Theorem 23.1.

Think about what happens to Rni if |θi| is small.

23.3 Algorithm 12 is not anytime (it requires advance knowledge of the horizon).
Design a modified version that does not require this knowledge and prove a
comparable regret bound to what was given in Theorem 23.1.

One way is to use the doubling trick, but a more careful approach will lead to
a more practical algorithm.

23.4 Complete the calculation to derive Eq. (23.10) from Eq. (23.9).

23.5 Prove the equality in Eq. (23.11).

23.6 Let f be a density function on [0,∞) so that
∫∞

0 f(λ)dλ = 1 and f(λ) ≥ 0
for all λ ≥ 0. Then define

Mn =
∫

R
f(λ) exp

(
λSn −

λ2n

2

)
dλ .

23.9 Exercises 262

(a) Show that argmaxλ∈R λSn − λ2n/2 = Sn/n.
(b) Suppose that f(λ) is monotone decreasing for λ > 0. Show that for any ε > 0

and Λn = Sn/n that,

Mn ≥ εΛnf(Λn(1 + ε)) exp
(

(1− ε2)S2

2n

)

(c) Use the previous result to show for any δ ∈ (0, 1) that

P

(
exists n : Sn ≥ inf

ε>0

√
2n

(1− ε2)

(
log
(

1
δ

)
+ log

(
1

εΛnf(Λn(1 + ε))

)))
≤ δ .

(d) Find an f such that
∫∞

0 f(λ)dλ = 1 and f(λ) ≥ 0 for all λ ∈ R and

log
(

1
λf(λ)

)
= (1 + o(1)) log log

(
1
λ

)

as λ→ 0.
(e) Use the previous results to show that

P

(
lim sup
n→∞

Sn√
2n log log(n)

≤ 1
)

= 1 .

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

24 Minimax Lower Bounds for
Stochastic Linear Bandits

Lower bounds for linear bandits turn out to be more nuanced than those for
the classical finite-armed bandit. The difference is that for linear bandits the
shape of the action set plays a role in the form of the regret, not just the
distribution of the noise. This should not come as a big surprise because the
stochastic finite-armed bandit problem can be modeled as a linear bandit with
actions being the standard basis vectors, A = {e1, . . . , eK}. In this case the
actions are orthogonal, which means that samples from one action do not give
information about the rewards for other actions. Other action sets such as the
sphere (A = Sd−1 = {x ∈ Rd : ‖x‖2 = 1}) do not share this property. For
example, if d = 2 and A = S1 and an algorithm chooses actions e1 = (1, 0) and
e2 = (0, 1) many times, then it can deduce the reward it would obtain from
choosing any other action.

All results of this chapter have a worst-case flavor showing what is (not)
achievable in general, or under a sparsity constraint, or if the realizable assumption
is not satisfied. The analysis uses the information-theoretic tools introduced in
Part IV combined with careful choices of action sets. The hard part is guessing
what is the worst case, which is followed by simply turning the crank on the
usual machinery.

In all lower bounds we use a simple model with Gaussian noise. For action
At ∈ A ⊆ Rd the reward is Xt = µ(At) + ηt where ηt ∼ N (0, 1) is a sequence of
independent standard Gaussian noise and µ : A → [0, 1] is the mean reward. We
will usually assume there exists a θ ∈ Rd such that µ(a) = 〈a, θ〉. We write Pµ to
indicate the measure on outcomes induced by the interaction of the fixed policy
and the Gaussian bandit paramterised by µ. Because we are now proving lower
bounds it becomes necessary to be explicit about the dependence of the regret
on A and µ or θ. The regret of a policy is:

Rn(A, µ) = nmax
a∈A

µ(a)− Eµ

[
n∑

t=1
Xt

]
,

where the expectation is taken with respect to Pµ. Except in Section 24.4 we
assume the reward function is linear, which means there exists a θ ∈ Rd such
that µ(a) = 〈a, θ〉. In these cases we write Rn(A, θ) and Eθ and Pθ. Recall the
notation used for finite-armed bandits by defining Tx(t) =

∑t
s=1 I {As = x}.

http://banditalgs.com
mailto:tor.lattimore@gmail.com

24.1 Hypercube 264

24.1 Hypercube

The first lower bound is for the hypercube action-set and shows that the upper
bounds in Chapter 19 cannot be improved in general.

theorem 24.1 Let A = [−1, 1]d and Θ = {−n−1/2, n−1/2}d. Then for any
policy there exists a θ ∈ Θ such that:

Rn(A, θ) ≥ exp(−2)
8 d

√
n .

Proof By the relative entropy identity (Lemma 15.1) we have for θ, θ′ ∈ Θ that

D(Pθ,Pθ′) = 1
2

n∑

t=1
Eθ
[
〈At, θ − θ′〉2

]
. (24.1)

For i ∈ [d] and θ ∈ Θ define

pθi = Pθ

(
n∑

t=1
I {sign(Ati) 6= sign(θi)} ≥ n/2

)
.

Now let i ∈ [d] and θ ∈ Θ be fixed and let θ′ = θ except for θ′i = −θi. Then by the
high probability version of Pinsker’s inequality (Theorem 14.2) and Eq. (24.1),

pθi + pθ′i ≥
1
2 exp

(
−1

2

n∑

t=1
Eθ[〈At, θ − θ′〉2]

)
≥ 1

2 exp (−2) . (24.2)

Applying an ‘averaging hammer’ over all θ ∈ Θ, which satisfies |Θ| = 2d:

∑

θ∈Θ

1
|Θ|

d∑

i=1
pθi = 1

|Θ|
d∑

i=1

∑

θ∈Θ
pθi ≥

d

4 exp (−2) .

Since pθi is nonnegative this implies there exists a θ ∈ Θ such that
∑d
i=1 pθi ≥

d exp (−2) /4. By the definition of pθi the regret for this choice of θ is at least

Rn(A, θ) ≥
√

1
n

d∑

i=1
E

[
n∑

t=1
I {sign(Ati) 6= sign(θi)}

]

≥
√
n

2

d∑

i=1
Pθ

(
n∑

t=1
I {sign(Ati) 6= sign(θi)} ≥ n/2

)

=
√
n

2

d∑

i=1
pθi ≥

exp(−2)
8 d

√
n .

Except for logarithmic factors this shows the algorithm of Chapter 19 is near-
optimal for this action set. The same proof works when A = {−1, 1}d is
restricted to the corners of the hypercube, which is a finite-armed linear bandit.
In Chapter 22 we gave a policy with regret Rn = O(

√
nd log(nK)) where

24.2 Sphere 265

K = |A|. There is no contradiction because the action set in the above proof
has K = |A| = 2d.

24.2 Sphere

Lower bounding the minimax regret when the action-set is the sphere presents
an additional challenge relative to the hypercube. The product structure of
the hypercube means that the learner can treat the dimensions independently,
which is reflected in the lower bound. For the sphere this is not true because
the magnitude of the action in one dimension constrains the learner in other
dimensions. Nevertheless, almost the same technique with one modification allows
us to prove a similar bound.

theorem 24.2 Assume d ≤ 2n and let A = {x ∈ Rd : ‖x‖2 = 1}. Then there
exists a θ ∈ Rd with ‖θ‖22 = d2/(4n) such that Rn(A, θ) ≥ d√n/16.

Proof Let ∆ = 1
4
√
d/n and θ ∈ {±∆}d and τi = n ∧min{t :

∑t
s=1A

2
si ≥ n/d}.

Then

Rn(A, θ) = ∆Eθ

[
n∑

t=1

d∑

i=1

(
1√
d
−Ati sign(θi)

)]

= ∆
√
d

2 Eθ

[
n∑

t=1

d∑

i=1

(
1√
d
−Ati sign(θi)

)2
]

≥ ∆
√
d

2

d∑

i=1
Eθ

[
τi∑

t=1

(
1√
d
−Ati sign(θi)

)2
]
.

Let Ui(x) =
∑τi
t=1(1/

√
d−Atix)2 and θ′ ∈ {±∆}d be another parameter vector

such that θj = θ′j for j 6= i and θ′i = −θi and assume without loss of generality
that θi > 0. Let P and P′ be the laws of Ui(1) with respect to the bandit/learner
interaction measure induced by θ and θ′ respectively, then

Eθ[Ui(1)] ≥ Eθ′ [Ui(1)]−
(

4n
d

+ 2
)√

1
2 D(P,P′)

≥ Eθ′ [Ui(1)]− ∆
2

(
4n
d

+ 2
)√√√√E

[
τi∑

t=1
A2
ti

]

≥ Eθ′ [Ui(1)]− ∆
2

(
4n
d

+ 2
)√

n

d

≥ Eθ′ [Ui(1)]− 4∆n
d

√
n

d
,

where in the first inequality we used Pinsker’s inequality (Eq. (14.8)) and the

24.3 Sparse parameter vectors 266

bound Ui(1) ≤ 4n/d + 2, which follows from the definition of τi and the fact
that |Aτii| ≤ 1. In the second line we used the chain rule for the relative entropy
up to a stopping time (Exercise 15.6). The second last inequality is true by the
definition of τi and the last by the assumption that d ≤ 2n.

Eθ[Ui(1)] + Eθ′ [Ui(−1)] ≥ Eθ′ [Ui(1) + Ui(−1)]− 4n∆
d

√
n

d

= 2Eθ′
[
τi
d

+
τi∑

t=1
A2
ti

]
− 4n∆

d

√
n

d
≥ 2n

d
− 4n∆

d

√
n

d
= n

d
.

The proof is completed using the randomization hammer:

∑

θ∈{±∆}d
Rn(A, θ) ≥ ∆

√
d

2

d∑

i=1

∑

θ∈{±∆}d
Eθ[Ui(sign(θi))]

= ∆
√
d

2

d∑

i=1

∑

θ−i∈{±∆}d−1

∑

θi∈{±∆}
Eθ[Ui(sign(θi))]

≥ ∆
√
d

2

d∑

i=1

∑

θ−i∈{±∆}d−1

n

d
= 2d−2n∆

√
d .

Hence there exists a θ ∈ {±∆}d such that Rn(A, θ) ≥ n∆
√
d

4 = d
√
n

16 .

24.3 Sparse parameter vectors

In Chapter 23 we gave an algorithm with Rn = Õ(
√
dpn) where p ≥ ‖θ‖0 is a

known bound on the sparsity of the unknown parameter. Except for logarithmic
terms this bound cannot be improved. An extreme case is when p = 1, which
essentially reduces to the finite-armed bandit problem where the minimax regret
has order

√
dn (see Chapter 15). For this reason we cannot expect too much from

sparsity and in particular the worst case bound will depend on polynomially on
the ambient dimension d.

Constructing a lower bound for p > 1 is relatively straightforward. For simplicity
we assume that d = pk for some integer k > 1. A sparse linear bandit can mimic
the learner playing p finite-armed bandits simultaneously, each with k arms.
Rather than observing the reward for each bandit, however, the learner only
observes the sum of the rewards and the noise is added at the end. This is
sometimes called the multitask bandit problem.

theorem 24.3 Assume pd ≤ n and there exists a natural number k > 1 such
that d = pk. Let A = {ei : i ∈ [k]}p ⊂ Rd. Then for any policy there exists a
θ ∈ Rd with ‖θ‖0 = p and ‖θ‖∞ ≤

√
d/(pn) such that Rn(A, θ) ≥ 1

8
√
pdn.

24.4 Unrealizable case 267

Proof Let ∆ > 0 and Θ = {∆ei : i ∈ [k]} ⊂ Rk. Given θ ∈ Θp and i ∈ [p] let
θ(i) ∈ Rk be defined by θ(i)

k = θ(i−1)p+k, which means that

θ> = [θ(1)>, θ(2)>, . . . , θ(p)>] .

Next define matrix V ∈ Rp×d be the matrix with Vij = 1 + (j − 1) mod k. For
example, when p = 2:

V =




1 · · · k 0 · · · 0 0 · · · 0
0 · · · 0 1 · · · k 0 · · · 0
0 · · · 0 0 · · · 0 1 · · · k


 .

Let Bt = V At ∈ [k]p represent the vector of ‘base’ actions chosen by the learner
in each of the p bandits in round t. The optimal action in the ith bandit is

b∗i (θ) = argmaxb∈[k] θ
(i)
b .

The regret can be decomposed into

Rn(θ) =
p∑

i=1
∆Eθ

[
n∑

t=1
I {Bti 6= b∗i }

]

︸ ︷︷ ︸
Rni(θ)

.

For i ∈ [p] we abbreviate θ(−i) = θ(1), . . . , θ(i−1), θ(i+1), · · · , θ(p). Then

1
|Θ|p

∑

θ∈Θp
Rn(θ) = 1

|Θ|p
p∑

i=1
Rni(θ)

=
p∑

i=1

1
|Θ|p−1

∑

θ(−i)∈Θp−1

1
|Θ|

∑

θ(i)∈Θ

Rni(θ)

≥ 1
8

p∑

i=1

1
|Θ|p−1

∑

θ(−i)∈Θp−1

√
kn (24.3)

= 1
8p
√
kn = 1

8
√
dpn .

The only tricky step is the inequality, which follows by choosing ∆ ≈
√
k/n and

repeating the argument outlined in Exercise 15.1. We leave it to the reader to
check the details (Exercise 24.1).

24.4 Unrealizable case

An important generalization of the linear model is the unrealizable case where
the mean rewards are not assumed to follow a linear model exactly. Suppose
that A ⊂ Rd is a finite set with |A| = K and that Xt = ηt + µ(At) where
µ : A → R is an unknown function. Let θ ∈ Rd be the parameter vector for which

24.4 Unrealizable case 268

supa∈A |〈θ, a〉 − µ(a)| is as small as possible:

θ = argminθ∈Rd sup
a∈A
|〈θ, a〉 − µ(a)| .

Then let ε = supa∈A |〈θ, a〉 − µ(a)| be the maximum error. It would be very
pleasant to have an algorithm such that

Rn(A, µ) = nmax
a∈A

µ(a)− E

[
n∑

t=1
µ(At)

]
= Õ(min{d√n+ εn},

√
Kn) . (24.4)

Unfortunately it turns out that results of this kind are not achievable. To show
this we will prove a generic bound for the classical finite-armed bandit problem
and afterwards show how this implies the impossibility of an adaptive bound like
the above.

theorem 24.4 Let A = [K] and for µ ∈ [0, 1]K the reward is Xt = µAt + ηt
and the regret is

Rn(µ) = nmax
i∈A

µi − Eµ

[
n∑

t=1
µAt

]
.

Define Θ,Θ′ ⊂ RK by

Θ =
{
µ ∈ [0, 1]K : µi = 0 for i > 1

}
Θ′ =

{
µ ∈ [0, 1]K

}
.

If V ∈ R is such that 2(K−1) ≤ V ≤
√
n(K − 1) exp(−2)/8 and supµ∈ΘRn(µ) ≤

V , then

sup
µ′∈Θ′

Rn(µ′) ≥ n(K − 1)
8V exp(−2) .

Proof Recall that Ti(n) =
∑n
t=1 I {At = i} is the number of times arm i is

played after all n rounds. Let µ ∈ Θ be given by µ1 = ∆ = (K − 1)/V ≤ 1/2.
The regret is then decomposed as:

Rn(µ) = ∆
K∑

i=2
Eµ[Ti(n)] ≤ V .

Rearranging shows that
∑K
i=2 Eµ[Ti(n)] ≤ V

∆ and so by the pigeonhole principle
there exists an i > 1 such that

Eµ[Ti(n)] ≤ V

(K − 1)∆ = 1
∆2 .

Then define µ′ ∈ Θ′ by

µ′j =





∆ if j = 1
2∆ if j = i

0 otherwise .

24.5 Notes 269

Then by Theorem 14.2 and Lemma 15.1, for any event A we have

Pµ(A) + Pµ′(Ac) ≥
1
2 exp (D(Pµ,Pµ′)) = 1

2 exp
(
−2∆2E[Ti(n)]

)
≥ 1

2 exp (−2) .

By choosing A = {T1(n) ≤ n/2} we have

Rn(µ) +Rn(µ′) ≥ n∆
4 exp(−2) = n(K − 1)

4V exp(−2) .

Therefore by the assumption that Rn(µ) ≤ V ≤
√
n(K − 1) exp(−2)/8 we have

Rn(µ′) ≥ n(K − 1)
8V exp(−2) .

By the definition of V we conclude that Rn(µ)Rn(µ′) ≥ n(K−1)
8 exp(−2) as

required.

As promised we now relate this to the unrealizable linear bandits. Suppose that
d = 1 (an absurd case) and that there are K arms A = {a1, a2, . . . , aK} ⊂ R1

where a1 = (1) and ai = (0) for i > 1. Clearly if θ > 0 and µ(ai) = 〈ai, θ〉, then
the problem can be modelled as a finite-armed bandit with means µ ∈ Θ ⊂ [0, 1]K .
In the general case we just have a finite-armed bandit with µ ∈ Θ′. If in the first
case we have Rn(A, µ) = O(

√
n), then the theorem shows for large enough n that

sup
µ′∈Θ′

Rn(A, µ) = O(K
√
n) .

It follows that Eq. (24.4) is a pipe dream. To our knowledge it is still an open
question of what is possible on this front. Our conjecture is that there is a policy
for which

Rn(A, θ) = Õ

(
min

{
d
√
n+ εn,

K

d

√
n

})
.

In fact, it is not hard to design an algorithm that tries to achieve this bound by
assuming the problem is realizable, but using some additional time to explore
the remaining arms up to some accuracy to confirm the hypothesis.

24.5 Notes

1 The worst-case bound demonstrates the near-optimality of the OFUL algorithm
for a specific action set. It is an open question to characterize the optimal
regret for a wide range of action sets. We will return to these issues soon when
we discuss adversarial linear bandits.

24.6 Bibliographic remarks

Worst-case lower bounds for stochastic bandits have appeared in a variety of places,
all with roughly the same bound, but for different action sets. Our very simple

24.7 Exercises 270

proof for the hypercube is new, but takes inspiration from the paper by Shamir
[2015]. The first lower bound for the sphere was given by Rusmevichientong and
Tsitsiklis [2010] with smaller constants and a complicated proof. As far as we know
the first lower bound of Ω(d

√
n) was given by Dani et al. [2008] for an action-set

equal to the product of 2-dimensional disks. The results for the unrealizable case
are inspired by the work of one of the authors on the Pareto-regret frontier for
bandits, which characterizes what trade-offs are available when it is desirable to
have a regret that is unusually small relative to some specific arms [Lattimore,
2015a].

24.7 Exercises

24.1 Completing the missing steps to prove the inequality in Eq. (24.3).

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

25 Asymptotic Lower Bounds for
Stochastic Linear Bandits

The lower bounds in the previous chapter were derived by analyzing the worst
case for specific action sets and/or constraints on the unknown parameter. In
this chapter we focus on the asymptotics of the problem and aim to understand
the influence of the action set on the regret. We assume that A ⊂ Rd is finite
with |A| = K and that the reward is Xt = 〈At, θ〉+ ηt where θ ∈ Rd and ηt is
a sequence of independent standard Gaussian noise. Of course the regret of a
policy in this setting is

Rn(A, θ) = Eθ

[
n∑

t=1
∆At

]
, ∆a = max

a′∈A
〈a′ − a, θ〉 ,

where the dependence on the policy is omitted for readability and Eθ[·] is the
expectation with respect to the measure on outcomes induced by the interaction
of the policy and the linear bandit determined by θ. Like the asymptotic lower
bounds in the classical finite-armed case (Chapter 16), the results of this chapter
are proven only for consistent policies. Recall that a policy is consistent in some
class of bandits E if the regret is subpolynomial for any bandit in that class. Here
this means that

Rn(A, θ) = o(np) for all p > 0 and θ ∈ Rd . (25.1)

The main objective of the chapter is to prove the following theorem on the
behaviour of any consistent policy and discuss the implications.

theorem 25.1 Assume that A ⊂ Rd is finite and spans Rd and suppose a policy
is consistent (satisfies Eq. 25.1). Let θ ∈ Rd be any parameter such that there
is a unique optimal action and let Ḡn = Eθ

[∑n
t=1AtA

>
t

]
be the expected Gram

matrix . Then lim infn→∞ λmin(Ḡn)/ log(n) > 0. Furthermore, for any a ∈ A it
holds that:

lim sup
n→∞

log(n)‖a‖2
Ḡ−1
n
≤ ∆2

a

2 .

The reader should recognize ‖a‖2
Ḡ−1
n

as the key term in the width of the
confidence interval for the least squares estimator (Chapter 20). This is quite
intuitive. The theorem is saying that any consistent algorithm must prove
statistically that all suboptimal arms are indeed suboptimal by making the
size of the confidence interval smaller than the suboptimality gap. Before the

http://banditalgs.com
mailto:tor.lattimore@gmail.com

Asymptotic Lower Bounds for Stochastic Linear Bandits 272

proof of this result we give a corollary that characterizes the asymptotic regret
that must be endured by any consistent policy.

corollary 25.1 Let A ⊂ Rd be a finite set that spans Rd and θ ∈ Rd be such
that there is a unique optimal action. Then for any consistent policy

lim inf
n→∞

Rn(A, θ)
log(n) ≥ c(A, θ) ,

where c(A, θ) is defined as

c(A, θ) = inf
α∈[0,∞)A

∑

a∈A
α(a)∆a

subject to ‖a‖2
H−1
α
≤ ∆2

a

2 for all a ∈ A with ∆a > 0 ,

where H =
∑
a∈A α(a)aa>.

The lower bound is complemented by a matching upper bound that we will
not prove.

theorem 25.2 Let A ⊂ Rd be a finite set that spans Rd. Then there exists a
policy such that

lim sup
n→∞

Rn(A, θ)
log(n) ≤ c(A, θ) ,

where A is defined as in Corollary 25.1.

Proof of Theorem 25.1 The proof of the first part is simply omitted (see the
reference below for details). It follows along similar lines to what follows, essentially
that if Gn is not sufficiently large in every direction, then some alternative
parameter is not sufficiently identifiable. Let a∗ = argmaxa∈A〈a, θ〉 be the optimal
action, which we assumed to be unique. Let θ′ ∈ Rd be an alternative parameter
to be chosen subsequently and let P and P′ be the measures on the sequence
of outcomes A1, Y1, . . . , An, Yn induced by the interaction between the policy
and the bandit determined by θ and θ′ respectively. Let E[·] and E′[·] be the
expectation operators of P and P′ respectively. By Theorem 14.2 and Lemma 15.1
for any event E we have

P (E) + P′(Ec) ≥ 1
2 exp (−D(P,P′))

= 1
2 exp

(
−1

2E
[
n∑

t=1
〈At, θ − θ′〉2

])
= 1

2 exp
(
−1

2‖θ − θ
′‖2
Ḡn

)
.

(25.2)

A simple re-arrangement shows that
1
2‖θ − θ

′‖2
Ḡn
≥ log

(
1

2P (E) + 2P′(Ec)

)
.

Now we follow the usual plan of choosing θ′ to be close to θ, but so that the

Asymptotic Lower Bounds for Stochastic Linear Bandits 273

optimal action in the bandit determined by θ′ is not a∗. Let ∆min = min{∆a :
a ∈ A,∆a > 0} and ε ∈ (0,∆min) and H be a positive definite matrix to be
chosen later such that ‖a− a∗‖2H > 0. Then define

θ′ = θ + ∆a + ε

‖a− a∗‖2H
H(a− a∗) ,

which is chosen so that

〈a− a∗, θ′〉 = 〈a− a∗, θ〉+ ∆a + ε = ε .

This means that a∗ is ε-suboptimal action for bandit θ′. We abbreviate Rn =
Rn(A, θ) and R′n = Rn(A, θ′). Then

Rn = E

[∑

a∈A
Ta(n)∆a

]
≥ n∆min

2 P (Ta∗(n) < n/2) ≥ nε

2 P (Ta∗(n) < n/2) ,

where Ta(n) =
∑n
t=1 I {At = a}. Similarly, a∗ is at least ε-suboptimal in bandit

θ′ so that

R′n ≥
nε

2 P′ (Ta∗(n) ≥ n/2) .

Therefore

P (Ta∗(n) < n/2) + P′ (Ta∗(n) ≥ n/2) ≤ 2
nε

(Rn +R′n) . (25.3)

Note that this holds for practically any choice of H as long as ‖a − a∗‖H > 0.
The logical next step is to select H (which determines θ′) to make (25.2) as large
as possible. The main difficulty is that this depends on n, so instead we aim to
choose an H so the quantity is large enough infinitely often. We starting by just
re-arranging things:

1
2‖θ − θ

′‖2
Ḡn

= (∆a + ε)2

2 ·
‖a− a∗‖2

HḠnH

‖a− a∗‖4H
= (∆a + ε)2

2‖a− a∗‖2
Ḡ−1
n

ρn(H) ,

where we introduced

ρn(H) =
‖a− a∗‖2

Ḡ−1
n
‖a− a∗‖2

HḠnH

‖a− a∗‖4H
.

Therefore by choosing E to be the event that Ta∗(n) < n/2 and using (25.3) and
(25.2) we have

(∆a + ε)2

2‖a− a∗‖2
Ḡ−1
n

ρn(H) ≥ log
(

nε

4Rn + 4R′n

)
,

which after re-arrangement leads to

(∆a + ε)2

2 log(n)‖a− a∗‖2
Ḡ−1
n

ρn(H) ≥ 1− log((4Rn + 4R′n)/ε)
log(n) .

The definition of consistency means that Rn and R′n are both sub-polynomial,

25.1 Clouds looming for optimism 274

which implies that the second term in the previous expression tends to zero for
large n and so by sending ε to zero we see that

lim inf
n→∞

ρn(H)
log(n)‖a− a∗‖2

Ḡ−1
n

≥ 2
∆2
a

. (25.4)

We complete the result using proof by contradiction. Suppose that

lim sup
n→∞

log(n)‖a− a∗‖2
Ḡ−1
n
>

∆2
a

2 . (25.5)

Then there exists an ε > 0 and infinite set S ⊆ N such that

log(n)‖a− a∗‖2
Ḡ−1
n
≥ (∆a + ε)2

2 for all n ∈ S .

Therefore by (25.4), lim infn∈S ρn(H) > 1. We now choose H to be a cluster
point of the sequence (Ḡ−1

n /‖Ḡ−1
n ‖)n∈S where ‖Ḡ−1

n ‖ is the spectral norm of the
matrix Ḡ−1

n . Such a point must exist, since matrices in this sequence have unit
spectral norm by definition, and the set of matrices with bounded spectral norm
is compact. We let S′ ⊆ S be a subset so that Ḡ−1

n /‖Ḡ−1
n ‖ converges to H on

n ∈ S′. We now check that ‖a− a∗‖H > 0.

‖a− a∗‖2H = lim
n∈S

‖a− a∗‖2
Ḡ−1
n

‖Ḡ−1
n ‖

> 0 ,

where the last inequality follows from the assumption in (25.5) and the first part
of the theorem. Therefore

1 < lim inf
n∈S

ρn(H) ≤ lim inf
n∈S′

‖a− a∗‖2
Ḡ−1
n
‖a− a∗‖2

HḠ−1
n H

‖a− a∗‖4H
= 1 ,

which is a contradiction, and so we conclude that (25.5) does not hold and so

lim sup
n→∞

log(n)‖a− a∗‖2
Ḡ−1
n
≤ ∆2

a

2 .

We leave the proof of the corollary as an exercise for the reader. Essentially
though, any consistent algorithm must choose its actions so that in expectation

‖a− a∗‖2
Ḡ−1
n
≤ (1 + o(1)) ∆2

a

2 log(n) .

Now since a∗ will be chosen linearly often it is easily shown for suboptimal a
that limn→∞ ‖a− a∗‖Ḡ−1

n
/‖a‖Ḡ−1

n
→ 1. This leads to the required constraint on

the actions of the algorithm, and the optimization problem in the corollary is
derived by minimizing the regret subject to this constraint.

25.1 Clouds looming for optimism

25.1 Clouds looming for optimism 275

The theorem and its corollary have
disturbing implications for policies
based on the principle of optimism
in the face of uncertainty, which is
that they can never be asymptotically
optimal. The reason is that these
policies do not choose actions for which
they have collected enough statistics to
prove they are suboptimal, but in the
linear setting it can still be worthwhile
playing these actions in case they are very informative about other actions for
which the statistics are not yet so clear. As we shall see, a problematic example
appears in the simplest case where there is information sharing between the arms.
Namely, when the dimension is d = 2 and there are K = 3 arms.

Let A = {a1, a2, a3} where a1 = e1 and a2 = e2 and a3 = (1 − ε, γε) where
γ ≥ 1 and ε > 0 is small. Let θ = (1, 0) so that the optimal action is a∗ = a1 and
∆a2 = 1 and ∆a3 = ε. Clearly if ε is very small, then a1 and a3 point in nearly
the same direction and so choosing only these arms does not provide sufficient
information to quickly learn which of a1 or a3 is optimal. On the other hand, a2
and a1− a3 point in very different directions and so choosing a2 allows a learning
agent to quickly identify that a1 is in fact optimal. We now show how the theorem
and corollary demonstrate this. First we calculate what is the optimal solution
to the optimization problem in Corollary 25.1. Recall we are trying to minimize

∑

a∈A
α(a)∆a subject to ‖a‖2H(α)−1 ≤ ∆2

a

2 for all a ∈ A ,

where H =
∑
a∈A α(a)aa>. Clearly we should choose α(a1) arbitrarily large, then

a computation shows that

lim
α(a1)→∞

H(α)−1 =
[

0 0
0 1

α(a3)ε2γ2+α(a2)

]
.

The constraints mean that
1

α(a3)ε2γ2 + α(a2) = lim
α(a1)→∞

‖a2‖2H(α)−1 ≤ 1
2

γ2ε2

α(a3)ε2γ2 + α(a2) = lim
α(a1)→∞

‖a3‖2H(α)−1 ≤ ε2

2 .

Provided that γ ≥ 1 this reduces simply to the constraint that

α(a3)ε2 + α(a2) ≥ 2γ2 .

Since we are minimizing α(a2) + εα(a3) we can easily see that α(a2) = 2γ2 and
α(a3) = 0 provided that 2γ2 ≤ 2/ε. Therefore if ε is chosen sufficiently small
relative to γ, then the optimal rate of the regret is c(A, θ) = 2γ2 and so by

25.2 Notes 276

Theorem 25.2 there exists a policy such that

lim sup
n→∞

Rn(A, θ)
log(n) = 2γ2 .

Now we argue that for γ sufficiently large and ε arbitrarily small that the regret
for any consistent optimistic algorithm is at least

lim sup
n→∞

Rn(A, θ)
log(n) = Ω(1/ε) ,

which can be arbitrarily worse than the optimal rate! So why is this so? Recall
that optimistic algorithms choose

At = argmaxa∈Amax
θ̃∈Ct

〈
a, θ̃
〉
,

where Ct ⊂ Rd is a confidence set that we assume contains the true θ with high
probability. So far this does not greatly restrict the class of algorithms that we
might call optimistic. We now assume that there exists a constant c > 0 such
that

Ct ⊆
{
θ̃ : ‖θ̂t − θ̃‖Gt ≤ c

√
log(n)

}
.

So now we ask how often can we expect the optimistic algorithm to choose action
a2 = e2 in the example described above? Since we have assumed θ ∈ Ct with high
probability we have that

max
θ̃∈Ct
〈a1, θ̃〉 ≥ 1 .

On the other hand, if Ta2(t− 1) > 4c2 log(n), then

max
θ̃∈Ct
〈a2, θ̃〉 = max

θ̃∈Ct
〈a2, θ̃ − θ〉 ≤ 2c

√
‖a2‖G−1

t
log(n) ≤ 2c

√
log(n)

Ta2(t− 1) < 1 ,

which means that a2 will not be chosen more than 1 + 4c2 log(n) times. So if
γ = Ω(c2), then the optimistic algorithm will not choose a2 sufficiently often
and a simple computation shows it must choose a3 at least Ω(log(n)/ε2) times
and suffers regret of Ω(log(n)/ε). The key take-away from this is that optimistic
algorithms do not choose actions that are statistically suboptimal, but for linear
bandits it can be optimal to choose these actions more often to gain information
about other actions.

25.2 Notes

1 The algorithm that realizes Theorem 25.2 is a complicated three-phase affair
that we cannot recommend in practice. A practical asymptotically optimal
algorithm for linear bandits is a fascinating open problem.

25.3 Bibliographic remarks 277

2 In Chapter 35 we will introduce the randomized Bayesian algorithm called
Thompson sampling algorithm for finite-armed and linear bandits. While
Thompson sampling comes with several benefits over UCB, it does not overcome
the issues described here.

3 The main difficulty in designing asymptotically optimal algorithms is how to
balance the tradeoff between information and regret. One algorithm that tries
to this in an explicit way is “Information-Directed Sampling” by Russo and Roy
[2014a], which we also discuss in Chapter 35. It is not known if the algorithm
proposed there is optimal when adapted to linear bandits.

25.3 Bibliographic remarks

The theorems of this chapter are by the authors: Lattimore and Szepesvári [2017].
The example in Section 25.1 first appeared in a paper by Soare et al. [2014],
which deals with the problem of best arm identification for linear bandits (for an
introduction to best arm identification see Chapter 33).

25.4 Exercises

25.1 Prove Corollary 25.1.

25.2 Prove the first part of Theorem 25.1.

25.3 Give an example of an action set A ⊂ Rd and θ ∈ Rd and vector a ∈ Rd
where the asymptotic regret for the same θ and action-set A ∪ {a} is:

(a) Makes the asymptotic regret larger.
(b) Makes the asymptotic regret smaller.

Part VI

Adversarial Linear Bandits

279

In the next few chapters we will consider adversarial linear bandits, which
superficially can be thought of as the adversarial version of the stochastic linear
bandit. Indeed, the techniques in this chapter combine the ideas of optimal
design presented in Chapter 22 with the exponential weighting algorithm of
Chapter 11. The intuitions gained by studying stochastic bandits should not be
taken too seriously here, however. There are subtle differences between the model
of adversarial bandits introduced here and the stochastic linear bandits examined
in previous chapters. These differences will be discussed at length in Chapter 29.
The adversarial version of the linear bandits turns out to be remarkably rich,
both because of the complex information structure and because of the challenging
computational issues.

The part is split into four chapters, the first of which is an introduction to the
necessary tools from convex analysis and optimization. In the first chapter on
bandits we show how to combine the core ideas of the Exp3 policy of Chapter 11
with the optimal experimental design for least squares estimators in Chapter 21.
When the number of actions is large (or infinite), the approach based on Exp3 is
hard to make efficient. These shortcomings are addressed in the next chapter where
we introduce the mirror descent and follow-the-regularized leader algorithms for
bandits and show how they can be used to design efficient algorithms. We conclude
the part with a discussion on the relationship between adversarial and stochastic
linear bandits, which is more subtle than the situation with finite-armed bandits.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

26 Foundations of Convex Analysis (†)

Our coverage of convexity is necessarily extremely brief. We introduce only what
is necessary and refer the reader to standard texts for the proofs.

26.1 Convex sets and functions

A set A ⊆ Rd is convex if for any x, y ∈ A it holds that αx+ (1− α)y ∈ A for
all α ∈ (0, 1). The convex hull of a collection of points x1, x2, . . . , xn ∈ Rd is the
smallest convex set containing the points, which also happens to satisfy

co(x1, x2, . . . , xm) =
{
x ∈ Rd : exists p ∈ Pd−1 such that x =

n∑

i=1
pixi

}
.

The convex hull is also defined for an arbitrary set A ⊂ Rd: co(A), the convex hull
of A is defined to be the smallest convex set containing A (see (c) in Figure 26.1).
Let A ⊂ Rd. Then the polar of A is denoted by A◦ and defined

A◦ =
{
u ∈ Rd : sup

x∈A
|〈u, x〉| ≤ 1

}
.

Of course if supx∈A |〈x, u〉| ≤ 1 and supA |〈x, v〉| ≤ 1, then supA |〈x, αu + (1 −
α)v〉| ≤ 1, which ensures that the polar is convex (even for non-convex A). For
the rest of the section we let A ⊆ Rd be convex. Let R̄ = R ∪ {−∞,∞} be the
extended real number system and define operations involving infinities in the
usual way (see notes). An extended real-valued function f : Rd → R̄ is convex if
its epigraph

Ef = {(x, y) : x ∈ Rd, y ≥ f(x)} ⊂ Rd+1

is a convex set. The domain of a convex function on Rd is dom(f) = {x ∈ Rd :
f(x) <∞}. A convex function is proper if its domain is nonempty and its range
does not include −∞.

For the rest of the chapter we will write “let f be a convex” to mean that
f : Rd → R̄ is a proper convex function. Permitting convex functions to take
values of −∞ is a convenient standard because certain operations on proper

http://banditalgs.com
mailto:tor.lattimore@gmail.com

26.2 Jensen’s inequality 281

Figure 26.1 (a) is a convex set. (b) is a nonconvex set. (c) is the convex hull of a
nonconvex set. (d) is a convex function. (e) is nonconvex, but all local minimums are
global. (f) is not convex.

convex functions result in improper ones (infimal convolution, for example).
These technicalities will never bother us in this book, however.

A consequence of the definition is that for convex f we have

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) for all α ∈ (0, 1) and x, y ∈ dom(f) .
(26.1)

Some authors use Eq. (26.1) as the definition of a convex function along with
a specification that the domain is convex. If A ⊆ Rd is convex, then f : A→ R
is convex if it satisfies Eq. (26.1).

A function is strictly convex if the inequality in Eq. (26.1) is always strict.
The Fenchel dual of a function f is f∗(u) = supx∈dom(f)〈x, u〉 − f(x), which is
convex because the maximum of convex functions is convex. The Fenchel dual
is also called the convex conjugate. If f : A → R is twice differentiable, then
convexity of f is equivalent to its Hessian having nonnegative eigenvalues for
all x ∈ A. Strict convexity is equivalent to having strictly positive eigenvalues.
The field of optimization is obsessed with convex functions because all local
minimums are global (see figure). This means that minimizing a convex function
is usually possible (efficiently) using some variation of gradient descent. A function
f : A→ R is concave if −f is convex.

26.2 Jensen’s inequality

One of the most important results for convex functions is Jensen’s inequality.

26.3 Bregman divergence 282

theorem 26.1 (Jensen’s inequality) Let (A,F , P) be a probability space on
convex set A ⊂ Rd and f : A→ R is F-measurable and convex and X(ω) = ω is
the identity random element, then E[f(X)] ≥ f(E[X]).

a b

b−x

b−a
f(a) +

x−a

b−a
f(b)

x

f(x)
Perhaps the archetypical application is that

for any convex f : Rd → R and x, y ∈ Rd we
have αf(x) + (1 − α)f(y) ≥ f(αx + (1 − α)y)
for all α ∈ [0, 1]. Jensen’s inequality is so central
to convexity that it can actually be used as the
definition (a function is convex if and only if
it satisfies Jensen’s inequality). The proof of
Jensen’s using the standard definition is not hard,
but we include only a picture to convince the
reader. The direction of Jensen’s inequality is
reversed if ‘convex’ is replaced by ‘concave’.

26.3 Bregman divergence

a b

Df (b, a)

f(x)
f(a) +∇f(a)(x− a)

Let f : A → R be convex and differentiable
and let x, y ∈ A. Then the Bregman
divergence induced by f is defined by

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉 ,

where∇f(y) ∈ Rd is the gradient of f at y. To
get a sense of the divergence functionDf , note
that Df (x, y) is the difference between f(x)
and its first order Taylor expansion about
the point y. Since f is convex, the linear
approximation of f is a lower bound on f

and so Df (x, y) is nonnegative over its domain with Df (x, x) = 0.

theorem 26.2 The following hold:

(a) Df (x, y) ≥ 0 for all x, y ∈ A.
(b) Df (x, x) = 0 for all x ∈ A.
(c) Df (x, y) is convex as a function of x.

The square root of the Bregman divergence shares many properties with a
metric and for some choices of f it actually is a metric. In general, however, it is
not symmetric and does not satisfy the triangle inequality.

example 26.1 Let A = Rd and f(x) = 1
2‖x‖22. Then ∇f(x) = x and

Df (x, y) = 1
2‖x‖

2
2 −

1
2‖y‖

2
2 − 〈y, x− y〉 = 1

2‖x− y‖
2
2 .

26.4 Legendre functions 283

example 26.2 Let A = [0,∞)d and f(x) =
∑d
i=1(xi log(xi) − xi). Then

∇f(x) = log(x) and

Df (x, y) =
d∑

i=1
(xi log(xi)− xi)−

d∑

i=1
(yi log yi − yi)−

d∑

i=1
log(yi)(xi − yi)

=
d∑

i=1
xi log

(
xi
yi

)
+

d∑

i=1
(yi − xi) .

Notice that if x, y ∈ Pd−1 are in the unit simplex, then Df (x, y) is the relative
entropy between probability vectors x and y. The function f is called the
unnormalized negentropy, which will feature heavily in many of the chapters
that follow.

26.4 Legendre functions

In this section we use various topological notions such as the interior, closed
set and boundary. The definitions of these terms are given in the notes. Let f
be a convex function and A = dom(f) and C = int(A). Then f is essentially
smooth if:

(a) C is nonempty.
(b) f is differentiable on C.
(c) limn→∞ ‖∇f(xn)‖2 =∞ for any sequence (xn)n with xn ∈ C for all n and

limn xn = x and some x ∈ ∂C.

It is essentially strictly convex if f is strictly convex on every convex
subset of dom(∇f). A Legendre function is a convex function f that is both
essentially smooth and essentially strictly convex. The intuition is that the set
{(x, f(x)) : x ∈ dom(A)} is a ‘dish’ with ever-steepening edges towards the
boundary of the domain.

theorem 26.3 Let f : dom(f)→ R be a Legendre function. Then:

(a) ∇f is a bijection between int(dom(f)) and int(dom(f∗)) with the inverse
(∇f)−1 = ∇f∗.

(b) Df (x, y) = Df∗(∇f(y),∇f(x)) for all x, y ∈ int(dom(f)).

The next corollary formalizes the ‘dish’ intuition by showing the directional
derivative along any straight path from a point in the interior to the boundary
blows up.

corollary 26.1 Let f be Legendre and x ∈ int(dom(f)) and y ∈ ∂int(dom(f)),
then limα→1〈∇f((1− α)x+ αy), y − x〉 =∞.

example 26.3 Let f be the Legendre function given by f(x) = 1
2‖x‖22, which

has domain dom(f) = Rd. Then f∗(x) = f(x) and ∇f and ∇f∗ are the identity
functions.

26.5 Optimization 284

example 26.4 Let f(x) = −2
∑d
i=1
√
xi when xi ≥ 0 for all i and ∞

otherwise, which has dom(f) = [0,∞)d and int(dom(f)) = (0,∞)d. The gradient
is ∇f(x) = −1/

√
x, which blows up on sequence (xn) approaching ∂int(dom(f)).

Strict convexity is also obvious so f is Legendre. In Exercise 26.5 we ask you
to calculate the Bregman divergences with respect to f and f∗ and verify the
results of Theorem 26.3.

The Taylor series of the Bregman divergence is often a useful approximation.
Let g(y) = Df (x, y), which for y = x has ∇g(y) = 0 and ∇2g(y) = ∇2f(x). A
second order Taylor expansion suggests that

Df (x, y) = g(y) ≈ g(x) + 〈∇g(x), y − x〉+ 1
2‖y − x‖

2
∇2f(x) = 1

2‖y − x‖
2
∇2f(x) .

This approximation can be very poor if x and y are far apart. Even when x and y
are close the lower order terms are occasionally problematic, but nevertheless the
approximation can guide intuition. The next theorem, which is based on Taylor’s
theorem, gives an exact result.

theorem 26.4 If f is convex and twice differentiable in A = int(dom(f)) and
x, y ∈ A, then there exists an α ∈ [0, 1] and z = αx+ (1− α)y such that

Df (x, y) = 1
2‖x− y‖

2
∇2f(z) .

The next result will be useful.

theorem 26.5 Let η > 0 and f be Legendre and twice differentiable in
A = int(dom(f). Let z ∈ [x, y] be the point such that Df (x, y) = 1

2‖x− y‖2∇2g(z).
Then for all u ∈ Rd,

〈x− y, u〉 − Df (x, y)
η

≤ η

2‖u‖
2
(∇2f(z))−1 .

Proof Strict convexity of f ensures that H = ∇2f(z) is invertible. Applying
Cauchy-Schwartz we have

〈x− y, u〉 ≤ ‖x− y‖H‖u‖H−1 = ‖u‖H−1

√
2Df (x, y) .

Therefore

〈x− y, u〉 − Df (x, y)
η

≤ ‖u‖H−1

√
2Df (x, y)− Df (x, y)

η
≤ η

2‖u‖
2
H−1 ,

where the last step follows from the useful trick that ax− bx2 ≤ a2/(4b) for all
x ∈ R and b ≥ 0.

26.5 Optimization

The first-order optimality condition states that if x ∈ Rd is the minimizer
of differentiable function f : Rd → R, then ∇f(x) = 0. One of the things we

26.6 Projections 285

better point
−∇f(x)

−∇f(x∗)

Figure 26.2 Illustration of first-order optimality conditions. The point at the top is not
a minimizer because the hyperplane with normal as gradient does not support the
convex set. The point at the right is a minimizer.

like about convex functions is that when f is convex the first-order optimality
condition is both necessary and sufficient. The first-order optimality condition
can also be generalized to constrained minima. In particular, if A ⊆ Rd is a
nonempty convex set and f : A→ R is convex, then

x∗ ∈ argminx∈A f(x)⇔ ∀x ∈ A : 〈∇f(x∗), x− x∗〉 ≥ 0 . (26.2)

The necessity of this condition is easy to understand by a geometric reasoning as
shown in Fig. 26.2. Since x∗ is a minimizer of f over A, −∇f(x∗) must be the
outer normal of a supporting hyperplane Hx∗ of A at x∗ otherwise x∗ could
be moved by a small amount while staying inside A and improving the value of f .
Since A is convex, it thus lies entirely on the side of Hx∗ that ∇f(x∗) points into.
This is clearly equivalent to (26.2). The sufficiency of the condition also follows
from this geometric viewpoint as the reader may verify from the figure.

The above statement continues to hold with a small modification even when f
is not everywhere differentiable. In particular, in this case the equivalence (26.2)
holds for any x∗ ∈ dom(∇f) with the modification that on both sides of the
equivalence, A should be replaced by A ∩ dom(f):

proposition 26.1 Let f : dom(f)→ R be a convex function, A 6= ∅, A ⊂ Rd
convex. Then for any x∗ ∈ dom(∇f), it holds that:

x∗ ∈ argminx∈A∩dom(f) f(a)⇔ ∀x ∈ A ∩ dom(f) : 〈∇f(x∗), x− x∗〉 ≥ 0 .
(26.3)

26.6 Projections

If A ⊂ Rd and x ∈ Rd, then the Euclidean projection of x on A is ΠA(x) =
argminy∈A ‖x− y‖22. One can also project with respect to a Bregman divergence

26.7 Notes 286

induced by convex function f . Let ΠA,f by

ΠA,f (x) = argminy∈ADf (y, x) .

A property of the projection that will be exploited heavily in subsequent chapters
is that minimizing a Legendre function f on a convex constrained set A is (usually)
equivalent to finding the unconstrained minimum on the domain of f and then
projecting that point onto A.

theorem 26.6 Let f be Legendre, A ⊂ Rd a closed convex set and assume that
ỹ = argminz∈dom(f) f(y) exists. Then the following hold:

(a) y = argminz∈A∩dom(f) f(y) exists and is unique;
(b) y = argminz∈A∩dom(f)Df (z, ỹ).

The assumption that ỹ exists is necessary. For example f(x) = −√x for x ≥ 0
and f(x) =∞ for x < 0 is Legendre with domain dom(f) = [0,∞), but f does
not have a minimum on its domain.

26.7 Notes

1 The ‘infinity arithmetic’ on the extended real line is as follows:

α+∞ =∞ for α ∈ (−∞,∞]
α−∞ = −∞ for α ∈ [−∞,∞)
α · ∞ =∞ and α · (−∞) = −∞ for α > 0
α · ∞ = −∞ and α · (−∞) =∞ for α < 0
0 · ∞ = 0 · (−∞) = 0 .

Like α/0 the value of ∞−∞ is not defined. We also have α ≤ ∞ for all α and
α ≥ −∞ for all α.

2 There are many ways to define the topological notions used in this chapter.
The most elegant is also the most abstract, but we cannot do it justice here.
Instead we give the classical definitions that are specific to Rd and subsets.
Let A be a subset of Rd. A point x ∈ A is an interior point if there exists
an ε > 0 such that Bε(x) = {y : ‖x − y‖2 ≤ ε} ⊂ A. The interior of A is
int(A) = {x ∈ A : x is an interior point}. The set A is open if int(A) = A and
closed if its complement Ac = Rd \A is open. The boundary of A is denoted
by ∂A and is the set of points in x ∈ Rd such that for all ε > 0 the set Bε(x)
contains points from A and Ac. Note that points in the boundary need not be
in A. Some examples: ∂Rn = ∅ and ∂[0,∞) = {0}.

26.8 Bibliographic remarks 287

26.8 Bibliographic remarks

The main source for these notes is the excellent book by Rockafellar [2015]. The
basic definitions are in Part I. The Fenchel dual is analyzed in Part III while
Legendre functions are are found in Part V. Convex optimization is a huge topic.
The standard text is by Boyd and Vandenberghe [2004].

26.9 Exercises

26.1 For each of the real-valued functions below decide whether or not it is
Legendre on the given domain.

(a) f(x) = x2 on [−1, 1].
(b) f(x) = −√x on [0,∞).
(c) f(x) = log(1/x) on [0,∞) with f(0) =∞.
(d) f(x) = x log(x) on [0,∞) with f(0) = 0.
(e) f(x) = |x| on R.
(f) f(x) = max{|x|, x2} on R.

26.2 Prove Theorem 26.2.

26.3 Prove Corollary 26.1.

26.4 Prove Proposition 26.1.

26.5 Let f be the convex function given in Example 26.4.

(a) For x, y ∈ dom(f) find Df (x, y).
(b) Compute f∗(u) and ∇f∗(u).
(c) Find dom(∇f∗).
(d) Show that for u, v ∈ (−∞, 0]d,

Df∗(u, v) = −
d∑

i=1

(ui − vi)2

uiv2
i

.

(e) Verify the claims in Theorem 26.3.

26.6 Let f be Legendre. Show that f̃ given by f̃(x) = f(x) + 〈x, u〉 is also
Legendre for any u ∈ Rd.

26.7 Let f be the unnormalized negentropy function from Example 26.2.

(a) Prove that f is Legendre.
(b) Given y ∈ [0,∞)d, prove that argminx∈Pd−1 Df (x, y) = y/‖y‖1.

26.9 Exercises 288

26.8 Let α ∈ [0, 1/d] and A = Pd−1 ∩ [α, 1]d and f be the unnormalized
negentropy function. Let y ∈ [0,∞)d and x = argminx∈ADf (x, y) and assume
that y1 ≤ y2 ≤ · · · ≤ yd. Let m be the smallest value such that ym/

∑d
i=m yi ≥ α.

Show that xi = α if i < m and xi = yi/
∑d
j=m yj otherwise.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

27 Exp3 for Adversarial Linear Bandits

The model for adversarial linear bandits is as follows. The learner is given an
action set A ⊂ Rd and the number of rounds n. An instance of the adversarial
problem is a sequence of loss vectors y1, . . . , yn where yt ∈ Rd for each t. As
usual in the adversarial setting, it is convenient to switch to losses. In each round
t the learner selects an action At ∈ A and observes a loss Yt = 〈At, yt〉. The
learner does not observe the loss vector yt (if the loss vector is observed, then we
call it the full information setting, but this is a topic for another book). Our
standing assumption will be that the scalar loss for any of the action is in [−1, 1],
which corresponds to assuming that yt is is chosen from the polar of A. For the
rest of this chapter we assume that yt ∈ A◦ for all t. We furthermore assume
that A spans Rd. The latter of these assumptions is for convenience only and
may be relaxed with just a little care (Exercise 27.6). The regret of the learner
after n rounds is

Rn = E

[
n∑

t=1
Yt

]
−min
a∈A

n∑

t=1
〈a, yt〉 .

Clearly the finite-armed adversarial bandits discussed in Chapter 11 is a special
case of adversarial linear bandits corresponding to the choice A = {e1, . . . , ed}
where e1, . . . , ed are the unit vectors of the d-dimensional standard Euclidean
basis.

27.1 Exponential weights for linear bandits

We adapt the exponential weights algorithm of Chapter 11. Like in that setting
we need a way to estimate the individual losses for each action, but now we make
use of the linear structure to share information between the arms and decrease
the variance of our estimators. For now we assume that A is finite, which we
relax in Section 27.3. Let t ∈ [n] be the index of the current round. Assuming
the loss estimate for action a ∈ A in round s ∈ [n] is Ŷs(a), then the distribution
proposed by exponential weights is Pt : A → [0, 1] given by

P̃t(a) ∝ exp
(
−η

t−1∑

s=1
Ŷs(a)

)
,

http://banditalgs.com
mailto:tor.lattimore@gmail.com

27.1 Exponential weights for linear bandits 290

where η > 0 is the learning rate. To control the variance of the loss estimates, it will
be useful to mix this distribution with an exploration distribution π : A → [0, 1]
with

∑
a∈A π(a) = 1. The mixture distribution is

Pt(a) = (1− γ)P̃t(a) + γπ(a) ,

where γ is a constant mixing factor to be chosen later. The algorithm then simply
samples its action At from Pt.

At ∼ Pt .

Recall that Yt = 〈At, yt〉 is the observed loss after taking action At. We need a
way to estimate yt(a) = 〈a, yt〉. The idea is to use least squares to estimate yt with
Ŷt = RtAtYt where Rt ∈ Rd×d is selected so that Ŷt is an unbiased estimate of yt
given the history. Then the loss for a given action is estimated by Ŷt(a) = 〈a, Ŷt〉.
To find the choice of Rt that makes Ŷt unbiased let Et[·] = E [·|A1, . . . , At−1] and
calculate

Et[Ŷt] = RtEt[AtA>t]yt = Rt

(∑

a

Pt(a)aa>
)

︸ ︷︷ ︸
Qt

yt .

Using Rt = Q−1
t leads to Et[Ŷt] = yt as desired. Of course Qt should be non-

singular, which will follow by choosing π so that

Q(π) =
∑

a∈A
π(a)aa>

is non-singular. The complete algorithm is summarized in Algorithm 14.

1: Input Action set A ⊂ Rd, learning rate η, exploration distribution π,
exploration parameter γ

2: for t = 1, 2, . . . , n do
3: Compute sampling distribution:

Pt(a) = γπ(a) + (1− γ)
exp

(
−η∑t−1

s=1 Ŷs(a)
)

∑
a′∈A exp

(
−η∑t−1

s=1 Ŷs(a′)
) .

4: Sample action:

At ∼ Pt .

5: Observe loss Yt = 〈At, yt〉 and compute loss estimates:

Ŷt = Q−1
t AtYt and Ŷt(a) = 〈a, Ŷt〉 .

6: end for
Algorithm 14: Exp3 for Linear Bandits

27.2 Regret analysis 291

27.2 Regret analysis

theorem 27.1 Assume that span(A) = Rd. There exists an exploration
distribution π and parameters η and γ such that for all (yt)t with yt ∈ A◦
the regret of Algorithm 14 is at most Rn ≤ 2

√
3dn log(K).

Proof Assume that the learning rate η is chosen so that for each round t the
loss estimates satisfy

ηŶt(a) ≥ −1, ∀a ∈ A . (27.1)

Then by modifying the proof of Theorem 11.1 (see Exercise 27.1) the regret is
bounded by

Rn ≤
logK
η

+ 2γn+ η
∑

t

E

[∑

a

Pt(a)Ŷ 2
t (a)

]
. (27.2)

Note that we cannot use the proof that leads to the tighter constant (η getting
replaced by η/2 in the second term above) because there is no guarantee that the
loss estimates will be upper bounded by one. To get a regret bound it remains to
set γ and η so that (27.1) is satisfied and to bound E

[∑
a Pt(a)Ŷ 2

t (a)
]
. We start

with the latter. Let Mt =
∑
a Pt(a)Ŷ 2

t (a). By definition of the loss estimate,

Ŷ 2
t (a) = (a>Q−1

t AtYt)2 = Y 2
t A
>
t Q
−1
t aa>Q−1

t At ,

which means that Mt =
∑
a Pt(a)Ŷ 2

t (a) = Y 2
t A
>
t Q
−1
t At ≤ A>t Q−1

t At and

Et[Mt] ≤ trace
(∑

a

Pt(a)aa>Q−1
t

)
= d .

It remains to choose γ and η. Strengthen (27.1) to |ηŶt(a)| ≤ 1 and note that
since |Yt| ≤ 1,

|ηŶt(a)| = |ηa>Q−1
t AtYt| ≤ η|a>Q−1

t At| .

Let Q(π) =
∑
ν∈A π(ν)νν>. Clearly Qt � γQ(π) and hence Q−1

t � Q(π)−1/γ by
Exercise 27.3. Using this and Cauchy-Schwartz inequality shows that

|a>Q−1
t At| ≤ ‖a‖Q−1

t
‖At‖Q−1

t
≤ max

ν∈A
ν>Q−1

t ν ≤ 1
γ

max
ν∈A

ν>Q−1(π)ν ,

which implies that

|ηŶt(a)| ≤ η

γ
max
ν∈A

ν>Q−1(π)ν = η

γ
max
ν∈A
‖ν‖2Q−1(π) . (27.3)

From Theorem 21.1 (Kiefer–Wolfowitz) we know there exists a sampling
distribution π such that maxν∈A ‖ν‖2Q−1(π) = d. By choosing γ = ηd and plugging
into (27.2) we get

Rn ≤
logK
η

+ 3ηdn = 2
√

3dn log(K) ,

27.3 Continuous exponential weights 292

where the last equality is derived by choosing η =
√

log(K)
3dn .

27.3 Continuous exponential weights

As the number of arms becomes extremely large or infinite, the dependence
on log(K) may be undesirable. Suppose that A ⊂ [−1, 1]d is a subset of the
hypercube and K is extremely large. Letting ε = 1/n define A′ ⊂ A to be the
smallest set such that for all x ∈ A there exists a y ∈ A′ with |〈x − y, u〉| ≤ ε

for all u ∈ A◦. That is, A′ is an ε-accurate approximation (loss-wise) to A. A
standard calculation (cf. Exercise 27.5) shows that no matter how large is K, the
set A′ is guaranteed to satisfy log |A′| = O(d logn). Then it is easy to check that
playing Exp3 on A′ suffers regret at most Rn = O(d

√
n log(n)). Notice that this

even works when |A| = ∞. The problem with this approach is that A′ is still
exponentially large, which makes the running time of Exp3 unreasonably costly.
When A is itself a convex set, then a more computationally tractable approach is
to switch to the continuous exponential weights algorithm.

Let π : A → [0, 1] be the same exploration distribution as used in the proof of
the previous section. The continuous exponential weights policy samples At from
Pt = (1− γ)P̃t + γπ(a) where P̃t a measure supported on A defined by

P̃t(A) =

∫
A

exp
(
−η∑t−1

s=1 Ŷs(a)
)
da

∫
A exp

(
−η∑t−1

s=1 Ŷs(a)
)
da

. (27.4)

We will shortly see that the analysis in the previous section can be copied almost
verbatim to prove a regret bound for this strategy. But what has been bought
here? Rather than sampling from a discrete distribution on a large number of arms
we now have to sample from a continuous density on a convex set. Sampling from
arbitrary densities is itself a challenging problem, but under certain conditions
there are polynomial time algorithms for this problem. The factors that play the
biggest role in the feasibility of sampling from a distribution are (a) what is the
form of the distribution and (b) how is the convex set represented. As it happens
the measure defined in the last display is log-concave, which means that the
logarithm of the density is a concave function (in this case it is even a linear
function). Suppose that pt(a) ∝ IA(a) exp(−f(a)) is a density with respect to
the Lebesgue measure on A, then there exists a polynomial-time algorithm for
sampling from p provided one can compute:

1 (first-order information): ∇f(a) and for any a ∈ A.
2 (projections): For all y ∈ Rd find x = argminx∈A ‖x− y‖2.

Clearly for densities defined by Eq. (27.4) satisfy the first condition. Efficiently
computing a projection onto a convex set is a more delicate issue. A general
criteria that makes this efficient is access to a separation oracle, which is a
pair of functions φ : Rd → {0, 1} and ψ : Rd → Rd such that φ(y) = 1A(y) and

27.4 Notes 293

ψ(y) is arbitrary for y ∈ A and for y /∈ A, u = ψ(y) satisfies 〈x− y, u〉 ≤ 0 for all
x ∈ A. That is, the separation oracle accepts points in Rd as input and responds
as output whether or not that point is inside the set and if it is not provides a
separating hyperplane.

The analysis of the exponential weights algorithm goes through almost
unchanged. By repeating the analysis in the previous section, but replacing
sums with integrals one obtains the following bound on the regret.

theorem 27.2 The regret of continuous exponential weights algorithm is
bounded by

Rn ≤
1
η

log


 vol(A)
∫
A exp

(
−η∑n

t=1(Ŷt(a)− Ŷt(a∗))
)
da


+ γn+ ηdn , (27.5)

where vol(A) =
∫
A da is the volume of the action set A.

The term inside the logarithm is bounded using the following proposition, the
proof of which we leave as an exercise to the reader.

proposition 27.1 Let K ⊂ Rd be a compact convex set with vol(K) > 0 and
u ∈ Rd and x∗ = argminx∈K〈x, u〉. Then

log
(

vol(K)∫
K exp (−〈x∗ − x, u〉) dx

)
≤ 1 + max

(
0, d log

(
sup
x,y∈K

〈x− y, u〉)
))

.

Substituting this result into Eq. (27.5) and choosing η =
√

log(n)/n leads to

Rn = O(d
√
n log(n)) ,

which matches the bound we got from the discretization approach.

27.4 Notes

1 A naive implementation of Algorithm 14 has computation complexity O(Kd+
d3) per round. There is also the one-off cost of computing the exploration
distribution, the complexity of which is discussed in Chapter 21. The real
problem is that K can be extremely large. This is especially true when the
action set is combinatorial For example, when A = {a ∈ Rd : ai = ±1} is
the corners of the hypercube |A| = 2d, which is much too large unless the
dimension is small. Such problems call for a different approach that we present
in the next chapter and in Chapter 30.

2 It is not important to find exactly the optimal exploration distribution. All
that is needed is a bound on Eq. (27.3), which for the exploration distribution
based on John’s ellipsoid is just d.

3 We will discuss lower bounds in Chapter 29. In general neither Algorithm 14
or its continuous variant lead to near-optimal regret in the minimax sense on

27.5 Bibliographic remarks 294

some action sets. An example where this occurs when A = A◦ are the unit
ball, which is a topic for the next chapter.

4 Like for stochastic bandits, Algorithm 14 and Theorem 27.1 can be generalized
to the case when the action set is different in each round. The only adjustment
to the algorithm is that now the exploration distribution must be recomputed
in every round. The analysis goes through without change.

27.5 Bibliographic remarks

The results in Sections 27.1 and 27.2 follow the article by Bubeck et al. [2012] with
minor modifications to make the argument more pedagogical. The main difference
is that they used John’s ellipsoid over the action set for exploration, which is
only the ‘right thing’ when the John’s ellipsoid is also a central ellipsoid. Here we
use Kiefer–Wolfowitz, which is equivalent to finding the minimum volume central
ellipsoid containing the action set as described in Chapter 21, where we also
discuss the computation properties of finding the core set necessary to define the
exploration distribution. A polynomial time sampling algorithm for convex sets
with gradient information and projections is by Bubeck et al. [2015b]. We warn
the reader that these algorithms are perhaps not the most practical, especially if
theoretically justified parameters are used. The study of sampling from convex
bodies is quite fascinating. There is a overview by Lovász and Vempala [2007],
though it is a little old. Another path towards an efficient O(d

√
n log(·)) policy

for convex action sets is to use the tools from online optimization. We explain
these ideas in more detail in the next chapter, but the reader is referred to the
paper by Bubeck and Eldan [2015]. The continuous exponential weights algorithm
is perhaps attributable to Cover [1991] in the special setting of online learning
called universal portfolio optimization. The first application to linear bandits is
by Hazan et al. [2016]. Their algorithm and analysis is more complicated because
they seek to improve the computation properties by replacing John’s exploration
with an adaptive randomized exploration basis that under quite weak assumptions
can be computed in polynomial time. Continuous exponential weights with John’s
exploration was recently analyzed by van der Hoeven et al. [2018].

27.6 Exercises

27.1 Prove Eq. (27.2).

27.2 Suppose that instead of assuming yt ∈ A◦ we assume that yt ∈ {y ∈ Rd :
supa∈A |〈a, y〉| ≤ b} for some known b > 0. Modify the algorithm to accommodate
this change and explain how the regret guarantee changes.

27.3 Let A,B ∈ Rd×d and suppose that A � B and B is invertible. Show that
A−1 � B−1.

27.6 Exercises 295

27.4 Now suppose that a < b are known and yt ∈ {y ∈ Rd : 〈a, y〉 ∈
[a, b] for all a ∈ A}. How can you adapt the algorithm now and what is its
regret?

27.5 Let A ⊂ Rd be bounded, ‖x‖ = supu∈A◦ |〈x, u〉|, where we also allow
‖x‖ =∞. For A′ ⊂ A let d(A′,A) = supx∈A infy∈A′ ‖x− y‖. Finally, for ε > 0,
we let N(ε,A) be the ε-covering number of A, which is defined as in Definition 20.2
except that the Euclidean norm ‖ · ‖2 used there is replaced by ‖ · ‖ defined above.
Show that the following hold:

(a) ‖ ·‖ satisfies the triangle inequality, ‖0‖ = 0 and ‖cx‖ = |c|‖x‖ for any x ∈ Rd
and c ∈ R;

(b) Let A′ ⊂ A be finite. Show that d(A′,A) ≤ ε if and only if A′ is an ε-cover
of A;

(c) Let B .= {z : ‖z‖ ≤ 1} and let A? = A∪−A denote the reflection of A in the
origin. Then, co(A?) ⊂ B ⊂ span(A) and {z ∈ Rd : ‖z‖ <∞} = span(A);

(d) Let p = dim(span(A)). There exists a constant c > 0 that depends on A such
that for any ε ≤ 1/2 the inequality logN(ε,A) ≤ cp log(1/ε) holds;

(e) For any ε ≤ 1/2 there exists A′ such that d(A′,A) ≤ ε and log |A′| ≤
cp log(1/ε) ≤ cd log(1/ε).

(Hint: You should be aware of Exercise 20.1.)

One can also show that there exists some constant c > 0 such that for all
x ∈ span(A), ‖x‖ ≤ c‖x‖2. This implies that ‖ · ‖, when restricted to span(A),
is a norm.

27.6 In the definition of the algorithm and the proof of Theorem 27.1 we assumed
that A spans Rd. Show that this assumption may be relaxed by carefully adapting
the algorithm and analysis.

27.7 We saw in Chapter 11 that the exponential weights algorithm achieved
near-optimal regret without mixing additional exploration. Show that exploration
is crucial here. More precisely, construct a finite action set A and reward sequence
yt ∈ A◦ such that the regret of Algorithm 14 with γ = 0 leads to a very bad
algorithm relative to the optimal choice.

27.8 Prove Theorem 27.2.

27.9 Prove Proposition 27.1.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

28 Follow the Regularized Leader and
Mirror Descent

In the last chapter we showed that if A ⊂ Rd has K elements, then the regret of
Exp3 combined with John’s exploration has regret

Rn = O(
√
dn log(K)) .

When A is a convex set we also showed the continuous version of this algorithm
has regret at most

Rn = O(d
√
n log(n)) .

Although this algorithm runs in polynomial time, the degree is high and the
implementation is complicated and impractical. In many cases this can be
improved upon, both in terms of the regret and computation. One of the main
results of this chapter is a proof that when A is the unit ball, then there is an
efficient algorithm for which the regret is Rn = O(

√
dn log(n)). More importantly,

however, we introduce a pair of related algorithms called follow the regularized
leader and mirror descent, which have proven to be powerful and flexible tools
for the design and analysis of bandit algorithms.

28.1 Online linear optimization

Mirror descent originated in the convex optimization literature. The idea has since
been adapted to online learning and specifically to online linear optimization.
Online linear optimization is the full information version of the adversarial linear
bandit where at the end of each round the learner observes the full vector yt.
Let A ⊂ Rd be a convex set and L ⊂ Rd be an arbitrary set called the loss
space. Let y1, . . . , yn be a sequence of loss vectors with yt ∈ L for all t ∈ [n]. In
each round the learner chooses at ∈ A and subsequently observes yt. The regret
relative to a fixed comparator a ∈ A is

Rn(a) =
n∑

t=1
〈at − a, yt〉

and the regret is Rn = maxa∈ARn(a). We emphasize that the only difference
relative to the adversarial linear bandit is that now yt is observed rather than
〈at, yt〉. Actions are not capitalized in this section because the algorithms presented
here do not randomize.

http://banditalgs.com
mailto:tor.lattimore@gmail.com

28.1 Online linear optimization 297

Mirror descent
The basic version of mirror descent has two extra parameters beyond n and A.
A learning rate η > 0 and a Legendre function F : Rd → R̄ with domain
D = dom(F). The function F is usually called a potential function or
regularizer. In the first round mirror descent predicts

a1 = argmina∈A∩D F (a) , (28.1)

In subsequent rounds it predicts

at+1 = argmina∈A∩D (η〈a, yt〉+DF (a, at)) , (28.2)

where DF (a, at) is the F -induced Bregman divergence between a and at. The
minimization in (28.2) is over A ∩ D because for at ∈ int(D) ⊆ dom(∇F) the
domain of DF (·, at) is the same as that of F .

Follow the regularized leader
Like mirror descent, follow the regularized leader depends on a convex potential F
with domain D = dom(F) and predicts a1 = argmina∈A∩D F (a). In subsequent
rounds it predicts

at+1 = argmina∈A∩D

(
η

t∑

s=1
〈a, ys〉+ F (a)

)
. (28.3)

The intuition is that the algorithm chooses at+1 to be the action that performed
best in hindsight with respect to the regularized loss. As for mirror descent,
the regularization serves to stabilize the algorithm, which turns out to be a key
property of good algorithms for online linear prediction.

Another algorithm is follow the leader, which chooses the action that
appears best in hindsight, at+1 = argmina∈A

∑t
s=1〈a, ys〉. In general, this

algorithm is not well suited for online linear optimization because the absence
of regularization makes for an unstable algorithm that can lead to extremely
poor performance as you will show in Exercise 28.2.

Equivalence of mirror descent and follow the regularized leader
At first sight these algorithms do not look that similar. To clarify matters let
us suppose that F has domain D ⊆ A. We now show that in this setting mirror
descent and follow the regularized leader are identical. Let

Φt(a) = η〈a, yt〉+DF (a, at) = η〈a, yt〉+ F (a)− F (at)− 〈∇F (at), a− at〉 .

Now mirror descent chooses at+1 to minimize Φt. The reader should check that
the assumption that F is Legendre on domain D ⊆ A implies that the minimizer

28.1 Online linear optimization 298

occurs in the interior of D ⊆ A and that ∇Φt(at+1) = 0 (cf. Exercise 28.1). This
means that ηyt = ∇F (at)−∇F (at+1) and so

∇F (at+1) = −ηyt +∇F (at) = ∇F (a1)− η
t∑

s=1
ys = −η

t∑

s=1
ys ,

where the last equality is true because a1 is chosen as the minimizer of F in
A ∩D = D and again the fact that F is Legendre ensures this minimum occurs
at an interior point where the gradient vanishes. Follow the regularized leader
chooses at+1 to minimize Φ′t(a) = η

∑t
s=1〈a, ys〉 + F (a). The same argument

shows that ∇Φ′t(at+1) = 0, which means that

∇F (at+1) = −η
t∑

s=1
ys .

The last two displays and the fact that the gradient for Legendre functions is
invertible shows that mirror descent and follow the regularized leader are the
same in this setting.

The equivalence between these algorithms is far from universal. First of all, it
does not hold when F is not Legendre or its domain is larger than A. Second,
in many applications of these algorithms the learning rate or potential change
with time and in either case the algorithms will typically produce different
action sequences. For example, if a learning rate ηt is used rather than η in the
definition of Φt, then mirror descent chooses ∇F (at+1) = −∑t

s=1 ηsys while
follow the regularized leader chooses ∇F (at+1) = −ηt

∑t
s=1 ys. We return to

this issue in the notes and exercises.

example 28.1 Let A = Rd and F (a) = 1
2‖a‖22. Then ∇F (a) = a and

D(a, at) = 1
2‖a − at‖22. Clearly F is Legendre and D = A so mirror descent

and follow the regularized leader are the same. By simple calculus we see that

at+1 = argmina∈Rd η〈a, yt〉+ 1
2‖a− at‖

2
2 = at − ηyt ,

which may be familiar as online gradient descent.

example 28.2 Let A be a compact subset of Rd and F (a) = 1
2‖a‖22. Then

mirror descent chooses

at+1 = argmina∈A η〈a, yt〉+ 1
2‖a− at‖

2
2 = Π(at − ηyt) , (28.4)

where Π(a) is the Euclidean projection of a ontoA. This algorithm is usually called
online projected gradient descent. On the other hand, for follow the regularized
leader we have

at+1 = argmina∈A η
t∑

s=1
〈a, ys〉+ 1

2‖a− at‖
2
2 = Π

(
−η

t∑

s=1
ys

)
,

28.2 Regret analysis 299

which may be a different choice than mirror descent.

example 28.3 The exponential weights algorithm that appeared on numerous
occasions in earlier chapters is a special case of mirror descent corresponding to
choosing the constraint set A as the simplex in Rd and choosing F to be the
unnormalized negentropy function of Example 26.2.

A two-step process for implementation
Solving the optimization problem in Eq. (28.2) is often made easier by using the
results in Section 26.6 of Chapter 26. Let D∗ = ∇F (D) and suppose the following
condition holds:

∇F (x)− ηy ∈ D∗ for all x ∈ A ∩ D and y ∈ L . (28.5)

Then solution to Eq. (28.2) can be found using the following two-step procedure.

ãt+1 = argmina∈D η〈a, yt〉+DF (a, at) and (28.6)
at+1 = argmina∈A∩DDF (a, ãt+1) . (28.7)

Eq. (28.5) means the first optimization problem can be evaluated explicitly as
the solution to

ηyt +∇F (ãt+1)−∇F (at) = 0 . (28.8)

Since F is Legendre this means that ãt+1 = (∇F)−1(∇F (at) − ηyt). The
optimization problem in Eq. (28.7) is usually harder to calculate analytically, but
there are important exceptions as we shall see.

The condition in Eq. (28.5) holds for all choices of potential and losses in this
book.

28.2 Regret analysis

We now analyze the regret of mirror descent. The theorem has two parts, the
first of which is strictly stronger by a small margin than the second. To minimize
clutter we abbreviate DF by D.

theorem 28.1 Let η > 0 and F be Legendre with domain D and A ⊆ cl(D).
Let a1, . . . , an+1 be the actions chosen by mirror descent. Then for any a ∈ A the
regret of mirror descent is bounded by:

Rn(a) ≤
n∑

t=1
〈at − at+1, yt〉+ F (a)− F (a1)

η
− 1
η

n∑

t=1
D(at+1, at) .

28.2 Regret analysis 300

Furthermore, suppose that Eq. (28.5) holds and ã2, ã3, . . . , ãn+1 are given by
Eq. (28.6), then

Rn(a) ≤ 1
η

(
F (a)− F (a1) +

n∑

t=1
D(at, ãt+1)

)
.

Proof of Theorem 28.1 For the first part we split the inner product:

〈at − a, yt〉 = 〈at − at+1, yt〉+ 〈at+1 − a, yt〉 .

Using the fact that at+1 = argmina∈A∩D η〈a, yt〉 + D(a, at) and the first order
optimality conditions shows that

〈ηyt +∇F (a)−∇F (at), a− at+1〉 ≥ 0 .

By the definition of the Bregman divergence we have

〈at+1 − a, yt〉 ≤
1
η
〈∇F (a)−∇F (at), a− at+1〉

= 1
η

(D(a, at)−D(a, at+1)−D(at+1, at)) . (28.9)

Using this, along with the definition of the regret,

Rn =
n∑

t=1
〈at − a, yt〉

≤
n∑

t=1
〈at − at+1, yt〉+ 1

η

n∑

t=1
(D(a, at)−D(a, at+1)−D(at+1, at))

=
n∑

t=1
〈at − at+1, yt〉+ 1

η

(
D(a, a1)−D(a, an+1)−

n∑

t=1
D(at+1, at)

)

≤
n∑

t=1
〈at − at+1, yt〉+ F (a)− F (a1)

η
− 1
η

n∑

t=1
D(at+1, at) ,

where the final inequality follows from the fact that D(a, an+1) ≥ 0 and
D(a, a1) ≤ F (a)− F (a1), which is true by the first-order optimality conditions
for a1 = argminb∈A F (b). To see the second part note that

〈at − at+1, yt〉 = 1
η
〈at − at+1,∇F (at)−∇F (ãt+1)〉

= 1
η

(D(at+1, at) +D(at, ãt+1)−D(at+1, ãt+1))

≤ 1
η

(D(at+1, at) +D(at, ãt+1)) .

The result follows by substituting this into Eq. (28.9) and completing as for the
first part.

28.2 Regret analysis 301

The assumption that a1 minimizes the potential was only used to bound
D(a, a1) ≤ F (a)− F (a1). For a different initialization the following bound still
holds:

Rn(a) ≤ 1
η

(
D(a, a1) +

n∑

t=1
D(at, ãt+1)

)
.

As we shall see in Chapter 31, this is useful when using mirror descent to analyze
nonstationary bandits.

The first part of Theorem 28.1 also holds for follow the regularized leader as
stated in the next result, the proof of which is left for Exercise 28.6.

theorem 28.2 Let η > 0 and F be Legendre with domain D and A ⊆ cl(D).
Then for any a ∈ A the regret of follow the regularized leader is bounded by

Rn(a) ≤
n∑

t=1
〈at − at+1, yt〉+ F (a)− F (a1)

η
− 1
η

n∑

t=1
D(at+1, at) .

We now give two examples of how to apply Theorem 28.1. Let diamF (A) =
maxa,b∈A F (a)− F (b) be the diameter of A with respect to F .

proposition 28.1 Let A = Bd2 = {a ∈ Rd : ‖a‖2 ≤ 1} be the standard unit ball
and assume yt ∈ Bd2 for all t. Then mirror descent with potential F (a) = 1

2‖a‖22
and η =

√
1/n satisfies Rn ≤

√
n.

Proof By Eq. (28.8) we have ãt+1 = at − ηyt so

D(at, ãt+1) = 1
2‖ãt+1 − at‖22 = η2

2 ‖yt‖
2
2 .

Therefore since diamF (A) = 1/2 and ‖yt‖2 ≤ 1 for all t,

Rn ≤
diamF (A)

η
+ η

2

n∑

t=1
‖yt‖22 ≤

1
2η + ηn

2 =
√
n .

proposition 28.2 Let A = {a ∈ [0, 1]d :
∑d
i=1 ai = 1} be the probability

simplex and yt ∈ A◦ for all t. Then mirror descent with the unnormalized
negentropy potential and η =

√
2 log(d)/n satisfies Rn ≤

√
2n log(d).

Proof The Bregman divergence with respect to the unnormalized negentropy

28.2 Regret analysis 302

potential for a, b ∈ A is D(a, b) =
∑d
i=1 ai log(ai/bi). Therefore

Rn(a) ≤ F (a)− F (a1)
η

+
n∑

t=1
〈at − at+1, yt〉 −

1
η

n∑

t=1
D(at+1, at)

≤ log(d)
η

+
n∑

t=1
‖at − at+1‖1‖yt‖∞ −

1
η

n∑

t=1

1
2‖at − at+1‖21

≤ log(d)
η

+ η

2

n∑

t=1
‖yt‖2∞ ≤

log(d)
η

+ ηn

2 =
√

2n log(d) .

where the first inequality follows from Theorem 28.1, the second from Pinsker’s
inequality and the facts that diamF (A) = log(d). In the third inequality we used
that fact that ax − bx2/2 ≤ a2/(2b) for all x. The last inequality follows from
the assumption that ‖yt‖∞ ≤ 1.

The last few steps in the above proof are so routine that we summarize their
use in a corollary, the proof of which we leave to the reader (Exercise 28.3).

corollary 28.1 Let F be a Legendre potential and ‖ · ‖t be a norm on Rd for
each t ∈ [n] such that DF (at+1, at) ≥ 1

2‖at+1 − at‖2t . Then the regret of mirror
descent or follow the regularized leader satisfies

Rn ≤
diamF (A)

η
+ η

2

n∑

t=1
(‖yt‖∗t)2

,

where ‖y‖∗t = maxx:‖x‖t≤1〈x, y〉 is the dual norm of ‖ · ‖t.

It often happens that the easiest way to bound the regret of mirror descent
is to find a norm that satisfies the conditions of Corollary 28.1. To illustrate
a suboptimal application of mirror descent and this result, suppose we had
chosen F (a) = 1

2‖a‖22 in the setting of Proposition 28.2. Then DF (at+1, at) =
1
2‖at+1 − at‖2 suggests choosing ‖ · ‖t to be the standard Euclidean norm. Since
diamF (A) = 1/2 and ‖ · ‖∗2 = ‖ · ‖2, applying Corollary 28.1 shows that

Rn ≤
1
2η + η

2

n∑

t=1
‖yt‖22 .

But now we see that ‖yt‖22 can be as large as d and tuning η would lead to a rate
of O(

√
nd) rather than O(

√
n log(d)).

Both theorems were presented for the oblivious case where (yt) are chosen in
advance. This assumption was not used, however, and in fact the bounds in
this section continue to hold when yt are chosen strategically as a function
of y1, x1, . . . , yt−1, xt. This is analogous to how the basic regret bound for
exponential weights continues to hold in the face of strategic losses. But be
cautioned, this result does not carry immediately to the application of mirror
descent to bandits as discussed at the end in Note 7.

28.3 Online learning for bandits 303

28.3 Online learning for bandits

We now consider the application of mirror descent to bandit problems. Like in
the previous chapter the adversary chooses a sequence of vectors y1, . . . , yn with
yt ∈ L ⊂ Rd. In each round the learner chooses At ∈ A ⊂ Rd where A is convex
and observes 〈At, yt〉. The regret relative to action a is

Rn(a) = E

[
n∑

t=1
〈At − a, yt〉

]
.

The regret is Rn = maxa∈ARn(a). The application of mirror descent and follow
the regularized leader to linear bandits requires two new ideas. First, because the
learner only observes 〈At, yt〉, the loss vectors need to be estimated from data and
it is these estimators that will be used by the mirror descent algorithm. Because
estimation of yt is only possible using randomization, the algorithm cannot play
the suggested action of mirror descent, but instead plays a distribution over
actions with the same mean as the proposed action. Since the losses are linear,
the expected additional regret by playing according to the distribution vanishes.
The algorithm is summarized in Algorithm 15. Notice we have switched to capital
letters because of the randomization.

1: Input Legendre potential F with domain D, action set A and learning rate
η > 0

2: Choose Ā1 = argmina∈A∩D F (a)
3: for t = 1, . . . , n do
4: Choose measure Pt on A with mean Āt
5: Sample action At from Pt and observe 〈At, yt〉
6: Compute estimate Ŷt
7: Let Āt+1 = argmina∈A∩D η〈a, Ŷt〉+DF (a, Āt)
8: end for

Algorithm 15: Online stochastic mirror descent

theorem 28.3 Provided that E[Ŷt | Āt] = yt and a ∈ A and A ⊆ cl(D), then

Rn(a) ≤ E

[
n∑

t=1
〈Āt − Āt+1, Ŷt〉+ F (a)− F (Ā1)

η
− 1
η

n∑

t=1
D(Āt+1, Āt)

]
.

Furthermore, letting Ãt+1 = argmina∈D η〈a, Ŷt〉+DF (a, Āt) and assuming that
ηŶt +∇F (x) ∈ D∗ for all x ∈ A almost surely, then

Rn ≤
diamF (A)

η
+ 1
η

n∑

t=1
E
[
D(Āt, Ãt+1)

]
.

Proof Using the definition of the algorithm and the assumption that Ŷt is

28.4 The unit ball 304

unbiased given Āt and Pt has mean Āt leads to

E [〈At, yt〉] = E
[
〈Āt, yt〉

]
= E

[
E
[
〈Āt, yt〉 | Āt

]]
= E

[
E
[
〈Āt, Ŷt〉

∣∣∣ Āt
]]
,

where the last equality used the linearity of expectations. Hence,

Rn(x) = E

[
n∑

t=1
〈At, yt〉 − 〈x, yt〉

]
= E

[
n∑

t=1
〈Āt − x, Ŷt〉

]
,

which is the expected random regret of mirror descent on the recursively
constructed sequence Ŷt. The result follows from Theorem 28.1 and the note at
the end of the last chapter that says that this theorem continues to hold even for
recursively constructed sequences.

The same style of proof also works for follow the regularized leader.

28.4 The unit ball

In the previous chapter we showed that continuous exponential weights on the
unit ball has a regret of

Rn = O(d
√
n log(n)) .

The reader now knows that this is a version of mirror descent with the negentropy
potential. Somewhat surprisingly, the dependence on the dimension can be reduced
to
√
d using a more carefully chosen potential. For the remainder of this section let

A = {x ∈ Rd : ‖x‖2 ≤ 1} be the standard Euclidean ball. In order to instantiate
the mirror descent algorithm for bandits we need a potential, sampling rule, an
unbiased estimator and a learning rate. We start with the sampling rule and
estimator. Recall that in round t we need to choose a distribution on A with
mean Āt and sufficient variability that the variance of the estimator is not too
large. Let Et ∈ {0, 1} satisfy Et[Et] = (1− ‖Āt‖) and Ut be an independent and
uniformly distributed on {±e1, . . . ,±ed}. Then let

At = EtUt + (1− Et)Āt
‖Āt‖

.

Then the sampling distribution is just the law of At, which clearly satisfies
Et[At] = Āt. For the estimator we use a variant of the importance-weighted
estimator from the last chapter:

Ŷt = dEtAt〈At, yt〉
1− ‖Āt‖

. (28.10)

The reader can check for themselves that this estimator is unbiased. Next we
inspect the contents of our magicians hat and select the potential

F (a) = − log (1− ‖a‖)− ‖a‖ .

28.4 The unit ball 305

There is one more modification. Rather than instantiating mirror descent with
action-set A, we use Ã = {x ∈ Rd : ‖x‖2 ≤ r} where r < 1 is a radius to be
tuned subsequently. The reason for this modification is to control the variance of
the estimator in Eq. (28.10), which blows up as Āt gets close to the boundary.
Note that the exploration means that the algorithm often plays actions that are
not in Ã, but mirror descent always chooses Āt ∈ Ã.

theorem 28.4 If Algorithm 15 is run using the sampling rule, estimator and
potential as described above and the learning rate is η =

√
log(n)/(3dn) and

r = 1− 2ηd. Then

Rn ≤ 2
√

3nd log(n) .

Proof The first step is to bound the conditional variance of the estimator.

Et
[
‖Ŷt‖2

]
= d2

(1− ‖Āt‖)2Et
[
EtA

>
t At〈At, yt〉2

]
= d‖yt‖2

1− ‖Āt‖
≤ d

1− ‖Āt‖
.

(28.11)

Turning our attention towards the properties of the potential. An easy calculation
shows that

∇F (a) = a

1− ‖a‖ , F ∗(u) = − log (1 + ‖u‖) + ‖u‖, ∇F ∗(u) = u

1 + ‖u‖ .

Since the domain of F is D = {x : ‖x‖2 < 1} it follows that ∇F (D) = Rd, which
means that Eq. (28.5) is satisfied. We now use the fact that log(x) ≥ x− x2 for
all x ≥ −1/2, which means that if (‖u‖ − ‖v‖)/(1 + ‖v‖) ≥ −1/2, then

DF∗(u, v) = − log
(

1 + ‖u‖
1 + ‖v‖

)
+ ‖u‖ − ‖v‖ − 1

1 + ‖v‖〈v, u− v〉

= 1
1 + ‖v‖

(
‖u‖ − ‖v‖+ ‖v‖‖u‖ − 〈v, u〉 − (1 + ‖v‖) log

(
1 + ‖u‖ − ‖v‖1 + ‖v‖

))

≤ 1
1 + ‖v‖

(
‖v‖‖u‖ − 〈v, u〉+ (‖u‖ − ‖v‖)2

1 + ‖v‖

)

≤ 1
1 + ‖v‖

(
‖v‖‖u‖ − 〈v, u〉+ ‖u‖2 + ‖v‖2 − ‖u‖‖v‖

)

≤ 1
1 + ‖v‖

(
‖u‖2 + ‖v‖2 − 2〈v, u〉

)
= ‖v − u‖

2

1 + ‖v‖ .

Let Ãt+1 be defined as in the statement of Theorem 28.3. By the triangle inequality
we have

‖∇F (Ãt+1)‖ − ‖∇F (Āt)‖
1 + ‖∇F (Āt)‖

≥ −‖∇F (Ãt+1)−∇F (Āt)‖
1 + ‖∇F (Āt)‖

≥ −η‖Ŷt‖ ≥ −
1
2 ,

where the last inequality follows since η‖Ŷt‖ ≤ ηd/(1− r) ≤ 1/2. By the remarks

28.5 Notes 306

at the end of the Section 28.2 and Eq. (28.11) leads to

E
[
DF (Āt, Ãt+1)

]
= E

[
DF∗(∇F (Ãt+1),∇F (Āt))

]

≤ E
[‖∇F (Ãt+1)−∇F (Āt)‖2

1 + ‖∇F (Āt)‖

]

= E
[
η2(1− ‖Āt‖)‖Ŷt‖2

]
≤ η2d .

By Theorem 28.3 for any a ∈ Ã and using the fact that Ā1 = 0 and F (Ā1) = 0,

Rn(a) ≤ F (a)− F (Ā1)
η

+ ηnd ≤ 1
η

log
(

1
1− ‖a‖

)
+ ηnd .

Let a∗ ∈ argmina∈A
∑n
t=1〈a, yt〉, then

Rn(a) = E

[
n∑

t=1
〈At − a∗, yt〉

]
= E

[
n∑

t=1
〈At − ra∗, yt〉

]
+

n∑

t=1
〈ra∗ − a∗, yt〉

≤ 1
η

log
(

1
1− ‖a‖

)
+ ηnd+ n(1− r) ≤ 1

η
log (n) + 3ηnd ,

which completes the proof.

Surprisingly this is smaller than the regret that we got for stochastic bandits
by a factor of at least

√
d. There is no contradiction because the adversarial and

stochastic linear bandit models are actually quite different, a topic to which the
next chapter is dedicated.

28.5 Notes

1 Finding at+1 for both mirror descent and follow the regularized leader requires
solving a convex optimization problem. Provided the dimension is not too
large and the action-set and potential are reasonably nice, there exist practical
approximation algorithms for this problem. The two-step process described in
Eqs. (28.6) and (28.7) is sometimes an easier way to go. Usually (28.6) can
be solved analytically while (28.7) can be quite expensive. In some important
special cases, however, the projection step can be written in closed form or
efficiently approximated.

2 We saw that mirror descent with a carefully chosen potential function achieves
O(
√
dn log(n)) regret on the `2-ball. On the `∞ ball (hypercube) the optimal

regret is O(d
√
n). Interestingly, as n tends to infinity the optimal dependence

on the dimension is either d or
√
d with a complete classification given by

Bubeck et al. [2018].
3 Adversarial linear bandits on a simplex are equivalent to finite-armed adversarial

bandits with d arms. Yet another well-chosen potential function leads to an
algorithm with regret Rn = O(

√
dn), which matches the lower bound and

28.5 Notes 307

shaves a factor of
√

log d from the upper bounds presented in Chapters 11
and 12. For more details see Exercise 28.10.

4 Both mirror descent and follow the regularized leader depend on a carefully
chosen potential function. Currently there is no characterization of exactly what
this potential should be or how to find it. At least in the full information setting
there are quite general universality results showing that if a certain regret
is achievable by some algorithm, then that same regret is nearly achievable
by mirror descent with some potential [Srebro et al., 2011]. In practice this
result is not useful for constructing new potential functions, however. There
have been some attempts to develop ‘universal’ potential functions that exhibit
nice behavior for any action sets [Bubeck et al., 2015b, and others]. These can
be useful, but as yet we do not know precisely what properties are crucial,
especially in the bandit case.

5 When the horizon is unknown the learning rate cannot be tuned ahead of time.
One option is to apply the doubling trick. A more elegant solution is to use a
decreasing schedule of learning rates. This requires an adaptation of the proofs
of Theorems 28.1 and 28.2, which we outline in Exercises 28.7 and 28.8. This
is one situation where mirror descent and follow the regularized leader are not
the same and where results slightly favour the latter algorithm.

6 In much of the literature the potential is chosen in such a way that mirror descent
and follow the regularized leader are the same algorithm. For historical reasons
the name mirror descent is more commonly used in the bandit community. We
encourage the reader to keep both algorithms in mind, since the analysis of
one-or-other can sometimes be slightly easier. Note that lazy mirror descent
is a variant of mirror descent that is equivalent to follow the regularized leader
for all Legendre potentials [Hazan, 2016].

7 We mentioned that for online linear optimization the mirror descent algorithm
also works when y1, . . . , yn are chosen nonobliviously. This does not translate
to the bandit setting for a subtle reason. Let R̂n(a) =

∑n
t=1〈At − a, yt〉 be the

random regret so that

Rn = E
[
max
a∈A

R̂n(a)
]

= E

[
n∑

t=1
〈At, yt〉 −max

a∈A

n∑

t=1
〈a, yt〉

]
.

The second sum is constant when the losses are oblivious, which means the
maximum can be brought outside the expectation, which is not true if the loss
vectors are nonoblivious. It is still possible to bound the expected loss relative
to a fixed comparator a so that

Rn(a) = E

[
n∑

t=1
〈At − a, yt〉

]
≤ B ,

where B is whatever bound obtained from the analysis presented above. A

28.6 Bibliographic remarks 308

little rewriting shows that

Rn = E
[
max
a∈A

R̂n(a)
]

= B + E
[
max
a∈A

Rn(a)
]
−max

a∈A
E [Rn(a)] .

The difference in expectations can be bounded using tools from empirical
process theory, but the resulting bound is only O(

√
n) if V[R̂n(a)] = O(n). In

general, however, the variance can be as large as n3/2 so this condition must
be checked for each proposed policy. We emphasize again that the nonoblivious
regret is a strange measure because it does not capture the reactive nature of
the environment. The details of the application of empirical process theory is
beyond the scope of this book. For an introduction to that topic we recommend
the books by Vaart and Wellner [1996], Dudley [2014] and van de Geer [2000].

8 The price of bandit information on the unit ball is an extra
√
d log(n) (compare

Proposition 28.1 and Theorem 28.4). Except for log factors this is also true for
the simplex (Proposition 28.2 and Note 3). One might wonder if the difference is
always about

√
d, but this is not true in general. The price of bandit information

can be as high as Θ(d). Overall the dimension dependence in the regret in
terms of the action set is still not well understood except for special cases.

9 The poor behavior of follow the leader in the full information setting depends
on (a) the environment being adversarial rather than stochastic and (b) the
action set having sharp corners. When either of these factors is missing, follow
the leader is a reasonable choice [Huang et al., 2017b]. Note that with bandit
feedback the failure is primarily due to a lack of exploration (Exercises 4.5
and 4.6).

10 A simultaneous-action zero sum game is a game between two players. As the
name suggests, both players simultaneously choose a distribution p ∈ PK−1 and
q ∈ PE−1 respectively. The loss to the first player is 〈p,Gq〉 whereG ∈ [0, 1]K×E .
The loss for the second player is −〈p,Gq〉, which means that the sum of the
players losses is zero (‘zero sum’). The minimax theorem states that

min
p

max
q
〈p,Gq〉 = max

q
min
p
〈p,Gq〉

Let p∗ be the minimizing distribution on the left-hand side and q∗ be the
maximizing distribution on the right-hand side. Then the pair (p∗, q∗) is called
a Nash equilibrium of the game, which satisfies the condition that either
player can announce their strategy in advance without consequences.

28.6 Bibliographic remarks

The results in this chapter come from a wide variety of sources. The online convex
optimization framework is due to Zinkevich [2003], where online gradient descent
is introduced and analyzed. Mirror descent was first developed by Nemirovski
[1979] and Nemirovski and Yudin [1983] for classical optimization while ‘follow

28.7 Exercises 309

the regularized leader’ appears first in the work by Shalev-Shwartz [2007], Shalev-
Shwartz and Singer [2007]. An implicit form of regularization is to add a
perturbation of the losses, leading to the ‘follow the perturbed leader’ algorithm
[Hannan, 1957, Kalai and Vempala, 2005a], which is further explored in the context
of combinatorial bandit problems in Chapter 30 (and see also Exercise 11.7).
Readers interested in an overview of online learning will like the short book by
Hazan [2016] while the book by Cesa-Bianchi and Lugosi [2006] has a little more
depth (but is also ten years older). As far as we know, the first application of
mirror descent to bandits was by Abernethy et al. [2008]. Since then the idea has
been used extensively with some examples by Audibert et al. [2013], Abernethy
et al. [2015], Bubeck et al. [2018]. Mirror descent has been adapted in a generic
way to prove high probability bounds by Abernethy and Rakhlin [2009]. The
reader can find (slightly) different proofs of some mirror descent results in the
book by Bubeck and Cesa-Bianchi [2012]. The result for the unit ball are from
a paper by Bubeck et al. [2012]. Mirror descent can be generalized to Banach
spaces. For details see the article by Sridharan and Tewari [2010].

28.7 Exercises

28.1 Show that if F is Legendre with domain D ⊆ A ⊂ Rd then the minimizer
of Φt(a) = η〈a, yt〉+DF (a, at) = η〈a, yt〉+ F (a)− F (at)− 〈∇F (at), a− at〉 over
A belongs to the interior of D and at the minimizer at+1, ∇Φt(at+1) = 0 holds.

28.2 Let A = [−1, 1] and let y1 = 1/2 and ys = 1 for odd s > 1 and ys = −1
for even s > 1.

(a) Recall that follow the leader (without regularization) chooses at =
argmina

∑t−1
s=1〈a, ys〉. Show that this algorithm suffers linear regret.

(b) Implement follow the regularized leader or mirror descent on this problem
with quadratic potential F (a) = a2 and plot at as a function of time.

28.3 Prove Corollary 28.1.

28.4 Let A = PK−1 be the simplex, F the unnormalized negentropy potential
and η > 0. Let P1 = argminp∈A F (p) and for t ≥ 1 let

Pt+1 = argminp∈A η〈p, Ŷt〉+DF (p, Pt) ,

where Ŷti = I {At = i} yti/Pti and At is sampled from Pt.

(a) Show that the resulting algorithm is exactly Exp3 from Chapter 11.
(b) What happens if you replace mirror descent by follow the regularized leader?

That is, if Pt = argminp∈A
∑t−1
s=1〈p, Ŷs〉+ F (p).

28.5 Continuing on from the last exercise, in this exercise you will show that

28.7 Exercises 310

the tools in this chapter not only lead to the same algorithm, but also the same
bounds.

(a) Let P̃t+1 = argminp∈[0,∞)K η〈p, Ŷt〉+DF (p, Pt). Show both relations in the
following display:

DF (Pt, P̃t+1) =
K∑

i=1
Pti

(
exp(−ηŶti)− 1 + ηŶti

)
≤ η2

2

K∑

i=1
PtiŶ

2
ti .

(b) Show that 1
η
E

[
n∑

t=1
DF (Pt, P̃t+1)

]
≤ ηnK

2 .

(c) Show that diamF (PK−1) = log(K).
(d) Conclude that for appropriately tuned η > 0 the regret of Exp3 satisfies,

Rn ≤
√

2nK log(K) .

28.6 Prove Theorem 28.2.

28.7 Let A be closed and convex and y1, . . . , yn ∈ L ⊆ Rd. Let F be Legendre
with domain D and assume that A ⊆ cl(D) and that Eq. (28.5) holds. Let
η0, η1, . . . , ηn be a sequence of learning rates where we assume that η0 =∞ and
a1 = argmina∈A F (a) and

ãt+1 = argmina∈D ηt〈a, yt〉+DF (a, at) ,
at+1 = argmina∈A∩DDF (a, ãt+1) .

Show that for all a ∈ A:

(a) Rn(a) =
n∑

t=1
〈at − a, yt〉 ≤

n∑

t=1

DF (at, ãt+1)
ηt

+
n∑

t=1

DF (a, at)−DF (a, ãt+1)
ηt

.

(b) Rn(a) ≤
n∑

t=1

DF (at, ãt+1)
ηt

+
n∑

t=1
DF (a, at)

(
1
ηt
− 1
ηt−1

)
.

28.8 Like in the previous exercise letA be closed and convex and y1, . . . , yn ∈ L ⊆
Rd. Let F1, . . . , Fn be a sequence of Legendre functions where dom(Ft) = Dt and
A ⊆ cl(Dt) for all t. Let Φt(a) = Ft(a)+

∑t
s=1〈a, ys〉 and at = argmina∈A Φt−1(a).

Show that

Rn(a) ≤
n∑

t=1

(
〈at − at+1, yt〉 −DFt−1(at+1, at)

)

+ Fn(a)− F0(a1) +
n∑

t=1
(Ft−1(at+1)− Ft(at+1)) .

28.9 Consider the finite-armed adversarial bandit problem described in
Chapter 11 where the adversary chooses y1, . . . , yn with yt ∈ [0, 1]K . Let

28.7 Exercises 311

Pt ∈ PK−1 be defined by

Pti =
exp

(
−ηt−1

∑t−1
s=1 Ŷti

)

∑K
j=1 exp

(
−ηt−1

∑t−1
s=1 Ŷtj

) ,

where η0, η1, . . . is an infinite sequence of learning rates and Ŷti =
I {At = i} yti/Pti and At is sampled from Pt.

(a) LetA = PK−1 be the simplex, F be the negentropy potential, Ft(p) = F (p)/ηt
and Φt(p) = F (p)/ηt +

∑t
s=1〈p, Ŷs〉. Show that Pt is the choice of follow the

regularized leader with potentials (Ft) and losses (Ŷt).
(b) Let P ∈ PK−1 be the standard basis vector with Pi = 1 for i =

argminj
∑n
t=1 ytj . Use the fact that Ŷt is an unbiased estimate of yt and

Exercise 28.8 to show that

Rn ≤ E

[
n∑

t=1
〈Pt − Pt+1, Ŷt〉 −DFt(Pt, Pt+1)

]

+ Fn(P)− F0(P1) +
n∑

t=1
(Ft−1(Pt+1)− Ft(Pt+1)) .

(c) Assume that (ηt) is decreasing and show that

Fn(P)− F0(P1) +
n∑

t=1
(Ft−1(at+1)− Ft(at+1)) ≤ log(K)

ηn
.

(d) Use Theorem 26.5 in combination with the facts that Ŷti ≥ 0 for all i and
Ŷti = 0 unless At = i to show that

〈Pt − Pt+1, Ŷt〉 −DFt(Pt, Pt+1) ≤ ηt
2PtAt

.

(e) Prove that Rn ≤
log(K)
ηn

+ K

2

n∑

t=1
ηt.

(f) Choose η0, η1, η2, . . . so that Rn ≤ 2
√
nK log(K).

28.10 Let A = PK−1 be the simplex and assume yt ∈ A◦ for all t and let
F (a) = −2

∑d
i=1
√
ai.

(a) Show that F ∗(u) = −∑K
i=1 u

−1
i whenever u ∈ (−∞, 0]K .

(b) Show that for u, v ∈ (−∞, 0]K ,

DF∗(u, v) = −
K∑

i=1

(ui − vi)2

uiv2
i

.

(c) Show that diamF (A) ≤ 2
√
d.

28.7 Exercises 312

(d) Let At be chosen so that P
(
At = i|Āt

)
= Āti and Ŷt be the importance-

weighted estimator

Ŷti = I {At = i} yti
Āti

.

(e) Show that Ãt+1,At ≤ Āt+1,At and Ãt+1,i = Āt+1,i for i 6= At.
(f) Show that E

[
DF∗(∇F (Ãt+1),∇F (Āt))

]
≤ η2√d.

(g) Conclude that the regret of mirror descent with this potential is bounded by

Rn ≤
√

8dn .

(h) Devise an efficient implementation of this algorithm.

The algorithm in the above exercise is called the implicitly normalized
forecaster and was introduced by Audibert and Bubeck [2009]. At first it went
unnoticed that this algorithm was an instance of mirror descent and the proof
was consequentially much more complicated. More details are in the book by
Bubeck and Cesa-Bianchi [2012].

28.11 Let F be the unnormalized negentropy potential and consider online mirror
descent with A = Pd−1 and loss vectors y1, . . . , yn chosen from the hypercube:
yt ∈ [0, 1]d. Prove that Rn ≤

√
2n log(K).

28.12 Prove the minimax theorem described in Note 10.

Let p1, . . . , pn ∈ PK−1 be the choices of mirror descent with unnormalized
negentropy potential when the losses y1, . . . , yn are given by yt = Gqt and
qt = argmaxq〈pt, Gq〉. Then use the result from Exercise 28.11. The minimax
theorem is due to von Neumann [1928].

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

29 The Relation Between Adversarial
and Stochastic Linear Bandits

As we have seen in the preceding chapters, adversarial and stochastic linear
bandits do share certain similarities. For example, the least squares estimator
plays a fundamental role in both, as does the machinery from experimental design
for optimizing the exploration distribution. There are also surprising differences,
however. Theorem 24.2 shows that the regret for stochastic linear bandits on a
ball is lower bounded by Ω(d

√
n), while for the adversarial bandits the upper

bound is O(
√
dn) as shown in Theorem 28.4. As we will keep referring to these

results, we added Table 29.1 to summarize the situation. We hope the reader is
at least mildly surprised that the regret upper for the adversarial environment is
of lower order than the regret lower bound for the stochastic environment. After
all, was not the purpose of working with adversarial environments to enlarge the
scope of algorithms beyond stochastic environments? The purpose of this chapter
is to explain why our intuition fails us in this case.

To make the notation consistent we present the stochastic and adversarial
linear bandit frameworks again, but this time using losses for both. Let A ⊂ Rd
be the action set. In each round the learner should choose At ∈ A and receives
the loss Yt, where

Yt = 〈At, θ〉+ ηt , (Stochastic setting) (29.1)
Yt = 〈At, θt〉 , (Adversarial setting) (29.2)

where (ηt)t is a sequence of independent and identically distributed 1-subgaussian
random variables and (θt)t is a sequence of loss vectors chosen by the adversary.
As noted earlier, the assumptions on the noise can be relaxed significantly. For
example, if Ft = σ(A1, Y1, . . . , At, Yt, At+1), then the results of the previous
chapters hold as soon as ηt|Ft−1 ∼ subG(1). The expected regret for the two

Stochastic environment Adversarial environment
Regret Ω(d

√
n) O(

√
dn)

Table 29.1 The behavior of regret as a function of dimension d and number of rounds n
for linear bandits when the action set A = Bd

2 is the d-dimension Euclidean ball.

http://banditalgs.com
mailto:tor.lattimore@gmail.com

29.1 Reducing stochastic linear bandits to adversarial linear bandits 314

cases are defined as follows:

Rn =
n∑

t=1
E [〈At, θ〉]− n inf

a∈A
〈a, θ〉 , (Stochastic setting)

Rn =
n∑

t=1
E [〈At, θt〉]− n inf

a∈A
〈a, θ̄n〉 . (Adversarial setting)

In the last display, θ̄n = 1
n

∑n
t=1 θt is the average of the loss vectors chosen by the

adversary. We chose to write the adversarial form with the help of the average
loss vector to emphasize the similarity between the two settings.

29.1 Reducing stochastic linear bandits to adversarial linear bandits

To formalize the intuition that adversarial environments are harder than stochastic
environments one may try to find a reduction where learning in the stochastic
environments is reduced to learning in the adversarial algorithms. Here, reducing
problem E (‘easy’) to problem H (‘hard’) just means that we can use algorithms
designed for problem H to solve instances of problem E. In order to do this
we need to transform instances of problem E into instances of problem H and
translate back the actions of algorithms to actions for problem E. To get a regret
bound for problem E from regret bound for problem H, one needs to ensure that
the losses translate properly between the problem classes.

Of course, based on our previous discussion we know that if there is a reduction
from stochastic linear bandits to adversarial linear bandits then somehow the
adversarial problem must change so that no contradiction is created in the curious
case of the unit ball. To be able to use an adversarial algorithm in the stochastic
environment, we need to specify a sequence (θt)t so that the adversarial feedback
matches the stochastic one. Comparing Eq. (29.1) and Eq. (29.2), we can see
that the crux of the problem is incorporating the noise ηt into θt while satisfying
the other requirements. One simple way of doing this is by introducing an extra
dimension for the adversarial problem.

In particular, suppose that the stochastic problem is d-dimensional so that A ⊂
Rd. For the sake of simplicity, assume furthermore that the noise and parameter
vector satisfy |〈A, θ〉 + ηt| ≤ 1 almost surely and that a∗ = argmina∈A〈a, θ〉
exists. Then define Aaug = {(a, 1) : a ∈ A} ⊂ Rd+1 and let the adversary choose
θt = (θ, ηt) ∈ Rd+1. The reduction is now straightforward:

1 Initialize adversarial bandit policy with action set Aaug.
2 Collect action A′t = (At, 1) from the policy.
3 Play At and observe loss Yt.
4 Feed Yt to the adversarial bandit policy and repeat from step 2.

29.1 Reducing stochastic linear bandits to adversarial linear bandits 315

Suppose the adversarial policy guarantees a bound Bn on the expected regret:

R′n = E

[
n∑

t=1
〈A′t, θt〉 − inf

a′∈Aaug

n∑

t=1
〈a′, θt〉

]
≤ Bn .

Let a′∗ = (a∗, 1). Note that for any a′ = (a, 1) ∈ Aaug, 〈At, θ〉 − 〈a, θ〉 =
〈A′t, θt〉 − 〈a′, θt〉 and thus adversarial regret, and eventually Bn, will upper
bound the stochastic regret:

E

[
n∑

t=1
〈At, θ〉]− n〈a∗, θ〉

]
= E

[
n∑

t=1
〈A′t, θt〉 − n〈a′∗, θ̄n〉

]
≤ R′n ≤ Bn .

Therefore the expected regret in the stochastic bandit is also at most Bn. We have
to emphasize that this reduction changes the geometry of the decision sets for
both the learner and the adversary. For example, if A = Bd2 is the unit ball, then
neither Aaug nor its polar A◦aug are unit balls. It does not seem like this should
make much difference, but at least in the case of the ball, from our Ω(d

√
n) lower

bound on the regret for the stochastic case, we see that the changed geometry
must make the adversary more powerful. This reinforces the importance of the
geometry of the action set, which we have already seen in the previous chapter.

While the reduction shows one way to use adversarial algorithms in stochastic
environments, the story seems to be unfinished. When facing a linear bandit
problem with some action set A, the user is forced to make a choice of whether to
believe the environment to be stochastic. Strangely enough, if the environment is
believed to be stochastic, the recommendation seems to be to run one’s favorite
adversarial linear bandit algorithm on the augmented action set. What if the
environment may or may not be stochastic? One can still try to run the adversarial
linear bandit algorithm with no changes. At present we cannot guarantee that
this lead to a small regret. In fact, the regret may get larger than what it
needs to be. For example, if the mirror descent algorithm of the last chapter is
run on a stochastic environment with the learning rate of the algorithm set as
recommended in Theorem 28.4, the regret upper bound increases to Õ(d2√n).
We believe that this increase of the regret is real. By tuning the learning rate,
the regret can be brought back to Õ(d

√
n).

We see a case here when the cost of using an algorithm prepared to deal
with a larger class of environments pays a nontrivial cost for its increased
robustness. At least as far as minimax regret is concerned, this was not the
case for finite-armed bandits.

The real reason for all these discrepancies is that that the adversarial linear
bandit model is better viewed as relaxation of another class of stochastic linear
bandits, which we discuss in the next section.

29.2 Stochastic linear bandits with parameter noise 316

29.2 Stochastic linear bandits with parameter noise

Another way to relate the adversarial and stochastic linear bandit frameworks is
to start from the adversarial model and add stochasticity by assuming that θt is
chosen from some fixed distribution ν ∈ Rd. We call the resulting stochastic linear
bandit model the stochastic linear bandit with parameter noise. This new
problem can be trivially reduced to adversarial bandits (assuming the support of
ν is bounded). In particular, there is no need to change the action sets. We note
in passing that constructing a stochastic environment like this is often the way
lower bounds are constructed for adversarial models.

Parameter noise environments form a subset of all possible stochastic
environments. To see this, let θ =

∫
xν(dx) be the mean parameter vector

under ν. Then, the loss (or reward) in round t is

〈At, θt〉 = 〈At, θ〉+ 〈At, θt − θ〉 .

Let Et[·] = E[· | Ft−1]. By our assumption that ν has mean θ the second term
vanishes in expectation, Et[〈At, θt − θ〉] = 0. This implies that we can make a
connection to the ‘vanilla’ stochastic setting by letting η̃t = 〈At, θt − θ〉. Now
consider the conditional variance of η̃t:

Vt[η̃t] = Et[〈At, θt − θ〉2] = A>t Et[(θt − θ)(θt − θ)>]At = A>t ΣAt , (29.3)

where Σ is the covariance matrix of multivariate distribution ν. Eq. (29.3) implies
that the variance of the noise η̃t now depends on the choice of action and in
particular the noise variance scales with the length of At. This can make parameter
noise problems easier. For example, if ν is a Gaussian with identity covariance,
then Vt[η̃t] = ‖At‖22 so that long actions have more noise than short actions.
By contrast, in the usual stochastic linear bandit, the variance of the noise is
unrelated to the length of the action. In particular, even the noise accompanying
short actions can be large. This makes quite a bit of difference in cases when
the action set has both short and long actions. In the standard stochastic model,
shorter actions have the disadvantage of having a worse signal-to-noise ratio,
which an adversary can exploit.

This calculation also provides the reason for the different guarantees for the unit
ball. For stochastic linear bandits with 1-subgaussian noise the regret is Õ(d

√
n)

while in the last chapter we showed that for adversarial linear bandits the regret is
Õ(
√
dn). This discrepancy is explained by the variance of the noise. Suppose that

ν is supported on the unit sphere, then the eigenvalues of its covariance matrix
sum to 1 and if the learner chooses At from the uniform probability measure µ
on the sphere, then

E[Vt[η̃t]] =
∫
a>Σadµ(a) = 1/d ,

By contrast, in the standard stochastic model with 1-subgaussian noise the
predictable variation of the noise is just 1. If the adversary were allowed to choose

29.3 Notes 317

its loss vectors from the sphere of radius
√
d, then the expected predictable

variation would be 1, matching the standard stochastic case, and the regret would
scale linearly in d, which also matches the vanilla stochastic case. This example
further emphasizes the importance of the assumptions that restrict the choices of
the adversary.

The main takeaway of this chapter that the best way to think about the
standard adversarial linear model is that it generalizes the stochastic linear
bandit model under parameter noise, which is a special case stochastic linear
bandits, which oftentimes is easier than the full stochastic linear bandit problem
because parameter noise limits the adversary’s control of the signal-to-noise
ratio experienced by the learner.

29.3 Notes

1 One obvious issue with the stochastic linear bandit model is that the feedbacks
may not follow it! It is tempting to try and use adversarial bandits to resolve
the resulting unrealizable linear bandit problem where

Xt = 〈At, θ〉+ ηt + ε(At) ,

with ε : A → R some function with small supremum norm. Because ε(At)
depends on the chosen action it is not possible to write Xt = 〈At, θt〉 for some
θt that does not depend on At. However, at least in some cases, the idea of
using an adversarial linear bandit can be shown to work (cf. Exercise 29.4).

2 For the reduction in Section 29.1 we assumed that |〈At, θ〉 + ηt| ≤ 1 almost
surely. This is not true for many classical noise models like the Gaussian. One
way to overcome this annoyance is to apply the adversarial analysis on the event
that |〈At, θ〉+ ηt| ≤ C for some constant C > 0 that is sufficiently large that
the probability that this event occurs is high. For example, if ηt is a standard
Gaussian and supa∈A |〈a, θ〉| ≤ 1, then C may be chosen to be 1 +

√
4 log(n)

and the failure event that there exists a t such that |〈At, θ〉 + ηt| ≥ C has
probability at most 1/n by Theorem 5.1 and a union bound.

3 The mirror descent analysis of adversarial linear bandits also works for
stochastic bandits. Recall that mirror descent samples At from a distribution
with a conditional mean of Āt and suppose that θ̂t is a conditionally unbiased
estimator of θ. Then the regret for a stochastic linear bandit with optimal
action a∗ can be rewritten as

Rn = E

[
n∑

t=1
〈a∗ −At, θ〉

]
= E

[
n∑

t=1
〈a∗ − Āt, θ〉

]
= E

[
n∑

t=1
〈a∗ − Āt, θ̂t〉

]
.

Except that we have switched from losses to gains, this is now in the standard
format necessary for the analysis of mirror descent. In general for the stochastic

29.4 Bibliographic remarks 318

setting the covariance of the least squares estimator θ̂t will not be the same as
in the adversarial setting, however, which leads to different results. When θ̂t
is biased, the bias term can be incorporated into the above formula and then
bounded separately.

4 Consider a stochastic bandit with A the unit ball and Xt = 〈At, θ〉+ ηt where
ηt ∈ [−1, 1] almost surely and θ is also in the unit ball. Adapting the analysis
of the algorithm in Section 28.4 leads to a bound of O(d

√
n log(n)). Essentially

the only change is the variance calculation in Eq. (28.11), which increases
by roughly a factor of d. The details of this calculation are left to you in
Exercise 29.5.

29.4 Bibliographic remarks

Linear bandits on the sphere with parameter noise have been studied by Carpentier
and Munos [2012]. However they consider the case where the action-set is the
sphere and the components of the noise are independent so that Xt = 〈At, θ+ ηt〉
where the coordinates of ηt ∈ Rd are independent with unit variance. In this case
the predictable variation is V[Xt | At] =

∑d
i=1A

2
ti = 1 for all actions At and the

parameter noise is equivalent to the standard model. We are not aware of any
systematic studies of parameter noise in the stochastic setting. With only a few
exceptions, the impact on the regret of the action-set and adversaries choices is not
well understood beyond the case where A is an `p-ball and the adversary chooses
losses from the polar of A. A variety of lower bounds illustrating the complications
are given by Shamir [2015]. Perhaps the most informative is the observation
that obtaining O(

√
dn) regret is not possible when A = {a+ x : ‖x‖2 ≤ 1} is a

shifted unit ball with a = (2, 0, . . . , 0), which also follows from our reduction in
Section 29.1.

29.5 Exercises

29.1 Complete the claims made at the end of Section 29.1. In particular, show
that the bandit algorithm of Theorem 28.4 achieves an O(d2√n) expected regret
when applied to a stochastic bandit problem where the noise (ηt)t sequence is
bounded by a constant and when used with the learning rate as described in that
theorem. Further, show that by an appropriate adjustment of the learning rate,
the regret can be improved to O(d

√
n).

29.2 Let A ⊂ Rd be an action set. Take an adversarial linear bandit algorithm
that enjoys a worst-case guarantee Bn on its n-round expected regret Rn when
the adversary is restricted to playing (θt)t in the polar A◦ of A. Show that if this
algorithm is used in a stochastic linear bandit problem with parameter noise (that
is, θt ∼ ν) and the support of ν is a subset of the polar of A◦ then the expected

29.5 Exercises 319

regret R′n is still bounded by Bn. Derive a bound on the expected regret R′n in
the stochastic problem when the restriction on ν is replaced by an assumption
that supa∈A〈a, θt − θ〉 has a bounded magnitude.

29.3 Modify LinUCB to make it (potentially) better for stochastic bandits under
parameter noise. Show that the regret improves.

29.4 Complete the details to prove the claims made in Note 1. In particular,
prove that for A = Bd2 there exists a universal constant C > 0 such that the
expected regret Rn of an appropriately tuned version of the bandit algorithm of
Theorem 28.4 satisfies Rn ≤ C(d

√
n+ εn), where ε = supa∈A ε(a).

29.5 Complete the details to prove the claims made in Note 4.

You will need to repeat the analysis in Eq. (28.11), update the learning rate
and check the bounds on the norm of the estimators.

Part VII

Other Topics

321

In the penultimate part we collect a few topics to which we could not dedicate
a whole part. When deciding what to include we balanced our subjective views
on what is important, pedagogical and sufficiently well-understood for a book.
Of course we have played favourites with our choices and hope the reader can
forgive us for the omissions. We spend the rest of this intro outlining some of the
omitted topics.

Continuous-armed bandits
There is a small literature on bandits where the number of actions is infinitely
large. We covered the linear case in earlier chapters, but the linear assumption
can be relaxed significantly. Let A be an arbitrary set and F a set of functions
from A → R. The learner is given access to the action set A and function class
F . In each round the learner chooses an action At ∈ A and receives reward
Xt = f(At) + ηt where ηt is noise and f ∈ F is fixed, but unknown. Of course
this setup is general enough to model all of the stochastic bandits so far, but is
perhaps too general to say much. One interesting relaxation is the case where A
is a metric space and F is the set of Lipschitz functions. We refer the reader to
papers by Kleinberg [2005], Auer et al. [2007], Kleinberg et al. [2008], Bubeck
et al. [2011], Slivkins [2014].

Duelling bandits
In the duelling bandit problem the learner chooses two arms in each round
At1, At2. Rather than observing a reward for each arm the learner observes the
winner of a ‘dual’ between the two arms. Let K be the number of arms and
P ∈ [0, 1]K×K be a matrix where Pij is the probability that arm i beats arm j

in a dual. It is natural to assume that Pij = 1 − Pji. A common, but slightly
less justifable, assumption is the existence of a total ordering on the arms such
that if i � j, then Pij > 1/2. There are at least two notions of regret. Let i∗ be
the optimal arm so that i∗ � j for all j 6= i∗. Then the strong/weak regret are
defined by

Strong regret = E

[
n∑

t=1
(Pi∗,At1 + Pi∗,At2 − 1)

]
.

Weak regret = E

[
n∑

t=1
min {Pi∗,At1 − 1/2, Pi∗,At2 − 1/2}

]
.

Both definitions measure the number of times arms with low probability of
winning a duel against the optimal arm is played. The former definition only
vanishes when At1 = At2 = i∗, while the latter is zero as soon as i∗ ∈ {At1, At2}.
The duelling bandit problem was introduced by Yue et al. [2009] and has seen
quite a lot of interest since then [Yue and Joachims, 2009, 2011, Ailon et al.,
2014, Zoghi et al., 2014, Jamieson et al., 2015, Zoghi et al., 2015, Dud́ık et al.,
2015, Komiyama et al., 2015a, Wu and Liu, 2016].

322

Convex bandits
Let A ⊂ Rd be a convex set. the convex bandit problem comes in both stochastic
and adversarial varieties. In both cases the learner chooses At from A. In the
stochastic case the learner recieves a reward Xt = f(At) + ηt where f is an
uknown convex function and ηt is noise. In the adversarial setting the adversary
chooses a sequence of convex functions f1, . . . , fn and the learner receives reward
Xt = f(At). This turned out to be a major challenge over the last decade with
most approaches leading to suboptimal regret in terms of the horizon. The best
bounds in the stochastic case are by Agarwal et al. [2011] while in the adversarial
case there has been a lot of recent progress [Bubeck et al., 2015a, Bubeck and
Eldan, 2016, Bubeck et al., 2017]. In both cases the dependence of the regret on
the horizon is O(

√
n), which is optimal in the worst case. Many open question

remain.

Budgeted bandits
In many problems choosing an action costs some resources. In the bandits with
knapsacks problem the learner starts with a fixed budget B ∈ [0,∞)d over d
resource types. Like in the standard K-armed stochastic bandit, the learner
chooses At ∈ [K] and receives a reward Xt sampled from distribution depending
on At. The twist is that the game does not end after a fixed number of rounds.
Instead, in each round the environment samples a cost vector Ct ∈ [0, 1]d from
a distribution that depends on At. The game ends in the first round τ where
there exists an i ∈ [d] such that

∑τ
t=1 Cti > Bi. This line of work was started by

Badanidiyuru et al. [2013] and has been extended in many directions by Agrawal
and Devanur [2014], Tran-Thanh et al. [2012], Ashwinkumar et al. [2014], Xia
et al. [2015], Agrawal and Devanur [2016], Tran-Thanh et al. [2010], Hanawal
et al. [2015]. A somewhat related idea is the conservative bandit problem where
the goal is to minimize regret subject to the constraint that the learner must not
be much worse than some known baseline. The constraint limits the amount of
exploration and makes the regret guarantees slightly worse [Sui et al., 2015, Wu
et al., 2016, Kazerouni et al., 2017].

Learning with delays
In many practical applications the feedback to the learner is not immediate. The
time between clicking on a link and buying a product could be minutes, days,
weeks or longer. Similarly, the response to a drug does not come immediately.
In most cases the learner does not have the choice to wait before making the
next decision. Buyers and patients just keep coming. Perhaps the first paper
for online learning with delays is by Weinberger and Ordentlich [2002], who
consider the full information setting. Recently this has become a hot topic and
there has been a lot of follow-up work extending the results in various directions
[Joulani et al., 2013, Desautels et al., 2014, Cesa-Bianchi et al., 2016, Vernade
et al., 2017, 2018, Pike-Burke et al., 2018, and others]. Learning with delays is
an interesting example where the adversarial and stochastic models lead to quite

323

different outcomes. In general the increase in regret due to rewards being delayed
by at most τ rounds is a multiplicative

√
τ factor for adversarial models and an

additive term only for stochastic models.

Graph feedback
There is growing interest in feedback models that lie between the full information
and bandit settings. One way to do this is to let G be a directed graph with K

vertices. The adversary chooses a sequence of loss vectors in [0, 1]K as usual. In
each round the learner chooses a vertex and observes the loss corresponding to that
vertex and its neighbours. The full information and bandit settings are recovered
by choosing the graph to be fully connected or have no edges respectively, but of
course there are many interesting regimes in between. There are many variants on
this basic problem. For example, G might change in each round or be undirected.
Or perhaps the graph is changing and the learner only observes it after choosing
an action. The reader can explore this topic by reading the articles by Mannor
and Shamir [2011], Alon et al. [2013], Kocák et al. [2014], Alon et al. [2015] or
the short book by Valko [2016].

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

30 Combinatorial Bandits

A combinatorial bandit is a linear bandit with a special kind of combinatorial
action-set A ⊂ {0, 1}d, which for constant m ∈ [d] satisfies

A ⊆
{
a ∈ {0, 1}d : ‖a‖1 ≤ m

}
.

The setting is studied in both adversarial and stochastic models. We focus on the
former in this chapter and discuss the latter in the notes. As usual the adversary
chooses a sequence of loss vectors y1, . . . , yn with yt ∈ Rd and the expected regret
is

Rn = E

[
max
a∈A

n∑

t=1
〈At − a, yt〉

]
.

In Chapters 27 and 28 we assumed that yt ∈ A◦, which guarantees that
|〈At, yt〉| ≤ 1 for all t. This restriction is not consistent with the applications we
have in mind, so instead we assume that yt ∈ [0, 1]d, which by the definition of
A ensures that |〈At, yt〉| ≤ m for all t. In the standard bandit model the learner
observes 〈At, yt〉 in each round. In many applications for which combinatorial
bandits are applied there is actually more information available. The simplest
is the full information setting where the learner observes the whole vector
yt. The full information setup is interesting, but does not have the flavor of
a bandit problem and so we do not discuss it further. There is an inbetween
setting where the learner receives semibandit feedback, which is the vector
(At1yt1, . . . , Atdytd). Since Ati ∈ {0, 1} this is equivalent to observing yti for those
i when Ati = 1.

30.1 Applications

Shortest path problems
The online shortest path problem is a game over n between adversary and
learner. Let G = (V,E) be a fixed graph with a finite set of vertices V and edges
E ⊆ V × V . At the beginning of the game the adversary chooses the length of
each edge in an arbitrary way. In each round the learner chooses a path between
fixed vertices u, v ∈ V with the goal of travelling the shortest distance. The
regret of the learner is the difference between the distance they travelled and

http://banditalgs.com
mailto:tor.lattimore@gmail.com

30.1 Applications 325

Budapest

Frankfurt

Beijing

Abu Dhabi

Singapore

Sydney

1
10

12

11

13

12 10

8

13

7

Figure 30.1 Shortest-path problem between Budapest and Sydney. The learner chooses
the path Budapest–Frankfurt–Singapore–Sydney. In the bandit setting they observe
total travel time (21 hours) while in the semibandit they observe the length of each
flight on the route they took (1 hour, 12 hours, 8 hours).

the distance of the optimal path in hindsight. To make things a little formal,
let d = |E| and for t ∈ [n] and i ∈ [d] let yti ∈ [0, 1] be the length of the ith
path in round t as chosen by the adversary. A path is represented by a vector
a ∈ {0, 1}d where ai = 1 if the ith edge is part of the path. Let A be the set of
paths connecting vertices u and v, then the length of path a in round t is 〈a, yt〉.

Ranking
Suppose a company has d possible ads they can place and m locations in which
to display them. In each round t the learner should choose the m ads to display,
which is represented by a vector At ∈ {0, 1}d with ‖At‖1 = m. As before, the
adversary chooses yt ∈ [0, 1]d that measures the quality of each placement and the
learner suffers loss 〈At, yt〉. This problem could also be called ‘selection’ because
there is no ordering. This is not true in applications like web search where the
order of search results is as important as the results themselves. This kind of
problem is analyzed in Chapter 32.

Multitask bandits
Consider playing m multi-armed bandits simultaneously, each with K arms. If
the losses for each bandit problem are observed, then it is easy to apply Exp3 or
Exp3-IX to each bandit independently. But now suppose the learner only observes
the sum of the losses. This problem is represented as a combinatorial bandit by
letting d = mK and

A =
{
a ∈ {0, 1}d :

K∑

i=1
ai+Kj = 1 for all 0 ≤ j < m

}
.

30.2 Bandits 326

This scenario can arise in practice when a company is making multiple independent
interventions, but the quality of the interventions are only observed via a change
in revenue.

30.2 Bandits

The easiest approach is to apply Exp3 with John’s exploration as described in
Chapter 27. The only difference is that now |〈At, yt〉| can be as large as m, which
increases the regret by a factor of m. We leave the proof of the following theorem
to the reader (Exercise 30.1).

theorem 30.1 If Algorithm 14 is run on action-set A with appropriately chosen
learning rate, then

Rn ≤ 2m
√

3dn log |A| ≤ m3/2

√
12dn log

(
ed

m

)
.

There are two computational issues with this approach. First, the action-set
is typically so large that finding the core set of the central minimum volume
enclosing ellipsoid that determines the exploration distribution of Algorithm 14
is hopeless. Second, sampling from the resulting exponential weights distribution
may be highly nontrivial. There is no golden bullet for these issues. We cannot
expect the travelling salesman to get easier when done online and with bandit
feedback. There are, however, some special cases where efficient algorithms exist
and we give some pointers to the literature at the end of the chapter. One
modification that greatly eases computation is to replace John’s exploration with
something more tractable. Let π : A → [0, 1] be the exploration distribution used
by Algorithm 14 and Q(π) =

∑
a∈A π(a)aa>. Then the regret of Algorithm 14

satisfies

Rn = O

(
m
√

max
a∈A
‖a‖2Q(π)−1n log(|A|)

)
.

By Kiefer–Wolfowitz (Theorem 21.1) we know that π can be chosen so that
‖a‖2Q(π)−1 = d and that if span(A) = Rd, then this is optimal. In many cases,
however, a similar result can be proven for other exploration distributions with
more attractive properties computationally.

30.3 Semibandits

The additional information is easily exploited by noting that yt can now be
estimated in each coordinate. Let

Ŷti = Atiyti
Pti

, (30.1)

30.3 Semibandits 327

where Pti = E[Ati | Ft−1] with Ft = σ(A1, Z1, . . . , At, Zt). An easy calculation
shows that E[Ŷti | Ft−1] = yti.

1: Input A, η, F
2: Ā1 = argmina∈A F (a)
3: for t = 1, . . . , n do
4: Choose Pt on A such that

∑
a∈A Pt(a)a = Āt

5: Sample At ∼ Pt
6: Compute Ŷti = Atiyti

Pti
for all i ∈ [d]

7: Update Āt+1 = argmina∈co(A) η〈a, Ŷt〉+DF (a, Āt)
8: end for

Algorithm 16: Online stochastic mirror descent for semibandits

theorem 30.2 Let F : Rd → R be the negentropy potential defined by

F (a) =
d∑

i=1
(ai log(ai)− ai) .

If Algorithm 16 is run with η =
√

2m(1 + log(d/m))/(nd), then

Rn ≤
√

2nmd(1 + log(d/m)) .

Proof Recall from Chapter 28 that for Legendre potentials the optimization
problem for Āt+1 can be written in a two-step process:

∇F (Ãt+1) = ∇F (Āt)− ηŶt
Āt+1 = argmina∈co(A)DF (a, Ãt+1) .

Then by Theorem 28.3 we have

Rn ≤
diamF (co(A))

η
+ 1
η

n∑

t=1
E
[
DF∗(∇F (Ãt+1),∇F (Āt))

]
.

The Legendre-Fenchel dual is F ∗(u) =
∑d
i=1 exp(ui) and the Bregman divergence

with respect to this potential is

DF∗(u, v) =
d∑

i=1
(exp(ui)− exp(vi))−

d∑

i=1
(ui − vi) exp(vi) .

Since ∇F (a)i = log(ai) we have

DF∗(∇F (Ãt+1),∇F (Āt)) =
d∑

i=1
(Ãt+1,i − Āti) +

d∑

i=1
ηĀtiŶti

=
d∑

i=1
Āti

(
exp(−ηŶti)− 1 + ηŶti

)
≤ η2

2

d∑

i=1
ĀtiŶ

2
ti .

30.4 Follow the perturbed leader 328

where the inequality follows from the fact that exp(−x) ≤ 1− x+ x2/2 for all
x ≥ 0. Taking the expectation leads to

E

[
d∑

i=1
ĀtiŶ

2
ti

]
= E

[
d∑

i=1

y2
tiAti

Āti

]
≤ d .

The diameter is easily bounded by noting that F is negative in co(A) and using
the Cauchy-Schwartz inequality:

diamF (co(A)) = sup
a∈co(A)

d∑

i=1

(
ai log(ai)− ai + Ā1i + Ā1i log

(
1
Ā1i

))

≤ m+
d∑

i=1
Ā1i log

(
1
Ā1i

)
≤ m(1 + log(d/m)) .

Putting together the pieces shows that

Rn ≤
m(1 + log(d/m))

η
+ ηnd

2 =
√

2nmd(1 + log (d/m)) .

Algorithm 16 plays mirror descent on the convex hull of the actions, which
has dimension d− 1. In principle it would be possible to do the same thing on
the set of distributions over actions, which has dimension K. Repeating the
analysis leads to a suboptimal regret of O(m

√
dn log(d/m)). We encourage

the reader to go through this calculation to see where things go wrong.

Like in Section 30.2, the main problem is computation. There are two challenges:
First, in each round the algorithm needs to find a distribution Pt over A such
that

∑
a∈A Pt(a) = Āt. Feasibility follows from the definition of co(A) while

Carathéodory’s theorem proves the support of Pt never needs to be larger
than d + 1. Since A is finite we can write this problem in terms of linear
constraints, but naively the computation complexity is polynomial in K, which is
exponential in m. The second difficulty is computing Āt+1 from Āt and Ŷt. This
is a convex optimization problem, but the computation complexity depends on
the representation of A and may be intractable.

30.4 Follow the perturbed leader

The computational complexity of mirror descent in the previous section can be
prohibitively expensive. In this section we describe an efficient algorithm for
online combinatorial optimization under the assumption that for all y ∈ [0, 1]d
the optimization problem of finding

a = argmina∈A〈a, y〉 (30.2)

30.4 Follow the perturbed leader 329

admits an efficient solution. This feels like the minimum one could get away
with. If the static problem is too hard it seems unlikely that an online algorithm
could be efficient. In fact, an online algorithm with low regret could be used to
approximate the solution to the static problem.

So we will try to design an algorithm for which the only nontrivial computation
is solving Eq. (30.2). The follow-the-perturbed leader (FTPL) algorithm
operates by estimating the cumulative losses observed so far. In each round
the estimates are perturbed by some random amount and the algorithm solves
Eq. (30.2) using the perturbed estimates. Let L̂t =

∑t
s=1 Ŷt be the cumulative

loss estimates after round t, then FTPL chooses

At+1 = argmina∈A〈a, ηL̂t − Zt+1〉 , (30.3)

where η > 0 is the learning rate and Zt+1 ∈ Rd is a random perturbation sampled
from distribution Q to be chosen later. The random perturbations introduce the
exploration, which if for appropriate perturbation distributions is sufficient to
guarantee small regret. Notice that if η is small, then the effect of Zt+1 is larger
and the algorithm can be expected to explore more, which is consistent with the
learning rate used in mirror descent or exponential weights studied in previous
chapters.

We still need to define the loss estimates and perturbation distribution. First
we make a connection between this algorithm and mirror descent. Given Legendre
potential F with dom(∇F) = int(A) online stochastic mirror descent chooses
Āt+1 so that

Āt+1 = argmina∈A〈a, ηŶt〉+DF (a, Āt) .

Taking derivatives and using the fact that dom(∇F) = int(A) we have

∇F (Āt+1) = ∇F (Āt)− ηŶt = −ηL̂t .

By duality this implies that Āt+1 = ∇F ∗(−ηL̂t) where F ∗(x) = supa∈A(〈x, a〉 −
F (a)) is the Fenchel conjugate of F . Examining Eq. (30.3) we see that

Āt+1 = E[At+1 | Ft] = E
[
argmina∈A〈a, ηL̂t − Zt+1〉

]
.

If we are to view follow-the-perturbed leader as an instance of mirror descent we
must find a Legendre potential F with

∇F ∗(−ηL̂t) = E
[
argmina∈A〈a, ηL̂t − Z〉

]
= E

[
argmaxa∈A〈a, Z − ηL̂t〉

]
,

which is equivalent to ∇F ∗(x) = E[argmaxa∈A〈a, x + Z〉]. In order to remove
clutter in the notation we define

a(x) = argmaxa∈A〈a, x〉 .

Readers with some familiarity with convex analysis will remember that if
φ(x) = maxa∈A〈a, x〉 is the support function and A has a smooth boundary,
then ∇φ(x) = a(x). For combinatorial bandits A is not smooth, but if Q is

30.4 Follow the perturbed leader 330

absolutely continuous with respect to the Lebesgue measure, then you will show
in Exercise 30.3 that nevertheless it is true that

∇E [φ(x+ Z)] = E [a(x+ Z)] .

All this shows that follow-the-perturbed-leader can be interpreted as mirror
descent with potential F defined in terms of its Fenchel dual.

F ∗(x) = E [φ(x+ Z)] . (30.4)

There are more reasons for making this connection than mere curiosity. The
classical analysis of FTPL is highly probabilistic and involves at least one ‘leap of
faith’ in the analysis. In contrast, the analysis via the mirror descent interpretation
is more mechanical. Recall that mirror descent depends on choosing a potential,
an exploration distribution and an estimator. The exploration distribution is a
distribution Pt on A such that

Āt =
∑

a∈A
Pt(a)a ,

which in our case is simply defined by

Pt(a) = P(a(Z − ηL̂t−1) = a | Ft−1) .

It remains to choose the loss estimator. A natural choice would be the same as
Eq. (30.1), which is

Ŷti = Atiyti
Pti

,

where Pti = P (Ati = 1 | Ft−1). The problem is that

Pti = P(a(Z − ηL̂t−1)i = 1 | Ft−1) ,

which does not generally have a closed form solution. If computation were not
an issue, then we could simply estimate Pti for each i by sampling. The trick
is to notice that we actually only need to estimate the reciprocal 1/Pti. Let
X ∈ {1, 2, . . . , } be a geometrically distributed random variable with parameter
θ ∈ [0, 1] so that

P (X = k) = (1− θ)k−1θk .

An easy calculation shows that E[X] = 1/θ. Let Kit ∈ {1, 2, . . .} be chosen so
that P (Kit = k | Ft−1) = (1− Pit)k−1Pit. Then for constant β > 0 define

Ŷti = min {β,KitAityit} .

The truncation parameter β is needed to ensure that Ŷti is never too large, but
note that without we have

Et−1[KitAityit] = yit .

We have now provided all the pieces to define mirror descent. The algorithm is
summarized in Algorithm 17.

30.4 Follow the perturbed leader 331

In Chapter 28 we assumed the loss estimator was unbiased, but this is not
necessary as we shall see in the analysis.

1: Input A, n, η, β, Q
2: L̂0i = 0 for each i ∈ [d]
3: for t = 1, . . . , n do
4: Sample Zt ∼ Q
5: Compute At = argmaxa∈A〈a, ηL̂t−1 − Zt〉
6: For each i with Ati = 1 sample Kti ∼ Geometric(Pti)
7: Ŷti = min {β, AtiKtiyti}
8: L̂ti = L̂t−1,i + Ŷti
9: end for

Algorithm 17: Follow-the-Perturbed leader for semibandits

theorem 30.3 Let Q have density q(z) = 2−d exp(−‖z‖1) and

η =
√

1 + log(d)
nd

β = 1
ηm

.

Then the regret of Algorithm 17 is bounded by Rn ≤ 2(m ∨ e)
√
nd(1 + log(d)).

Proof First we subtract the bias in the loss estimators and apply Theorem 28.1
to show that

Rn(a) = E

[
n∑

t=1
〈At − a, yt〉

]
= E

[
n∑

t=1
〈Āt − a, yt〉

]

= E

[
n∑

t=1
〈Āt − a, Ŷt〉

]
+ E

[
n∑

t=1
〈Āt − a, yt − Ŷt〉

]

≤ diamF (A)
η

+ E

[
1
η

n∑

t=1
DF (Āt, Āt+1)

]
+ E

[
n∑

t=1
〈Āt − a, yt − Ŷt〉

]
. (30.5)

Of the three terms the diameter is most easily bounded.

F (a) = sup
x∈Rd

(〈x, a〉 − F ∗(x)) = sup
x∈Rd

(〈x, a〉 − E[max
b∈A
〈x+ Z, b〉]) (30.6)

≥ −E[max
b∈A
〈Z, b〉] ≥ −mE[‖Z‖∞] = −m

d∑

i=1

1
d
≥ −m(1 + log(d)) ,

where the first inequality follows by choosing x = 0 and the second follows from
Holder’s inequality. The last equality is nontrivial and is explained in Exercise 30.2.
By the convexity of the maximum function and the fact that Z is centered we
also have from Eq. (30.6) that F (a) ≤ 0, which means that

diamF (A) = max
a,b∈A

F (a)− F (b) ≤ m(1 + log(d)) . (30.7)

30.4 Follow the perturbed leader 332

The next step is to bound the Bregman divergence induced by F . We will shortly
show that the Hessian ∇2F ∗(x) of F ∗ exists, so by duality and Taylor’s theorem
there exists an α ∈ [0, 1] and ξ = −ηL̂t−1 − αηŶt such that

DF (Āt, Āt+1) = DF∗(∇F (Āt+1),∇F (Āt))

= DF∗(−ηL̂t−1 − ηŶt,∇F (−ηL̂t−1) = η2

2 ‖Ŷt‖
2
∇2F∗(ξ) , (30.8)

where the last equality follows from Taylor’s theorem (see Theorem 26.4). To
calculate the Hessian we use a change of variable to avoid applying the gradient
to the non-differentiable argmax.

∇2F ∗(x) = ∇(∇F (x)) = ∇E [a(x+ Z)] = ∇
∫

Rd
a(x+ z)f(z)dz

= ∇
∫

Rd
a(u)f(u− x)du =

∫

Rd
a(u)(∇f(u− x))>du

=
∫

Rd
a(u) sign(u− x)>f(u− x)du =

∫

Rd
a(x+ z) sign(z)>f(z)dz .

Using the definition of ξ and the fact that a(x) is nonnegative,

∇2F ∗(ξ)ij =
∫

Rd
a(ξ + z)i sign(z)jf(z)dz (30.9)

≤
∫

Rd
a(ξ + z)if(z)dz

=
∫

Rd
a(z − ηL̂t−1 − αηŶt)if(z)dz

=
∫

Rd
a(u− ηL̂t−1)if(u+ αηŶt)du

≤ exp
(
‖αηŶt‖1

)∫

Rd
a(u− ηL̂t−1)if(u)du

≤ ePti , (30.10)

where the last inequality follows since α ∈ [0, 1] and Ŷti ≤ β = 1/(mη) and Ŷt
has at most m nonzero entries. Continuing on from Eq. (30.8) we have

η2

2 ‖Ŷt‖
2
∇2F∗(ξ) ≤

eη2

2

d∑

i=1
PtiŶti

d∑

j=1
Ŷtj ≤

eη

2

d∑

i=1
PtiŶti ≤

eη

2

d∑

i=1
PtiKti .

Chaining together the parts and taking the expectation shows that

E[DF (Āt, Āt+1)] ≤ eη

2 E

[
d∑

i=1
PtiKti

]
= eη

2 E

[
d∑

i=1
PtiE[Kti | Ft−1]

]
= edη

2 .

30.5 Notes 333

The last step is to control the bias term.

E

[
n∑

t=1
〈Āt − a, yt − Ŷt〉

]
≤ E

[
n∑

t=1
〈Āt, yt − Ŷt〉

]

= E

[
n∑

t=1

d∑

i=1
Pti (yti −min {Ptiβ, yti})

]
≤ dn

2β = dnmη

2 .

Putting together all the pieces into Eq. (30.5) leads to

Rn ≤
m(1 + log(d))

η
+ endη

2 + dnmη

2 ≤ 2(m ∨ e)
√
nd(1 + log(d)) .

30.5 Notes

1 For a long time it was speculated that the dependence of the regret on m3/2

in Theorem 30.1 might be improvable to m. Very recently, however, the lower
bound was increased to show the upper bound is tight [Cohen et al., 2017]. For
semibandits the worst case lower bound is Ω(

√
dnm) (Exercise 30.5), which

is matched up to constant factors by online stochastic mirror descent with a
different potential (Exercise 30.4).

2 Algorithm 17 needs to sample Kti for each i with Ati = 1. The conditional
expected running time for this is Ati/Pti, which has expectation 1. It follows
that the expected running time over the whole n rounds is O(nd) calls to
the oracle linear optimization algorithm. It can happen that the algorithm
is unlucky and chooses Ati = 1 for some i with Pti quite small. To avoid
catastrophic slowdowns it is possible to truncate the sampling procedure by
defining K̃ti = min{Kti,M} for M suitably large. This introduces a small
controllable bias [Neu, 2015a].

3 While FTPL is excellent in the face of semibandit information, we do not know
of a general result for the bandit model. The main challenge is controlling the
variance of the least squares estimator without John’s exploration.

4 Combinatorial bandits can also be studied in a stochastic setting. There are
several ways to do this. The first mirrors our assumptions for stochastic linear
bandits in Chapter 19 where the loss (more commonly reward) is defined by

Xt = 〈At, θ〉+ ηt , (30.11)

where θ ∈ Rd is fixed and unknown and ηt is the noise on which statistical
assumptions are made (for example, conditionally 1-subgaussian). There are
at least two alternatives. Suppose that θ1, . . . , θn are sampled independently
from some multivariate distribution and define the reward by

Xt = 〈At, θt〉 . (30.12)

This latter version has ‘parameter noise’ and is more closely related to the
adversarial setup studied in this chapter. Finally, one can assume additionally

30.6 Bibliographic remarks 334

that the distribution of θt is a product distribution so that (θ1i)di=1 are also
independent.

5 For some action-sets the off-diagonal elements of the Hessian in Eq. (30.9) are
negative, which improves the dependence on m to just

√
m. An example where

this occurs is when A = {a ∈ {0, 1}d : ‖a‖1 = m}. Let i 6= j and suppose that
z, ξ ∈ Rd and zj ≥ 0. Then you can check that a(z + ξ)i ≤ a(z − 2zjej + ξ)i
and so

∇2F ∗(ξ)ij =
∫

Rd
a(z + ξ)i sign(z)jf(z)dz

=
∫

Rd−1

∫ ∞

0
(a(z + ξ)i − a(z − 2zjej + ξ)i)f(z)dzjdz−j

≤ 0 ,

where dz−j is shorthand for dz1dz2, . . . dzj−1dzj+1, . . . , dzd. You are asked to
complete all the details in Exercise 30.6. This result unfortunately does not
hold for every action-set (Exercise 30.7).

30.6 Bibliographic remarks

The online combinatorial bandit was introduced by Cesa-Bianchi and Lugosi [2012]
where the most comprehensive list of known applications for which computation
is efficient is given. The analysis presented in Section 30.2 is due to Bubeck and
Cesa-Bianchi [2012]. While computational issues remain in the bandit problem,
there has been some progress in certain settings [Combesd et al., 2015]. The
full information setting has been studied quite extensively [Koolen et al., 2010,
and references from/to]. The follow-the-perturbed-leader algorithm was first
proposed by Hannan [1957], rediscovered by Kalai and Vempala [2005a,b] and
generalized by Poland [2005], Hutter and Poland [2005]. Poland [2005] showed a
near-optimal regret for finite-armed adversarial bandits while for combinatorial
settings suboptimal rates have been shown by Awerbuch and Kleinberg [2004],
McMahan and Blum [2004]. Semibandits seem to have been introduced in the
context of shortest-path problems by György et al. [2007]. The general setup and
algorithmic analysis of FTPL presented follows the work by Neu [2015a] who also
had the idea to estimate the inverse probabilities via a geometric random variable.
Our analysis based on mirror descent improves the regret by a factor of

√
m. As

far as we know this has not been seen in the literature on combinatorial bandits
before, but the approach is heavily inspired by Abernethy et al. [2014] who present
the core ideas in the prediction with expert advice setting, Cohen and Hazan
[2015] in the combinatorial full information case and Abernethy et al. [2015] for
finite-armed bandits. The literature on stochastic combinatorial semibandits is
also quite large with algorithms and analysis in the frequentist [Gai et al., 2012,
Combesd et al., 2015, Kveton et al., 2015b] and Bayesian settings [Wen et al.,
2015, Russo and Roy, 2016]. These works focus on the case where the reward

30.7 Exercises 335

is given by Eq. (30.12) and the components of θt are independent. When the
reward is given by Eq. (30.11) one can use the tools for stochastic linear bandits
developed in Part V.

30.7 Exercises

30.1 Prove Theorem 30.1.

30.2 Let Z be sampled from measure on Rd with density f(z) = 2−d exp(−‖z‖1).
The purpose of this exercise is to show that

E[‖Z‖∞] =
d∑

i=1

1
i
. (30.13)

Recall that an exponential with rate λ has density f(x) = λ exp(−λx)1x≥0.

(a) Let X be exponential with rate λ. Show that E[X] = 1/λ.
(b) Let X1, . . . , Xi be independent and exponentially distributed with rate 1.

Show that M = minj∈[i]Xj is exponentially distributed with rate i.
(c) Show that ‖Z‖∞ has the same law as the maximum of d independent standard

exponentials.
(d) Let M1, . . . ,Md be independent exponentially distributed random variables

where Mi has rate i. Show that Z has the same law as
∑d
i=1Mi.

(e) Show that Eq. (30.13) holds.

30.3 Let A ⊂ Rd be a compact convex set and φ(x) = maxa∈A〈a, x〉 its support
function. Let Q be a measure on Rd that is absolutely continuous with respect to
the Lebesgue measure and let Z ∼ Q. Show that

∇E[φ(x+ Z)] = E [argmaxa∈A〈a, x+ Z〉] .

30.4 Adapt the analysis in Exercise 28.10 to derive an algorithm for combinatorial
bandits with semibandit feedback for which the regret is Rn ≤ C

√
mdn for

universal constant C > 0.

30.5 Let m ≥ 1 and that d = km for some k > 1. Prove that for any algorithm
there exists a combinatorial semibandit such that Rn ≥ cmin{nm,

√
mdn} where

c > 0 is a universal constant.

The most obvious choice is to choose A = {a ∈ {0, 1}d : ‖a‖1 = m}, which are
sometimes called m-sets. A lower bound does hold for this action-set [Lattimore
et al., 2018]. However an easier path is to impose a little additional structure
and analyze the multitask bandit setting.

30.7 Exercises 336

30.6 Use the ideas in Note 5 to prove that FTPL has Rn = Õ(
√
mnd) regret

when A = {a ∈ {0, 1}d : ‖a‖1 = m}.

After proving the off-diagonal elements of the Hessian are negative you will also
need to tune the learning rate. We do not know of a source for this result, but
the full information case was studied by Cohen and Hazan [2015].

30.7 Construct an action-set and i 6= j and z, ξ ∈ Rd with zj > 0 such that
a(z + ξ)i ≥ a(z − 2zjej + ξ)i.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

31 Non-Stationary Bandits

The usual definition of regret is not a suitable measure of performance when the
underlying environment is changing. The purpose of this chapter is to provide a
meaningful definition for nonstationary environments and show that algorithms
exist for which this regret is sublinear. While we specify the results to bandits
with finitely many arms (both stochastic and adversarial), many of the ideas
generalize to other models such as linear bandits.

This chapter also illustrates the flexibility of the tools presented in the earlier
chapters, which are applied here almost without modification. We hope (and
expect) that this will also be true for other models you might study.

31.1 Adversarial bandits

In contrast to stochastic bandits, the adversarial bandit model presented in
Chapter 11 does not prevent the environment from changing over time. The
problem is that bounds on the regret can become vacuous when the losses appear
nonstationary. To illustrate an extreme situation, suppose you face a two-armed
adversarial bandit with losses yt1 = I {t ≤ n/2} and yt2 = I {t > n/2}. If we run
Exp3 on this problem, then Theorem 11.2 guarantees that

Rn = E

[
n∑

t=1
ytAt

]
− min
i∈{1,2}

n∑

t=1
yti ≤

√
2nK log(K) .

Since mini∈{1,2}
∑n
t=1 yti = n/2, by rearranging we see that

E

[
n∑

t=1
ytAt

]
≤ n

2 +
√

2nK log(K) .

To put this in perspective, a policy that plays each arm with probability half in
every round would have E[

∑n
t=1 ytAt] = n/2. In other words, the regret guarantee

is practically meaningless.
What should we expect for this problem? The sequence of losses is so regular

that we might hope our policy will mostly play the second arm in the first
n/2 rounds and then switch to playing mostly the first arm in the second n/2
rounds. Then the cumulative loss would be close to zero and the regret would be
negative. Rather than trying to prove a negative regret, let us redefine the regret

http://banditalgs.com
mailto:tor.lattimore@gmail.com

31.1 Adversarial bandits 338

to strengthen the competitor class. Let Γm ⊂ [K]n be the set of action sequences
with at most m− 1 changes.

Γm =
{

(at) ∈ [K]n :
n−1∑

t=1
I {at 6= at+1} ≤ m− 1

}

Then define the nonstationary regret with m− 1 change points by

Rn,m = E

[
n∑

t=1
ytAt

]
− min
a∈Γm

E

[
n∑

t=1
ytat

]
.

The nonstationary regret is sometimes called the tracking regret because a
learner that makes it small must ‘track’ the best arm as it changes. Notice
that Rn,1 coincides with the usual definition of the regret. Furthermore, on the
sequence described at the beginning of the section we see that

Rn,2 = E

[
n∑

t=1
ytAt

]
,

which means a policy can only enjoy sublinear nonstationary regret if it detects
the change point quickly. The obvious question is whether or not such a policy
exists and how its regret depends on m.

Exp4 for nonstationary bandits
One idea is to use the Exp4 policy from Chapter 18 with a large set of experts,
one for each a ∈ Γm. Theorem 18.1 shows that Exp4 with these experts suffers
regret of at most

Rn,m ≤
√

2nK log |Γm| .

Naively bounding log |Γm| and ignoring constant factors shows that

Rn,m = O

(√
nmK log

(
Kn

m

))
.

To see that you cannot do much better than this, imagine playing m adversarial
bandits sequentially, each with horizon n/m. No matter what policy you propose,
there exist choices of bandits such that the expected regret suffered against each
bandit is at least Ω(

√
nK/m). And after summing over the m instances we see

that the worst case regret is at least

Rn,m = Ω
(√

nmK
)
,

which matches the upper bound except for logarithmic factors. Notice how this
lower bound applies to policies that know the location of the changes, so it is
not true that things are significantly harder in the absence of this knowledge.
There is one big caveat with all these calculations. The running time of a naive
implementation of Exp4 is linear in the number of experts, which even for modestly
sized m is very large indeed.

31.1 Adversarial bandits 339

Online Stochastic Mirror Descent
The computational issues faced by Exp4 are most easily overcome using the
tools from online convex optimization developed in Chapter 28. The idea is
to use online stochastic mirror descent and the negentropy potential. Without
further modification this would be Exp3, which you will show does not work for
nonstationary bandits (Exercise 31.2). The trick is to restrict the action set to
the clipped simplex A = PK−1 ∩ [α, 1]K where α ∈ [0, 1/K] is a constant to be
tuned subsequently. The clipping ensures the algorithm does not commit too
hard to any single arm, which prevents it from discovering the change points.
Let F : [0,∞)K → R be the unnormalized negentropy potential and P1 ∈ A be
the uniform probability vector. In each round t the learner samples At ∼ Pt and
updates its sampling distribution by

Pt+1 = argminp∈A η〈p, Ŷt〉+DF (p, Pt) , (31.1)

where η > 0 is the learning rate and Ŷti = I {At = i} yti/Pti is the importance-
weighted estimator. The optimization problem in Eq. (31.1) can be computed
efficiently using the two-step process:

P̃t+1 = argminp∈[0,∞)K η〈p, Ŷt〉+DF (p, Pt)
Pt+1 = argminp∈ADF (p, P̃t+1) .

The first of these subproblems can be evaluated analytically, yielding P̃t+1,i =
Pti exp(−ηŶti). The second can be solved efficiently using the result in
Exercise 26.8.

theorem 31.1 The regret of the policy sampling At ∼ Pt with Pt defined in
Eq. (31.1) is bounded by

Rn,m ≤ αn(K − 1) + m log(1/α)
η

+ ηnK

2 .

Proof Let a∗ ∈ argmina∈Γm
∑n
t=1 ytat be an optimal sequence of actions in

hindsight constrained to Γm. Then let 1 = t1 < t2 < · · · < tm < tm+1 = n so that
a∗t is constant on each interval {ti, . . . , ti+1 − 1}. We abuse notation by writing
a∗i = a∗ti . Then the regret decomposes into

Rn,m = E

[
n∑

t=1
(ytAt − yta∗t)

]
= E

[
m∑

i=1

ti+1−1∑

t=ti

(ytAt − yta∗t)
]

=
m∑

i=1
E

[
E

[
ti+1−1∑

t=ti

(ytAt − yta∗i)
∣∣∣∣∣ Pti

]]
.

The next step is to apply Theorem 28.1 and the solution to Exercise 28.5 to

31.2 Stochastic bandits 340

bound the inner expectation.

E

[
ti+1−1∑

t=ti

(ytAt − yta∗i)
∣∣∣∣∣ Pti

]
= E

[
ti+1−1∑

t=ti

〈Pt − ea∗
i
, yt〉

∣∣∣∣∣ Pti

]

≤ α(ti+1 − ti)(K − 1) + E

[
max
p∈A

ti+1−1∑

t=ti

〈Pt − p, yt〉
∣∣∣∣∣ Pti

]

≤ α(ti+1 − ti)(K − 1) + E

[
max
p∈A

D(p, Pti)
η

+ ηK(ti+1 − ti)
2

∣∣∣∣∣ Pti

]
.

By assumption Pti ∈ A and so Ptij ≥ α for all j and D(p, Pti) ≤ log(1/α).
Combining this observation with the previous two displays shows that

Rn,m ≤ nα(K − 1) + m log(1/α)
η

+ ηnK

2 .

The learning rate and clipping parameters are approximately optimized by

η =
√

2m log(1/α)/(nK) and α =
√
m/(nK) ,

which leads to a regret of Rn,m ≤
√
mnK log(nK/m) +

√
mnK. In typical

applications the value of m is not known. In this case one can choose η =√
log(1/α)/nK and α =

√
1/nK and the regret increases by a factor of O(

√
m).

31.2 Stochastic bandits

We saw in Part II that by making a statistical assumption on the rewards it was
possible to design policies with logarithmic regret. This is the big advantage of
making assumptions – you get stronger results. The nonstationarity makes the
modelling problem less trivial. To keep things simple we will assume the rewards
are Gaussian and that for each arm i there is a function µi : [n] → R and the
reward is

Xt = µAt(t) + ηt ,

where (ηt) is a sequence of independent standard Gaussian random variables.
The optimal arm in round t has mean µ∗(t) = maxi∈[K] µi(t) and the regret is

Rn(µ) =
n∑

t=1
µ∗(t)− E

[
n∑

t=1
µAt(t)

]
.

The amount of nonstationarity is modelled by placing restrictions on the functions
µi. To be consistent with the previous section we assume the mean vector changes
at most m− 1 times, which amounts to saying that

n−1∑

t=1
max
i∈[K]

I {µi(t) 6= µi(t+ 1)} ≤ m− 1 .

31.2 Stochastic bandits 341

Suppose the locations of the change points were known, then running a new copy
of UCB on each interval would lead to a bound of

Rn(µ) = O

(
mK

∆min
log
(n
m

))
,

where ∆min is the smallest suboptimality gap over all m blocks. In the last section
we saw the bound achieved by an omniscient policy that knows when the changes
occur can be achieved by a policy that does not. Unfortunately this is not true
here.

theorem 31.2 Let K = 2 and suppose that µi(t) = µi is constant for both arms
and ∆ = µ2−µ1 > 0. Then for all sufficiently large n there exists a nonstationary
bandit µ′ with two change points such that Rn(µ′) ≥ cn/Rn(µ), where c > 0 is a
universal constant.

The theorem shows that if a policy enjoys Rn(µ) = o(n1/2) for any nontrivial
(stationary) bandit, then its minimax regret is at least ω(n1/2) on some
nonstationary bandit. In particular, if Rn(µ) = O(log(n)), then the minimax
regret is at least Ω(n/ log(n)). This immediately dashes our hopes for a policy
that is much better than Exp4 in a stochastic setting. There are algorithms
designed for nonstationary bandits in the stochastic setting with abrupt change
points as described above. Those that come with theoretical guarantees are based
on forgetting or discounting data so that decisions of the algorithm depend almost
entirely on recent data. In the notes we discuss these approaches along with
alternative models for nonstationarity.

Proof of Theorem 31.2 Let (Sk)Lk=1 be a partition of [n] to be specified later.
Let P and E[·] denote the probabilities and expectations with respect to the
bandit determined by µ and P′ with respect to alternative nonstationary bandit
µ′ to be defined shortly. By the pigeonhole principle there exists a k ∈ [L] such
that

E

[∑

t∈Sk
I {At = 2}

]
≤ E[T2(n)]

L
.

Define an alternative nonstationary bandit with µ′(t) = µ except for t ∈ Sk
when we let µ′2(t) = µ2 + ε where ε =

√
2L/E[T2(n)]. Then by Lemma 15.1 and

Theorem 14.2,

P

(∑

t∈Sk
I {At = 2} ≥ |Sk|2

)
+ P′

(∑

t∈Sk
I {At = 2} < |Sk|2

)
≥ 1

2 exp (−D(P,P′))

≥ 1
2 exp

(
−E[T2(n)]ε2

2L

)
≥ 1

2e ,

31.3 Notes 342

By Markov’s inequality,

P

(∑

t∈Sk
I {At = 2} ≥ |Sk|2

)
≤ 2
|Sk|

E

[∑

t∈Sk
I {At = 2}

]
≤ 2E[T2(n)]

L|Sk|
≤ 1

∆2|Sk|
,

where the last inequality follows by choosing L =
⌈
2∆2E[T2(n)]

⌉
, which also

ensures that ε−∆ ≥ ε/2. Therefore

Rn(µ′) ≥
(

1
2e −

1
∆2|Sk|

)
ε|Sk|

4 =
(

1
2e −

1
∆2|Sk|

) |Sk|∆
2 .

If (Sk) is chosen as a uniform partition so that |Sk| ≥ bn/Lc, then there exists a
universal constant c > 0 such that for sufficiently large n, Rn(µ′) ≥ cn/Rn(µ).

31.3 Notes

1 The negative results for stochastic nonstationary bandits do not mean that
trying to improve on the adversarial bandit algorithms is completely hopeless.
First of all, the adversarial bandit algorithms are not well suited for exploiting
distributional assumptions on the noise, which makes things irritating when
the losses/rewards are Gaussian (which are unbounded) or Bernoulli (which
have small variance near the boundaries). There have been several algorithms
designed specifically for stochastic nonstationary bandits. When the reward
distributions are permitted to change abruptly as in the last section, then the
two main algorithms are based on the idea of ‘forgetting’ rewards observed in
the distant past. One way to do this is with discounting. Let γ ∈ (0, 1) be
the discount factor and define

µ̂γi (t) =
t∑

s=1
γt−sI {As = i}Xs T γi (t) =

t∑

s=1
γt−sI {As = i} .

Then for appropriately tuned constant α the Discounted UCB policy chooses
each arm once and subsequently

At = argmaxi∈[K]


µ̂γi (t− 1) +

√√√√ α

T γi (t− 1) log
(

K∑

i=1
T γi (t− 1)

)
 .

The idea is to ‘discount’ rewards that occurred far in the past, which makes
the algorithm most influenced by recent events. A similar algorithm called
Sliding-Window UCB uses a similar approach, but rather than discounting past
rewards with a geometric discount function it simply discards them altogether.
Let τ ∈ N+ be a constant and define

µ̂τi (t) =
t∑

s=t−τ+1
I {As = i}Xs T τi (t) =

t∑

s=t−τ+1
I {As = i} .

31.4 Bibliographic remarks 343

Then the Sliding-Window UCB chooses

At = argmaxi∈[K]

(
µ̂τi (t− 1) +

√
α

T τi (t− 1) log(t ∧ τ)
)
.

It is known that if γ or τ are tuned appropriately, then for Discounted UCB
the regret may be bounded by O(

√
nm log(n)) and for Sliding-Window UCB

by O(
√
nm log(n)). Neither bound improves on what is available using Exp4,

but there is some empirical evidence to support the use of these algorithms
when the stochastic assumption holds.

2 An alternative way to model nonstationary stochastic bandits is to assume the
mean payoffs of the arms are slowly drifting. One way to do this is to assume
that µi(t) follows a reflected Brownian motion in some interval. It is not hard
to see that the regret is necessary linear in this case because the best arm can
change in any round with nonzero nondecreasing probability. The objective in
this case is to understand the magnitude of the linear regret in terms of the
size of the interval or volatility of the Brownian motion.

3 Yet another idea is to allow the means to change in an arbitrary way, but
restrict the amount of variation. Let µt = (µ1(t), . . . , µK(t)) and

Vn =
n−1∑

t=1
‖µt − µt+1‖∞

be the cumulative change in mean rewards measured in terms of the supremum
norm. Then for each V ∈ [1/K, n/K] there exists a policy such that for all
bandits with Vn ≤ V it holds that

Rn ≤ C(V K log(K))1/3T 2/3 .

And furthermore, this bound is nearly tight in a minimax sense except for
logarithmic terms [Besbes et al., 2014].

31.4 Bibliographic remarks

Nonstationary bandits have quite a long history. The celebrated Gittins index
is based on a model where each arm is associated with a Markov chain that
evolves when played and the reward depends on the state [Gittins, 1979, Gittins
et al., 2011]. The classical approaches address this problem in the Bayesian
framework and the objective is primarily to design efficient algorithms rather
than understanding the frequentist regret. Note that the state is observed after
each action. Even more related is the restless bandit, which is the same as
Gittin’s setup except the Markov chain for every action evolves in every round.
The problem is made challenging because the learner still only observes the state
and reward for the action they chose. Restless bandits were introduced by Whittle
[1988] in the Bayesian framework and unfortunately there are more negative
results than positive ones. There has been some interesting frequentist analysis,

31.5 Exercises 344

but the challenging nature of the problem makes it difficult to design efficient
algorithms with meaningful regret guarantees [Ortner et al., 2012]. Certainly
there is potential for more work in this area. The ideas in Section 31.1 are mostly
generalizations of algorithms designed for the full information setting, notably
the Fixed Share algorithm Herbster and Warmuth [1998]. The first algorithm
designed for the adversarial nonstationary bandit is Exp3.S by Auer et al. [2002b].
This algorithm can be interpretted as an efficient version of Exp4 with a carefully
chosen initialization such that the exponential computation over all experts
collapses into a simple expression. We do not know of a clean source for this
intepretation, but see the analysis of Fixed Share in the book by Cesa-Bianchi
and Lugosi [2006]. The Exp3.P policy was originally developed in order to prove
high probability bounds for finite-armed adversarial bandits [Auer et al., 2002b],
but Audibert and Bubeck [2010b] proved that with appropriate tuning it also
enjoys the same bounds as Exp3.S. Presumably this also holds for Exp3-IX.
Mirror descent has been used to prove tracking bounds in the full information
setting by Herbster and Warmuth [2001]. A more recent reference is by György
and Szepesvári [2016], which makes the justification for clipping explicit. The
lower bound for stochastic nonstationary bandits is by Garivier and Moulines
[2011], though our proof differs in minor ways. We mentioned that there is a
line of work on stochastic nonstationary bandits where the rewards are slowly
drifting. The approach based on Brownian motion is due to Slivkins and Upfal
[2008] while the variant described in Note 3 is by Besbes et al. [2014]. The idea
of discounted UCB was introduced without analysis by Kocsis and Szepesvári
[2006]. The analysis of this algorithm and also the sliding window algorithm is
by Garivier and Moulines [2011].

31.5 Exercises

31.1 Let n,m,K ∈ N+ be such that n ≥ mK. Prove that for any policy π there
exists an adversarial bandit (yti) such that

Rn,m ≥ c
√
nmK ,

where c > 0 is a universal constant.

31.2 Prove for all sufficiently large n that Exp3 from Chapter 11 has Rn,2 ≥ cn
for some universal constant c > 0.

31.3 Let K = 2 and n = 1000 and define adversarial bandit in terms of losses
with yt1 = I {t < n/2} and yt2 = I {t ≥ n/2}. Plot the expected regret of Exp3,
Exp3-IX and the variant of online stochastic mirror descent proposed in this
chapter. Experiment with a number of learning rates for each algorithm.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

32 Ranking

Ranking is the process of producing an ordered shortlist of K items from a larger
collection of L items. These tasks come in several flavors. Sometimes the user
supplies a query and the system responds with a shortlist of items. In other
applications the shortlist is produced without an explicit query. For example, a
streaming service might provide a list of recommended movies when you sign in.
Our focus here is on the second type of problem.

We examine a sequential version of the ranking problem where the learner
selects a ranking, receives feedback about its quality and repeats the process over
n rounds. The feedback will be in the form of ‘clicks’ from the user, which comes
from the view that ranking is a common application in on-line recommendation
systems and the user selects the items they like by clicking on them. The objective
of the learner is to maximize the expected number of clicks.

A permutation on [L] is an invertible function σ : [L]→ [L]. Let A be the set
of all permutations on [L]. In each round t the learner chooses an action At ∈ A,
which should be interpretted as meaning the learner places item At(k) in the kth
position. Equivalently, A−1

t (i) is the position of the ith item. Since the shortlist
has length K the order of At(K + 1), . . . , At(L) is not important and is included
only for notational convenience. After choosing their action, the learner observes
Cti ∈ {0, 1} for each i ∈ [L] where Cti = 1 if the user clicked on the ith item in
the collection. Note that the user may click on multiple items. We will assume
a stochastic model where the probability that the user clicks on position k in
round t only depends on At and is given by v(At, k) with v : A× [L]→ [0, 1] an
unknown function. The regret over n rounds is

Rn = nmax
a∈A

L∑

k=1
v(a, k)− E

[
n∑

t=1

L∑

i=1
Cti

]
.

A naive way to minimize the regret would be to create a finite-armed bandit
where each arm corresponds to a ranking of the items and then apply your
favourite algorithm from Part II. The problem is that these algorithms treat
the arms as independent and cannot exploit any structure in the ranking. This
is almost always unacceptable because the number of ways to rank K items
from a collection of size L is L!/(L−K)!. Ranking illustrates of one of the most
fundamental dilemmas in machine learning: choosing a model. A rich model
leads to low misspecification error, but takes longer to fit while a course model

http://banditalgs.com
mailto:tor.lattimore@gmail.com

32.1 Click models 346

can suffer from large misspecification error. In the context of ranking a model
corresponds to assumptions on the function v.

32.1 Click models

The only way to avoid the curse of dimensionality is to make assumptions. A
natural way to do this for ranking is to assume that the probability of clicking on
an item depends on (a) the underlying quality of that item and (b) the location of
that item in the chosen ranking. A formal definition of how this is done is called
a click model. Deciding which model to use depends on the particulars of the
problem at hand, such as how the list is presented to the user and whether or not
clicking on an item diverts them to a different page. This issue has been studied
by the data retrieval community and there is now a large literature devoted to the
pros and cons of different choices. We limit ourselves to describing the popular
choices and give pointers to the literature at the end of the chapter.

Document-based model
The document-based model is one of the simplest click models, which assumes
the probability of clicking on a shortlisted item is equal to its attractiveness.
Formally, for each item i ∈ [L] let α(i) ∈ [0, 1] be the attractiveness of item i.
The document-based model assumes that

v(a, k) = α(a(k))I {k ≤ K} .

The unknown quantity in this model is the attractiveness function, which has
just L parameters.

Position-based model
The document-based model might occasionally be justified, but in most cases the
position of an item in the ranking also affects the likelihood of a click. A natural
extension that accounts for this behavior is called the position-based model,
which assumes that

v(a, k) = α(a(k))χ(k) ,

where χ : [L]→ [0, 1] is a function that measures the quality of position k. Since
the user cannot click on items that are not shown we assume that χ(k) = 0 for
k > K. This model is richer than the document-based model, which is recovered
by choosing χ(k) = I {k ≤ K}. The number of parameters in the position-based
models is K + L.

Cascade model
The position-based model is not suitable for applications where clicking on an
item takes the user to a different page. In the cascade model it is assumed that

32.1 Click models 347

the learner scans the shortlisted items in order and only clicks on the first item
they find attractive. Define χ : A× [L]→ [0, 1] by

χ(a, k) =





1 if k = 1
0 if k > K
∏k−1
`=1 (1− α(a(`))) otherwise ,

which is the probability that the user has not clicked on the first k − 1 items.
Then the cascade model assumes that

v(a, k) = α(a(k))χ(a, k) . (32.1)

The first term in the factorization is the attractiveness function, which measures
the probability that the user is attracted to the ith item. The second term can be
interpreted as the probability that the user examines that item. This interpretation
is also valid in the position-based model. It is important to emphasize that v(a, k)
is the probability of clicking on the kth position when taking action a ∈ A. This
does not mean that Ct1, . . . , CtL are independent. So far the assumptions only
restrict the marginal distribution of each Cti, which for most of this chapter is all
we require. Nevertheless, in the cascade model it would be standard to assume
that CtAt(k) = 0 if there exists an ` < k such that CtAt(`) = 1 and otherwise

P(CtAt(k) = 1 | At, CtAt(1) = 0, . . . , CtAt(k−1) = 0) = I {k ≤ K}α(At(k)) .

Like the document-based model, the cascade model has L parameters.

Generic model
We now introduce a model that generalizes the last three. Previous models
essentially assumed that the probability of a click factorizes into an attractiveness
probability and an examination probability. We deviate from this norm by making
assumptions directly on the function v. Given α : [L] → [0, 1], an action a is
called α-optimal if the shortlisted items are the K most attractive sorted by
attractiveness: α(a(k)) = maxk′>k α(a(k′)) for all k ∈ [K].

assumption 32.1 There exists an attractiveness function α : [L]→ [0, 1] such
that the following four conditions are satisfied. Let a ∈ A and i, j, k ∈ [L] be such
that α(i) ≥ α(j) and let σ be the permutation that exchanges i and j.

(a) v(a, k) = 0 for all k > K.
(b)

∑K
k=1 v(a∗, k) = maxa∈A

∑K
k=1 v(a, k) for all α-optimal actions a∗.

(c) For all i and j with α(i) ≥ α(j)

v(a, a−1(i)) ≥ α(i)
α(j)v(σ ◦ a, a−1(i)) ,

where σ is the permutation on [L] that exchanges i and j.
(d) If a is an action such that α(a(k)) = α(a∗(k)) for some α-optimal action a∗,

then v(a, k) ≥ v(a∗, k) .

32.2 Policy 348

a a′

5
4
3
2
1

i

j

j

i

These assumptions may appear quite myste-
rious. At some level they are chosen to make the
proof go through, while simultaneously general-
izing the document-based, position-based and
cascade models (32.1). The choices not entirely
without basis or intuition, however. Part (a)
asserts that the user does not click on items
that are not placed in the shortlist. Part (b) says that α-optimal actions maximize
the expected number of clicks. Note that there are multiple optimal rankings if α
is not injective. Part (c) is a little more restrictive and is illustrated in the figure.
The probability of clicking on the second position is larger in the ranking on
the left than the right by a factor of at least α(i)/α(j). On the other hand, the
probability of clicking on the fourth position is larger in the ranking on the right.
One way to justify this is to assume that v(a, k) = α(a(k))χ(a, k) where χ(a, k) is
viewed as the probability that the user examines position k. It seems reasonable to
assume that the probability the user examines position k should only depend on
the first k−1 items. Hence v(a, 2) = α(i)χ(a, 2) = α(i)χ(a′, 2) = α(i)/α(j)v(a′, 2).
In order the make the argument for the fourth position we need to assume that
placing less attractive items in the early slots increases the probability that the
user examines later positions (searching for a good result). This is true for the
position-based and cascade models, but is perhaps the most easily criticised
assumption. Part (d) says that the probability that a user clicks on a position
with a correctly placed item is at least as large as the probability that the user
clicks on that position in an optimal ranking. The justification is that the items
a(1), . . . , a(k − 1) cannot be more attractive than a∗(1), . . . , a∗(k − 1), which
should increase the likelihood that the user makes it the kth position.

The generic model has many parameters, but we will see that the learner does
not need to learn all of them in order to suffer small regret. The advantage of
this model relative to the previous ones is that it offers more flexibility and yet it
is not so flexible that learning is impossible.

32.2 Policy

We now explain the policy for learning to rank when v is unknown, but satisfies
Assumption 32.1. After the description is an illustration that may prove helpful.

Step 0: Initialization
The policy takes as input a confidence parameter δ ∈ (0, 1) and L and K. The
policy maintains a binary relation Gt ⊆ [L] × [L]. In the first round t = 1 the
relation is empty: G1 = ∅. You should think of Gt as maintaining pairs (i, j)
for which the policy has proven with high probability that α(i) < α(j). Ideally,
Gt ⊆ G = {(i, j) ∈ [L]× [L] : α(i) ≤ α(j)}.

32.2 Policy 349

Step 1: Defining a partition
In each round t the learner computes a partition of the actions based on a
topological sort according to relation Gt. Given A ⊂ [L] define minGt(A) to be
the set of minimum elements of A according to relation Gt.

minGt(A) = {i ∈ A : (i, j) /∈ Gt for all j ∈ Gt} .

Then let Pt1,Pt2, . . . be the partition of [L] defined inductively by

Ptd = minGt

(
[L] \

d−1⋃

c=1
Ptc
)
.

Finally, let Mt = max{d : Ptd 6= ∅}. The reader should check that if Gt does
not have cycles, then Mt is well defined and finite and that Pt1, . . . ,PtMt is
indeed a partition of [L] (Exercise 32.5). The event that Gt contains cycles is a
failure event. In order for the policy to be well defined we assume it chooses some
arbitrary fixed action in this case.

Step 2: Choosing an action
Define It1, . . . , ItMt

be the partition of [L] defined inductively by

Itd = [|∪c≤dPtc|] \ [|∪c<dPtc|] .

Next let Σt ⊆ A be the set of actions σ such that σ(Itd) = Ptd for all d ∈ [Mt].
The algorithm chooses At uniformly at random from Σt. Intuitively the policy
first shuffles the items in Pt1 and uses these as the first |Pt1| entries in the ranking.
Then Pt2 is shuffled and the items are appended to the ranking. This process is
repeated until the ranking is complete. For an item i ∈ [L], we denote by Dti the
unique index d such that i ∈ Ptd.

Step 3: Updating the relation
For any pair of items i, j ∈ [L] define Stij =

∑t
s=1 Usij and Ntij =

∑t
s=1 |Usij |

where

Utij = I {Dti = Dtj} (Cti − Ctj) .

All this means is that Stij tracks the differences between the number of clicks
of items i and j over rounds when they share a partition. As a final step, the
relation Gt+1 is given by

Gt+1 = Gt ∪



(j, i) : Stij ≥

√√√√2Ntij log
(
c
√
Ntij

δ

)
 ,

where c ≈ 3.43 is the universal constant given in Exercise 20.7. In the analysis we
will show that if α(i) ≥ α(j), then with high probability Stji is never large enough
for Gt+1 to include (i, j). In this sense, with high probability Gt is consistent
with the order on [L] induced by sorting in decreasing order with respect to α(·).
Note that Gt is generally not a partial order because it is not transitive.

32.3 Regret analysis 350

Illustration
Suppose L = 5 and K = 4 and in round t the relation is Gt = {(3, 1), (5, 2), (5, 3)},
which is represented in the graph below where an arrow from j to i indicates
that (j, i) ∈ Gt.

1 2 4

3

5

Pt1 It1 = {1, 2, 3}

It2 = {4}

It3 = {5}

Pt2

Pt3

This means that in round t the first three positions in the ranking will contain
items from Pt1 = {1, 2, 4}, but with random order. The fourth position will be
item 3 and item 5 is not shown to the user.

Part (a) of Assumption 32.1 means that items in position k > K are never
clicked. As a consequence, the algorithm never needs to actually compute the
partitions Ptd for which min Itd > K because items in these partitions are
never shortlisted.

32.3 Regret analysis

theorem 32.1 Let function v satisfy Assumption 32.1 and assume that
α(1) > α(2) > · · · > α(L). Let ∆ij = α(i) − α(j) and δ ∈ (0, 1). Then the
regret of TopRank is bounded from above as

Rn ≤ δnKL2 +
L∑

j=1

min{K,j−1}∑

i=1


1 +

6(α(i) + α(j)) log
(
c
√
n
δ

)

∆ij


 .

Furthermore, Rn ≤ δnKL2 +KL+

√
4K3Ln log

(
c
√
n

δ

)
.

By choosing δ = n−1 the theorem shows that the expected regret is at most

Rn = O




L∑

j=1

min{K,j−1}∑

i=1

α(i) log(n)
∆ij


 and Rn = O

(√
K3Ln log(n)

)
.

The algorithm does not make use of any assumed ordering on α(·), so the
assumption is only used to allow for a simple expression for the regret. The
core idea of the proof is to show that (a) if the algorithm is suffering regret as
a consequence of misplacing an item, then it is gaining information about the
relation of the items so that Gt will gain elements and (b) once Gt is sufficiently

32.3 Regret analysis 351

rich the algorithm is playing optimally. Let Ft = σ(A1, C1, . . . , At, Ct) and
Pt(·) = P(· | Ft) and Et[·] = E[· | Ft]. For each t ∈ [n] let Ft to be the failure
event that there exists i 6= j ∈ [L] and s < t such that Nsij > 0 and

∣∣∣∣∣Ssij −
s∑

u=1
Eu−1 [Uuij | Uuij 6= 0] |Uuij |

∣∣∣∣∣ ≥
√

2Nsij log(c
√
Nsij/δ) .

lemma 32.1 Let i and j satisfy α(i) ≥ α(j) and d ≥ 1. On the event that
i, j ∈ Psd and d ∈ [Ms] and Usij 6= 0, the following hold almost surely:

(a) Es−1[Usij | Usij 6= 0] ≥ ∆ij

α(i) + α(j) .

(b) Es−1[Usji | Usji 6= 0] ≤ 0 .

Proof For the remainder of the proof we focus on the event that i, j ∈ Psd and
d ∈ [Ms] and Usij 6= 0. We also discard the measure zero subset of this event where
Ps−1(Usij 6= 0) = 0. From now on we omit the ‘almost surely’ qualification on
conditional expectations. Under these circumstances the definition of conditional
expectation shows that

Es−1[Usij | Usij 6= 0] = Ps−1(Csi = 1, Csj = 0)− Ps−1(Csi = 0, Csj = 1)
Ps−1(Csi 6= Csj)

= Ps−1(Csi = 1)− Ps−1(Csj = 1)
Ps−1(Csi 6= Csj)

≥ Ps−1(Csi = 1)− Ps−1(Csj = 1)
Ps−1(Csi = 1) + Ps−1(Csj = 1)

= Es−1[v(As, A−1
s (i))− v(As, A−1

s (j))]
Es−1[v(As, A−1

s (i)) + v(As, A−1
s (j))]

, (32.2)

where in the second equality we added and subtracted Ps−1(Csi = 1, Csj = 1).
By the design of TopRank, the items in Ptd are placed into slots Itd uniformly
at random. Let σ be the permutation that exchanges the positions of items i and
j. Then using Part Item (c) of Assumption 32.1,

Es−1[v(As, A−1
s (i))] =

∑

a∈A
Ps−1(As = a)v(a, a−1(i))

≥ α(i)
α(j)

∑

a∈A
Ps−1(As = a)v(σ ◦ a, a−1(i))

= α(i)
α(j)

∑

a∈A
Ps−1(As = σ ◦ a)v(σ ◦ a, (σ ◦ a)−1(j))

= α(i)
α(j)Es−1[v(As, A−1

s (j))] ,

where the second equality follows from the fact that a−1(i) = (σ ◦a)−1(j) and the
definition of the algorithm ensuring that Ps−1(As = a) = Ps−1(As = σ ◦ a). The

32.3 Regret analysis 352

last equality follows from the fact that σ is a bijection. Using this and continuing
the calculation in Eq. (32.2) shows that

Eq. (32.2) =
Es−1

[
v(As, A−1

s (i))− v(As, A−1
s (j))

]

Es−1
[
v(As, A−1

s (i)) + v(As, A−1
s (j))

]

= 1− 2
1 + Es−1

[
v(As, A−1

s (i))
]
/Es−1

[
v(As, A−1

s (j))
]

≥ 1− 2
1 + α(i)/α(j)

= α(i)− α(j)
α(i) + α(j) = ∆ij

α(i) + α(j) .

The second part follows from the first since Usji = −Usij .

The next lemma shows that the failure event occurs with low probability.

lemma 32.2 It holds that P(Fn) ≤ δL2.

Proof The proof follows immediately from Lemma 32.1, the definition of Fn, the
union bound over all pairs of actions, and a modification of the Azuma-Hoeffding
inequality in Exercise 20.7.

lemma 32.3 On the event F ct it holds that (i, j) /∈ Gt for all i < j.

Proof Let i < j so that α(i) ≥ α(j). On the event F ct either Nsji = 0 or

Ssji −
s∑

u=1
Eu−1[Uuji | Uuji 6= 0]|Uuji| <

√
2Nsji log

(c
δ

√
Nsji

)
for all s < t .

When i and j are in different blocks in round u < t, then Uuji = 0 by definition.
On the other hand, when i and j are in the same block, Eu−1[Uuji | Uuji 6= 0] ≤ 0
almost surely by Lemma 32.1. Based on these observations,

Ssji <

√
2Nsji log

(c
δ

√
Nsji

)
for all s < t ,

which by the design of TopRank implies that (i, j) /∈ Gt.

lemma 32.4 Let I∗td = minPtd be the most attractive item in Ptd. Then on
event F ct , it holds that I∗td ≤ 1 +

∑
c<d |Ptd| for all d ∈ [Mt].

Proof Let i∗ = min∪c≥dPtc. Then i∗ ≤ 1 +
∑
c<d |Ptd| holds trivially for any

Pt1, . . . ,PtMt
and d ∈ [Mt]. Now consider two cases. Suppose that i∗ ∈ Ptd. Then

it must be true that i∗ = I∗td and our claim holds. On other hand, suppose that
i∗ ∈ Ptc for some c > d. Then by Lemma 32.3 and the design of the partition,
there must exist a sequence of items id, . . . , ic in blocks Ptd, . . . ,Ptc such that
id < · · · < ic = i∗. From the definition of I∗td, I∗td ≤ id < i∗. This concludes our
proof.

32.3 Regret analysis 353

lemma 32.5 On the event F cn and for all i < j it holds that

Snij ≤ 1 + 6(α(i) + α(j))
∆ij

log
(
c
√
n

δ

)
.

Proof The result is trivial when Nnij = 0. Assume from now on that Nnij > 0.
By the definition of the algorithm arms i and j are not in the same block once
Stij grows too large relative to Ntij , which means that

Snij ≤ 1 +
√

2Nnij log
(c
δ

√
Nnij

)
.

On the event F cn and part (a) of Lemma 32.1 it also follows that

Snij ≥
∆ijNnij

α(i) + α(j) −
√

2Nnij log
(c
δ

√
Nnij

)
.

Combining the previous two displays shows that

∆ijNnij
α(i) + α(j) −

√
2Nnij log

(c
δ

√
Nnij

)
≤ Snij ≤ 1 +

√
2Nnij log

(c
δ

√
Nnij

)

≤ (1 +
√

2)
√
Nnij log

(c
δ

√
Nnij

)
. (32.3)

Using the fact that Nnij ≤ n and rearranging the terms in the previous display
shows that

Nnij ≤
(1 + 2

√
2)2(α(i) + α(j))2

∆2
ij

log
(
c
√
n

δ

)
.

The result is completed by substituting this into Eq. (32.3).

Proof of Theorem 32.1 The first step in the proof is an upper bound on the
expected number of clicks in the optimal list a∗. Fix time t, block Ptd, and recall
that I∗td = minPtd is the most attractive item in Ptd. Let k = A−1

t (I∗td) be the
position of item I∗td and σ be the permutation that exchanges items k and I∗td.
By Lemma 32.4, I∗td ≤ k; and then from Parts (c) and (d) of Assumption 32.1 we
have that v(At, k) ≥ v(σ ◦ At, k) ≥ v(a∗, k). Based on this result, the expected
number of clicks on I∗td is bounded from below by those on items in a∗,

Et−1

[
CtI∗

td

]
=
∑

k∈Itd
Pt−1(A−1

t (I∗td) = k)Et−1[v(At, k) | A−1
t (I∗td) = k]

= 1
|Itd|

∑

k∈Itd
Et−1[v(At, k) | A−1

t (I∗td) = k] ≥ 1
|Itd|

∑

k∈Itd
v(a∗, k) ,

where we also used the fact that TopRank randomizes within each block to
guarantee that Pt−1(A−1

t (I∗td) = k) = 1/|Itd| for any k ∈ Itd. Using this and the
design of TopRank,

K∑

k=1
v(a∗, k) =

Mt∑

d=1

∑

k∈Itd
v(a∗, k) ≤

Mt∑

d=1
|Itd|Et−1

[
CtI∗

td

]
.

32.4 Notes 354

Therefore, under event F ct , the conditional expected regret in round t is bounded
by

K∑

k=1
v(a∗, k)− Et−1




L∑

j=1
Ctj


 ≤ Et−1



Mt∑

d=1
|Ptd|CtI∗

td
−

L∑

j=1
Ctj




= Et−1



Mt∑

d=1

∑

j∈Ptd
(CtI∗

td
− Ctj)




=
Mt∑

d=1

∑

j∈Ptd
Et−1[UtI∗

td
j]

≤
L∑

j=1

min{K,j−1}∑

i=1
Et−1 [Utij] . (32.4)

The last inequality follows by noting that Et−1[UtI∗
td
j] ≤

∑min{K,j−1}
i=1 Et−1[Utij].

To see this use part (a) of Lemma 32.1 to show that Et−1[Utij] ≥ 0 for i < j and
Lemma 32.4 to show that when I∗td > K, then neither I∗td nor j are not shown to
the user in round t so that UtI∗

td
j = 0. Substituting the bound in Eq. (32.4) into

the regret leads to

Rn ≤ nKP(Fn) +
L∑

j=1

min{K,j−1}∑

i=1
E [I {F cn}Snij] , (32.5)

where we used the fact that the maximum number of clicks over n rounds is
nK. The proof of the first part is completed by using Lemma 32.2 to bound
the first term and Lemma 32.5 to bound the second. The problem independent
bound follows from Eq. (32.5) and by stopping early in the proof of Lemma 32.5
(Exercise 32.6).

32.4 Notes

1 At no point in the analysis did we use the fact that v is fixed over time. Suppose
that v1, . . . , vn are a sequence of click-probability functions that all satisfy
Assumption 32.1 with the same attractiveness function. The regret in this
setting is

Rn =
n∑

t=1

K∑

k=1
vt(a∗, k)− E

[
n∑

t=1

L∑

i=1
Cti

]
.

Then the bounds in Theorem 32.1 still hold without changing the algorithm.
2 The cascade model is usually formalized in the following more restrictive fashion.

Let {Zti : i ∈ [L], t ∈ [n]} be a collection of independent Bernoulli random

32.4 Notes 355

variables with P (Zti = 1) = α(i). Then define Kt as the first item i in the
shortlist with Zti = 1:

Kt = min
{
k ∈ [K] : ZtAt(k) = 1

}
,

where the minimum of an empty set is ∞. Finally let Cti = 1 if and only if
Kt ≤ K and At(Kt) = i. This setup satisfies Eq. (32.1), but the independence
assumption makes it possible to estimate α without randomization. Notice
that in any round t with Kt ≤ K, all items i with A−1

t (i) < Kt must have
been unattractive (Zti = 0) while the clicked item must be attractive (Zti = 1).
This fact can be used in combination with standard concentration analysis
to estimate the attractiveness. The optimistic policy sorts the L items in
decreasing order by their upper confidence bounds and shortlists the first K.
When the confidence bounds are derived from Hoeffding’s inequality this policy
is called CascadeUCB, while the policy that uses Chernoff’s lemma is called
CascadeKL-UCB. The computational cost of the latter policy is marginally
higher than the former, but the improvement is also quite significant because
in practice most items have barely positive attractiveness.

3 The linear dependence of the regret on L is unpleasant when the number of
items is large, which is the case in many practical problems. Like for finite-
armed bandits one can introduce a linear structure on the items by assuming
that α(i) = 〈θ, φi〉 where θ ∈ Rd is an unknown parameter vector and (φi)Li=1
are known feature vectors. This has been investigated in the cascade model by
Zong et al. [2016].

4 There is an adversarial variant of the cascade model. In the ranked bandit
model an adversary secretly chooses a sequence of sets S1, . . . , Sn with St ⊆ [L].
In each round t the learner chooses At ∈ A and receives a reward Xt(At) where
Xt : A → [0, 1] is given by Xt(a) = I {St ∩ {a(1), . . . , a(k)} 6= ∅}. The feedback
is the position of the clicked action, which is Kt = min{k ∈ [K] : At(k) ∈ St}.
The regret is

Rn =
n∑

t=1
(Xt(a∗)−Xt(At)) ,

where a∗ is the optimal ranking in hindsight:

a∗ = argmina∈A
n∑

t=1
Xt(a) . (32.6)

Notice that this is the same as the cascade model when St = {i : Zti = 1}.
5 A challenge in the ranked bandit model is that solving the offline problem (Eq.

32.6) for known S1, . . . , Sn is NP-hard. How can one learn when finding an
optimal solution to the offline problem is hard? First, hardness only matters
if |A| is large. When L and K are not too large, then exhaustive search is a
quite feasible. If this is not an option one may use an approximation algorithm.
It turns out that in a certain sense the best one can do is to use a greedy

32.5 Bibliographic remarks 356

algorithm, We omit the details, but the highlight is that there exist efficient
algorithms such that

E

[
n∑

t=1
Xt(At)

]
≥
(

1− 1
e

)
max
a∈A

n∑

t=1
Xt(a)−O

(
K
√
nL log(L)

)
.

See the article by Radlinski et al. [2008] for more details.
6 By modifying the reward function one can also define an adversarial variant

of the document-based model. Like before the adversary secretly chooses
S1, . . . , Sn as subsets of [L], but now the reward is

Xt(a) = |St ∩ {a(1), . . . , a(k)}| .

The feedback is the positions of the clicked items, St∩{a(1), . . . , a(k)}. For this
model there are no computation issues. In fact, problem can be analyzed using
a reduction to combinatorial semibandits, which we ask you to investigate in
Exercise 32.3.

7 The position-based model can also be modelled in the adversarial setting by
letting Stk ⊂ [L] for each t ∈ [n] and k ∈ [K]. Then defining the reward by

Xt(a) =
K∑

k=1
I {At(k) ∈ Stk} .

Again, the feedback is the positions of the clicked items, {k ∈ [K] : At(k) ∈ Stk}.
This model can also be tackled using algorithms for combinatorial semibandits
(Exercise 32.4).

32.5 Bibliographic remarks

The policy and analysis presented in this chapter is by the authors and others
[Lattimore et al., 2018]. The most related work is by Zoghi et al. [2017] who
assumed a factorization of the click probabilities v(a, k) = α(a(k))χ(a, k) and then
made assumptions on χ. The assumptions made here are slightly less restrictive
and the bounds are simultaneously stronger. Some experimental results comparing
these algorithms are given by Lattimore et al. [2018]. For more information on
click models we recommend the survey paper by Chuklin et al. [2015] and article
by Craswell et al. [2008]. Cascading bandits were first studied by Kveton et al.
[2015a], who proposed algorithms based on UCB and KL-UCB and prove finite-
time instance-dependence upper bounds and asymptotic lower bounds that match
is specific regimes. Around the same time Combes et al. [2015] proposed a different
algorithm for the same model that is also asymptotically optimal. The optimal
regret has a complicated form and is not given explicitly in all generality. We
remarked in the notes that the linear dependence on L is problematic for large L.
To overcome this problem Zong et al. [2016] introduce a linear variant where the
attractiveness of an item is assumed to be an inner product between an unknown

32.6 Exercises 357

parameter and a known feature vector. A slightly generalized version of this
setup was simultaneously studied by Li et al. [2016], who allowed the features
associated with each item to change from round to round. The position-based
model is studied by Lagree et al. [2016] who suggest several algorithms and
provide logarithmic regret analysis for some of them. Asymptotic lower bounds
are also given that match the upper bounds in some regimes. Katariya et al. [2016]
study the dependent click model introduced by Guo et al. [2009]. This differs
from the models proposed in this chapter because the reward is not assumed
to be the number of clicks and is actually unobserved. We leave the reader to
explore this interesting model on their own. The adversarial variant of the ranking
problem mentioned in the notes is due to Radlinski et al. [2008]. Another related
problem is the rank-1 bandit problem where the learner chooses one of L items
to place in one of K positions, with all other positions left empty. This model has
been investigated by Katariya et al. [2017b,a], who assume the position-based
model. The cascade feedback model is also used in a combinatorial setting by
Kveton et al. [2015c], but this paper does not have a direct application to ranking.

32.6 Exercises

32.1 Show that the document-based, position-based and cascade models all
satisfy Assumption 32.1.

32.2 Most ranking algorithms are based on assigning an attractiveness value to
each item and shortlisting the K most attractive items. Radlinski et al. [2008]
criticize this approach in their paper as follows:

“The theoretical model that justifies ranking documents in this way is the probabilistic
ranking principle [Robertson, 1977]. It suggests that documents should be ranked by their
probability of relevance to the query. However, the optimality of such a ranking relies
on the assumption that there are no statistical dependencies between the probabilities
of relevance among documents – an assumption that is clearly violated in practice. For
example, if one document about jaguar cars is not relevant to a user who issues the
query jaguar, other car pages become less likely to be relevant. Furthermore, empirical
studies have shown that given a fixed query, the same document can have different
relevance to different users [Teevan et al., 2007]. This undermines the assumption that
each document has a single relevance score that can be provided as training data to the
learning algorithm. Finally, as users are usually satisfied with finding a small number of,
or even just one, relevant document, the usefulness and relevance of a document does
depend on other documents ranked higher.”

The optimality criterion Radlinski et al. [2008] had in mind is to present at least
one item that the user is attracted to. Do you find this argument convincing?
Why or why not?

32.6 Exercises 358

The probabilistic ranking principle was put forward by Maron and Kuhns [1960].
The paper by Robertson [1977] identifies some sufficient conditions under which
the principle is valid and also discusses its limitations.

32.3 Frame the adversarial variant of the document-based model in Note 6 as a
combinatorial semibandit and use the results in Chapter 30 to prove a bound on
the regret of

Rn ≤
√

2KLn(1 + log(L)) .

32.4 Adapt your solution to the previous exercise to the position-based model
in Note 7 and prove a bound on the regret of

Rn ≤ K
√

2Ln(1 + log(L)) .

32.5 Prove that if Gt does not contain cycles, then Mt defined in Section 32.2
is well defined and that Pt1, . . . ,PtMt is a partition of [L].

32.6 Prove the second part of Theorem 32.1.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

33 Pure Exploration

All the policies proposed in this book so far have the objective of maximizing
the cumulative reward. As a consequence, the policies must carefully balance
exploration against exploitation. But what happens if there is no price to be paid
for exploring? Imagine, for example, that a researcher has K configurations of a
new drug and the budget to test the drugs on n mice. The researcher wants to
find the most promising drug configuration for subsequent human trials, but is
not concerned with the outcomes for the mice.

Notation
To keep things simple we restrict our attention to K-armed Gaussian bandits
with unit variance, but all upper bounds generalize easily to the subgaussian
case and with natural modifications to exponential families or other well-behaved
distributions. Unless otherwise specified, E = EKN (1) is the class of Gaussian
bandits with unit variance. Since bandits in E are entirely determined by their
mean vectors we identify the two and write µ ∈ E for a Gaussian bandit with
mean vector µ. As usual, the learner chooses actions A1, A2, . . . with At ∈ [K]
and observes rewards X1, X2, . . . where

Xt = µAt + ηt ,

and η1, η2, . . . are independent and identically distributed standard Gaussian
random variables. Of course At should only depend on A1, X1, . . . , At−1, Xt−1
and possibly some additional source of randomness. Given µ ∈ RK let ∆i(µ) =
maxj∈[K] µj − µi be the suboptimality gap of the ith arm. For policy π and
bandit µ we let Pµπ be the measure on outcomes induced by the interaction
of π and µ and Eµπ[·] the expectation with respect to this measure. We also
let Ft = σ(A1, X1, . . . , At, Xt). Also recall that Ti(t) =

∑t
s=1 I {As = i} and

µ̂i(t) =
∑t
s=1 I {As = i}Xs/Ti(t). When the context is obvious we write ∆i

instead of ∆i(µ).

33.1 Simple regret

One way to model the pure exploration problem is to assume a horizon of n
rounds. The policy π is expected to output an action An+1 and the loss on bandit

http://banditalgs.com
mailto:tor.lattimore@gmail.com

33.1 Simple regret 360

µ ∈ E is the simple regret, which is the expected suboptimality gap of the last
action:

Rsimple
n (π, µ) = Eµπ

[
∆An+1(µ)

]
.

In order to get a handle on this new objective we investigate the explore-then-
commit algorithm introduced in Chapter 6. Because we only care about choosing
a good arm in the final round it makes sense to explore for the first n rounds and
then choose the empirically best arm in the last round. Since the commitment
is only for the last round, this algorithm is often referred to as the uniform
exploration policy.

1: for t = 1, 2, . . . , n do
2: Choose At = 1 + (tmodK)
3: end for
4: Choose An+1 = argmaxi∈[K] µ̂i(n)

Algorithm 18: Explore-then-commit for pure exploration

theorem 33.1 Let π be the policy of Algorithm 18 and µ ∈ EKN (1). Then

Rsimple
n (π, µ) ≤ min

∆≥0


∆ +

∑

i:∆i(µ)>∆

∆i(µ) exp
(
−bn/Kc∆i(µ)2

4

)
 .

Proof Let ∆i = ∆i(µ) and P = Pµπ. Assume without loss of generality that
∆1 = 0 so the first arm is optimal. Let i be a suboptimal arm with ∆i > ∆ and
observe that An+1 = i implies that µ̂i(n) ≥ µ̂1(n). Now Ti(n) ≥ bn/Kc is not
random, so by Theorem 5.1 and Lemma 5.2,

P (µ̂i(n) ≥ µ̂1(n)) = P (µ̂i(n)− µ̂1(n) ≥ 0) ≤ exp
(
−bn/Kc∆2

i

4

)
.

The definition of the simple regret yields

Rsimple
n (π, µ) =

K∑

i=1
∆iP (An+1 = i) ≤ ∆ +

∑

i:∆i>∆
∆iP (An+1 = i) .

The proof is completed by taking the minimum over all ∆ ≥ 0.

The theorem highlights some important differences between the simple regret
and the cumulative regret. If µ is fixed and n tends to infinity, then the simple
regret converges to zero exponentially fast. On the other hand, if n is fixed and
µ is allowed to vary, then we are in a worst-case regime. Theorem 33.1 can be
used to derive a bound in this case by choosing ∆ = 2

√
log(K)/ bn/Kc, which

after a short algebraic calculation shows there exists a universal constant C > 0
such that

Rsimple
n (ETC, µ) ≤ C

√
K log(K)

n
for all µ ∈ E . (33.1)

33.2 Best arm identification 361

In Exercise 33.1 we ask you to use the techniques of Chapter 15 to prove that
for all policies there exists a bandit µ ∈ E such that Rsimple

n (π, µ) ≥ C
√
K/n for

some universal constant C > 0. It turns out the logarithmic dependence on K in
Eq. (33.1) is tight for ETC (Exercise 33.2), but there exists another policy for
which the simple regret matches the aforementioned lower bound up to constant
factors. There are several ways to do this, but the most straightforward is via a
reduction from algorithms designed for minimizing cumulative regret.

theorem 33.2 Let π be a policy for which the (n + 1)th action is chosen
randomly with P (An+1 = i | Fn) = Ti(n)/n, then its simple regret satisfies

Rsimple
n (π, µ) = Rn(π, µ)

n
,

where Rn(π, µ) is the cumulative regret of policy π when executed on bandit µ.

Proof Using the definition of the regret.

Rn(π, µ) = nE

[
K∑

i=1
∆i
Ti(n)
n

]
= nE

[
E
[
∆An+1 | Fn

]]
= nRsimple

n (π, µ) ,

where the first equality follows from the definition of the cumulative regret, the
third from the definition of the policy in the (n + 1)th round and the last the
definition of the simple regret.

The theorem raises our hopes that policies designed for minimizing the
cumulative regret might also have well-behaved simple regret. Unfortunately
this is only true in the intermediate regimes where the best arm is hard to
identify. Policies with small cumulative regret spend most of their time playing
the optimal arm and play suboptimal arms just barely enough to ensure they
are not optimal. In pure exploration this leads to a highly suboptimal policy for
which the simple regret is asymptotically polynomial rather than exponential.

33.2 Best arm identification

Let δ ∈ (0, 1) be a known confidence level. The objective in fixed confidence
best arm identification is to design a policy π and Ft-stopping time τ such
that Eµπ[τ] is as small as possible while ensuring that

Pµπ (∆Aτ+1(µ) > 0) ≤ δ for all µ ∈ E . (33.2)

Like the cumulative regret, minimizing Eµπ[τ] is a multi-objective criteria and it
is not immediately clear that the same policy and stopping rule should minimize
Eµπ[τ] for all µ ∈ E simultaneously. Conveniently, however, the condition that the
policy and stopping rule must satisfy Eq. (33.2) plays the role of the consistency
assumption in the asymptotic lower bounds in Chapter 16 and for small δ there
is a single policy and stopping rule that essentially minimizes Eµπ[τ] for all µ
simultaneously.

33.2 Best arm identification 362

Lower bound
We start with the lower bound, which serves as a target for the upper bound to
follow. For µ ∈ E define i∗(µ) = argmaxi∈[K] µi to be the set of optimal arms and

Ealt(µ) = {µ′ ∈ E : i∗(µ′) ∩ i∗(µ) = ∅} ,

which is the set of Gaussian bandits with different optimal arms than µ.

theorem 33.3 Let δ ∈ (0, 1) and suppose that π is a policy and τ a stopping
time such that for all µ ∈ E with a unique optimal arm, Pµπ (Aτ+1 /∈ i∗(µ)) ≤ δ.
Then Eµπ[τ] ≥ c∗(µ) log

(4
δ

)
, where

c∗(µ)−1 = sup
α∈∆K−1

(
inf

µ′∈Ealt(µ)

(
K∑

i=1
αi D(N (µi, 1),N (µ′i, 1))

))
. (33.3)

Proof Let µ′ ∈ Ealt(µ). By assumption we have Pµπ(Aτ+1 /∈ i∗(µ)) ≤ δ and
Pµ′π(Aτ+1 /∈ i∗(µ′)) ≤ δ. The high probability Pinsker’s inequality (Theorem 14.2)
and the stopping time version of Lemma 15.1 (see Exercise 15.6) show that for
any Fτ -measurable event E,

Pµπ(E) + Pµ′π(Ec) ≥ 1
2 exp

(
−

K∑

i=1
Eµπ[Ti(τ)] D(N (µi, 1),N (µ′i, 1))

)
.

Choosing E = I {Aτ+1 /∈ i∗(µ)} leads to

2δ ≥ Pµπ(Aτ+1 /∈ i∗(µ)) + Pµ′π(Aτ+1 /∈ i∗(µ′))

≥ 1
2 exp

(
−

K∑

i=1
Eµπ [Ti(τ)] D(N (µi, 1),N (µ′i, 1))

)
. (33.4)

Using the definition of c∗(µ) and the above display we have

Eµπ[τ]
c∗(µ) = Eµπ[τ] sup

α∈∆K−1
inf

µ′∈Ealt(µ)

K∑

i=1
αi D(N (µi, 1),N (µ′i, 1))

≥ Eµπ[τ] inf
µ′∈Ealt(µ)

K∑

i=1

Eµπ[Ti(τ)]
Eµπ[τ] D(N (µi, 1),N (µ′i, 1)) (33.5)

= inf
µ′∈Ealt(µ)

K∑

i=1
Eµπ[Ti(τ)] D(N (µi, 1),N (µ′i, 1)) ≥ log

(
4
δ

)
,

where the last inequality follows from Eq. (33.4). Rearranging completes the
proof.

We will shortly show that the lower bound is tight asymptotically as δ tends to
zero, but first it is worth examining the value of c∗(µ). Suppose that α∗(µ) ∈ ∆K−1

satisfies

c∗(µ)−1 = inf
µ′∈Ealt(µ)

K∑

i=1
α∗i (µ) D(N (µi, 1),N (µ′i, 1)) .

33.2 Best arm identification 363

A few observations about this optimization problem:

(a) Provided that µ has a unique optimal arm, then the value of α∗(µ) is
unique. Uniqueness continues to hold when E is an unstructured bandit
with distributions from an exponential family.

(b) The inequality in Eq. (33.5) is tightest when Eµπ[Ti(τ)]/Eµπ[τ] = α∗i (µ),
which shows a policy can only match the lower bound by playing arm i

exactly in proportion to α∗i (µ) in the limit as δ tends to zero.
(c) When E = E2

N (1) and µ ∈ E has a unique optimal arm, then

c∗(µ)−1 = 1
2 sup
α∈[0,1]

inf
µ′∈Ealt(µ)

(
α(µ1 − µ′1)2 + (1− α)(µ2 − µ′2)2)

= 1
2 sup
α∈[0,1]

(
(1− α)2 + α2) (µ1 − µ2)2 = 1

4 (µ1 − µ2)2
.

In this case we observe that α∗1(µ) = α∗2(µ) = 1/2.

Policy, stopping rule and upper bounds
Both the stopping rule and policy are derived almost directly by the insights
derived from the lower bound. For the policy we would like it to choose action i

in proportion to α∗i (µ), which must be estimated from data. The stopping rule is
motivated by recalling from the proof of Theorem 33.3 that for all µ′ ∈ Ealt(µ),

Pµδ(Aτδ+1 /∈ i∗(µ)) + Pµ′δ(Aτδ+1 /∈ i∗(µ′)) ≥
1
2 exp (−D(Pµδ,Pµ′δ)) (33.6)

= 1
2 exp

(
−

K∑

i=1
E[Ti(τδ)] D(N (µi, 1),N (µ′i, 1))

)
.

If the inequality is tight, then we might guess that a reasonable stopping rule
might be the first round t when

K∑

i=1
Ti(t) D(N (µi, 1),N (µ′i, 1)) & log

(
1
δ

)
.

There are two problems: (a) µ is unknown, so the expression cannot be evaluated
and (b) we have replaced the expected pull counts with their realizations, which
may invalidate the expression. Still, let us persevere. To deal with the first problem
we can try replacing µ by its estimate µ̂(t). Then let

Zt = inf
µ′∈Ealt(µ̂(t))

K∑

i=1
Ti(t) D(N (µ̂i(t), 1),N (µ′i, 1))

= 1
2 inf
µ′∈Ealt(µ̂(t))

K∑

i=1
Ti(t)(µ̂i(t)− µ′i)2 .

We will show there exists a choice of βt(δ) such that if τδ = min{t : Zt ≥ βt(δ)},
then the empirically optimal arm at τδ is the best arm with probability at least
1− δ. As we remarked earlier, if the policy is to match the lower bound it should

33.2 Best arm identification 364

play arm i approximately in proportion to α∗i (µ). This suggests estimating α∗(µ)
by α̂(t) = α∗(µ̂(t)) and then playing the arm for which Ti(t)/α̂i(t) is minimized. If
α̂(t) is inaccurate, then perhaps the samples collected will not allow the algorithm
to improve its estimates. To overcome this last challenge the policy includes
enough forced exploration to ensure that eventually α̂(t) converges to α∗(µ) with
high probability. Combining all these ideas leads to the Track-and-Stop policy
(Algorithm 19).

1: Input δ and βt(δ)
2: Choose each arm once
3: while Zt ≤ βt(δ) do
4: if argmini∈[K] Ti(t− 1) ≤

√
t then

5: Choose At = argmini∈[K] Ti(t− 1)
6: else
7: Choose At = argmini∈[K]

Ti(t− 1)
α̂∗i (t− 1)

8: end if
9: end while

Algorithm 19: Track-and-Stop

theorem 33.4 Let πδ and τδ be the policy/stopping rule of Algorithm 19. There
exists a choice of βt(δ) such that for all µ ∈ E with |i∗(µ)| = 1 it holds that

lim
δ→0

Eµπδ [τδ]
log(1/δ) = c∗(µ) .

Furthermore, Pµπδ(i∗(µ̂τδ) 6= i∗(µ)) ≤ δ.

The proof takes a little work. First we show the stopping rule is sound in the
sense that indeed the algorithm outputs the optimal arm with probability at least
1− δ.
lemma 33.1 Let f : [K,∞)→ R be given by f(x) = exp(K − x)(x/K)K and
βt(δ) = K log(t2 + t) + f−1(δ) Then for τ = min{t : Zt ≥ βt(δ)} it holds that
P (i∗(µ̂(τ)) 6= i∗(µ)) ≤ δ.

Basic calculus shows that f is monotone decreasing on [K,∞) so the inverse
is well defined. In fact the inverse has a closed form solution in terms of
the Lambert W function. By staring at the form of f one can check that
limδ→0 f

−1(δ)/ log(1/δ) = 1 or equivalently that f−1(δ) = (1 + o(1)) log(1/δ).

Proof of Lemma 33.1 Assume that µ1 = maxi µi. By the definition of τ , if
µ ∈ Ealt(µ̂(τ)), then

1
2

K∑

i=1
Ti(τ)(µ̂i(τ)− µi)2 ≥ βτ (δ) .

33.2 Best arm identification 365

Using the definition of Ealt(µ̂(τ)) yields

P (1 6= i∗(µ̂(τ))) = P (µ ∈ Ealt(µ̂(τ))) ≤ P

(
1
2

K∑

i=1
Ti(τ)(µ̂i(τ)− µi)2 ≥ βτ (δ)

)
.

Then apply Lemma 33.2 and Proposition 33.1 from Section 33.2.1.

Below we sketch the proof of Theorem 33.4. A more complete outline is given
in Exercise 33.6.

Proof sketch of Theorem 33.4 Lemma 33.1 shows that the stopping procedure
and selection rule of Track-and-Stop are valid in the sense that the probability
of the arm selected being suboptimal is at most δ. It remains to control the
expectation of the stopping time. The intuition is straightforward. As more
samples are collected we expect that α̂(t) ≈ α∗(µ) and µ̂(t) ≈ µ and

Zt = inf
µ̃∈Ealt(µ̂(t))

K∑

i=1

Ti(t)(µ̂i(t)− µ̃i)2

2 ≈ inf
µ̃∈Ealt(µ)

K∑

i=1

α∗i (µ)(µi − µ̃i)2

2 = t

c∗(µ) .

Provided the approximation is reasonably accurate, the algorithm should halt
once

t

c∗(µ) ≥ βt(δ) = (1 + o(1)) log(1/δ) ,

which occurs once t ≥ (1 + o(1))c∗(µ) log(1/δ).

33.2.1 Concentration

The first concentration theorem follows from Corollary 5.1 and a union bound.

lemma 33.2 Let X1, X2, . . . be a sequence of independent Gaussian random
variables with mean µ and unit variance. Let µ̂n = 1

n

∑n
t=1Xt. Then

P
(

exists n ∈ N+ : n2 (µ̂n − µ)2 ≥ log(1/δ) + log(n(n+ 1))
)
≤ δ .

proposition 33.1 Let g : N → R be monotone nondecreasing and for each
i ∈ [K] let Si1, Si2, . . . be an infinite sequence of random variables such that for
all δ ∈ (0, 1),

P (exists s ∈ N : Sis ≥ g(s) + log(1/δ)) ≤ δ .
Then provided that (Si)Ki=1 are independent and x ≥ 0,

P

(
exists s ∈ NK :

K∑

i=1
Sisi ≥ Kg

(
K∑

i=1
si

)
+ x

)
≤
(x
K

)K
exp(K − x) .

Proof For i ∈ [d] let Wi = max{w ∈ [0, 1] : Sis < g(s) + log(1/w) for all s ∈ N}.
Then for any s ∈ Nd,

d∑

i=1
Sisi ≤

d∑

i=1
g(si) +

d∑

i=1
log(1/Wi) ≤ dg

(
d∑

i=1
si

)
+

d∑

i=1
log(1/Wi) .

33.3 Best arm identification with a budget 366

By assumption (Wi)di=1 are independent and satisfy P (Wi ≤ x) ≤ x for all
x ∈ [0, 1]. The proof is completed by using Exercise 5.18.

33.3 Best arm identification with a budget

The setting in the previous section is called the fixed confidence version of best
arm identification because the learner should minimize the exploration time in
order to satisfy a constraint on the confidence. In the fixed budget variant the
learner is given a constraint on the horizon and should minimize the probability
of choosing a suboptimal arm.

This reframing of the problem makes algorithm design and analysis a little
more nuanced and the results are not as clean. A naive option would be to use
the explore-then-commit policy, but as discussed in Section 33.1 this approach
leads to poor results when the suboptimality gaps are not close. To overcome this
problem the Sequential Halving algorithm divides the budget into L = dlog2(K)e
phases. In the first phase the algorithm chooses each arm bn/(KL)c times. The
bottom half of the arms are eliminated and the process is repeated.

1: Input n and K

2: Set L = dlog2(K)e and A1 = [K].
3: for ` = 1, . . . , L do
4: Let T` =

⌊
n

L|A`|

⌋
.

5: Choose each arm in A` exactly T` times
6: For each i ∈ A` compute µ̂`i as the empirical mean of arm i based on the

last T` samples
7: Let A`+1 contain the top d|A`|/2e arms in A`
8: end for
9: Output the arm in AL+1

Algorithm 20: Sequential Halving

Let µ ∈ E and assume that µ1 > µ2 ≥ · · · ≥ µK . Define H1(µ) and H2(µ) by

H1(µ) =
K∑

i=2

1
∆2
i

H2(µ) = max
i>1

i

∆2
i

.

For bandits where the arms are not in order the value of Hi(µ) is defined as
above after permuting the arms. The quantity H2(µ) looks a bit unusual, but we
will see it arises quite naturally in the analysis. The following also holds:

H2(µ) ≤ H1(µ) ≤ H2(µ)
1 + log(K) . (33.7)

33.4 Notes 367

theorem 33.5 If µ ∈ E and π is sequential halving, then

Pµπ(∆An+1 > 0) ≤ 3 log2(K) exp
(
− n

16H2(µ) log2(K)

)
.

In Exercise 33.7 the reader is guided through the proof of this theorem. Let’s
see how the bound compares to explore-then-commit, which is the same as
Algorithm 18. Like in the proof of Theorem 33.1, the probability that ETC selects
a suboptimal arm is easily controlled using Theorem 5.1 and Lemma 5.2:

Pµ,ETC(∆An+1 > 0) ≤
K∑

i=2
P (µ̂i(n) ≥ µ̂1(n)) ≤

K∑

i=2
exp

(
−bn/Kc∆2

i

4

)
.

Suppose that ∆ = ∆2 = ∆K so that all suboptimal arms have the same
suboptimality gap. Then H2 = K/∆2 and terms in the exponent for sequential
halving and ETC are O(n∆2/(K logK)) and O(n∆2/K) respectively, which
means that ETC is actually moderately better than sequential halving, at least if
n is sufficiently large. On the other hand, if ∆2 is small, but ∆i = 1 for all i > 2,
then H2 = O(1/∆2

2) and the exponents are O(n∆2) and O(n∆2/K) respectively
and sequential halving is significantly better. The reason for the disparity is the
non-adaptivity of ETC, which wastes many samples on arms i > 2. On the other
hand, with high probability the sequential halving algorithm spends one quarter
of its budget sampling from arm two.

33.4 Notes

1 We mentioned briefly that algorithms with logarithmic cumulative regret are
not well suited for pure exploration. Suppose that π is a policy such that for
each i ∈ [K] it holds that

Eµπ[Ti(n)] = 2
∆2
i

log(n) + o(log(n)) for all µ ∈ E .

We showed that such policies exist in Chapter 8 and that one cannot do better
in Chapter 16. Let µ ∈ E be a bandit for which there is a unique optimal
arm and let µ′ ∈ Ealt(µ) be the alternative bandit that has the same mean
rewards as µ for all arms except µ′i = µi + (1 + ε)∆i. Then by Theorem 14.2
and Lemma 15.1,

Pµπ(An+1 6= 1) + Pµ′π(An+1 6= i) ≥ 1
2 exp (−D(Pµπ,Pµ′π))

≥ 1
2 exp

(
−(log(n) + o(log(n)))(1 + ε)2) = 1

2

(
1
n

)(1+o(1))(1+ε)2

.

This shows that using an asymptotically optimal policy for cumulative regret
minimization leads to a best arm identification policy for which the probability
of selecting a suboptimal arm decays only polynomially with n. Note that here

33.5 Bibliographical remarks 368

we did not make any restrictions on the selection rule that determines An+1,
only that the first n samples were collected by an asymptotically optimal regret
minimizer.

2 Although there is no exploration/exploitation dilemma in the pure exploration
setting, there is still an ‘exploration dilemma’ in the sense that the optimal
exploration policy depends on an unknown quantity. This means the policy
must balance (to some extent) the number of samples dedicated to learning
the how to explore relative to those actually exploring.

3 The forced exploration in the Track-and-Stop algorithm is good enough for
asymptotic optimality, but the fact that the proof would go through with almost
any sublinear amount of exploration should cause a little unease. We do not
currently know of a principled way to tune the amount of forced exploration,
or indeed if there is better algorithm design for best arm identification.

4 The choice of βt(δ) significantly influences the practical performance of Track-
and-Stop. We believe the analysis given here is mostly tight except that the
naive concentration bound given in Lemma 33.2 can be improved significantly.

5 Perhaps the most practical setup in pure exploration has not yet received any
attention, which is upper and lower instance-dependent bounds on the simple
regret. Even better, an analysis of the distribution of ∆An+1 .

33.5 Bibliographical remarks

The study of pure exploration for bandits seems to have been first studied by
Even-Dar et al. [2002], Mannor and Tsitsiklis [2004], Even-Dar et al. [2006] in
the ‘Probability Approximately Correct’ setting where the objective is to find
an ε-optimal with as few samples as possible. After a dry spell the field was
restarted by Bubeck et al. [2009], Audibert and Bubeck [2010b]. Asymptotically
optimal algorithms in the fixed confidence setting of Section 33.2 were introduced
at the same conference by Garivier and Kaufmann [2016] and Russo [2016],
both of which are heartily recommended. The algorithm and analysis presented
here is based on the first of these two articles, which also provides results for
exponential families as well as in-depth intuition and historical background. The
stopping rule used by Garivier and Kaufmann [2016] is inspired by similar rules
by Chernoff [1959]. The sequential halving algorithm is by Karnin et al. [2013].
Besides this there have been many other approaches: Jamieson and Nowak [2014].
The negative result showing that policies for minimizing the cumulative regret
do not explore enough in the pure exploration setting is due to Bubeck et al.
[2009]. For lower bounds in the fixed budget problem we refer the reader to the
recent paper by Carpentier and Locatelli [2016]. Pure exploration has recently
become a hot topic and is expanding beyond the finite-armed case. For example,
to linear bandits [Soare et al., 2014] and continuous armed bandits and tree
search [Garivier et al., 2016a, Huang et al., 2017a].

Continuous-armed case: Munos [2011], Valko et al. [2013a] and more.

33.6 Exercises 369

33.6 Exercises

33.1 Show there exists a universal constant C > 0 such that for all n ≥ K > 1
and all policies π there exists a µ ∈ E such that

Rsimple
n (π, µ) ≥ C

√
K

n
.

33.2 Show there exists a universal constant C > 0 such that for all n ≥ K > 1
there exists a µ ∈ E such that

Rsimple
n (ETC, µ) ≥ C

√
K log(K)

n
.

33.3 Prove both inequalities in Eq. (33.7).

33.4 This exercise is about designing (ε, δ)-PAC algorithms.

(a) For each ε > 0 and δ ∈ (0, 1) and number of arms K > 1 design a policy π
and stopping time τ such that for all µ ∈ E ,

Pµπ(∆Aτ ≥ ε) ≤ δ and Eµπ[τ] ≤ CK

ε2 log
(
K

δ

)
,

for universal constant C > 0.
(b) It turns out the logarithmic dependence on K can be eliminated. Design a

policy π and stopping time τ such that for all µ ∈ E ,

Pµπ(∆Aτ ≥ ε) ≤ δ and Eµπ[τ] ≤ CK

ε2 log
(

1
δ

)
.

(c) Prove a lower bound showing that the bound in part (b) is tight up to
constant factors in the worst case.

Part (b) of the above exercise is a challenging problem. The simplest approach
is to use an elimination algorithm that operates in phases where at the end of
each phase the bottom half of the arms (in terms of their empirical estimates)
are eliminated. For details see the paper by Even-Dar et al. [2002].

33.5 Let K = 2 and suppose a bandit policy π has a cumulative regret of
Rn−1(π, µ) ≤ Cn(µ) log(n) where Cn : E → [0,∞) is an instance-dependent
constant. Suppose this policy is run for n−1 steps and subsequently the empirically
best arm is played.

(a) Show there exists a µ′ ∈ E such that

Pµπ(∆An > 0) + Pµ′π(∆An > 0) ≥ 1
2 exp

(
−1

2Cn(µ)∆(µ) log(n)
)
,

where ∆(µ) = |µ1 − µ2|.

33.6 Exercises 370

(b) Suppose that π is asymptotically optimal in the sense that limn→∞ Cn(µ) =
2/∆(µ). Show that

lim
n→∞

sup
µ∈E

nPµπ(∆An > 0) ≥ 1 .

33.6 In this exercise you will complete the proof of Theorem 33.4. Define

Φ(µ, α) = inf
µ̃∈Ealt(µ)

K∑

i=1
αi(µi − µ̃i)2 .

M(ε) = min{t : sup
s≥t
|Φ(µ̂t, T (t)/t)− Φ(µ, α∗)| ≤ ε} .

t∗(ε, δ) = min{t : sup
s≥t

s(Φ(µ, α∗)− ε)− βs(δ) ≥ 0} .

Let Ft,ε be the event that ‖µ̂t − µ‖∞ ≤ ε.

(a) Assume that µ has a unique optimal arm. Show that Φ is continuous at µ.
(b) Show that if ∪s≥tFs,ε, then

‖αs − α∗s‖∞ ≤ 3ε .

(c) Show that

‖T (t)/t− α∗t ‖∞
(d) Let ε > 0 and t∗δ = min{t : tc∗(µ) ≥ βt(δ)}. Show that

E[τδ] ≤ (1 + ε)t∗δ +
∞∑

t=d(1+ε)t∗
δe

P (|Φ(µ̂t, α̂t)− Φ(µ, α∗)| ≥ εc∗(µ)) .

(e) Use the continuity of Φ to show there exists a function ζ : [0,∞)→ R with
limε→0 ζ(ε) = 0 such that

P (|Φ(µ̂t, α̂t)− Φ(µ, α∗)| ≥ c∗(µ)ε) ≤ P (‖µ̂t − µ‖∞ ≥ ζ(ε)) .

(f) Prove that P (‖µ̂t − µ‖∞ ≥ ζ(ε)) ≤ K exp


−

⌊√
t/K

⌋
ζ(ε)2

2


 .

(g) Show that lim
δ→0

t∗δ
log(1/δ) = c∗(µ) .

(h) Combine the previous parts to complete the proof of Theorem 33.4 by showing
that

lim sup
δ→0

E[τδ]
log(1/δ) ≤ c

∗(µ) .

Part (b) is by far the hardest step. Use the forced exploration to prove reasonably
fast convergence of µ̂t to µ and then continuity arguments. For more details
see the article by Garivier and Kaufmann [2016].

33.6 Exercises 371

33.7 The purpose of this exercise is to prove Theorem 33.5. Assume without
loss of generality that µ1 ≥ µ2 ≥ . . . ≥ µK . Given a set A ⊂ [K] let

TopK(A, k) =



i ∈ [K] :

∑

j≤i
I {j ∈ A} ≤ k





be the top k arms in A. To make life easier you may also assume that K is a
power of two so that |A`| = K21−` and T` = n2`−1/ log2(K).

(a) Prove that |AL+1| = 1.
(b) Let i be a suboptimal arm in A` and suppose that 1 ∈ A`. Show that

P
(
µ̂`1 ≤ µ̂`i

∣∣∣ i ∈ A`, 1 ∈ A`
)
≤ exp

(
−T`∆

2
i

4

)
.

(c) Let A′` = A` \TopK(A`, d|A`|/4e) be the bottom three quarters of the arms
in round `. Show that if the optimal arm is eliminated after the `th phase,
then

N` =
∑

i∈A′
`

I
{
µ̂`i ≥ µ̂`1

}
≥ 1

3 |A
′
`| .

(d) Let i` = minA′` and show that

E[N` | A`] ≤ |A′`|max
i∈A′

`

exp
(
− ∆2

in2`−1

4 log2(K)

)
≤ |A′`| exp

(
− n∆2

i`

16i` log2(K)

)
.

(e) Combine the previous two parts with Markov’s inequality to show that

P (1 /∈ A`+1 | 1 ∈ A`) ≤ 3 exp
(
− T∆2

i`

16 log2(K)i`

)
.

(f) Join the dots to prove Theorem 33.5.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

34 Bayesian Methods

Bayesian methods have been applied to bandits from the very beginning
[Thompson, 1933]. At a technical level the difference between Bayesian and
frequentist methods is that the Bayesian includes the unknown hypothesis about
the world in the probability space. This means a Bayesian can express the
likelihood of a hypothesis conditioned on having observed some data. By contrast,
a frequentist only has access to the likliehood of the data under fixed hypotheses.

The ability to reason probabilistically about the truth or otherwise of a
hypothesis seems like a good thing. The downside is that by including hypotheses
in the probability space one is compelled to asign a prior belief about the likliehood
of each hypothesis without having observed any data. This is a double edged
sword with the potential for poor performance if the prior is not reflected by
reality. On the other hand, if the prior beliefs are well-founded it would be strange
not to try and use them. The debate between frequentist and Bayesian schools of
thought does not interest us greatly. Bayesian approaches to bandits have their
strengths and weaknesses and we hope to do them a modicum of justice here.

Let E be a set of finite-armed stochastic bandits. Recall the regret of policy π
in environment ν ∈ E over n rounds is

Rn(π, ν) = nµ∗ − E

[
n∑

t=1
Xt

]
.

Now let G be a σ-algebra over E so that (E ,G) is a measurable space and let Q
be a probability measure on this space called the prior. The Bayesian regret
of policy π is the expected regret of π over all environments in E with respect to
the prior Q.

BRn(π,Q) = EQ [Rn(π, ν)] .

Implicit in this definition is the assumption that G is sufficiently rich that Rn(π, ν)
is G-measurable, which is true for all reasonable choices of G and policies π. Given
a prior and policy the Bayesian regret is just a number. The Bayesian optimal
value is BR∗n(Q) = infπ BRn(π,Q) and the optimal policy is

π∗ = argminπ BRn(π,Q) . (34.1)

In all generality there is no gurantee that the optimal policy exists, but the

http://banditalgs.com
mailto:tor.lattimore@gmail.com

34.1 Bayesian optimal regret for finite-armed bandits 373

positivity of the Bayesian regret ensures that for any ε > 0 there exists a policy
π with BRn(π,Q) ≤ BR∗n(Q) + ε.

The fact that Rn(π, ν) ≥ 0 for all ν and π means the Bayesian regret is
always nonnegative. Perhaps less obviously, the Bayesian regret of the Bayesian
optimal policy can be strictly greater than zero (Exercise 34.1).

The Bayesian approach is attractive in several ways. First, once the prior has
been chosen, finding the Bayesian optimal policy reduces to an optimization
problem. Second, all tradeoff decisions are incorporated into the prior, which
prescribes how much we should care about the regret in one bandit relative to
another. There are also some disadvantages. From a practical perspective the
biggest issue is that solving Eq. (34.1) exactly is usually not computationally
tractable. More philosophically there is often no clear way to choose the
prior Q and the choices are often restricted by computational challenges. The
computational intractability of finding the exact Bayesian optimal policy makes
it a little ironic that approximately Bayesian methods can often be more efficient
than frequentist policies. We examine some of these approximate methods in
the next chapter. Here we focus on the behaviour of the Bayesian regret and
the important settings where Bayesian optimal policies can be computed with
reasonable efficiency.

Analyzing the Bayesian regret of an algorithm is strictly less informative
than the frequentist regret. By this we mean that a bound on BRn(π,Q)
cannot usually be used to obtain a meaningful bound on Rn(π, ν), while if
Rn(π, ν) ≤ f(ν) for a measurable function f , then clearly BRn(π,Q) ≤ E[f(ν)].
This is not an argument against using a Bayesian algorithm, but rather an
argument to analyze the frequentist regret of Bayesian algorithms.

34.1 Bayesian optimal regret for finite-armed bandits

In the standard finite-armed bandit model the Bayesian optimal policy cannot be
computed efficiently. Nevertheless, one can investigate the value of the Bayesian
optimal regret by proving upper and lower bounds. One way to upper bound the
Bayesian optimal regret is to integrate the frequentist regret bound of one of the
algorithms in Part II.

For simplicity we restrict our attention to Bernoulli bandits, but the arguments
generalize more broadly. Let E = EKB be the set of K-armed Bernoulli bandits.
Bandits in this class are characterized by their mean vectors so we identify E
with [0, 1]K and define the prior Q on ([0, 1]K ,B([0, 1]K)). The Bayesian optimal
regret is necessarily smaller than the minimax regret, which by Theorem 9.1

34.2 Bayesian learning (†) 374

means that

BR∗n(Q) ≤ C
√
Kn ,

where C > 0 is a universal constant. The proof of the lower bound in Exercise 15.1
shows that for each n there exists a prior for which

BR∗n(Q) ≥ c
√
Kn .

where c > 0 is a universal constant. In fact one can find a single prior such
that this nearly holds for all n. We ask you to prove the following theorem in
Exercise 34.3.

theorem 34.1 For any prior Q,

lim sup
n→∞

BR∗n(Q)
n1/2 = 0 .

Furthermore, there exists a prior Q such that for all ε > 0,

lim inf
n→∞

BR∗n(Q)
n1/2−ε =∞ .

34.2 Bayesian learning (†)

So far we introduced the Bayesian regret as an average of the frequentist regret
and used the results from previous chapters to bound the Bayesian regret. For the
rest of the chapter we immerse ourselves in the Bayesian viewpoint by analyzing
two special cases where the Bayesian optimal policy can be computed with
reasonable accuracy. Before getting into the details we discuss briefly some of the
measure-theoretic aspects of Bayesian learning.

Starting gently, suppose you are given a bag containing two marbles. A
trustworthy source tells you the bag contains either (a) two white marbles
(ww) or (b) a white marble and a black marble (wb). You are allowed to choose a
marble from the bag (without looking) and observe its color, which we abbreviate
by ‘select white’ (sw) or ‘select black’ (sb). The question is how to update your
’beliefs’ about the contents of the bag having observed one of the marbles. The
Bayesian way to tackle this problem starts by choosing a probability distribution
on the space of hypotheses called the prior. This distribution is usually supposed
to reflect your prior belief about which hypothesis is more probable. In this case
it seems reasonable to choose P(ww) = 1/2 and P(wb) = 1/2. The next step is
to think about the likelihood of the possible outcomes under each hypothesis.
Assuming the bags are well shuffled and you cannot feel the color of a marble
these are

P(sw | ww) = 1 and P(sw | wb) = 1/2 .

The conditioning here indicates that we are including the hypotheses as part of

34.2 Bayesian learning (†) 375

the probability space, which is a distinguishing feature of the Bayesian approach.
With this formulation we can apply Bayes’ law (Eq. 2.1) to show that

P(ww | sw) = P(sw | ww)P(ww)
P(sw) = P(sw | ww)P(ww)

P(sw | ww)P(ww) + P(sw | wb)P(wb)

=
1× 1

2
1× 1

2 + 1
2 × 1

2
= 2

3 .

Of course P(wb | sw) = 1 − P(ww | sw) = 1/3. The interpretation of this
result is that before observing a white marble your belief in each of the possible
scenarios was uniform, but having observed a white marble you now believe the
other marble is white with probability 2/3. An alternative calculation shows that
P(ww | sb) = 0, which makes sense because choosing a black marble rules out the
hypothesis that the bag contains two white marbles. The conditional distribution
P(· | sw) over the hypotheses is called the posterior distribution and represents
the Bayesian’s belief in each hypothesis after selecting a white marble.

Measure-theoretic viewpoint
A more sophisticated approach is necessary when the hypothesis and/or outcome
are not discrete. In less mathematical texts the underlying details are often (quite
reasonably) swept under the rug for the sake of clarity. Besides the desire for
generality there are two reasons not to do this. First, having spent the effort
developing the measure-theoretic tools in Chapter 2 it would seem a waste not
to use them now. And second, the subtle issues that arise highlight some of the
philosophical differences between the Bayesian and frequentist viewpoints that
seem worth illuminating.

Let (Θ,G) be a measurable space called the parameter space and (Ω,F) be
a measurable space called the outcome space. A prior is a measure Q on (Θ,G)
and a hypothesis space is a probability kernel {Pθ : θ ∈ Θ} from (Θ,G) to
(Ω,F). By the assumption that {Pθ} is a probability kernel we can define the
joint probability measure P on (Θ× Ω,G ⊗ F) by

P (θ ∈ A,ω ∈ B) =
∫

A

Pθ(B)dQ(θ) .

Let X : Ω→ X be a random element to measurable space (X ,H) and suppose
that (θ, ω) is sampled from the joint distribution P and X(ω) = x is observed.
The posterior should be a measure on (Θ,G) that depends on the observed data.
In other words, it should be a probability kernel from (X ,H) to (Θ,G). Without
much thought we might try and apply Bayes’ law (Eq. 2.1) to claim that the
posterior distribution having observed X(ω) = x should be a measure on (Θ,F)
given by

Q(A | X = x) = P (θ ∈ A | X = x) = P (X = x | θ ∈ A)P (θ ∈ A)
P (X = x) .

The problem is that P (X = x) can have measure zero and then P (θ ∈ A | X = x)

34.2 Bayesian learning (†) 376

is not defined. This is not an esoteric problem. When Θ = Ω = R with the
usual Borel σ-algebras and Pθ = N (θ, 1) is the Gaussian family and X(ω) = ω,
then P (X = x) = 0 for all x. Having read Chapter 2, the next attempt might
be to define Q(A | X) as a σ(X)-measurable random variable defined using the
conditional expectation.

Q(A | X) = P (θ ∈ A | X) = E[IA(θ(ω)) | X] .

Recall that E[IA(θ) | X] is a σ(X)-measurable random variable that is uniquely
defined except for a set of measure zero. The nonuniqueness means that Q(A | X)
is actually a version of P (θ ∈ A | X) and which version should really be specified.
For most applications of probability theory the choice of conditional expectation
does not matter, but this is not true here. Perhaps a more annoying issue than
nonuniqueness is that Q(· | X) as defined above need not be a measure and the
classical theorems on the existence of conditional expectations do not guarantee
such a choice exists. Provided that (Θ,Ω) is not too big, however, one can
guarantee the existence of a conditional expectation satisfying the conditions of
a Markov kernel.

theorem 34.2 If (Θ,G) is a Borel space, then there exists a probability kernel
Q : X × G → [0, 1] such that Q(A | X) = P (θ ∈ A | X) almost surely for all
A ∈ G and Q(· | X) is unique P ◦X−1-a.s.

The notation for a probability kernel differs from the notation introduced
in Chapter 3 because here we want to emphasize the fact that Q(A | X) is
derived by conditioning. There may also be some confusion about the usage of
P (θ ∈ A | X) = E[IA(θ) | X], which by definition is a σ(X)-measurable random
variable on Θ×Ω. Because it is σ(X)-measurable, however, by Lemma 2.1 there
exists a H/G-measurable function f : X → Θ such that P (θ ∈ A | X) = f ◦X
so that really P (θ ∈ A | X) can be viewed as a function from X . The theorem
above shows that it can be chosen so that P (θ ∈ · | X) is also a measure.

Theorem 34.2 shows the posterior exists, but does not suggest a useful way
of finding it. In many practical situations the posterior can be calculated using
densities. Given θ ∈ Θ let pθ(x) be the Radon-Nikodym derivative of (Pθ)X
with respect to some measure µ and let q(θ) be the Radon-Nikodym derivative
of Q with respect to another measure ν. Provided all terms are appropriately
measurable and nonzero, then

q(θ | X) = pθ(X)q(θ)∫
Θ pθ(X)q(θ)dν(θ)

is the Radon-Nikodym derivative of Q(· | X) with respect to ν. In other words,
for any A ∈ G it holds that Q(A | X) =

∫
A
q(θ | X)dν(θ). This corresponds to

the usual manipulation of densities when µ and ν are the Lebesgue measures.

34.3 Conjugate priors and the exponential family (†) 377

example 34.1 To emphasize the nonuniqueness of the posterior, let Θ = [0, 1]
and Q be the uniform measure on Θ and Pθ = δθ be the Dirac measure on [0, 1]
at θ. The following posterior satisfies the conditions of Theorem 34.2 for any
measure µ on ([0, 1],B(R)) and countable C ⊂ [0, 1].

Q(A | X = x) =
{
δx(A) if x /∈ C
µ(A) if x ∈ C .

A true Bayesian is probably unconcerned. If θ is sampled from the prior Q, then
the event {X ∈ C} has measure zero and there is little cause to worry about
events that happen with probability zero. But for a frequentist using Bayesian
techniques for inference this actually matters. If θ is not sampled from Q, then
nothing prevents the situation that θ ∈ C and the nonuniqueness of the posterior
is an issue. Probability theory does not provide a way around this issue.

When using Bayesian techniques for inference in a frequentist setting one
should be careful to specify the version of the posterior being used. This is
important because in the frequentist viewpoint θ is not part of the probability
space and results are proven for Pθ. By contrast, the all-in Bayesian includes θ
in the probability space and need not worry about events with negligible prior
probability.

34.3 Conjugate priors and the exponential family (†)

One of the strengths of Bayesian methods is the ability to incorporate prior
knowledge into the algorithm in a natural way via the prior. This advantage is
belied a little by the competing necessity of choosing a prior for which the posterior
can be efficiently computed. The ease of computing the posterior depends on the
interplay between the prior and the model. Given the importance of computation,
it is hardly surprising that researchers have worked hard to find models and
priors that behave well together. A prior and model are called conjugate if the
posterior has the same parametric form as the prior.

Gaussian model/Gaussian prior
Suppose that (Θ,G) = (Ω,F) = (R,B(R)) and X : Ω → ω is the identity and
Pθ is Gaussian with mean θ and known signal variance σ2

S . If the prior Q is
Gaussian with mean µP and prior variance σ2

P , then the posterior distribution
having observed X = x is

Q(· | X = x) = N
(
µP /σ

2
P + x/σ2

S

1/σ2
P + 1/σ2

S

,

(
1
σ2
S

+ 1
σ2
P

)−1
)
.

We leave the proof of this fact to the reader (Exercise 34.2). The limiting regimes
as the prior/signal variance tend to zero or infinity are quite illuminating. For

34.3 Conjugate priors and the exponential family (†) 378

example, as σ2
P → 0 the posterior tends to a Gaussian N (µP , σ2

P), which is
equal to the prior and indicates that no learning occurs. This is consistent with
intuition: If the prior variance is zero, then the statistician is already certain of
the mean and no amount of data can change their belief. On the other hand, as
σ2
P tends to infinity we see the mean of the posterior has no dependence on the

prior mean, which means that all prior knowledge is washed away with just one
sample. We encourage you to examine what happens when σ2

S → {0,∞}.
Notice how the model has fixed σ2

S , suggesting that the model variance is
known. We made this kind of assumption very often in the book so far, but
the Bayesian can incorporate their uncertainty over the variance. In this case
the model parameters are Θ = R × [0,∞) and PΘ = N (θ1, θ2). But is there a
conjugate prior in this case? Already things are getting complicated, so we will
simply let you know that the family of Gaussian-inverse-gamma distributions is
conjugate.

Bernoulli model/beta prior
Suppose that Θ = [0, 1] and Pθ = B(θ) is Bernoulli with parameter θ. In this
case it turns out that the family of beta distributions is conjugate, which for
parameters θ = (α, β) ∈ (0,∞)2 is given in terms of its probability density
function with respect to the Lebesgue measure:

pα,β(x) = xα−1(1− x)β−1 Γ(α+ β)
Γ(α)Γ(β) ,

where Γ(x) is the Gamma function. Then the posterior having observed X ∈ {0, 1}
is also a beta distribution with parameters (α+X,β + 1−X).

Exponential families
Both the Gaussian and Bernoulli families are examples of a more general concept.
Let µ be a measure on (R,B(R)) and T, η : R → R where T is called the
sufficient statistic and define measure Pθ on (R,B(R)) in terms of its Nikodym
derivatives with respect to µ.

dPθ
dµ

(x) = exp (η(θ)T (x)−A(θ)) ,

where A(θ) = log
∫
R exp(η(θ)T (x))dµ(x) is the log partition function. Let

Θ = dom(A) = {θ : A(θ) <∞} be the domain of A and for θ ∈ A define measure
Pθ on (R,B(R)) by

Pθ(A) =
∫

A

dPθ
dµ

(x)dµ(x) .

The collection {Pθ : θ ∈ Θ} is called a single parameter exponential family.

example 34.2 Let σ2 > 0 and µ = N (0, σ2) and η(θ) = θ
σ and T (x) = x

σ .
An easy calculation shows that A(θ) = θ2/(2σ2), which has domain Θ = R and
Pθ = N (θ, σ2).

34.4 Bayesian learning and bandits 379

example 34.3 Let µ = δ0 + δ1 be the sum of Dirac measures and T (x) = x

and η(θ) = θ. Then A(θ) = log(1 + exp(θ)) and Θ = R and Pθ = B(σ(θ)) where
σ(θ) = exp(θ)/(1 + exp(θ)) is the sigmoid function.

example 34.4 The same family can be parameterized in many different ways.
Let µ = δ0 +δ1 and T (x) = x and η(θ) = log(θ/(1−θ)). Then A(θ) = − log(1−θ)
and Θ = (0, 1) and Pθ = B(θ).

Exponential families have many nice properties. Of most interest to us here is
the existence of conjugate priors. Suppose that {Pθ : θ ∈ Θ} is a single parameter
exponential family determined by functions η and T with T (x) = x assumed to
be the identity. Let x0, n0 ∈ R and define prior measure Q on (Θ,B(Θ)) in terms
of its density q = dQ/dλ with λ the Lebesgue measure.

q(θ) = exp (n0x0η(θ)− n0A(θ))∫
Θ exp (n0x0η(θ)− n0A(θ)) dθ ,

where we assume the existence and strict positivity of the integral in the
denominator. Suppose we observe X = x, then the posterior has density with
respect to the Lebesgue measure given by

q(θ | x) = exp (η(θ)(x+ n0x0)− (1 + n0)A(θ))∫
Θ exp (η(θ)(x+ n0x0)− (1 + n0)A(θ)) dλ(θ) .

To see how this recovers existing results consider the Bernoulli case of
Example 34.4,

exp(n0x0η(θ)− n0A(θ)) =
(

θ

1− θ

)n0x0

(1− θ)n0 = θn0x0(1− θ)n0(1−x0) ,

which is proportional to a beta distribution with α = 1 + n0x0 and β =
1 + n0(1− x0).

There are important parametric families with conjugate priors that are not
exponential families. One example is the uniform family {U(a, b) : a < b},
which is conjugate to the Pareto family.

34.4 Bayesian learning and bandits

Adapting the tools of the previous two sections to bandits is straightforward. Let
E be a set of K-armed stochastic bandits and G be a σ-algebra on E and Q be
a prior measure on (E ,G). Given a bandit ν ∈ E let Pν be the product measure
on (RK ,B(RK)) that corresponds to the reward distributions. We assume that
Pν is a Markov kernel from (E ,G) to (RK ,B(RK)). Fix a policy π = (π1, . . . , πn)
and let

Ω = {a1, x1, . . . , an, xn : at ∈ [K] and xt ∈ RK} and F = (ρ⊗B(R))n .
(34.2)

34.4 Bayesian learning and bandits 380

Then define joint probability space (E × Ω,G ⊗ F ,P) where P = Q⊗ π1 ⊗ Pν ⊗
. . .⊗ πn ⊗ Pν . The coordinate projections are

ν((ν, a1, x1, . . . , an, xn)) = ν and
At((ν, a1, x1, . . . , an, xn)) = at and (34.3)
Xt((ν, a1, x1, . . . , an, xn)) = xt ,

which means that ν ∈ E , At ∈ [K] and Xt ∈ RK are random elements. Then let
Ft = σ(A1, X1A1 , . . . , At, XtAt) be the σ-algebra generated by the observations
of the learner after t rounds. The posterior after t rounds is a probability kernel
from (Ω,Ft) to (E ,G) denoted by Qt(·) = Q(· | A1, X1, . . . , At, Xt) that for all
B ∈ G satisfies

Qt(B) = E[IB(ν) | A1, X1, . . . , At, Xt] a.s.

Theorem 34.2 guarantees the existence of the posterior as long as (E ,G) is a
Borel space, but the abstract definition is not very useful for explicit calculations.
By making mild assumptions the posterior can be written in terms of densities.
Assume there exists a σ-finite measure λ on (R,B(R)) such that P � λ for all
reward distributions P used by the bandits in E . Recall from Chapter 15 that
the Radon-Nikodym derivative of Pνπ with respect to (ρ× λ)n is

pνπ(a1, x1, . . . , an, xn) =
n∏

t=1
πt(at | a1, x1, . . . , at−1xt−1)pνat(xt) , (34.4)

where pνa is the density with respect to λ of the reward distribution for the ath
arm of ν. Then the posterior after t rounds is given by

Q(B | a1, x1, . . . , at, xt) =
∫
B
pνπ(a1, x1, . . . , at, xt)dQ(ν)∫
E pνπ(a1, x1, . . . , at, xt)dQ(ν)

=
∫
B

∏t
s=1 pνas(xs)dQ(ν)∫

E
∏t
s=1 pνas(xs)dQ(ν)

, (34.5)

where the second equality follows from Eq. (34.4). Of course we are assuming here
that all quantities are well defined. In particular, the integral in the denominator
must be positive almost surely and pνa(x) should be measurable as a function of
ν for all x.

example 34.5 Let E = EKB be the set of all Bernoulli bandits with K arms.
Bandits in E are characterized by their mean vectors in [0, 1]K so it suffices to
choose our prior on [0, 1]K with the Lebesgue σ-algebra. A natural prior is a
product of Beta priors with parameters α, β > 0 defined in terms of its density
with respect to the Lebesgue measure λ by

q(θ) ∝
K∏

i=1
θα−1
i (1− θi)β−1 .

Recall that Ti(t) =
∑t
s=1 I {At = i} and let Si(t) =

∑t
s=1 I {At = i}Xt. The

34.5 One-armed bandits 381

posterior is also given in terms of its density with respect to the Lebesgue
measure.

q(θ | A1, X1, . . . , At, Xt) ∝
K∏

i=1
θ
α+Si(t)−1
i (1− θi)β+Ti(t)−Si(t)−1 .

This means the posterior is also the product of beta distributions, each updated
according to the observations from the relevant arm.

34.5 One-armed bandits

We return to the one-armed bandit problem that appeared in various exercises in
earlier chapters. In each round t the learner chooses action At ∈ {1, 2}. The reward
when choosing the first action is Xt where X1, . . . , Xn is a sequence of independent
and identically distributed random variables with unknown distribution and mean
µ ∈ R. The reward when choosing the second action is a deterministic known
value µ◦ ∈ R. In Exercise 4.9 we defined a retirement policy for one-armed bandits
as a policy that chooses At = 1 until some random time and subsequently At = 2.
There you showed that provided the horizon n is known in advance, then there
is no reason to consider policies of any other kind. So the problem reduces to
finding the ‘best’ retirement policy.

In order to be rigorous we need a probability space to hold all these random
variables. Let ν be a measure on (R,B(R)) and Pν be the product measure νn
on (Ω,F) = (Rn,B(Rn)). The reward of the first arm after round t is random
variable Xt : Rn → R defined by Xt(ω) = ωt. Let Ft = σ(X1, . . . , Xt) so that
a retirement policy is a stopping time 0 ≤ τ ≤ n with respect to filtration
F = (Ft)nt=0. The frequentist regret of the policy induced by F-stopping time τ is

Rn(τ, ν) = nmax {µ, µ◦} − E

[
τ∑

t=1
Xt +

n∑

t=τ+1
µ◦

]

= E

[
τ∑

t=1
max{0, µ◦ − µ}+

n∑

t=τ+1
max{µ− µ◦, 0}

]
.

The regret is minimized by deterministic stopping time τ = n if µ > µ◦ and τ = 0
otherwise. As usual the problem is that µ is unknown.

Frequentist regret and policy
If we assume that ν is 1-subgaussian, then the techniques of Part II can be applied
to derive a stopping time such that

Rn(τ, ν) ≤
{

∆ if ∆ ≥ 0
min{∆ + C log(n)/∆, n∆} otherwise ,

(34.6)

34.5 One-armed bandits 382

where C > 0 is a universal constant and ∆ = |µ−µ◦|. An example stopping time
for which this holds is

τ = n ∧min
{
t ∈ [n] : µ̂t +

√
2 log(n2)

t
≤ µ◦

}
, (34.7)

where µ̂t = 1
t

∑t
s=1Xs. We leave it to the reader to establish that Eq. (34.6) indeed

holds for the retirement policy using the above stopping time (Exercise 34.7).

Bayesian regret and policy
Moving on to the Bayesian framework, we now suppose that ν = νθ where θ ∈ Θ
and {Pνθ : θ ∈ Θ} is a probability kernel from Borel space (Θ,G) to (Ω,F). Then
let Q be a prior measure on (Θ,G) and P be the measure on (Θ×Ω,G ⊗F) given
by

P(θ ∈ A,ω ∈ B) =
∫

A

Pνθ (B)dQ(θ) .

Unless otherwise specified, expectations for the remainder of the section are with
respect to P.

In the model used in the frequentist setting the variables X1, X2, . . . , Xn are
independent and identically distributed with respect to Pν . Having incorporated
θ into the probability space this is not true anymore. Up to the usual ‘almost
surely’ exceptions they are conditionally independent and identically distributed
given θ.

The posterior after t observations is a probability kernel Qt from (Rt,L(Rt))
to (Θ,G) such that Qt(A) = E[IA(θ) | Ft] almost surely. We abbreviate
Et[·] = E[· | Ft]. The Bayesian regret of the retirement policy determined by τ is

BRn(τ,Q) = E [Rn(τ, νθ)] .

The Bayesian optimal policy (if it exists) is a retirement policy that minimizes
this quantity,

τ∗ ∈ argminτ BRn(τ,Q) = argmaxτ E
[

τ∑

t=1
Xt + (n− τ)µ◦

]
.

The key idea to finding τ∗ is to rewrite the optimization problem in terms of an
optimal stopping problem. Let Ut =

∑t
s=1Xs + (n− t)µ◦ be the cumulative

reward received by the learner when τ = t. Then

τ∗ ∈ argmaxτ E[Uτ] . (34.8)

Because Ut is Ft-measurable, this problem is called a standard optimal
stopping problem. For standard problems in discrete time with a finite horizon
the solution can be found using backwards induction. Intuitively, having

34.5 One-armed bandits 383

observed X1, . . . , Xt the optimal policy will retire if Ut is larger than the expected
return from the optimal stopping policy that stops after t. This suggests defining
things backwards from n by

Vn = Un and Vt = max{Ut,Et[Vt+1]} for t < n .

The process (Vt)t is called the Snell envelope and the optimal stopping time
stops at the earliest time such that Ut ≥ Vt. This intuitive fact is captured in the
following theorem.

theorem 34.3 Assuming that supτ E[|Uτ |] <∞, then τ∗ = min{t : Ut ≥ Vt}
satisfies Eq. (34.8).

The optimal policy in Theorem 34.3 only depends on the ordering of Ut and
Vt, which by subtracting the cumulative observed reward allows us to rewrite the
optimal stopping time in a more convenient form. Define Wn = 0 and for t < n

let Wt = Vt −
∑t
s=1Xs, which satisfies

Wt = max
(

(n− t)µ◦, Et[Vt+1]−
t∑

s=1
Xs

)

= max ((n− t)µ◦, Et [Wt+1] + Et[Xt+1]) . (34.9)

Then the optimal policy is

τ∗ = min{t : Ut ≥ Vt} = min
{
t : Ut −

t∑

s=1
Xs ≥ Vt −

t∑

s=1
Xs

}

= min {t : (n− t)µ◦ ≥ Et [Wt+1] + Et[Xt+1]} .

Theorem 34.3 and the above display characterize the optimal stopping rule in
a straightforward way. The difficulty is that Et[Wt+1] is usually a complicated
object. We now give two examples where Et[Wt+1] has a simple representation
that means computing the optimal stopping rule is practical.

Bernoulli rewards
Let Θ = [0, 1] and F be the standard Borel σ-algebra and νθ = B(θ) be Bernoulli
with bias θ. In the previous section we showed that the beta prior and Bernoulli
family are conjugates so we will choose the prior to be Q = Beta(α, β) for some
α, β > 0. A calculation shows that

E[Xt+1 | Ft] = α+ St
α+ β + t

= pt(St) ,

where pt(s) = (α + s)/(α + β + t). This greatly simplifies matters because Wt

can be written as a function of just St ∈ {0, 1, . . . , t}.

Wt(s) = max ((n− t)µ◦, E [Wt+1 | St = s] + Et[Xt+1 | St = s])
= max ((n− t)µ◦, pt(s)Wt+1(s+ 1) + (1− pt(s))Wt+1(s) + pt(s)) .

34.5 One-armed bandits 384

So the optimal policy can be computed by evaluating Wt(s) for all s ∈ {0, . . . , t}
starting with t = n− 1, then n− 2 and so-on until t = 0. The total computation
for this backwards induction is O(n2) and the output is a policy that can
be implemented over all n rounds. In contrast, the stopping rule proposed in
Eq. (34.7) requires only O(n) computations, so the overhead is quite severe. The
improvement is also not insignificant as illustrated by the following experiment.

The horizon is set to n = 500 and µ◦ = 1/2. The stopping times we compare
are the Bayesian optimal policy with a Beta(1, 1) prior and the ‘frequentist’
stopping time given by

τD = n ∧min
{
t ≥ 1 : µ̂t < µ◦ and d(µ̂t, µ◦) ≥

log(n/t)
t

}
, (34.10)

where d(p, q) = D(B(p),B(q)) is the relative entropy between Bernoulli
distributions with parameters p and q respectively. The plot below shows
the expected regret for different values of µ. As you can see, the results are not
a clear win in favour of the Bayesian optimal policy. The asymmetric behaviour
of the frequentist policy is explained by the conservatism of the confidence
interval in Eq. (34.10), which makes it stop consistently later than its Bayesian
counterpart. In a sense this is an advantage of the Bayesian approach, where
the prior encodes the objective and the policy automatically optimises the
criteria. Because the Beta(1, 1) prior is symmetric about 1/2 it should not
surprise us that the regret is approximately symmetric.

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

µ

Ex
pe

ct
ed

re
gr

et

Bayesian optimal
Frequentist

Gaussian rewards
The Gaussian case is more delicate because Wt does not have a discrete
representation. To make things concrete assume that νθ = N (θ, 1) is Gaussian
with unit variance and the prior Q on (R,B(R)) is also Gaussian with mean
µP ∈ R and variance σ2

P > 0. By the results in Section 34.3 the posterior Qt is

34.5 One-armed bandits 385

Gaussian with mean µt and variance σ2
t given by

µt =
µP
σ2
P

+
∑t
s=1Xs

1 + σ−2
P

and σ2
t =

(
t+ 1

σ2
P

)−1
.

Notice that σ2
t is independent of the observations so the posterior is determined

entirely by its mean. Thus we can view Wt as a function from the posterior mean
µt ∈ R to R, which by Eq. (34.9) is given by

Wt(µ) = max
(

(n− t)µ◦, µ+ 1√
2π

∫ ∞

−∞
exp

(
− x2

2σ2
t

)
Wt+1(µ+ x)dx

)
.

In general the integral on the right-hand side does not have a closed form solution,
which forces the use of approximate methods. Fortunately Wt is a well behaved
function and can be efficiently approximated.

lemma 34.1 The following hold:

(a) Wt(µ) is monotone increasing in µ.
(b) Wt(µ) is convex.
(c) limµ→∞Wt(µ)/µ = n− t and limµ→−∞Wt(µ) = (n− t)µ◦.

Proof The first two follow from the calculus of monotone/convex functions while
the third we leave as an exercise to the reader.

There are many ways to approximate a function, but the important point
here is we want an approximation of Wt such that the integral in the recursive
definition can be computed efficiently. Given the properties in Lemma 34.1 a
natural choice is to approximate Wt using piecewise quadratic functions. Let
W̃n+1(µ) = 0 and

W̄t(µ) = max
{

(n− t)µ◦, µ+ 1√
2π

∫ ∞

−∞
exp

(
− x2

2σ2
t

)
W̃t+1(µ+ x)dx

}
.

Then let −∞ < x1 ≤ x2 ≤ . . . ≤ xN < ∞ and for µ ∈ [xi, xi+1] define
W̃t(µ) = aiµ

2 + biµ+ ci to be the unique quadratic approximation of W̄t(µ) such
that

W̃t(xi) = W̄t(xi)
W̃t(xi+1) = W̄t(xi+1)

W̃t((xi + xi+1)/2) = W̄t((xi + xi+1)/2) .

For µ < x1 we approximate Wt(µ) = (n − t)µ◦ and for µ > xN the linear
approximation W̃t(µ) = (n− t)µ is reasonable by Lemma 34.1. The computation
time for calculating the coefficients ai, bi, ci for all t and i ∈ [N] is O(Nn).

34.6 Gittins index 386

34.6 Gittins index

Generalizing the analysis in the previous section to multiple actions
is mathematically straightforward, but computationally intractable. The
computational complexity of backwards induction increases exponentially with the
number arms, which even for two actions makes this approach quite impractical.

An index policy is a policy that in each round computes a real-valued index
for each arm and plays the arm with the largest index. Furthermore, the index
of an arm should only depend on statistics collected for that arm (and perhaps
the time horizon). For example, most variants of the upper confidence bound
algorithm introduced in Part II are index policies. Sadly, however, the Bayesian
optimal policy for finite-horizon bandits is not usually an index policy. John
Gittins proved that if one is prepared to modify the objective to a special kind
of infinite horizon problem, then the Bayesian optimal policy becomes an index
policy.

A discounted retirement game
We start by describing the discounted setting with one action and then generalize
to multiple actions. Let (S,G) be a measurable space called the state space.
Then let µ be a Markov kernel from (S,G) to itself and (Ω,F ,Ps) be a probability
space and S1, S2, . . . be a sequence of F/G-measurable random elements such
that Ps(S1 = s) = 1 and Ps(St+1 ∈ · | St) = µ(St, ·) almost surely. Finally let
r : S → [0, 1] be a known measurable function and γ ∈ R. In each round t the
learner observes the state St and chooses one of two options: (a) to retire, which
ends the game. Or (b) pay a fixed cost of γ to receive a reward of r(St) and
continue for another round. The policy of a learner in this game corresponds
to choosing a stopping time τ with respect to the filtration F = (Ft)t with
Ft = σ(S1, . . . , St), where τ = t means that the learner retires after observing St
at the start of round t. The value of a retirement policy τ is given by

V τ (s; γ) = Es

[
τ−1∑

t=1
αt−1(r(St)− γ)

]
,

where α ∈ (0, 1) is the discount factor and Es is the expectation with respect to
Ps. This definition of the value function means a learner is encouraged to obtain
large rewards earlier rather than later and is one distinction between this model
and the finite-horizon model studied for most of this book. A brief discussion of
discounting is left for the notes.

If τ = 1 almost surely, then learner retires immediately without receiving any
reward or paying any cost and V τ (s; γ) = 0. The Gittins index or fair charge
of a state s is the largest value of γ for which the learner is indifferent between
retiring immediately and playing for at least one round:

G∗(s) = sup
{
γ ∈ R : sup

τ>1
V τ (s; γ) ≥ 0

}
, (34.11)

34.6 Gittins index 387

where the inner supremum is taken over F-stopping times τ with τ > 1 almost
surely. Straightforward manipulation (Exercise 34.4) shows that

G∗(s) = sup
τ>1

Es
[∑τ−1

t=1 α
tr(St)

]

Es
[∑τ−1

t=1 α
t
] , (34.12)

It is not immediately clear that a stopping time attaining the supremum in the
definition exists. The following lemma shows that it does and gives an explicit
form. The proof of this result is left as a technical challenge for the reader
(Exercise 34.5).

lemma 34.2 For each s ∈ S the following stopping times both attain the
supremum in Eq. (34.12).

(a) τ = min{t > 1 : G∗(St) < G∗(s)}.
(b) τ = min{t > 1 : G∗(St) ≤ G∗(s)}.

The result is relatively intuitive. The Gittins index represents the price the
learner should be willing to pay for the privilege of continuing to play. The
optimal policy continues to play as long as the actual value of the game is not
smaller than this price with an indifference region when the price is exactly equal
to the value.

Discounted bandits and the index theorem
The generalization of the discounted retirement game to multiple arms is quite
straightforward. There are now K independent Markov chains on the same state-
space and in each round the learner first observes the state of all chains and
chooses an action At ∈ [K]. The learner receives a reward from the corresponding
chain, which then evolves randomly to a new state sampled from the probability
kernel. The states for unplayed arms do not change and we assume that all chains
evolve according to the same Markov kernel. The protocol is given in Fig. 34.1.

Observe states S1(t), . . . , SK(t)

Choose action At ∈ [K]

Receive reward r(SAt (t))
Update Si(t + 1) = Si(t)

and SAt (t + 1) ∼ K(SAt , ·)

Increment t

t = 1 and initialize S1(1), . . . , SK(1)

Figure 34.1 Interaction protocol for discounted bandits.

34.6 Gittins index 388

The assumption that the Markov chains evolve on the same state-space with
the same transition kernel is non-restrictive since the state-space can always be
taken to be the union of K state-spaces and the transition kernel defined with K
disconnected components.

Given a discount parameter α ∈ (0, 1), the value of policy π is

V π = E

[∞∑

t=1
αtr(SAt(t))

]
.

example 34.6 To see the relation to Bayesian bandits with discounted rewards
consider the following setup. Let S = [0,∞) × [0,∞) and G = B(S). Then let
the initial state of each Markov chain be Si(1) = (1, 1) and define probability
kernel µ from (S,G) to itself by

µ((x, y), A) = x

x+ y
δ(x+1,y)(A) + y

x+ y
δ(x,y+1)(A) .

The reward function is r(x, y) = x/(x + y). The reader should check that this
corresponds to a Bernoulli bandit with Beta(1,1) prior on the mean reward of
each arm.

One of the most celebrated theorems in the study of bandits is that the optimal
policy for this problem is to choose in each round the Markov chain with the
largest Gittins index.

theorem 34.4 Let π∗ be the policy choosing At = argmaxiG∗(Si(t)). Then
V π
∗ = supπ V π where the supremum is taken over all policies.

The remainder of the section is devoted to proving Theorem 34.4. The choice
of actions produces an interleaving of the rewards generated by each Markov
chain and it will be useful to have a notation for these interleavings. For each
i ∈ [K] let gi = (git)∞t=1 be a real-valued sequence and g = (g1, . . . , gK) be the
tuple of these sequences. Given an infinite sequence (at)∞t=1 with at ∈ [K] define
the interleaving sequence I1(g, a), I2(g, a), . . . by

It(g, a) = gat,1+nat (t−1) with ni(t− 1) =
t−1∑

s=1
I {as = i} .

In the special case that gi is monotone nonincreasing for each i there exists a
largest interleaving I∗(g) = I(g, a∗), where a∗t = argmaxi ga,nt−1,i . The following
lemma follows from the Hardy–Littlewood inequality and we leave the proof as
an exercise.

lemma 34.3 If gi1 ≤ gi2 ≤ · · · for each i and α ∈ (0, 1), then
∞∑

t=1
αtI∗t (g) = sup

a

∞∑

t=1
αtIt(g, a) .

34.7 Computing the Gittins index 389

Proof of Theorem 34.4 Let G(t) = mins≤tG∗(SAt(s)) and define an increasing
sequence of stopping times (τk)∞k=0 by

τ0 = 1 and τk+1 = min {t > τk : At 6= Aτk or G(t) < G(τk − 1)} .

For the Gittins index policy the τk+1 is exactly the stopping time given in
Lemma 34.2. Let k ∈ N and abbreviate i = Aτk . Then

E

[
τk+1−1∑

t=τk

αtr(Si(t))
∣∣∣∣∣ Fτk

]
= G(τk)E

[
τk+1−1∑

t=τk

αt

∣∣∣∣∣ Fτk

]
a.s

= E

[
τk+1−1∑

t=τk

G(t)αt
∣∣∣∣∣ Fτk

]
a.s ,

where the first equality follows from the definition of the stopping time and
Eq. (34.12) and the second because the definition of the stopping time ensures
that G(t) = G(τk) on {τk, . . . , τk+1 − 1}. Let Siu be the state of the ith Markov
chain when Ti(t− 1) = u and Hiu = minv≤uG∗(Siv). The key point is that the
distribution of H does not depend on the choice of policy and clearly Hiu is
monotone nonincreasing in u for each i. Substituting the previous display into
the definition of the value function shows that

V π
∗

= E

[∞∑

k=0

τk+1−1∑

t=τk

αtG(t)
]

= E

[∞∑

t=1
αtIt(H,A)

]
= E

[∞∑

t=1
αtI∗t (H)

]

For policies other than the Gittins policy we note that

E

[
τk+1−1∑

t=τk

αtr(Si(t))
∣∣∣∣∣ Fτk

]
≤ E

[
τk+1−1∑

t=τk

αtG(t)
∣∣∣∣∣ Fτk

]
a.s .

Summing over all k and taking expectation combined with Lemma 34.3 yields

V π ≤ E

[∞∑

t=1
αtG(t)

]
= E

[
n∑

t=1
It(H,A)

]
≤ E

[
n∑

t=1
I∗t (H)

]
.

34.7 Computing the Gittins index

We describe a simple approach that depends on the state space being finite.
References to more general methods are given in the bibliographic remarks.
Assume without loss of generality that S = {1, 2, . . . , |S|} and G = 2S . The matrix
form of the transition kernel is P ∈ [0, 1]|S|×|S| and is defined by Pij = µ(i, {j}).
We also let r ∈ [0, 1]|S| be the vector of rewards so that ri = r(i). The standard
basis vector is ei ∈ R|S| and 1 ∈ R|S| is the vector with 1 in every coordinate.
For C ⊂ S we let QC be the transition matrix with (QC)ij = PijIC(j). For each

34.7 Computing the Gittins index 390

0 2 4 6 8 10 12
t

First arm
Second arm

Figure 34.2 The evolution of the fair charge G∗(Si(t)) and prevailing charge G(t) for a
two-armed bandit. The solid lines indicate the fair charge for each arm, while dotted
lines indicate the prevailing charge. Marks indicate which arm is played in each round.

i ∈ S our goal is to find

G∗(i) = sup
τ>1

Ei
[∑τ−1

t=1 α
tr(St)

]

Ei
[∑τ−1

t=1 α
t
] ,

where Ei is the expectation with respect the measure Pi for which the initial
state is S1 = i. The second part of Lemma 34.2 shows that the stopping time
τ = min{t > 1 : G∗(St) ≤ G∗(i)} attains the supremum in the above display. The
set Ci = {j : G∗(j) > G∗(i)} is called the continuation region and Si = S \ Ci is
the stopping region. Then the Gittins index can be calculated as

G∗(i) =
Ei
[∑τ−1

t=1 α
tr(St)

]

Ei
[∑τ−1

t=1 α
t
] =

∑∞
t=1 α

te>i Q
t−1
Ci

r
∑∞
t=1 α

te>i Q
t−1
Ci

1
= e>i (I − αQCi)−1r

e>i (I − αQCi)−11
.

All this suggests an induction approach where the Gittins index is calculated
for each state in decreasing order of their indices. To get started note that the
maximum possible Gittins index is maxi ri and that this is achievable for state
i = argmaxj rj with deterministic stopping time τ = 2. Assume that G∗(i) is
known for the k states C = {i1, i2, . . . , ik} with the largest indices. Then ik+1 is
given by

ik+1 = argmaxi/∈C
e>i (I − αQC)−1r

e>i (I − αQC)−11
.

If Gauss–Jordan elimination is used for matrix inversion, then the computational
complexity of this algorithm is O(|S|4). A more sophisticated inversion algorithm

34.8 Notes 391

would reduce the complexity to O(|S|3+ε) for some ε ≤ 0.373, but these are
seldom practical. When α is relatively small the inversion can be replaced by
directly calculating the sums to some truncated horizon with little loss in accuracy.
There are many other ways to compute the Gittins index with better complexity
guarantees. We refer the reader to the bibliographic remarks for references.

34.8 Notes

1 An advantage of Bayesian methods is that they automatically and optimally
exploit the assumptions. For example, the Bayesian optimal policy for one-
armed Bernoulli bandits that we analyzed empirically is essentially the same
as its frequentist cousin, but with the tightest possible confidence bounds. This
blessing can also be a curse. A policy that exploits its assumptions too heavily
can be brittle when those assumptions turn out to be wrong. This can have
a devastating effect in bandits where the cost of overly aggressive confidence
intervals is large.

2 The issue of conditioning on measure zero sets has been described in many
places. We do not know of a practical situation where things go really awry.
Sensible choices yield sensible posteriors. The curious reader could probably
burn a few weeks reading through the literature on the Borel–Kolmogorov
paradox.

3 Economists have long recognized the role of time in the utility people place on
rewards. Most people view a promise of pizza a year from today as less valuable
than the same pizza tomorrow. Discounting rewards is one way to model
this kind of preference. The formal model is credited to renowned American
economist Paul Samuelson [1937], who according to Frederick et al. [2002]
had serious reservations about both the normative and descriptive value of
the model. While discounting is not very common in the frequentist bandit
literature, it appears often in reinforcement learning where it offers certain
technical advantages [Sutton and Barto, 1998].

4 Theorem 34.4 only holds for geometric discounting. If αt is replaced by α(t)
where α(·) is not an exponential, then one can construct Markov chains for
which the optimal policy is not an index policy. The intuition behind this result
is that when α(t) is not an exponential function, then the Gittins index of an
arm can change even in rounds you play a different arm and this breaks the
interleaving argument [Berry and Fristedt, 1985].

5 We mentioned that computing the Bayesian optimal policy in finite horizon
bandits is computationally intractable. But this is not quite true if n is small.
For example, when n = 50 and K = 5 the dynamic program for computing
the exact Bayesian optimal policy for Bernoulli noise and Beta prior has
approximately 1011 states. A big number to be sure, but not so large that the
table cannot be stored on disk. And this is without any serious effort to exploit

34.9 Bibliographical remarks 392

symmetries. Perhaps for mission-critical applications with small horizon the
benefits of exact optimality make the computation worth the hassle.

6 The algorithm in Section 34.7 for computing Gittins index is called Varaiya’s
algorithm. In the bibliographic remarks we give some pointers on where to
look for more sophisticated methods. The assumption that |S| is finite is less
severe than it may appear. When the discount rate is not too close to 1, then
for many problems the Gittins index can be approximated by removing states
that are not reachable from the start state before the discounting means they
becomes close to irrelevant. When the state space is infinite there is often a
topological structure that makes a discretization possible.

34.9 Bibliographical remarks

There are many texts on Bayesian statistics. It’s hard not to recommend the
book by Gelman et al. [2014] who is one of the main proponents of Bayesian
methods. A more philosophical book that takes a foundational look at probability
theory from a Bayesian perspective is by Jaynes [2003]. The careful definition of
the posterior can be found in several places, but the recent book by Ghosal and
van der Vaart [2017] does an impeccable job. A worthy mention goes to the article
by Chang and Pollard [1997], which uses disintegration to formalise the “private
calculations” that probabalists so frequently make before writing everything
carefully using Nikodym derivatives and regular versions. Theorem 34.2 is well
known. For a simple proof see Theorem 5.3 in the book by Kallenberg [2002]. The
classic text on optimal stopping is by Robbins et al. [1971], while a more modern
text is by Peskir and Shiryaev [2006], which includes a proof of Theorem 34.3 (see
Thm. 1.2). For a detailed presentation of exponential families see the book by
Lehmann and Casella [2006]. We are not aware of a reference for Theorem 34.1,
but Lai [1987] has shown that for sufficiently regular priors and noise models the
asymptotic Bayesian optimal regret is BR∗n ∼ c log(n)2 for some constant c > 0
that depends on the prior/model. The Bayesian approach dominated research on
bandits from 1960–1980, with Gittins’ result (Theorem 34.4) the most celebrated
[Gittins, 1979]. Gittins et al. [2011] has written a whole book on Bayesian bandits.
Another book that focusses mostly on the Bayesian problem is by Berry and
Fristedt [1985]. Although it is now more than thirty years old this book is still
a worthwhile read and presents many curious and unintuitive results about
exact Bayesian policies. As far as we know the earliest fully Bayesian analysis
is by Bradt et al. [1956], who studied the finite horizon Bayesian one-armed
bandit problem, essentially writing down the optimal policy using backwards
induction as presented here in Section 34.5. For more general approximation
results there is the article by Burnetas and Katehakis [2003], which shows that
under weak assumptions the Bayesian optimal strategy for one-armed bandits is
asymptotically approximated by a retirement policy reminiscent of Eq. (34.10).
The very specific approach to approximating the Bayesian strategy for Gaussian

34.10 Exercises 393

one-armed bandits is by one of the authors [Lattimore, 2016a], where a precise
approximation for this special case is also given. There are at least four proofs
of Gittins’ theorem [Gittins, 1979, Whittle, 1980, Weber, 1992, Tsitsiklis, 1994].
All are summarized in the review by Frostig and Weiss [1999]. There is a line of
work on computing and/or approximating the Gittins index, which we cannot do
justice to. The approach presented here for finite state spaces is due to Varaiya
et al. [1985], but more sophisticated algorithms exist with better guarantees. A
nice survey is by Chakravorty and Mahajan [2014], but see also the articles by
Chen and Katehakis [1986], Kallenberg [1986], Sonin [2008], Niño-Mora [2011],
Chakravorty and Mahajan [2013]. There is also a line of work on approximations
of the Gittins index, most of which are based on approximating the discrete time
stopping problem with continuous time and applying free boundary methods
[Yao, 2006, and references therein]. We mentioned restless bandits in Chapter 31
on nonstationary bandits, but they are usually studied in the Bayesian context
Whittle [1988], Weber and Weiss [1990]. The difference is that now the Markov
chain for all actions evolve regardless of the action chosen, but the learner only
gets to observe the new state for the action they chose.

34.10 Exercises

34.1 Construct an example demonstrating that for some priors over finite-armed
stochastic bandits the Bayesian regret is strictly positive: infπ BRn(π,Q) > 0.

34.2 Evaluate the posteriors for each pair of conjugate priors in Section 34.3.

34.3 Prove Theorem 34.1.

34.4 Prove that the definitions of the Gittins index given in Eq. (34.11) and
Eq. (34.12) are equivalent.

34.5 Prove Lemma 34.2.

A proof of this result is given by Frostig and Weiss [1999]. A solution is also
available.

34.6 Prove Lemma 34.3.

34.7 This question is about one armed bandits with 1-subgaussian rewards.

1 Prove the bound in Eq. (34.6) holds for the retirement policy determined by
the stopping time in Eq. (34.7).

2 Explain why the policy has bounded regret when ∆ ≥ 0.

34.8 Reproduce the experimental results in Section 34.5.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

35 Thompson Sampling

“As all things come to an end, even this story, a day came at last when they were in
sight of the country where Bilbo had been born and bred, where the shapes of the land
and of the trees were as well known to him as his hands and toes.” – Tolkien [1937].

Like Bilbo, as we near the end of the book we return to where it all began, to
the first algorithm for bandits proposed by Thompson [1933]. The idea is a simple
one. Before the game starts the learner chooses a prior over a set of possible
bandit environments. In each round the learner samples an environment from the
posterior and acts according to the optimal action in that environment. Thompson
only gave empirical evidence (calculated by hand) and focussed on Bernoulli
bandits with two arms. Nowadays these limitations have been eliminated and
theoretical guarantees have been proven demonstrating the approach is often close
to optimal in a wide range of settings. Perhaps more importantly, the resulting
algorithms are often quite practical both in terms of computation and empirical
performance. The idea of sampling from the posterior and playing the optimal
action is called Thompson sampling or posterior sampling.

The exploration in Thompson sampling comes from the randomization. If the
posterior is poorly concentrated, then the fluctations in the samples are expected
to be large and the policy will likely explore. On the other hand, as more data is
collected the posterior concentrates towards the true environment and the rate of
exploration decreases. We focus our attention on finite-armed stochastic bandits
and linear stochastic bandits, but Thompson sampling has been extended to all
kinds of models as explained in the bibliographic remarks.

Randomization is crucial for adversarial bandit algorithms and can be useful
in stochastic settings (see Chapters 23 and 32 for examples). We should be
wary, however, that there might be a price to pay by injecting variance into
our algorithms. What is gained or lost by the randomization in Thompson
sampling is still not clear, but we leave this cautionary note as a suggestion to
the reader to think about some of the costs and benefits.

http://banditalgs.com
mailto:tor.lattimore@gmail.com

35.1 Finite-armed bandits 395

35.1 Finite-armed bandits

Recalling very briefly the notation from Section 34.4, let K > 1 be the number of
arms and (E ,G,Q) be a probability space where E is a set of K-armed stochastic
bandits and Q is the prior. For ν ∈ E the distribution on the reward vector in
each round is Pν on (RK ,B(RK)). As usual we assume that Pν is a probability
kernel from (E ,G) to (RK ,B(RK)). The reward vector in round t is Xt ∈ RK
and the learner observes XtAt . The posterior after t observations is a random
measure Qt on (E ,G). The mean of the ith arm in bandit ν ∈ E is µi(ν).

1: Input K, E and prior Q
2: for t = 1, 2, . . . n do
3: Compute posterior Qt−1 based on observed data
4: Sample νt ∼ Qt−1
5: Choose At = argmaxi∈[K] µi(νt)
6: end for

Bayesian analysis
Thompson sampling has been analyzed in both the frequentist and the Bayesian
settings. We start with the latter where the result requires almost no assumptions
on the prior. In fact, after one small observation about Thompson sampling, the
analysis is almost the same as that of UCB.

theorem 35.1 Let E a set of 1-subgaussian bandits with K arms and mean
rewards bounded in [0, 1] and Q be a measure on (E ,G) for some σ-algebra G and
π be the policy of Thompson sampling with this prior. Then

BRn(π,Q) ≤ C
√
Kn log(n) ,

where C > 0 is a universal constant.

Proof Let P be the joint measure defined after Eq. (34.2) and ν, At and Xt

be the coordinate projections given in Eq. (34.3). Expectations are taken with
respect to P. Abbreviate µi = µi(ν) and let A∗ = argmaxi∈[K] µi be the optimal
arm, which depends on ν and is a random variable. For each t ∈ [n] and i ∈ [K]
let

Ut(i) = clip[0,1]

(
µ̂i(t− 1) +

√
2 log(1/δ)

1 ∨ Ti(t− 1)

)
,

where µ̂i(t− 1) is the empirical estimate of the reward of arm i after t− 1 rounds
and we assume µ̂i(t − 1) = 0 if Ti(t − 1) = 0. Let E be the event that for all
t ∈ [n] and i ∈ [K],

|µ̂i(t− 1)− µi| <
√

2 log(1/δ)
1 ∨ Ti(t− 1) .

35.1 Finite-armed bandits 396

In Exercise 35.1 we ask you to prove that P (Ec) ≤ nKδ. Note that Ut(i) is
Ft−1-measurable. The Bayesian regret is

BRn = E

[
n∑

t=1
(µA∗ − µAt)

]
= E

[
n∑

t=1
E [µA∗ − µAt | Ft−1]

]
.

The key insight is to notice that the definition of Thompson sampling implies
the conditional distributions of A∗ and At given Ft−1 are the same:

P (A∗ = · | Ft−1) = P (At = · | Ft−1) a.s. . (35.1)

Using the previous display,

E [µA∗ − µAt | Ft−1] = E [µA∗ − Ut(At) + Ut(At)− µAt | Ft−1]
= E [µA∗ − Ut(A∗) + Ut(At)− µAt | Ft−1] (Eq. (35.1))
= E [µA∗ − Ut(A∗) | Ft−1] + E [Ut(At)− µAt | Ft−1] .

Using the tower rule for expectation shows that

BRn = E

[
n∑

t=1
(µA∗ − Ut(A∗)) +

n∑

t=1
(Ut(At)− µAt)

]
. (35.2)

On the event Ec the terms inside the expectation are bounded by 2n while on
the event E the first sum is negative and the second is bounded by

I {E}
n∑

t=1
(Ut(At)− µAt) = I {E}

n∑

t=1

K∑

i=1
I {At = i} (Ut(i)− µi)

≤
K∑

i=1

n∑

t=1
I {At = i}

√
8 log(1/δ)

1 ∨ Ti(t− 1) ≤
K∑

i=1

∫ Ti(n)

0

√
8 log(1/δ)

s
ds

=
K∑

i=1

√
32Ti(n) log(1/δ) ≤

√
32nK log(1/δ) .

The proof is completed by choosing δ = n−2 and the fact that P (Ec) ≤ nKδ.

Frequentist analysis
Bounding the frequentist regret of Thompson sampling is significantly more
technical than the Bayesian regret. The trouble is the frequentist regret does
not have an expectation with respect to the prior, which means that At is not
conditionally distributed in the same way as the optimal action (which is not
random). For brevity we restrict ourselves to the Gaussian case, but other noise
models have also been studied as we discuss at the end of the chapter. To make
things simple we assume that At = t for t ∈ [K] and subsequently

At = argmaxi∈[K] θi(t) , (35.3)

where θi(t) ∼ N (µ̂i(t− 1), 1/Ti(t− 1)). Except for the minor detail that we force
the algorithm to choose each arm once in the beginning, this policy is derived by

35.1 Finite-armed bandits 397

taking an independent Gaussian prior for the mean of each arm and sending the
prior variance to infinity.

theorem 35.2 If the algorithm described in Eq. (35.3) is run on Gaussian
bandit ν ∈ EKN (1), then

Rn ≤ C
∑

i:∆i>0

(
∆i + log(n)

∆i

)
,

where C > 0 is a universal constant. Furthermore, lim sup
n→∞

Rn
log(n) ≤

∑

i:∆i>0

2
∆i

.

Proof of Theorem 35.2 Recall the notation from Part II that µ̂1s is the empirical
reward of the first arm after s plays of this arm. As usual we assume without
loss of generality that µ1 = maxi µi so that the first arm is optimal. Define
Qs(ε) = P (θ1(t) ≥ µ1 − ε | T1(t− 1) = s), which is

Qs(ε) = Pη∼N (0,1/s) (µ̂1s + η ≥ µ1 − ε) .

Let ε1, . . . , εK be a sequence of nonnegative constants to be chosen later and
define the event Ei(t) = {θi(t) ≤ µ1− εi}. The plan is to bound E[Ti(n)] for each
suboptimal arm i and then apply Lemma 4.2. We start with a straightforward
decomposition.

E[Ti(n)] = E

[
n∑

t=1
I {At = i}

]

= E

[
n∑

t=1
I {At = i, Ei(t)}

]
+ E

[
n∑

t=1
I {At = i, Eci (t)}

]
. (35.4)

The second sum on the right-hand side is the easy term. Essentially, if Ti(t− 1) is
large enough, then the probability of Eci (t) is unlikely to be very large. We leave
it to the reader in Exercise 35.3 to prove for some universal constant C > 0 that

E

[
n∑

t=1
I {At = i, Eci (t)}

]
≤ C

(
1 + 1

(∆i − εi)2

)
. (35.5)

The next step is the novel part of the analysis, which bounds the conditional
probability that suboptimal arm i is played in round t in terms of the probability
of playing the optimal arm. Let A′t = argmaxi6=1 θi(t). Then for any i > 1,

P (At = 1, Ei(t) | Ft−1) ≥ P (A′t = i, Ei(t), θ1(t) ≥ µ1 − εi | Ft−1)
= P (θ1(t) ≥ µ1 − εi | Ft−1)P (A′t = i, Ei(t) | Ft−1)

≥ QT1(t−1)(εi)
1−QT1(t−1)(εi)

P (At = i, Ei(t) | Ft−1) , (35.6)

where in the first equality we used the fact that θ1(t) is conditionally independent

35.1 Finite-armed bandits 398

of A′t and Ei(t) given Ft−1. In the second inequality we used the definition of
QT1(t−1)(εi) = P (θ1(t) ≥ µ1 − εi | Ft−1) and the fact that

P (At = i, Ei(t) | Ft−1) ≤ (1− P (θ1(t) ≥ µ1 − εi | Ft−1))P (A′t = i, Ei(t) | Ft−1) ,

which is true because {At = i, Ei(t)} ⊆ {A′t = i, Ei(t)} ∩ {θ1(t) ≤ µ1 − εi} and
the two intersected events are conditionally independent given Ft−1. Therefore
using Eq. (35.6) we have

P (At = i, Ei(t) | Ft−1) ≤
(

1
QT1(t−1)(εi)

− 1
)
P (At = 1, Ei(t) | Ft−1)

≤
(

1
QT1(t−1)(εi)

− 1
)
P (At = 1 | Ft−1) .

Substituting this into the first term in Eq. (35.4) leads to

E

[
n∑

t=1
I {At = i, Ei(t)}

]
≤ E

[
n ∧

n∑

t=1

(
1

QT1(t−1)(εi)
− 1
)
P (At = 1 | Ft−1)

]

= E

[
n ∧

n∑

t=1

(
1

QT1(t−1)(εi)
− 1
)
I {At = 1}

]

≤ E

[
n ∧

n∑

s=1

(
1

Qs(εi)
− 1
)]

≤ E

[
n∑

s=1

(
n ∧

(
1

Qs(εi)
− 1
))]

. (35.7)

where in the second last step we used the fact that T1(t− 1) = s is only possible
for one round where At = 1. At last we have decoupled all the dependencies
between the arms and reduced the problem to studying the right-hand side of
Eq. (35.7). We will shortly show that for any γ ∈ (0, 1),

n∑

s=1
E
[
n ∧

(
1

Qs(εi)
− 1
)]
≤

8 log
(
e+ 8

εiγ2

)

ε2
i γ

2 + 2 log(n+ 1)
ε2
i (1− γ) . (35.8)

The theorem follows from the claim and the standard regret decomposition
(Lemma 4.2) and by choosing εi = (1− γ)∆i, where the finite-time result follows
with γ = 1/2 and the asymptotic result with γ = log−1/8(n). The proof of the
claim in Eq. (35.8) is a bit of a slog. Let

Fs(x) =
√

s

2π

∫ x

−∞
exp(−sy2/2)dy

be the cumulative distribution function for a Gaussian with zero mean and

35.1 Finite-armed bandits 399

variance 1/s. Then Qs(ε) = 1− Fs(µ1 − µ̂1s − ε). Therefore

E
[
n ∧

(
1

Qs(ε)
− 1
)]

=
∫ n

0
P
(

1
Qs(ε)

− 1 ≥ x
)
dx

=
∫ n

0
P
(
Fs(µ1 − µ̂1s − ε) ≥

x

1 + x

)
dx

=
∫ n

0
P
(
µ1 − µ̂1s − ε ≥ F−1

s (x/(1 + x))
)
dx

=
∫ n

0
(1− Fs(ε+ F−1

s (x/(1 + x)))dx ,

where in the last line we used the fact that µ1 − µ̂1s is Gaussian with zero mean
and variance 1/s. By Theorem 5.1 it holds that Fs(−εγ/2) ≤ exp(−sε2γ2/8).
Therefore if x/(1 + x) ≥ u = exp(−sε2γ2/8), then F−1

s (x/(1 + x)) ≥ −εγ/2.
Abbreviating gs(x) = 1− Fs(ε+ F−1

s (x/(1 + x))) we see that for x ≥ u/(1− u),

gs(x) =
∫ ∞

x

g′s(y)dy =
∫ ∞

x

exp
(
− sε

2+2sεF−1
s (y/(1+y))
2

)

(1 + y)2 dy

≤
∫ ∞

x

exp
(
− sε

2+2sεF−1
s (x/(1+x))
2

)

(1 + y)2 dy ≤
∫ ∞

x

exp
(
− s(1−γ)ε2

2

)

(1 + y)2 dy

=
exp

(
− s(1−γ)ε2

2

)

1 + x
.

From its definition it is easily seen that gs(x) ≤ 1− x/(1 + x) = 1/(1 + x) so that
by splitting the integral we have

E
[
n ∧

(
1

Qs(ε)
− 1
)]

=
∫ n

0
gs(x)dx

≤
∫ u/(1−u)

0

dx

1 + x
+ exp

(
−s(1− γ)ε2

2

)∫ n

x0

dx

1 + x

≤ log


 1

1− exp
(
− sγ2ε2

8

)


+ exp

(
−s(1− γ)ε2

2

)
log(n+ 1) . (35.9)

We make use of the following facts:
∞∑

s=1
exp(−sp) ≤ 1

p
and

∞∑

s=1
log
(

1
1− exp(−sp)

)
≤ log(e+ 1/p)

p
.

Summing Eq. (35.9) over s and applying the facts yields the proof of Eq. (35.8):

n∑

s=1
E
[
n ∧

(
1

Qs(εi)
− 1
)]
≤

8 log
(
e+ 8

ε2
i
γ2

)

ε2
i γ

2 + 2 log(n+ 1)
ε2
i (1− γ) .

35.2 Linear bandits 400

35.2 Linear bandits

While the advantages of Thompson sampling in finite-armed bandits are relatively
limited, in the linear setting there is much to be gained, both in terms of
computation and empirical performance. Let E be the set of Gaussian linear
bandits with a fixed action-set A ⊂ Rd. A Gaussian linear bandit is characterized
by its mean vector θ ∈ Rd and the reward after taking action At in round t is

Xt = 〈At, θ〉+ ηt ,

where η1, . . . , ηn is a sequence of independent standard Gaussian random variables.
A prior corresponds to choosing a measure on Rd. An advantage of Thompson
sampling relative to optimistic linear bandit algorithms is that the optimization
problem for selecting the action no longer requires optimizing over a confidence
ellipsoid. There are many cases where this makes a significant difference. For
example, if A is convex, then Thompson sampling can often be computed
efficiently, which is not generally the case for the optimistic linear bandit
algorithms in Chapter 19.

1: Input Prior Q and action-set A
2: for t ∈ 1, . . . , n do
3: Sample θt from the posterior
4: Choose At = argmaxa∈A〈a, θt〉
5: end for

Algorithm 21: Thompson sampling for linear bandits

The Bayesian regret is controlled using the techniques from the previous section
in combination with the concentration analysis in Chapter 20. A frequentist
analysis is also possible under slightly unsatisfying assumptions, which we discuss
in the notes and bibliographic remarks.

theorem 35.3 Assume that ‖θ‖2 ≤ S with Q-probability one and
supa∈A ‖a‖2 ≤ L and supa∈A〈a, θ〉 ≤ 1 with Q-probability one. Then the Bayesian
regret of Algorithm 21 is bounded by

BRn ≤ 2 + 2

√
2dnβ2 log

(
1 + nS2L2

d

)
,

where β = 1 +

√
2 log(n) + d log

(
1 + nS2L2

d

)
.

Proof We apply the same technique as the proof of Theorem 35.1. Define upper
confidence bound Ut : A → R by

Ut(a) = 〈θ̂t−1, a〉+ β‖a‖V −1
t−1

, where Vt = I

E[‖θ‖22] +
t∑

s=1
AsA

>
s .

35.2 Linear bandits 401

By Theorem 20.2, P(exists t ≤ n : ‖θ̂ − θ‖Vt ≥ β) ≤ 1/n. Let Et be the event
that ‖θ̂t−1 − θ‖Vt−1 < β and E =

⋂n
t=1Et and A∗ = argmaxa∈A〈a, θ〉, which is

a random variable in this setting because θ is random. Then

BRn = E

[
n∑

t=1
〈A∗ −At, θ〉

]

= E

[
IEc

n∑

t=1
〈A∗ −At, θ〉

]
+ E

[
IE

n∑

t=1
〈A∗ −At, θ〉

]

≤ 2 + E

[
IE

n∑

t=1
〈A∗ −At, θ〉

]

≤ 2 + E

[
n∑

t=1
IEt〈A∗ −At, θ〉

]
. (35.10)

As before, P (A∗ = · | Ft−1) = P (At = · | Ft−1), which means the second term in
the above display is bounded by

Et−1 [IEt〈A∗ −At, θ〉] = IEtEt−1 [〈A∗, θ〉 − Ut(A∗) + Ut(At)− 〈At, θ〉]
≤ IEtEt−1 [Ut(A∗)− 〈At, θ〉]

≤ IEtEt−1

[
〈At, θ̂t−1 − θ〉

]
+ β‖At‖V −1

t

≤ IEtEt−1

[
‖At‖V −1

t
‖θ̂t−1 − θ‖Vt

]
+ β‖At‖V −1

t

≤ 2β‖At‖V −1
t

.

Substituting into the second term of Eq. (35.10),

E

[
n∑

t=1
IEt〈A∗ −At, θ〉

]
≤ 2E

[
β

n∑

t=1
(1 ∧ ‖At‖V −1

t
)
]

≤ 2

√√√√nE

[
β2

n∑

t=1
(1 ∧ ‖At‖2V −1

t

)
]

(Cauchy-Schwartz)

≤ 2

√
2dnE

[
β2 log

(
1 + nS2L2

d

)]
. (Lemma 19.1)

Putting together the pieces shows that

BRn ≤ 2 + 2

√
2dnβ2 log

(
1 + nS2L2

d

)
.

Computation
An implementation of Thompson sampling for linear bandits needs to (a) sample
θt from the posterior and (b) find the optimal action for the sampled parameter:

At = argmaxa∈A〈a, θt〉 .

35.3 Information theoretic analysis 402

For some priors and noise models sampling from the posterior is straightforward.
The most notable case is when Q is a multivariate Gaussian. More generally there
is a large literature devoted to numerical methods for sampling from posterior
distributions. Have sampled θt, the optimization problem of finding At is a linear
optimization problem. Compare this to LinUCB, which needs to solve

At = argmaxa∈A argmaxθ̃∈C〈a, θ̃〉 ,

which for large or continuous action-sets is usually much harder computationally.

35.3 Information theoretic analysis

The analysis in the previous sections mirrored those for the frequentist algorithms
in Part II. Here we showcase a different approach that relies exclusively on
information theory. The argument is based on the observation that for bandits
with K arms at most log(K) nats are needed to code the identity of the optimal
arm, which means the total information gain about this quantity is bounded.
For many policies one can prove a relationship between the information gain
about the optimal arm and the expected regret, which in combination with the
previous observation leads to a bound on the regret. This analysis is all the more
striking because the assumption that the bandits are (stationary) stochastic can
is relaxed as we discuss in the notes.

A few more definitions from information theory are needed. Let X be a discrete
random variable on probability space (Ω,G,P). Recall from Chapter 14 that the
entropy of X is defined by

H(X) =
∑

x∈range(X)

P (X = x) log
(

1
P (X = x)

)
.

We also need the conditional entropy. Let F ⊂ G be a σ-algebra. Then

H(X | F) = E


 ∑

x∈range(X)

P (X = x | F) log
(

1
P (X = x | F)

)
 .

A little confusingly, the conditional entropy is not a random variable. Perhaps
a better nomenclature would have been the expected conditional entropy. The
entropy of random variable X is a measure of the amount of information in X while
the conditional entropy given F is the expected amount of information required
to encode X having observed the information in F . The mutual information
between X and F is the difference between the entropy and the conditional
entropy:

I(X;F) = H(X)−H(X | F) .

The mutual information is always nonnegative, which should not be surprising
because the information remaining in X can only decrease as more information

35.3 Information theoretic analysis 403

is observed. Another name for the mutual information is information gain. We
use these forms when the underlying measure is clear from context. If this is
not the case, then the measure is shown in the subscript: H(X) = HP(X). The
following lemmas provide a chain rule for the mutual information and a simple
connection to the relative entropy. The proofs are definitional and are left as
exercises.

lemma 35.1 Let X be a random variable on (Ω,G,P) and (Ft)nt=0 a filtration
of G with F0 = {∅,F} and Pt(·) = P (· | Ft). Then

E

[
n∑

t=1
IPt−1(X;Ft)

]
= IP(X;Fn) .

lemma 35.2 Let X and Y be random variables on probability space (Ω,G,P).
If X is discrete and I(X;Y) exists, then

I(X;Y) = E
[
D(PY |X ,PY)

]
,

where PY |X is the random measure on (Ω, σ(Y)) such that PY |X(A) =
P (Y ∈ A | X) almost surely.

We now present an elegant result connecting the Bayesian regret of any policy
and the information gain. Recall that Ft = σ(A1, X1A1 , . . . , At, XtAt) and let
Et[·] = E[· | Ft] and Pt(·) = P(· | Ft) and abbreviate Ht(·) = HPt(·) and
It(·; ·) = IPt(·; ·). Define random variable Γt to be the ratio of the squared
expected Bayesian instantaneous regret and the information gain about the
optimal arm.

Γt = (Et−1[XtA∗ −XtAt])
2

It−1(A∗; (At, XtAt))
. (35.11)

theorem 35.4 Suppose that Γt ≤ Γ̄ almost surely for all t ∈ [n]. Then

BRn ≤
√
nΓ̄H(A∗) .

Proof By the definitions of the regret and Γt in Eq. (35.11) and Cauchy-Schwartz
we have

BRn = E

[
n∑

t=1
(XtA∗ −XtAt)

]
= E

[
n∑

t=1
Et−1[XtA∗ −XtAt]

]

= E

[
n∑

t=1

√
It−1(A∗; (At, XtAt))Γt

]
≤
√

Γ̄E
[

n∑

t=1

√
It−1(A∗; (At, XtAt)

]

≤

√√√√nΓ̄E
[

n∑

t=1
It−1(A∗; (At, XtAt))

]
≤
√
nΓ̄H(A∗) ,

where the last inequality follows from Lemma 35.1.

35.3 Information theoretic analysis 404

Theorem 35.4 holds for any policy and clearly illustrates the ‘learn something’ or
‘suffer no regret’ argument that appeared in the analyses of so many algorithms.
If the ratio of regret relative to information is large, then a policy could suffer
high regret. By contrast, policies for which the regret-information ratio is small
will enjoy strong regret guarantees.

A combination of Theorem 35.4 and an almost sure bound on Γt can lead
to nearly optimal bounds on the Bayesian regret of Thompson sampling for
finite-armed and linear bandits. We present only the finite-armed case.

lemma 35.3 If Xti ∈ [0, 1] almost surely for all t ∈ [n] and i ∈ [K] and At is
chosen by Thompson sampling using any prior, then Γt ≤ K

2 almost surely.

Before the proof of the lemma we note the consequences. Let E be a set of
finite-armed bandits with K arms and rewards in [0, 1]. Then Thompson sampling
with any prior has its Bayesian regret bounded by

BRn ≤
√
Kn log(K)

2 . (35.12)

Proof of Lemma 35.3 To avoid clutter we drop all subscripts on t. By the chain
rule for mutual information we have

I(A∗;XA, A) = I(A∗;A) + I(A∗;XA | A) (35.13)

The first term in the above display vanishes because A and A∗ are independent
under P (Exercise 35.5).

I(A∗;XA | A) =
K∑

i=1
P (A = i) I(A∗;Xi)

=
K∑

i=1
P (A = i)

K∑

j=1
P (A∗ = j) D(PXi|A∗=j ,PXi)

≥ 2
K∑

i=1

K∑

j=1
P (A = i)P (A∗ = j) (E[Xi | A∗ = j]− E[Xi])2

≥ 2
K∑

i=1
P (A = i)2 (E[Xi | A∗ = i]− E[Xi])2

≥ 2
K

(
K∑

i=1
P (A = i) (E[Xi | A∗ = i]− E[Xi])

)2

,

where the first equality follows by Eq. (35.13) and the second by Lemma 35.2.
The first inequality follows from Pinsker’s inequality (Eq. 14.8), the result in
Exercise 14.1 and the assumption that the rewards lie in [0, 1]. The second
inequality follows by dropping cross terms and the third by Cauchy-Schwartz.
The result follows by rearranging the above display.

35.4 Notes 405

35.4 Notes

1 Thompson sampling is known to be asymptotically optimal in a variety
of settings. Most notably when the noise model follows a single-parameter
exponential family and the prior is chosen appropriately [Kaufmann et al.,
2012b, Korda et al., 2013]. Unfortunately Thompson sampling is not a golden
bullet. The linear variant in Section 35.2 is not asymptotically optimal by the
same argument we presented for optimism in Chapter 25. Characterizing the
conditions under which Thompson sampling is close to optimal remains an
open challenge.

2 For the Gaussian noise model it is known that Thompson sampling is not
minimax optimal. Its worst case regret is Rn = Θ(

√
nK log(K)) [Agrawal and

Goyal, 2013a].
3 An alternative to sampling from the posterior is to choose in each round

the arm that maximizes a Bayesian upper confidence bound, which is a
quantile of the posterior. The resulting algorithm is called BayesUCB and
has excellent empirical and theoretical guarantees [Kaufmann et al., 2012a,
Kaufmann, 2018].

4 The prior has a significant effect on the performance of Thompson sampling.
In classical Bayesian statistics a poorly chosen prior is quickly washed away
by data. This is not true in bandits because if the prior underestimates the
quality of an arm, then Thompson sampling may never play that arm with high
probability and no data is ever observed. We ask you to explore this situation
in Exercise 35.9.

5 An instantiation of Thompson sampling for linear bandits is known to
enjoy near-optimal frequentist regret. In each round the algorithm samples
θt ∼ N (θ̂t−1, rVt−1), where r = Θ(d) is a constant and

Vt = I +
t∑

s=1
AsA

>
s and θ̂t = V −1

t

t∑

s=1
XsAs .

Then At = argmaxa∈A〈θt, a〉. This corresponds to assuming the noise is
Gaussian with variance r and choosing prior Q = N (0, I). Provided the
rewards are conditionally 1-subgaussian, the frequentist regret of this algorithm
is Rn = Õ(d3/2√n), which is worse than LinUCB by a factor of

√
d. The

increased regret is caused by the choice of noise model, which assumes the
variance is r = Θ(d) rather than r = 1. The reason to do this comes from the
analysis, which works by showing the algorithm is ‘optimistic’ with reasonable
probability. It is not known whether or not this is necessary or an artifact
of the analysis. Empirical evidence suggests that r = 1 leads to improved
performance.

6 A more generic view of Thompson sampling is via the idea of perturbations.
The follow the perturbed leader algorithm chooses in each round the action

35.4 Notes 406

At = argmaxi∈[K] (µ̂i(t− 1) + ηit) ,

where η1t, . . . , ηKt is a sequence of independent random variables. In many
cases Thompson sampling is hard to analyze because the variance of the
randomization is not quite sufficient to prove the optimal arm is optimistic
with sufficiently large probability. By sacrificing the Bayesian viewpoint one
can sometimes derive a similar algorithm for which the analysis is more
straightforward.

7 The analysis in Section 35.3 can be generalized to structured settings such
as linear bandits [Russo and Roy, 2016]. For linear bandits with an infinite
action set the entropy of the optimal action may be infinite. The analysis
can be corrected in this case by discretizing the action-set and comparing to
a near-optimal action. This leads to a tradeoff between the fineness of the
discretization and its size. The algorithm does not depend on the discretization.
The reader is referred to the recent article by Dong and Roy [2018]. The
assumption of bounded rewards in Lemma 35.3 can be relaxed to a subgaussian
assumption. For details see the paper by Russo and Roy [2016].

8 Nowhere in the proofs of Theorem 35.4 and Lemma 35.3 did we use the fact
that bandits in E are stochastic. Let E = [0, 1]nK and Q be a prior probability
measure on (E ,B(E)). We view elements of ν ∈ E as oblivious ‘adversarial’
bandits, which are really just sequences of reward vectors. Let (Xti)ti be a
sequence of reward vectors sampled from Q. The optimal action in hindsight is

A∗ = argmaxi∈[K]

n∑

t=1
Xti .

The posterior in round t is Qt = Q(· | A1, X1A1 , . . . , At, XtAt). Then in round t
Thompson sampling samples ν ∼ Qt−1 and chooses At = argmaxi∈[K]

∑n
t=1 νti.

Repeating the analysis in Section 35.3 shows that

E

[
n∑

t=1
XtA∗ −XtAt

]
≤
√
nK log(K)/2 .

The calculation even works for non-oblivious adversaries, provided of course
that XtAt only depends on A1, X1 . . . , At−1, Xt−1.

P = Q⊗ Pν

9 The previous note highlights a connection between Bayesian regret and the
minimax regret in adversarial bandits. First notice that Recall an adversarial
Bernoulli finite-armed bandit is a matrix (xti) with xti ∈ {0, 1} for all t ∈ [n]
and i ∈ [K]. Let E be the set of all adversarial bandits and Π the set of all
randomized policies and Q be the set of all distributions on E . Then by the

35.5 Bibliographic remarks 407

minimax theorem of Sion [1958],

R∗n = min
π∈Π

max
(xti)∈E

Eπ,x

[
max
i∈[K]

n∑

t=1
(xti − xtAt)

]

= max
Q∈Q

min
π∈Π

Ex∼Q

[
Eπ,x

[
n∑

t=1
(xti − xtAt)

]]

︸ ︷︷ ︸
Bayesian regret

.

The consequence is that if the regret of the Bayesian optimal algorithm
is bounded by B for all priors Q, then the minimax adversarial regret is
bounded by B. By Eq. (35.12) we can conclude there exists an adversarial
bandit algorithm with worst case regret at most

√
Kn log(K)/2, which can

be strengthened using the result in Exercise 35.2. Of course we already knew
these things, but the approach has applications in more sophisticated settings.
The most notable example being the first near-optimal analysis for adversarial
convex bandits [Bubeck et al., 2015a, Bubeck and Eldan, 2016]. The main
disadvantage is that uniform bounds on the Bayesian regret implies existence
of a single algorithm with small minimax adversarial regret, but the result is
nonconstructive.

10 The information-theoretic ideas in Section 35.3 suggest that rather than
sampling At from the posterior on A∗, one can sample At from the distribution
minimizing Eq. (35.11). Specifically, At is sampled from distribution πt on [K]
where

πt = argminπ

(∑K
i=1 π(i)(Et−1[XtA∗ −Xti])

)2

∑K
i=1 π(i)It−1(A∗;Xti | At = i)

.

The resulting policy is called Information Directed Sampling. Bayesian
regret analysis for this algorithm follows along similar lines as what was
presented in Section 35.3. See the paper by Russo and Roy [2014a] for more
details or Exercise 35.7.

35.5 Bibliographic remarks

Thompson sampling has the honor of being the first bandit algorithm and is
named after its inventor [Thompson, 1933], who considered the Bernoulli case with
two arms. Thompson provided no theoretical guarantees, but argued intuitively
and gave hand-calculated empirical analysis. It would be wrong to say that
Thompson sampling was entirely ignored, but its popularity soared when a large
number of authors independently rediscovered the article/algorithm [Granmo,
2010, Ortega and Braun, 2010, Graepel et al., 2010, Chapelle and Li, 2011,
May et al., 2012]. The surge in interest was mostly empirical, but theoreticians
followed soon with regret guarantees. For the frequentist analysis we followed the

35.6 Exercises 408

proofs by Agrawal and Goyal [2013a, 2012], but the setting is slightly different.
We presented results for the ‘realizable’ case where the payoff distributions are
actually Gaussian, while Agrawal and Goyal use the same algorithm but prove
bounds for rewards bounded in [0, 1]. Agrawal and Goyal [2013a] also analyze
the Beta/Bernoulli variant of Thompson sampling, which for rewards in [0, 1]
is asymptotically optimal in the same way as KL-UCB (see Chapter 10). This
result was simultaneously obtained by Kaufmann et al. [2012b], who later showed
that for appropriate priors asymptotic optimality holds for single parameter
exponential families [Korda et al., 2013]. For Gaussian bandits with unknown
mean and variance Thompson sampling is asymptotically optimal for some priors,
but not others – even quite natural ones [Honda and Takemura, 2014]. The
Bayesian analysis of Thompson sampling based on confidence intervals is due
to Russo and Roy [2014b] while the information-theoretic argument is by Russo
and Roy [2014a, 2016]. Recently the idea has been applied to a wide range of
bandit settings [Kawale et al., 2015, Agrawal et al., 2017] and reinforcement
learning [Osband et al., 2013, Gopalan and Mannor, 2015, Leike et al., 2016,
Kim, 2017]. The BayesUCB algorithm is due to Kaufmann et al. [2012a] with
improved analysis and results by Kaufmann [2018]. The frequentist analysis of
Thompson sampling for linear bandits is by Agrawal and Goyal [2013b] with
refined analysis by Abeille and Lazaric [2017a] and a spectral version by Kocák
et al. [2014]. There is a tutorial on Thompson sampling by Russo et al. [2017]
that focuses mostly on applications and computational issues.

35.6 Exercises

35.1 Consider the event E defined in Theorem 35.1 and prove that P (Ec) ≤ nKδ.

35.2 Improve the bound in Theorem 35.1 to show that BRn ≤ C
√
Kn where

C > 0 is a universal constant.

Replace the naive confidence intervals used in the proof of Theorem 35.1 by
the more refined confidence bounds used in Chapter 9. The source for this
result is the paper by Bubeck and Liu [2013].

35.3 Prove the inequality in Eq. (35.5).

35.4 Prove Lemmas 35.1 and 35.2.

35.5 Suppose that X and Y are independent random variables. Show that
I(X;Y) = 0.

35.6 Let E be a set of bandits and Q a prior on E .

35.6 Exercises 409

(a) Recall that R∗n(E) = infπ supν∈E Rn(π, ν) is the minimax regret. Show that
R∗n(E) ≥ infπ BRn(E ,Q).

(b) Let E be the set of Bernoulli bandits. Find a sequence of priors (Qn) such
that BRn(E ,Qn) ≥ c

√
Kn for all n ≥ K where c > 0 is a universal constant.

35.7 Prove that for any prior such that Xti ∈ [0, 1] almost surely the Bayesian
regret of information-directed sampling satisfies

BRn ≤
√
Kn log(K)

2 .

35.8 The purpose of this exercise is to compare Thompson sampling for Gaussian
bandits with UCB.

(a) Implement the Gaussian Thompson sampling algorithm described by
Eq. (35.3).

(b) Compare the expected regret of Thompson sampling with the version of UCB
in Chapter 8 and refinements in Eq. (9.2) and Eq. (9.3).

(c) What about the variance of these algorithms?
(d) Briefly explain the pros and cons of Thompson sampling relative to UCB.

35.9 Fix a Gaussian bandit with unit variance and mean vector µ = (0, 1/10)
and horizon n = 1000. Now consider Thompson sampling with a Gaussian model
with known unit covariance and a prior on the unknown mean of each arm given
by a Gaussian distribution with mean µP and covariance σ2

P I.

(a) Let the prior mean be µP = (0, 0) and plot the regret of Thompson sampling
as a function of the prior variance σ2

P .
(b) Repeat the above with µP = (0, 1/10) and (0,−1/10) and (2/10, 1/10).
(c) Explain your results.

Part VIII

Beyond Bandits

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

36 Partial Monitoring

While in a bandit problem the feedback that the learner receives from the
environment is the loss (or reward) of the chosen action, in partial monitoring
the coupling between the loss of the action and the feedback received by the
learner is loosened.

To illustrate the ideas we consider the problem of learning to match pennies
when feedback is costly. Let c > 0 be a known constant. At the start of the
game the adversary secretly chooses a sequence i1, . . . , in ∈ {heads, tails}. In each
round the learner chooses action At ∈ {heads, tails, uncertain} and the loss for
choosing action a in round t is

yta =





0 , if a = it ;
c , if a = uncertain ;
1 , otherwise .

So far this looks like a bandit problem. The difference is that the learner never
directly observes ytAt . Instead, the learner observes nothing unless At = uncertain
in which case they observe the value of it. As usual, the goal of the regret is to
minimize the regret, which is

Rn = E

[
max
a∈[K]

n∑

t=1
(ytAt − yta)

]
.

How should a learner act in problems like this, where the loss is not directly
observed? Can we find a policy with sublinear regret? In this chapter we give
nearly complete answers to these questions for a large class of finite adversarial
partial monitoring problems.

Matching pennies with costly feedback seems like an esoteric problem. But
think about adding contextual information and replace the pennies with emails
to be classified as spam or otherwise. The true label is only accessible by asking
a human, which replaces the third action.

http://banditalgs.com
mailto:tor.lattimore@gmail.com

36.1 Finite adversarial partial monitoring problems 412

36.1 Finite adversarial partial monitoring problems

To reduce clutter we slightly abuse notation by using (ei) to denote the standard
basis vectors of Euclidean spaces of potentially different dimensions. A K-action,
E-outcome, F -feedback finite adversarial partial monitoring problem is specified
by a loss matrix L ∈ RK×E and a feedback matrix Φ ∈ [F]K×E . At the
beginning of the game, the learner gets L and Φ, while the environment secretly
chooses n outcomes i1, . . . , in with it ∈ [E]. The loss of action a ∈ [K] in round t
is yta = Lait . In each round t the learner chooses At ∈ [K] and receives feedback
Φt = ΦAtit . Given partial monitoring problem G = (Φ,L) the regret of policy π
in environment i1:n = (it)nt=1 is

Rn(π, i1:n, G) = max
a∈[K]

Eπ,i1:n,G

[
n∑

t=1
(ytAt − yta)

]
.

The index of the expectation operator is a reminder that the distribution of {ytAt}
is dependent on π, i1:n and G. We will omit these indices and the arguments of
Rn when they can be inferred from the context.

36.1.1 Examples

The partial monitoring framework is rich enough to model a wide variety of
problems, a few of which are illustrated by the examples that follow. Many of
the examples are not very interesting on their own, but are included to highlight
the flexibility of the framework and challenges of making the regret small.

example 36.1 (Hopeless problem) Some partial monitoring problems are
completely hopeless in the sense one cannot expect to make the regret small. A
simple example occurs when K = E = 2 and F = 1 and

L =
(

0 1
1 0

)
, Φ =

(
1 1
1 1

)
. (36.1)

Note that rows/columns correspond to choices of the learner/environment
respectively. In both rows (corresponding to the actions of the learner), the
feedback matrix has identical entries for both columns. As the learner has no
way of distinguishing between different sequences of outcomes, there is no way to
learn and avoid linear regret.

Two feedback matrices Φ,Φ′ ∈ [F]K×E encode the same information if the
pattern of identical entries in each row match. More precisely, if for each row
a ∈ [K] there is an injective function σ : [E]→ [E] such that Φ′ai = σ(Φai) for
all i ∈ [E].

example 36.2 (Trivial problem) Just as there are hopeless problems, there

36.1 Finite adversarial partial monitoring problems 413

are also trivial problems. For example, when one action dominates all others as
in the following problem:

L =
(

0 0
1 1

)
, Φ =

(
1 1
1 1

)
.

Clearly, in this game the learner can safely ignore the second action and suffer
zero regret, regardless of the choices of the adversary.

example 36.3 (Matching pennies) The penny-matching problem mentioned
in the introduction has K = 3 actions E = 2 outcomes and is described by

L =




0 1
1 0
c c


 , Φ =




1 1
1 1
1 2


 . (36.2)

Matching pennies is a hard game for c > 1/2 in the sense that the adversary can
force the regret of any adversary to be at least Ω(n2/3). To see this, consider the
randomized adversary that chooses the first outcome with probability p and the
second with probability 1− p. Let ε > 0 be a small constant to be chosen later
and assume p is either 1/2 + ε or 1/2− ε, which determines two environments.
The techniques in Chapter 13 show that the learner can only distinguish between
these environments by playing the third action about 1/ε2 times. If the learner
does not choose to do this, then the regret is expected to be Ω(nε). Taking these
together shows the regret is lower bounded by Rn = Ω(min(nε, (c−1/2 + ε)/ε2)).
Choosing ε = n−1/3 leads to a bound of Rn = Ω((c − 1/2)n2/3). Notice the
argument fails when c ≤ 1/2. We encourage you to pause for a minute to convince
yourself about the correctness of the above argument and to consider what might
be the situation when c ≤ 1/2.

example 36.4 (Bandits) Finite-armed adversarial bandits with binary losses
can be represented in the partial monitoring framework. When K = 2 this is
possible with the following matrices:

L =
(

0 1 0 1
0 0 1 1

)
, Φ =

(
1 2 1 2
1 1 2 2

)
.

The number of columns for this game is 2K . For non-binary rewards you would
need even more columns. A partial monitoring problem where Φ = L can be
called a bandit problem because the learner observes the loss of the chosen action.
In bandit games we can simply use Exp3 to guarantee a regret of O(

√
Kn).

example 36.5 (Full information problems) One can also represent problems
where the learner observes all the losses. With binary losses and two actions we
have

L =
(

0 1 0 1
0 0 1 1

)
, Φ =

(
1 2 3 4
1 2 3 4

)
.

36.2 The structure of partial monitoring 414

Like for bandits the size of the game grows very quickly as more actions/outcomes
are added.

example 36.6 (Dynamic pricing) A charity worker is going door-to-door selling
calendars. The marginal cost of a calendar is close to zero, but the wages of the
door-knocker represents a fixed cost of c > 0 per occupied house. The question is
how to price the calendar. Each round corresponds to an attempt to sell a calendar
and the action is the seller’s asking price from one of E choices. The potential
buyer will purchase the calendar if the asking price is low enough. Below we give
the corresponding matrices for case where both the candidate asking prices and
the possible values for the buyer’s private valuations are {$1, $2, $3, $4}:

L =




c c− 1 c− 1 c− 1 c− 1
c c c− 2 c− 2 c− 2
c c c c− 3 c− 3
c c c c c− 4


 , Φ =




1 2 2 2 2
1 1 2 2 2
1 1 1 2 2
1 1 1 1 2


 .

Notice that observing the feedback is sufficient to deduce the loss so the problem
could be tackled with a bandit algorithm. But there is additional structure in
the losses here because the learner knows that if a calendar did not sell for $3
then it would not sell for $4.

36.2 The structure of partial monitoring

The minimax regret of partial monitoring problem G = (L,Φ) is

R∗n(G) = inf
π

max
u1:n

Rn(π, u1:n, G) .

One of the core questions in partial monitoring is to understand the growth of
R∗n(G) as a function of n for different games. We have seen examples where

R∗n(G) = 0 (Example 36.2)
R∗n(G) = Θ̃(

√
n) (Example 36.4)

R∗n(G) = Θ(n2/3) (Example 36.3)
R∗n(G) = Ω(n) . (Example 36.1)

The main result of this chapter is that there are no other options. A partial
monitoring problem is called trivial if R∗n(G) = 0, easy if R∗n(G) = Θ̃(

√
n),

hard if R∗n(G) = Θ(n2/3) and hopeless if R∗n(G) = Ω(n). Furthermore, we will
show that the category of any G can be deduced from elementary linear algebra.

What makes matching pennies hard and bandits easy? To get a handle on this
we need a geometric representation of partial monitoring problems. The next few
paragraphs introduce a lot of new terminology that can be hard to grasp all at
once. At the end of the section there is an example illustrating the concepts.

36.2 The structure of partial monitoring 415

The geometry underlying partially monitoring comes from viewing the problem
as a linear prediction problem, where both the adversary and the learner play on
some simplex. Starting with reworking the adversary’s choices, let ut = eit ∈ RE ,
where e1, . . . , eE are the standard basis vectors. Then, we can equivalently think
of the environment choosing the sequence {ut}nt=1. Letting `a ∈ RE be the ath
row of matrix L, where a ∈ [K], we have that yta = 〈`a, ut〉 is the loss suffered
when choosing action a in round t.

Let ūt = 1
t

∑t
s=1 us ∈ PE−1 be the vector of mean frequencies of the adversary’s

choices over t rounds. An action a is optimal in hindsight if maxb〈`a− `b, ūn〉 = 0.
The cell of an action a is subset of PE−1 on which it is optimal:

Ca =
{
u ∈ PE−1 : max

b∈[K]
〈`a − `b, u〉 ≤ 0

}
,

which is convex polytope. The collection {Ca : a ∈ [K]} is called the cell
decomposition. Actions with Ca = ∅ are called dominated because they are
never optimal, no matter how the adversary plays. For nondominated actions
we define the dimension of an action to be the dimension of the affine hull of
Ca. Readers unfamiliar with the affine hull should read Note 3 at the end of the
chapter. A nondominated action is called Pareto optimal if it has dimension
E − 1 and degenerate otherwise. Actions a and b are duplicates if `a = `b.
Pareto optimal actions a and b are neighbors if Ca ∩ Cb has dimension E − 2.
Note that if a and b are Pareto optimal duplicates, then Ca ∩ Cb has dimension
E−1 and the definition means that a and b are not neighbors. For Pareto optimal
action a we let Na be the set consisting of a and its neighbors. Given a pair of
neighbors (a, b) we let Nab = {c ∈ [K] : Ca ∩ Cb ⊆ Cc}, while for Pareto optimal
action a we let Naa = ∅.

Dominated and degenerate actions can never be uniquely optimal in hindsight,
but their presence can make the difference between a hard game and a hopeless
one. If c > 1/2, then the third action in matching pennies is dominated, but
without it the learner would suffer linear regret. Duplicate actions are only
duplicate in the sense that they have the same loss. They may have different
feedback structures and so cannot be trivially combined.

Let a and b be neighboring actions. The next lemma characterizes actions in
Nab as either a, b, duplicates of a, b or degenerate actions d for which `d is a
convex combination of `a and `b. The situation is illustrated when E = 2 in
Fig. 36.1.

lemma 36.1 Let a, b be neighboring actions and d ∈ Nab be an action such that
`d /∈ {`a, `b}. Then

(a) There exists an α ∈ (0, 1) such that `d = α`a + (1− α)`b.
(b) Cd = Ca ∩ Cb.

36.2 The structure of partial monitoring 416

(c) d has dimension E − 2.

0 1

〈`3, (u, 1− u)〉
〈

2̀ , (u, 1−
u)〉

〈`1,
(u

, 1
−

u)〉

u

Figure 36.1 The figure shows the situation when E = 2 and `1 = (1, 0) and `2 = (0, 1)
and `3 = (1/2, 1/2). Then C1 = [0, 1/2] and C2 = [1/2, 1], which both have dimension
1 = E − 1. Then C3 = {1/2} = C1 ∩ C2, which has dimension 0.

Proof We use the fact that if X ⊆ Y ⊆ Rd and dim(X) = dim(Y), then
aff(X) = aff(Y) (Exercise 36.1). Clearly Ca ∩ Cb ⊆ Ca ∩ Cd and aff(Ca ∩ Cb) =
ker(`a−`b) and aff(Ca∩Cd) = ker(`a−`d). By assumption dim(Ca∩Cb) = E−2.
Since Ca ∩ Cb ⊆ Ca ∩ Cd it holds that dim(Ca ∩ Cd) ≥ E − 2. Furthermore,
dim(Ca ∩Cd) ≤ E− 2, since otherwise `d = `a. Hence ker(`a− `b) = ker(`a− `d),
which means that `a−`b is proportional to `a−`d so that (1−α)(`a−`b) = `a−`d
for some α 6= 1. Rearranging shows that

`d = α`a + (1− α)`b .

Now we show that α ∈ (0, 1). First note that α /∈ {0, 1} since otherwise
`d ∈ {`a, `b}. Let u ∈ Ca be such that 〈`a, u〉 < 〈`b, u〉, which exists since
dim(Ca) = E − 1 and dim(Ca ∩ Cb) = E − 2. Then

〈`a, u〉 ≤ 〈`d, u〉 = α〈`a, u〉+ (1− α)〈`b, u〉 = 〈`a, u〉+ (α− 1)〈`a − `b, u〉 ,

which by the positivity of 〈`a − `b, u〉 implies that α ≤ 1. A symmetric argument
shows that α > 0. For (b), it suffices to show that Cd ⊂ Ca ∩Cb. By de Morgan’s
law for this it suffices to show that PE−1 \ (Ca ∩ Cb) ⊂ PE−1 \ Cd. Thus, pick
some u ∈ PE−1 \ (Ca ∩ Cb). The goal is to show that u 6∈ Cd. The choice of u
implies that there exists an action c such that 〈`a− `c, u〉 ≥ 0 and 〈`b− `c, u〉 ≥ 0
with a strict inequality for either a or b (or both). Therefore using the fact that
α ∈ (0, 1) we have

〈`d, u〉 = α〈`a, u〉+ (1− α)〈`b, u〉 > 〈`c, u〉 ,

which by definition means that u /∈ Cd, completing the proof of (b). Finally, (c)
is immediate from (b) and the definition of neighboring actions.

In order the achieve small regret the learner needs to identify an optimal action.
How efficiently this can be done depends on the feedback matrix. First, note that
given access to the loss matrix, the learner can restrict the search for the optimal
action to the Pareto optimal actions. One way to find the optimal action then

36.2 The structure of partial monitoring 417

could be to estimate 〈`a, ut〉 for each Pareto optimal action a and t ∈ [n] and
take differences of the estimates to compare actions. This is asking too much, and
a better option is to estimate 〈`a− `b, ut〉 directly. This is a better option because
on the one hand it is clearly necessary to know the loss differences between Pareto
optimal actions, and on the other hand there exist games for which 〈`a, ut〉 cannot
be estimated, but the differences can. For example, the following game has this
property.

L =
(

0 1 1 2
1 0 2 1

)
, Φ =

(
1 2 1 2
2 1 2 1

)

The learner can never tell if the environment is playing in the first two columns
or the last two, but the differences between the losses are easily deduced from
the feedback. We emphasize once again that only the loss differences between
Pareto optimal actions need to be estimated: There are in fact games that are
easy yet some loss differences cannot be estimated. For example, there is never
any need to estimate the losses of a dominated action.

Having decided we need to estimate the loss differences for Pareto optimal
actions, the next question is how can the learner do this? Suppose in round t

the learner samples At from distribution Pt ∈ ri(PK−1). Let a and b be Pareto
optimal and suppose we want an estimator ∆̂ of ∆ = yta − ytb. Our estimator ∆̂
should depend on At and Φt, which suggests defining

∆̂ = v(At,Φt)
PtAt

,

where v : [K]× [F]→ R is some suitable chosen function. The division by PtAt
is a convenient normalization and could be pushed into v. The reader can check
that ∆̂ is unbiased regardless the choice ut if and only if

`ai − `bi =
K∑

c=1
v(c,Φci) for all i ∈ [E] . (36.3)

A pair of Pareto optimal actions a and b are called globally observable if
there exists a function v satisfying Eq. (36.3). They are locally observable
if the function can be chosen so that v(c, f) = 0 whenever c /∈ Nab. A partial
monitoring problem G = (L,Φ) is called globally/locally observable if all pairs of
neighboring actions are globally/locally observable. The global/local observability
conditions formalize the idea introduced in Example 36.3. Games that are globally
observable but not locally observable are hard because the learner cannot identify
the optimal action by playing near-optimal actions only. Instead it has to play
badly suboptimal actions to gain information and this increases the minimax
regret.

example 36.7 The partial monitoring problem below has six actions, three
feedbacks and three outcomes. The cell decomposition is shown on the right
with the 2-simplex parameterized by its first two coordinates u1 and u2 so that

36.3 Classification of finite adversarial partial monitoring 418

u3 = 1− u2 − u1. Actions 1, 2 and 3 are Pareto optimal. There are no dominated
actions while actions 4 and 5 are 1-dimensional and action 6 is 0-dimensional. The
neighbors are (1, 3) and (2, 3), which are both locally observable and so the game
is locally observable. Note that (1, 2) are not neighbors because the intersection
of their cells is (E − 3)-dimensional. Finally, N3 = {1, 2, 3} and N1 = {1, 3} and
N23 = {2, 3, 4}. Think about how we decided on what losses to use to get the
cell decomposition shown in the figure!

L =




0 1 1
1 0 1

1/2 1/2 1/2
3/4 1/4 3/4
1 1/2 1/2
1 1/4 3/4




Φ =




1 2 3
1 1 1
1 1 1
1 2 3
1 1 1
1 1 1




C3

C2

C1
u1

u2

C4

C5

C6

36.3 Classification of finite adversarial partial monitoring

The terminology in the last chapter finally allows us to state the main theorem
of this chapter that classifies finite adversarial partial monitoring games.

theorem 36.1 The minimax regret of partial monitoring problem G = (L,Φ)
falls into one of four categories:

R∗n(G) =





0 , if G has no pairs of neighboring actions ;
Θ̃(
√
n) , if G is locally observable and has neighboring actions ;

Θ(n2/3) , if G is globally observable, but not locally observable ;
Ω(n) , otherwise .

The Landou notation is used in the traditional mathematical sense and obscures
dependence on K, E, F and the finer structure of G = (L,Φ).

The proof is split into parts by proving upper and lower bounds for each part.
First up is the lower bounds. We then describe a policy for locally observable
games and analyze its regret. The upper bound for globally observable games is
left as an exercise to the reader (Exercise 36.11).

36.4 Lower bounds

Like for bandits, the lower bounds are most easily proven using a stochastic
adversary. In stochastic partial monitoring we assume that u1, . . . , un are chosen
at independently at random from the same distribution. To emphasize the

36.4 Lower bounds 419

randomness we switch to capital letters. Given partial monitoring problem
G = (L,Φ) and probability vector u ∈ PE−1 the stochastic partial monitoring
environment associated with u samples a sequence of independently and identically
distribution random variables I1, . . . , In with P (It = i) = ui and Ut = eIt . In
each round t a policy chooses action At and receives feedback Φt = ΦAtIt . The
regret is

Rn(π, u,G) = max
a∈[K]

E

[
n∑

t=1
〈`At − `a, Ut〉

]
= max
a∈[K]

E

[
n∑

t=1
〈`At − `a, u〉

]
.

The reader should check that R∗n(G) ≥ minπ maxu∈PE−1 Rn(π, u,G), which allows
us to restrict our attention to stochastic partial monitoring problems. Given
u, q ∈ PE−1, let D(u, q) be the relative entropy between categorical distributions
with parameters u and q respectively:

D(u, q) =
K∑

i=1
ui log

(
ui
qi

)
≤

K∑

i=1

(ui − qi)2

qi
, (36.4)

where the second inequality follows from the fact that for measures P,Q we have
D(P,Q) ≤ χ2(P,Q) (see Note 4 in Chapter 13).

theorem 36.2 Let G = (L,Φ) be a globally observable partial monitoring
problem that is not locally observable. Then there exists a constant cG > 0 such
that R∗n(G) ≥ cGn2/3.

Proof The proof involves several steps. Roughly, we need to define two alternative
stochastic partial monitoring problems. We then show these environments are
hard to distinguish without playing an action associated with a large loss. Finally
we balance the cost of distinguishing the environments against the linear cost of
playing randomly.

Step 1: Defining the alternatives
Let a, b be a pair neighboring actions that are not locally observable. Then by
definition Ca ∩ Cb is a polytope of dimension E − 2. Let u be the centroid of
Ca ∩ Cb and

ε = min
c/∈Nab

〈`c − `a, u〉 . (36.5)

The value of ε is well defined, since by global observability of G, but nonlocal
observability of (a, b) there must exist some action c /∈ Nab. Furthermore, since
c /∈ Nab it follows that ε > 0. As in the lower bound constructions for stochastic
bandits, we now define two stochastic partial monitoring problems. Since (a, b)
are not locally observable, there does not exist a function v : [K]× [F]→ R such
that for all i ∈ [E],

∑

c∈Nk
v(c,Φci) = `ai − `bi . (36.6)

36.4 Lower bounds 420

In this form it does not seem obvious what the next step should be. To clear
things up a little we introduce some linear algebra. Let Sc ∈ {0, 1}F×E be the
matrix with (Sc)fi = I {Φci = f}, which is chosen so that Scei = eΦci . Define the
linear map S : RE → R|Nab|F by

S =




Sa
Sb
...
Sc


 ,

which is the matrix formed by stacking the matrices {Sc : c ∈ Nab}. Then there
exists a v satisfying Eq. (36.6) if and only if there exists a w ∈ R|Nab|F such that

(`a − `b)> = w>S .

In other words, actions (a, b) are locally observable if and only if `a−`b ∈ im(S>).
Since we have assumed that (a, b) are not locally observable, it means that
`a − `b /∈ im(S>). Let z ∈ im(S>) and w ∈ ker(S) be such that `a − `b = z + w,
which is possible since im(S>)⊕ker(S) = RE . Since `a−`b /∈ im(S>) it holds that
w 6= 0 and 〈`a − `b, w〉 = 〈z + w,w〉 = 〈w,w〉 6= 0. Finally let q = w/〈`a − `b, w〉.
To summarize, we have demonstrated the existence of a vector q ∈ RE , q 6= 0
such that Sq = 0 and 〈`a − `b, q〉 = 1. Let ∆ > 0 be some small constant to be
tuned subsequently and define ua = u−∆q and ub = u+ ∆q so that

〈`b − `a, ua〉 = ∆ and 〈`a − `b, ub〉 = ∆ .

We note that if ∆ is sufficiently small, then ua ∈ Ca and ub ∈ Cb. This means
that action a is optimal if the environment plays ua on average and b is optimal
if the environment plays ub on average (see Fig. 36.2).

Step 2: Calculating the relative entropy
Given action c and w ∈ PE−1 let Pcw be the distribution on the feedback observed
by the learner when playing action c in stochastic partial monitoring environment
determined by w. That is Pcw(f) = Pw(Φt = f |At = c) = (Scw)f . Further, let
Pw be the distribution on the histories Hn = (A1,Φ1, . . . , An,Φn) arising from
the interaction of the learner’s policy with the stochastic environment determined
by w. A modification of Lemma 15.1 shows that

D(Pua ,Pub) =
∑

c∈[K]

E[Tc(n)] D(Pcua ,Pcub) , (36.7)

By the definitions of ua and ub, we have Scua = Scub for all c ∈ Nab. Therefore
Pcua = Pcub and so D(Pcua ,Pcub) = 0 for all c ∈ Nab. On the other hand, if
c /∈ Nab, then by Eq. (36.4),

D(Pcua ,Pcub) ≤ D(ua, ub) ≤
E∑

i=1

(uai − ubi)2

ubi
= 4∆2

K∑

i=1

q2
i

ui + ∆qi
≤ Cu∆2 ,

36.4 Lower bounds 421

where Cu is a suitably large constant. We note that u ∈ Ca ∩ Cb is not on the
boundary of PE−1, so ui > 0 for all i. Therefore

D(Pua ,Pub) ≤ cU
∑

c∈[K]

E[Tc(n)]∆2 . (36.8)

Step 3: Comparing the regret
By Eq. (36.5) and Hölder’s inequality, for c /∈ Nab we have 〈`c − `a, ua〉 =
ε+ 〈`c− `a,∆q〉 ≥ ε−∆‖q‖1 and 〈`c− `b, ub〉 ≥ ε−∆‖q‖1, where, for simplicity,
and without the loss of generality, we assumed that the losses lie in [0, 1]. Define
T̃ (n) to be the number of times an arm not in Nab is played:

T̃ (n) =
∑

c/∈Nab
Tc(n) .

By Lemma 36.1, for each action c ∈ Nab there exists an α ∈ [0, 1] such that
`c = α`a + (1− α)`b. Therefore

〈`c − `a, ua〉+ 〈`c − `b, ub〉 = (1− α)〈`b − `a, ua〉+ α〈`a − `b, ub〉 = ∆ , (36.9)

which means that max(〈`c − `a, ua〉, 〈`c − `b, ub〉) ≥ ∆/2. Define T̄ (n) as the
number of times an arm in Nab is played that is at least ∆/2 suboptimal in ua:

T̄ (n) =
∑

c∈Nab
I
{
〈`c − `a, ua〉 ≥

∆
2

}
Tc(n) .

It also follows from (36.9) that if c ∈ Nab and 〈`c − `a, ua〉 < ∆
2 then

〈`c−`b, ub〉 ≥ ∆
2 . Hence, under ub the random pseudo-regret,

∑
c Tc(n)〈`c−`b, ub〉,

is at least (n − T̄ (n))∆/2. Assume that ∆ is chosen sufficiently small so that
∆‖q‖1 ≤ ε/2. Then, by the above,

Rn(π, ua, G) +Rn(π, ub, G)

= Eua


∑

c∈[K]

Tc(n)〈`c − `a, ua〉


+ Eub


∑

c∈[K]

Tc(n)〈`c − `b, ub〉




≥ ε

2Eua
[
T̃ (n)

]
+ n∆

4
(
Pua(T̄ (n) ≥ n/2) + Pub(T̄ (n) < n/2)

)

≥ ε

2Eua
[
T̃ (n)

]
+ n∆

8 exp (−D(Pua ,Pub))

≥ ε

2Eua
[
T̃ (n)

]
+ n∆

8 exp
(
−Cu∆2Eua

[
T̃ (n)

])
,

where the second inequality follows from Theorem 14.2 and the third from
Eqs. (36.7) and (36.8). The bound is completed by choosing ∆ = ε/(2‖q‖1n1/3)
(which is finite since q 6= 0) and straightforward optimization (Exercise 36.5).

We leave the following theorems as exercises for the reader (Exercises 36.6
and 36.7).

36.5 Policy for easy games 422

C1

C2u

u1

u2
C3

Figure 36.2 Lower bound construction for hard partial monitoring problems

theorem 36.3 If G is not globally observable and has at least two non-
dominated actions, then there exists a constant cG > 0 such that R∗n(G) ≥ cGn.

Proof sketch Since G is not globally observable there exists a pair of neighboring
actions (a, b) that are not globally observable. Let u be the centroid of Ca ∩ Cb.
Let S ∈ RKF×E be the stack of matrices from {Sc : c ∈ [K]} (all actions). Then
using the same argument as the previous proof we have `a − `b /∈ im(S>). Now
define q ∈ RE such that 〈`a − `b, q〉 = 1 and Sq = 0. Let ∆ > 0 be sufficiently
small and ua = u−∆q and ub = u+∆q. Show that D(Pua ,Pub) = 0 for all policies
and complete the proof in the same fashion as the proof of Theorem 36.2.

theorem 36.4 Let G = (L,Φ) be locally observable and have at least one pair
of neighbours. Then there exists a constant cG > 0 such that for all large enough
n the minimax regret satisfies R∗n(G) ≥ cG

√
n.

Proof sketch By assumption there exists a pair of neighbouring actions (a, b).
Define u as the centroid of Ca∩Cb and let q = (`a−`b)/‖`a−`b‖2. For sufficiently
small ∆ > 0 let ua = u−∆q and ub = u+ ∆q. Then

D(Pua ,Pub) ≤ n
E∑

i=1

(uai − ubi)2

ubi
≤ CGn∆2 ,

where CG > 0 is a game-dependent constant. Let ∆ = 1/
√
n and apply the ideas

in the proof of Theorem 36.2.

36.5 Policy for easy games

Fix a locally observable game G = (L,Φ) with at least one pair of neighboring
actions. We describe a policy called NeighborhoodWatch2. In every round
the policy always chooses At ∈ ∪a,bNab where the union is over pairs of
neighboring actions. For example, in the partial monitoring game described

36.5 Policy for easy games 423

in Example 36.7 the policy would only play actions 1, 2, 3 and 4. Removing
degenerate actions can only increase the minimax regret, so from now on we
assume that [K] = ∪a,b neighborsNab. We let A be an arbitrary largest subset of
Pareto optimal actions such that A does not contain actions that are duplicates
of each other and D = [K] \ A be the remaining actions. In each round t the
policy performs four steps as described below.

Step 1 (Local games)
For each k ∈ A the policy maintains an exponential weights distribution over
A ∪ D = [K], but concentrated on the intersection of the neighborhood Nk
of k and A (recall that Nk contains the neighbors of k, some of which may
be duplicates of each other). We denote this distribution by Qtk ∈ PK−1. For
a ∈ [K], the value of Qtka is given

Qtka =
INk∩A(a) exp

(
−η∑t−1

s=1 Z̃ska

)

∑
b∈Nk∩A exp

(
−η∑t−1

s=1 Z̃skb

) ,

where η > 0 is the learning rate and the Z̃ska are estimators of the loss difference
ysa − ysk and will be introduced in step four below. For actions k ∈ D we define
Qtka = IA(a)/|A| to be the uniform distribution over A.

Step 2 (Global game)
The next step is to merge the local distributions over small neighborhoods into
a global distribution over [K] = A ∪D. A square matrix is right stochastic if
it has positive entries and its rows sum to one. Such a d× d matrix describes a
homogeneous Markov chain with state-space [d] and row i ∈ [d] of the matrix
defines the distribution over the next-states. We have briefly met homogeneous
Markov chains in Section 3.2. The following result is all that we need, the proof
of which is to the reader (Exercise 36.8).

lemma 36.2 Let Qt be the right stochastic matrix with kth row equal to Qtk.
Then there exists a unique distribution P̃t such that P̃>t = P̃>t Qt. Furthermore,
this distribution is supported on A.

The distribution P̃t is called the stationary distribution of the Markov chain
with kernel Qt. It is supported on A because following Qt never transitions to
states outside of A. The reader may at this point wonder about why were the
actions in D even included in the first place: The answer is that we want P̃t to
be defined over [K] merely to simplify some expressions that follow. By rewriting
the matrix multiplication we see that

P̃tk =
∑

a∈A
P̃taQtak , (36.10)

which we use repeatedly in the analysis that follows. In particular, this identity
plays a key role in relating the regret to a weighted sum of ‘local regrets’.

36.5 Policy for easy games 424

Step 3 (Redistribution)
Now P̃t is rebalanced to a new distribution Pt for which duplicate and degenerate
actions in D are played with sufficient probability. This is done iteratively, starting
with Pt = P̃t. Then for each d ∈ D the algorithm finds actions a, b ∈ A such
that `d = α`a + (1− α)`b for some α ∈ [0, 1], which is possible by Lemma 36.1.
Then Pt is updated so that some of the probability assigned to actions a and b is
transferred to action d. After mass has been assigned to all degenerate actions
the algorithm incorporates a small amount of fixed exploration. The complete
procedure is given in Algorithm 22. This is done in such a way that the expected
loss of playing according to Pt is approximately the same as P̃t. The next lemma
formalizes the properties of Pt that will be critical in what follows. The proof is
left to the reader (Exercise 36.9).

lemma 36.3 Assume γ ∈ [0, 1/2], let u ∈ PE−1 and let a, k ∈ A be arbitrary
neighbors. Then Pt ∈ PK−1 is a probability vector and the following hold:

(a) Pta ≥ P̃ta/4.

(b)
∣∣∣∣∣
K∑

a=1
(Pta − P̃ta)〈`a, u〉

∣∣∣∣∣ ≤ γ.

(c) Ptb ≥
P̃tkQtka

4K for any non-duplicate b ∈ Nka.
(d) Pta ≥ γ/K.
(e) Ptd ≥ P̃tk

4K for any d ∈ [K] such that `d = `k.

Step 4 (Acting and estimating)
By the definition of local observability, for each pair of neighboring actions
a, b there exists a function vab : [K] × [F] → R satisfying Eq. (36.3) and with
vab(c, f) = 0 whenever c /∈ Nab. Even though a is not a neighbor of itself, for
notational convenience we define vaa(c, f) = 0 for all c, f . While the policy will
work for any admissible choice of vab, the analysis suggests minimizing

V = max
a,b
‖vab‖∞

with the maximum over all pairs of neighbors.

In Exercise 36.12 you will show that if |Nab| = 2, then vab can be chosen so
that ‖vab‖∞ ≤ 1 +F and that in the worst case this bound is tight. This result
no longer holds for larger Nab as discussed in the exercise.

In round t, the action At is chosen at random from Pt. The loss difference
estimators are then computed by

Z̃tka = Ẑtka − βtka ,

36.5 Policy for easy games 425

where Ẑtka is an unbiased estimator of yta − ytk and βtka is a bias term:

Ẑtka = P̃tkv
ak(At,Φt)
PtAt

and βtka = ηV 2
∑

b∈Nak

P̃ 2
tk

Ptb
. (36.11)

The four steps described so far are summarized in Algorithm 22 below.

1: Input L, Φ, η, γ
2: for t ∈ 1, . . . , n do
3: For a, k ∈ [K] let

Qtka = IA(k)
INk∩A(a) exp

(
−η∑t−1

s=1 Z̃ska

)

∑
b∈Nk∩A exp

(
−η∑t−1

s=1 Z̃ska

) + ID(k) IA(a)
|A|

4: Find distribution P̃t such that P̃>t = P̃>t Qt
5: Compute Pt = (1− γ)Redistribute(P̃t) + γ

K1 and sample At ∼ Pt
6: Compute loss-difference estimators for each k ∈ A and a ∈ Nk ∩ A.

Ẑtka = P̃tkv
ak(At,Φt)
PtAt

βtka = ηV 2
∑

b∈Nak

P̃ 2
tk

Ptb
(36.12)

Z̃tka = Ẑtka − βtka
7: end for
8: function Redistribute(p)
9: q ← p

10: for d ∈ D do
11: Find a, b with d ∈ Nab and α ∈ [0, 1] such that `d = α`a + (1− α)`b
12: ca ← αqb

αqb+(1−α)qa and cb ← 1− ca and ρ← 1
2K min

{
pa
qaca

, pb
qbcb

}

13: qd ← ρcaqa + ρcbqb and qa ← (1− ρca)qa and qb ← (1− ρcb)qb
14: end for
15: return q

16: end function
Algorithm 22: NeighborhoodWatch2

The next theorem bounds the regret of NeighborhoodWatch2 with high
probability for locally observable games.

theorem 36.5 Let R̂n be the random regret

R̂n = max
b∈[K]

n∑

t=1
〈`At − `b, ut〉 .

36.6 Upper bound for easy games 426

Ca

CãCb

v

u

w

Figure 36.3 The construction used in the proof of Lemma 36.4.

Suppose that Algorithm 22 is run on locally observable G = (L,Φ) and

η = 1
V

√
log(K/δ)
nK

and γ = V Kη .

Let 0 < δ < 1. Then with probability at least 1 − δ the regret is bounded by
R̂n ≤ CG

√
n log(e/δ)), where CG is a constant depending on G, but not n, or δ.

By choosing δ = 1/n the following corollary is obtained.

corollary 36.1 Suppose that Algorithm 22 is run on locally observable
G = (L,Φ) with the same choices of η and γ as Theorem 36.5 and δ = 1/n, then
there exists a constant C ′G depending on G, but not n such that

Rn ≤ C ′G
√
n log(n) .

36.6 Upper bound for easy games

The first step is a simple lemma showing the regret can be localised to the
neighborhood of the played action.

lemma 36.4 There exists a constant εG > 0 depending only on G such that for
all pairs of actions a, ã ∈ A and u ∈ Cã there exists an action b ∈ Na ∩ A such
that 〈`a − `ã, u〉 ≤ 〈`a − `b, u〉/εG.

Proof Since u ∈ Cã, 0 ≤ 〈`a − `ã, u〉. The result is trivial if a, ã are neighbors
or 〈`a − `ã, u〉 = 0. From now on assume that 〈`a − `ã, u〉 > 0 and that a, ã are
not neighbors. Let v be the centroid of Ca. The idea is to choose b ∈ Na ∩ A as
that neighbor of a whose cell is the one that the line segment that connects v
and u enters when leaving Ca. To be precise, if w lies in the intersection of the
line segment connecting v and u and the boundary of Ca then b is a neighbor of
a in A so that w ∈ Ca ∩ Cb. Note that w is well-defined by the Jordan-Brouwer
separation theorem (see the notes at the end of the chapter), and b is well-defined
because A is a maximal duplicate-free subset of the Pareto optimal actions. Using

36.6 Upper bound for easy games 427

twice that 〈`a − `b, w〉 = 0, we calculate

〈`a − `b, u〉 = 〈`a − `b, u− w〉 = ‖u− w‖2‖v − w‖2
〈`a − `b, w − v〉

= ‖u− w‖2‖v − w‖2
〈`b − `a, v〉 > 0 , (36.13)

where the second equality used that w 6= v is a point of the line segment connecting
v and u, hence w − v and u− w are parallel and share the same direction and
‖v − w‖2 > 0 (see Fig. 36.3), and the last inequality follows because v is the
centroid of Ca and a, b are distinct Pareto optimal actions.

Let vc be the centroid of Cc for any c ∈ A. Then,

〈`a − `ã, u〉
〈`a − `b, u〉

= 〈`a − `ã, w + u− w〉
〈`a − `b, u〉

(a)
≤ 〈`a − `b, w〉+ 〈`a − `ã, u− w〉

〈`a − `b, u〉
(b)= 〈`a − `ã, u− w〉

〈`a − `b, u〉
(c)= ‖v − w‖2〈`a − `ã, u− w〉‖u− w‖2〈`b − `a, v〉

(d)
≤ ‖v − w‖2‖`a − `ã‖2〈`b − `a, v〉

(e)
≤

√
2E

minc∈Amind∈Nc〈`d − `c, vc〉
= 1
εG

,

where (a) follows since by (36.13), 〈`a − `b, u〉 > 0 and also because w ∈ Cb
implies that 〈`a − `ã, w〉 ≤ 〈`a − `b, w〉, (b) follows since 〈`a − `b, w〉 = 0,
which is used in other steps as well. (c) uses (36.13), (d) is by Cauchy-Schwartz
and in (e) we bounded ‖w − v‖2 ≤

√
2 and used that ‖`a − `ã‖2 ≤

√
E and

〈`b − `a, v〉 = 〈`b − `a, va〉 ≥ minc∈Amind∈Nc〈`d − `c, vc〉 > 0. The final equality
serves as the definition of 1/εG.

lemma 36.5 Let H be the set of functions φ : A → A with φ(a) ∈ Na for
all a ∈ A and define a∗n = argmina∈[K]

∑n
t=1〈`a, ut〉. Then, for any (Bt)1≤t≤n

sequence of actions in A,
n∑

t=1
〈`Bt − `a∗n , ut〉 ≤

1
εG

max
φ∈H

n∑

t=1
〈`Bt − `φ(Bt), ut〉 .

Lemma 36.5 With no loss of generality, we can assume that a∗n ∈ A because A
is a maximal duplicate-free subset of Pareto optimal actions. Apply the previous
lemma on subsequences of rounds where Bt = a for each a ∈ A.

lemma 36.6 Let δ ∈ (0, 1). Then with probability at least 1− 2δ it holds that

R̂n ≤ γn+ 1
εG

∑

k∈A
max

b∈Nk∩A

n∑

t=1
P̃tk

∑

a∈A
Qtka (yta − ytb) +

√
8n log(|H|/δ) .

Proof For t ∈ [n], let Bt ∼ P̃t. Define the surrogate regret R̂′n =
∑n
t=1〈`Bt −

`a∗n , ut〉. By the definition of At and Bt and Lemma 36.3 we have Et−1[〈`At −
`Bt , ut〉] ≤ γ. Furthermore, |〈`a − `b, ut〉| ≤ 1 for all a, b. Therefore, by Hoeffding-
Azuma, with probability at least 1− δ,

R̂n ≤ R̂′n + γn+
√

2n log(1/δ) . (36.14)

36.6 Upper bound for easy games 428

By Lemma 36.5, the surrogate regret is bounded in terms of the local regret:

R̂′n =
n∑

t=1
〈`Bt − `a∗n , ut〉 ≤

1
εG

max
φ∈H

n∑

t=1
〈`Bt − `φ(Bt), ut〉 . (36.15)

We prepare to use Hoeffding-Azuma again. Fix φ ∈ H arbitrarily. Then,

Et−1
[
〈`Bt − `φ(Bt), ut〉

]
=
∑

k∈A
P̃tk

∑

a∈A
Qtka〈`a − `φ(k), ut〉

=
∑

k∈A
P̃tk

∑

a∈A
Qtka(yta − ytφ(k)) ,

where we used the fact that P̃ta =
∑
k P̃tkQtka. Hoeffding-Azuma’s inequality

now shows that with probability at least 1− δ/|H|,
n∑

t=1
〈`Bt − `φ(Bt), ut〉 ≤

∑

k∈A

n∑

t=1
P̃tk

∑

a∈A
Qtka(yta − ytφ(k)) +

√
2n log(|H|/δ) .

The result is completed via a union bound over all φ ∈ H and chaining with
Eqs. (36.14) and (36.15), and noting that

max
φ

∑

k∈A

n∑

t=1
P̃tk

∑

a∈A
Qtka(yta − ytφ(k)) ≤

∑

k∈A
max
φ

n∑

t=1
P̃tk

∑

a∈A
Qtka(yta − ytφ(k))

=
∑

k∈A
max

b∈Nk∩A

n∑

t=1
P̃tk

∑

a∈A
Qtka(yta − ytb)

︸ ︷︷ ︸
R̂nk

. (36.16)

Proof of Theorem 36.5 The proof has two steps: Bounding the local regret R̂nk
for each k ∈ A, and then merging the bounds.

Step 1: Bounding the local regret
For the remainder of this step we fix k ∈ A and bound the local regret R̂nk. First,
we need to massage the local regret into a form in which we can apply the result
of Exercise 12.2 in Chapter 12. Let Ztka = P̃tk(yta− ytk) and Gt be the σ-algebra
generated by (A1, . . . , At). Let G = (Gt)nt=0 be the associated filtration. A simple
rewriting shows that

R̂nk = max
b∈Nk∩A

n∑

t=1
P̃tk

∑

a∈A
Qtka (yta − ytb) = max

b∈Nk∩A

n∑

t=1

∑

a∈A
Qtka (Ztka − Ztkb) .

In order to apply the result in Exercise 12.2 we need to check the conditions.
Since (Pt)t and (P̃t)t are G-predictable it follows that (βt)t and (Zt)t are also G-
predictable. Similarly, (Ẑt)t is G-adapted because (At)t and (Φt)t are G-adapted.
It remains to show that assumptions (a–d) are satisfied. For (a) let a ∈ Nk ∩ A.
By part (d) of Lemma 36.3 we have Ptb ≥ γ/K for all t and b ∈ [K]. Furthermore,
|vak(At,Φt)| ≤ V so that η|Ẑtka| = |ηP̃tkvak(At,Φt)/PtAt | ≤ ηV K/γ = 1, where

36.6 Upper bound for easy games 429

the equality follows from the choice of γ. Assumption (b) is satisfied in a similar
way with ηβtka = η2V 2∑

b∈Nak P̃
2
tk/Ptb ≤ η2K2V 2/γ = ηV ≤ 1, where in the

last inequality we used the definition of η and assumed that n ≥ log(K/δ). To
make sure that the regret bound holds even for smaller values of n, we require
CG ≥ K

√
log(eK) so that when n < K2 log(K/δ), the regret bound is trivial.

For assumption (c), we have

Et−1[Ẑ2
tka] = Et−1

[(
P̃tkv

ak(At,Φt)
PtAt

)2]
≤ V 2P̃ 2

tkEt−1

[
INak(At)
P 2
tAt

]

= V 2
∑

b∈Nak

P̃ 2
tk

Ptb
= βtka

η
.

Finally (d) is satisfied by the definition of vak and the fact that Pt ∈ ri(PK−1).
The result of Exercise 12.2 shows that with probability at least 1− (K + 1)δ,

R̂nk ≤
3 log(1/δ)

η
+ 5

n∑

t=1

∑

a∈Nk∩A
Qtkaβtka + η

n∑

t=1

∑

a∈Nk∩A
QtkaẐ

2
tka .

Step 2: Aggregating the local regret
Using the result from the previous step in combination with a union bound over
k ∈ A we have that with probability at least 1−K(K + 1)δ,
∑

k∈A
R̂nk ≤

3K log(1/δ)
η

+ 5
n∑

t=1

∑

k∈A

∑

a∈Nk∩A
Qtkaβtka + η

n∑

t=1

∑

k∈A

∑

a∈Na∩A
QtkaẐ

2
tka .

(36.17)

For bounding the second term we use the definition of βtka from (36.11) and
write
∑

a∈Nk∩A
Qtkaβtka = ηV 2

∑

a∈Nk∩A
Qtka

∑

b∈Nak

P̃ 2
tk

Ptb
= ηV 2P̃tk

∑

a∈Nk∩A
Qtka

∑

b∈Nak

P̃tk
Ptb

.

We now split the sum that runs over b ∈ Nak into two, separating duplicates of k
and the rest:
∑

a∈Nk∩A
Qtka

∑

b∈Nak

P̃tk
Ptb

=
∑

a∈Nk∩A
Qtka

∑

b:`b=`k

P̃tk
Ptb

+
∑

a∈Nk∩A
Qtka

∑

b∈Nak:`b 6=`k

P̃tk
Ptb

=
∑

b:`b=`k

P̃tk
Ptb

+
∑

a∈Nk∩A

∑

b∈Nak:`b 6=`k

QtkaP̃tk
Ptb

≤ 4K


 ∑

b:`b=`k

1 +
∑

a∈Nk∩A

∑

b∈Nak:`b 6=`k
1


 ≤ 4K2 ,

(36.18)

where the first equality used that
∑
aQtka = 1, the second to last inequality

follows using parts (c) and (e) of Lemma 36.3, stationarity of P̃t, and the last

36.7 Proof of the classification theorem 430

inequality uses a simple counting argument. Details of the arguments needed to
show the last two inequalities are left to reader in Exercise 36.10. Summing over
all rounds and k ∈ A yields

5
n∑

t=1

∑

k∈A

∑

a∈Nk∩A
Qtkaβtka ≤ 20ηnK2V 2 .

For the last term in Eq. (36.17) we use the definition of Ẑtka and Parts (c) and
(e) of Lemma 36.3 to show that

η

n∑

t=1

∑

k∈A

∑

a∈Nk∩A
QtkaẐ

2
tka = η

n∑

t=1

∑

k∈A

∑

a∈Nk∩A

QtkaP̃
2
tkv

ak(At,Φt)2

P 2
tAt

≤ ηV 2
n∑

t=1

1
PtAt

∑

k∈A
P̃tk

∑

a∈Nk∩A

QtkaP̃tkINak(At)
PtAt

≤ 4ηKV 2
n∑

t=1

1
PtAt

,

where the last step follows by splitting the sum over a into two based on whether
At is a duplicate of k and following an argument similar to the one used to
prove (36.18). Now, from Part (d) of Lemma 36.3, γ/K (1/Pta) ≤ 1 for all
a, and in particular, holds for a = At. Furthermore, Et−1[1/PtAt] = K and
Et−1[1/P 2

tAt
] =

∑
a 1/Pta ≤ K2/γ. By the result in Exercise 5.17 we get that it

holds that with probability at least 1− δ,
n∑

t=1

1
PtAt

≤ 2nK + K log(1/δ)
γ

.

Another union bound shows that with probability at least 1− (1 +K(K + 1))δ,
∑

k∈A
R̂nk ≤

3K log(1/δ)
η

+ 28ηnV 2K2 + 4V K log(1/δ) .

The result follows from the definition of η, Lemma 36.6 and the definition of
R̂nk.

36.7 Proof of the classification theorem

Almost all the results are now available to prove Theorem 36.1. In Section 36.4
we showed that if G is globally observable and not locally observable, then
R∗n(G) = Ω(n2/3). We also proved that if G is locally observable and has
neighbors, then R∗n(G) = Ω(

√
n). This last result is complemented by the policy

and analysis in Section 36.6 where we showed that for locally observable problems
R∗n(G) = O(

√
n log(n)). Finally we proved that if G is not globally observable,

then R∗n(G) = Ω(n). All that remains is to prove that (a) if G has no neighboring

36.8 Notes 431

actions, then R∗n(G) = 0 and (b) if G is globally observable, but not locally
observable, then R∗n(G) = O(n2/3).

theorem 36.6 If G has no neighboring actions, then R∗n(G) = 0.

Proof Since G has no neighboring actions, there exists an action a such that
Ca = PE−1 and the policy that chooses At = a for all rounds suffers no regret.

theorem 36.7 If G is globally observable, then R∗n(G) = O(n2/3).

Proof sketch Let A ⊆ [K] be the set of Pareto optimal actions and a◦ ∈ A.
Use the definition of global observability to show that each a ∈ A there exists a
function ha : [K]× [F]→ R such that

K∑

b=1
ha(b,Φ(b, i)) = `ai − `a◦i for all i ∈ [E] .

Then define unbiased loss estimator ∆̂ta = ha(At,Φt)/PtAt , where

Pta = (1− γ)
IA(a) exp

(
−η∑t−1

s=1 ∆̂sa

)

∑
b∈A exp

(
−η∑t−1

s=1 ∆̂sb

) + γ

K
.

The result is completed by repeating the standard analysis of the exponential
weights algorithm (or mirror descent with negentropy potential) and optimizing
γ and η.

36.8 Notes

1 A nonempty set L ⊆ Rn is a linear subspace of Rn if αv + βw ∈ L for
all α, β ∈ R and v, w ∈ L. If L and M are linear subspaces of Rn, then
L ⊕M = {v + w : L ∈ L,w ∈ M}. The orthogonal complement of linear
subspace L is L⊥ = {v ∈ Rn : 〈u, v〉 = 0 for all u ∈ L}. The following
properties are easily checked: (i) L⊥ is a linear subspace, (ii) (L⊥)⊥ = L and
(iii) (L ∩M)⊥ = L⊥ ⊕M⊥.

2 Let A ∈ Rm×n be a matrix and recall that matrices of this form correspond
to linear maps from Rn → Rm where the function A : Rn → Rm is given by
matrix multiplication, A(x) = Ax. The image of A is im(A) = {Ax : x ∈ Rn}
and the kernel is ker(A) = {x ∈ Rn : Ax = 0}. Notice that im(A) ⊆ Rm and
ker(A) ⊆ Rn. One can easily check that im(A) and ker(A>) are linear subspaces
and an elementary theorem in linear algebra says that im(A)⊕ ker(A>) = Rm
for any matrix A ∈ Rm×n. Finally, if u ∈ im(A) and v ∈ ker(A>), then
〈u, v〉 = 0. There are probably hundreds of introductory texts on linear algebra.
A short and intuitive exposition is by Axler [1997].

36.8 Notes 432

3 Given a set A ⊆ Rd the affine hull is the set

aff(A) =
{

k∑

i=1
αixk : k > 0, α ∈ Rk, xi ∈ A for all i ∈ [k] and

k∑

i=1
αi = 1

}
.

Its dimension is the smallest m such that there exist vectors v1, . . . , vm ∈ Rd
such that aff(A) = x◦ + span(v1, . . . , vm) for any x◦ ∈ A.

4 We introduced the stochastic variant of partial monitoring to prove our lower
bounds. Of course our upper bounds also apply to this setting, which means the
classification theorem also holds in the stochastic case. The interesting question
is to understand the problem-dependent regret, which for partial monitoring
problem G = (L,Φ) is

Rn(π, u,G) = max
a∈[K]

E

[
n∑

t=1
〈`At − `a, Ut〉

]
,

where U,U1, . . . , Un is a sequence of independent and identically distributed
random vectors with Ut ∈ {e1, . . . , eE} and E[U] = u ∈ PE−1. Provided G is
not hopeless one can derive an algorithm for which the regret is logarithmic,
and like in bandits there is a sense of asymptotic optimality. The open research
question is to understand the in-between regime where the horizon is not yet
large enough that the asymptotically optimal logarithmic regret guarantees
become meaningful, but not so small that minimax is acceptable.

5 In the proof of Lemma 36.4 we used the overpowered Jordan-Brouwer separation
theorem to guarantee that the line segment that connects u with the centroid v
of Ca has a nonempty intersection with the boundary of Ca. Here, u was a point
that lied outside of Ca. The Jordan-Brouwer separation theorem generalizes
the Jordan curve theorem, which states that every simple closed planar curve
separates the plane into a bounded interior and an unbounded exterior region
so that the boundary of both regions is the said planar curve. The Jordan-
Brouwer theorem states that the same holds in higher dimensions where the
closed planar curve becomes a topological sphere, which is the image of the
unit sphere of Rd under some continuous injective map from the sphere into
Rd. To use the theorem we view the simplex PE−1 as a subset of RE−1 by
dropping the last entry in the coordinate representation of the points of PE−1.
Then the boundary of Ca can be seen as a topological sphere in RE−1 and v

belongs to the interior, while u belongs to the exterior region created by the
boundary of Ca. The line segment connecting u and v will pass through the
boundary of both regions, which happens to be the boundary of Ca, showing
that the intersection of the line segment and the boundary of Ca is nonempty.
Note that the argument does not show that the intersection has a single point
and we did not need this either. Nevertheless, it is not hard to see that this
is also true. The standard proof of the Jordan-Brouwer is an application of
algebraic topology [Hatcher, 2002, §2.B].

6 Partial monitoring has many potential applications. We already mentioned

36.8 Notes 433

dynamic pricing and spam filtering. In the latter case acquiring the true label
comes at a price, which is a typical component of hard partial monitoring
problems. In general there are many setups where the learner can pay extra
for high quality information. For example, in medical diagnosis the doctor can
request additional tests before recommending a treatment plan, but these cost
time and money. Yet another potential application is quality testing in factory
production where the quality control team can choose which items to test (at
great cost).

7 There are many possible extensions to the partial monitoring framework. We
have only discussed problems where the number of actions/feedbacks/outcomes
are potentially infinite, but nothing prevents studying a more general setting.
Suppose the learner chooses a sequence of real-valued outcomes i1, . . . , in with
it ∈ [0, 1]. In each round the learner chooses At ∈ [K] and observes ΦAt(it)
where Φa : [0, 1] → Σ is a known feedback function. The loss is determined
by a collection of known functions La : [0, 1]→ [0, 1]. We do not know of any
systematic study of this setting. The reader can no doubt imagine generalizing
this idea to infinite action sets or introducing a linear structure for the loss.

8 A pair of Pareto-optimal actions (a, b) are called weak neighbors if Ca∩Cb 6= ∅
and pairwise observable if there exists a function v satisfying Eq. (36.3)
and with v(c, f) = 0 whenever c /∈ {a, b}. A partial monitoring problem is
called a point-locally observable game if all weak neighbours are pairwise
observable. All point-locally observable games are locally observable, but the
converse is not true. Bartók [2013] designed a policy for this type of game for
which

Rn ≤
1
εG

√
Klocn log(n) ,

where εG > 0 is a game-dependent constant and Kloc is the size of the largest
A ⊆ [K] of Pareto optimal actions such that ∩a∈ACa 6= ∅. Using a different
policy, Lattimore and Szepesvári [2018] have shown that as the horizon grows
the game-dependence diminishes so that

lim
n→∞

Rn√
n
≤ 8(2 + F)

√
2Kloc log(K) .

9 Linear regret is unavoidable in hopeless games, but that does not mean there is
nothing to play for. Rustichini considered a version of the regret that captures
the performance of policies in this hard setting. Given p ∈ PE−1 define set
I(p) ⊆ PE−1 by

I(p) =
{
q ∈ PE−1 :

E∑

i=1
(pi − qi)I {Φai = f} for all a ∈ [K] and f ∈ [F]

}
.

This is the set of distributions over the outcomes that are indistinguishable

36.9 Bibliographical remarks 434

from p by the learner using any actions. Then define

f(p) = max
q∈I(p)

min
a∈[K]

E∑

i=1
qiLai .

Rustichini [1999] proved there exist policies such that

lim
n→∞

max
i1:n

E

[
1
n

n∑

t=1
LAtit − f(ūn)

]
= 0 ,

where ūn = 1
n

∑n
t=1 eit ∈ PE−1 is the average outcome chosen by the adversary.

Intuitively this means the learner does not compete with the best action in
hindsight with respect to the actual outcomes. Instead, the learner competes
with the best action in hindsight with respect to an outcome sequence that is
indistinguishable from the actual outcome sequence. Rustichini did not prove
rates on the convergence of the limit. This has been remedied recently and we
give some references in the bibliographic remarks.

10 Finally, we want to emphasize that partial monitoring is still quite poorly
understood. We do not know how the regret should depend on E, F , K or the
structure of G. Lower bounds that depend on these quantities are also missing
and the lower bounds proven in Section 36.4 are surely very conservative. We
hope this chapter inspires more activity in this area. The setting described in
the previous note is even more wide open, with even the dependence on n still
not completely nailed down.

36.9 Bibliographical remarks

The first work on partial monitoring is by Rustichini [1999], who focussed on the
finding Hannan consistent policies in the adversarial setting. Rustichini shows how
to reduce the problem to Blackwell approachability (see Cesa-Bianchi and Lugosi
[2006]) and uses this to deduce the existence of a Hannan consistent strategy.
Rustichini also used a slightly different notion of regret, which eliminates the
hopeless games. The first nonasymptotic result in the setting of this chapter is
due to Piccolboni and Schindelhauer [2001] where a policy with regret O(n3/4)
is given for problems that are not hopeless. Cesa-Bianchi et al. [2006] reduced
the dependence to O(n2/3) and proved a wide range of other results for specific
classes of problems. The classification theorem when E = 2 is due to Bartók et al.
[2010] (extended version: Antos et al. [2013]). The classification of general partial
monitoring games is by Bartók et al. [2014]. The neighborhood watch policy is
due to Foster and Rakhlin [2012]. The policy presented here is a simplification
of that algorithm [Lattimore and Szepesvári, 2018]. The policies mentioned in
Note 8 are due to Bartók [2013] and Lattimore and Szepesvári [2018]. We warn
the reader that neighbors are defined differently by Foster and Rakhlin [2012] and
Bartók [2013], which can lead to confusion. Additionally, although both papers

36.10 Exercises 435

are largely correct, in both cases the core proofs contain errors that cannot be
resolved without changing the policies [Lattimore and Szepesvári, 2018]. There
is also a growing literature on the stochastic setting where it is common to
study both minimax and asymptotic bounds. In the latter case one can obtain
asymptotically optimal logarithmic regret for games that are not hopeless. We
refer the reader to papers by Bartók et al. [2012], Vanchinathan et al. [2014],
Komiyama et al. [2015b] as a good starting place. As we mentioned, partial
monitoring can model problems that lie between bandits and full information.
There are now several papers on this topic, but in more restricted settings and
consequentially with more practical algorithms and bounds. One such model is
when the learner is playing actions corresponding to vertices on a graph and
observes the losses associated with the chosen vertex and its neighbours [Mannor
and Shamir, 2011, Alon et al., 2013]. A related result is in the finite-armed
Gaussian setting where the learner selects an action At ∈ [K] and observes a
Gaussian sample from each arm, but with variances depending on the chosen
action. Like partial monitoring this problem exhibits many challenges and is
not yet well understood [Wu et al., 2015]. We mentioned in Note 9 that for
hopeless games the definition of the regret can be refined. A number of authors
have studied this setting with sublinear regret guarantees. As usual, the price
of generality is that the bounds are correspondingly a bit worse [Perchet, 2011,
Mannor and Shimkin, 2003, Mannor et al., 2014].

36.10 Exercises

36.1 Let X ⊆ Y ⊆ Rd and dim(X) = dim(Y). Prove that aff(X) = aff(Y).

36.2 Calculate the neighborhood structure, cell decomposition and action
classification for each of the examples in this chapter.

36.3 Apples arrive sequentially from the farm to a processing facility. Most
apples are fine, but occasionally there is a rotten one. The only way to figure
out whether an apple is good or rotten is to taste it. For some reason customers
do not like bite-marks in the apples they buy, which means that tested apples
cannot be sold. Good apples yield a unit reward when sold, while the sale of a
bad apple costs the company c > 0.

(a) Formulate this problem as a partial monitoring problem: Determine L and Φ.
(b) What is the minimax regret in this problem?
(c) What do you think about this problem? Will actual farmers be excited about

your analysis?

36.4 Let G = (L,Φ) be a partial monitoring game with K = 2 actions. Prove
that G is either trivial, hopeless or easy.

36.5 Complete the last step in the proof of Theorem 36.2.

36.10 Exercises 436

36.6 Prove Theorem 36.4.

36.7 Prove Theorem 36.3.

36.8 In this exercise you will prove the existence of a stationary distribution.
Let P ∈ [0, 1]d×d be right stochastic and An = 1

n

∑n−1
t=0 P

t. Show that:

(a) An is right stochastic.
(b) An + 1

n (Pn − I) = AnP = PAn.
(c) P ∗ = limn→∞ 1

n

∑n−1
t=0 P

t exists.
(d) P ∗P = PP ∗ = P ∗P ∗ = P ∗.
(e) There exists a stationary distribution.
(f) Prove Lemma 36.2.

For Parts (c) and (d) you will likely find it useful that the space of right
stochastic matrices is compact. Then show that all cluster points of (An) are
the same.

36.9 Prove Lemma 36.3.

36.10 Prove the last two inequalities shown in Eq. (36.18). In particular, let
k ∈ A and show that:

(a) For any b ∈ [K] such that `b = `k, P̃tk/Ptb ≤ 4K;
(b) For any a ∈ Nk ∩ A, b ∈ Nak such that `b 6= `k, QtkaP̃tk/Ptb ≤ 4K;
(c) The sets S = {b ∈ [K] : `b = `k} and the sets Sa = {b ∈ [K] : b ∈ Nak, `b 6=

`k} where a ∈ Nk ∩ A are all disjoint. Hence,
∑

b:`b=`k

1 +
∑

a∈Nk∩A

∑

b∈Nak:`b 6=`k
1 ≤ K .

(d) Put things together and show that the bound of Eq. (36.18) indeed holds.

36.11 Complete the details to prove Theorem 36.7.

36.12 Suppose that a and b are globally observable and let v : [K]× [F]→ R
be a function satisfying Eq. (36.3).

(a) Show that if a, b are pairwise observable, then v can be chosen so that
‖v‖∞ ≤ 1 + F .

(b) Next let F = 2 and construct a game and pair of actions a, b (not pairwise
observable) such that for all v satisfying Eq. (36.3), ‖v‖∞ ≥ cK for constant
c > 1.

36.10 Exercises 437

36.13 Consider G = (L,Φ) given by

L =
(

1 0 1 0 · · · 1 0
0 1 0 1 · · · 0 1

)
and

Φ =
(

1 2 2 3 3 4 · · · F − 1 F − 1 F

1 1 2 2 3 3 · · · F − 2 F − 1 F − 1

)
.

(a) Show this game is locally observable.
(b) Prove there exists a universal constant c > 0 such that R∗n(G) ≥ c(F − 1)

√
n.

The source for previous exercise is the paper by the authors [Lattimore and
Szepesvári, 2018].

36.14 Complete the necessary modification of Lemma 15.1 to show that Eq. (36.7)
is true.

36.15 Write a program that accepts as input matrices L and Φ and outputs the
classification of the game.

36.16 In this experiment we test NeighborhoodWatch2 empirically on the spam
game with stochastic adversary.

(a) Implement NeighborhoodWatch2.
(b) Apply your algorithm to the spam game for a variety of choices of c and

stochastic adversary. Try to stress your algorithm as much as possible (for
each c choose the most challenging u).

(c) Plot your results from the previous part. Tell an interesting story.

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

37 Markov Decision Processes

Bandit environments are a sensible model for many simple problems, but they do
not model more complex environments where actions have long-term consequences.
A brewing company needs to plan ahead when ordering ingredients and the
decisions made today affect their position to brew the right amount of beer in
the future. A student learning mathematics benefits not only from the immediate
reward of learning an interesting topic, but also from their improved job prospects.

A Markov decision process is a simple way to incorporate long-term
planning into the bandit framework. Like in bandits, the learner chooses actions
and receives rewards. But they also observe a state and the rewards for different
actions depend on the state. Furthermore, the actions chosen affect which state
will be observed next.

37.1 Problem setup

A Markov decision process (MDP) is a tuple M = (S,A, P, r) that describes the
environment. The first two items S and A are sets called the state space and
action space respectively and S = |S| and A = |A| are their sizes, which may be
infinite. An MDP is finite if S,A <∞. The quantity P = (Pa : s ∈ S, a ∈ A) is
called the transition function with Pa : S × S → [0, 1] so that Pa(s, s′) is the
probability that the learner transitions from state s to s′ when taking action a.
The last element in the tuple is the reward r = (ra : a ∈ A), which is a collection
of reward functions with ra : S → [0, 1]. When the learner takes action a in
state s it receives a deterministic reward of ra(s). Depending on the situation,
the transition and reward functions are often represented as vectors or matrices.
When the state space is finite we may assume without loss of generality that
S = [S]. We write Pa(s) ∈ [0, 1]S as the probability vector with s′th coordinate
given by Pa(s, s′). In the same way we let Pa ∈ [0, 1]S×S be the right stochastic
matrix with (Pa)s,s′ = Pa(s, s′). Finally, we view ra as a vector in [0, 1]S in the
natural way.

While we use the same action-set in different states s, s′ ∈ S, this does not
mean that Pa(s) or ra(s) has any relationship to Pa(s′) or ra(s′). By learning

http://banditalgs.com
mailto:tor.lattimore@gmail.com

37.1 Problem setup 439

about Pa at s the learner does not gain information about Pa at s′ 6= s. In this
sense the notation is a bit misleading and perhaps it would be better to use
an entirely different set of actions for each state. This could be done with no
changes to any of the results we present. And while we are at it, of course one
could also allow the number of actions to vary over the state space. The only
justification for assuming that the same set of actions is available in all states
is that it simplifies the presentation.

The interaction protocol is very similar to bandits. Before the game starts the
initial state S1 is sampled from a distribution µ ∈ P(S). In each round t the
learner observes the state St ∈ S, chooses an action At ∈ A and receives reward
rAt(St). The environment then samples St+1 from the probability vector PAt(St)
and then the next round begins (Fig. 37.1).

Observe state St

Choose action At ∈ A

Receive reward rAt (St) Update St+1 ∼ PAt (St)

Increment t

t = 1 and sample S1 ∼ µ

Figure 37.1 Interaction protocol for Markov decision processes

Histories and policies
The historyHt = (S1, A1, . . . , St−1, At−1, St) in round t contains the information
available before the action for the round is to be chosen. Note that state St is
included in Ht. The rewards are omitted because they are determined by the
state/action pairs and the learner can just recompute them if needed. A policy
is a (possibly randomized) map from the set of possible histories to actions.
Simple policies include memoryless policies, which choose actions based on
only the current state, possibly in a randomized manner. The set of such policies
is denoted by ΠM and its elements are identified maps π : S × A × [0, 1] with∑
a∈A π(s, a) = 1 for any s ∈ S so that π(s, a) is interpreted as the probability

that policy π takes action a in state s.
A memoryless policy that does not randomize is called a memoryless

deterministic policy. To reduce clutter such policies are written as S → A
maps and the set of all such policies is denoted by ΠDM. A policy is called a

37.1 Problem setup 440

Markov policy if the actions are randomized and depend only on the round
and the previous state. These policies are represented by fixed sequences of
memoryless deterministic policies. Under a Markov policy the sequence of states
(S1, S2, . . .) evolve as a Markov chain (see Section 3.2). If the Markov policy is
memoryless, the chain is homogeneous.

2 3 4 5 6

1 trap state high reward state

1, 1

1, 1

3
5 , 0

2
5 , 0

1
5 , 1

4
5 , 1

3
5 , 0

2
5 , 0

1
5 , 1

4
5 , 1

3
5 , 0

2
5 , 0

1
5 , 1

4
5 , 1

3
5 , 0

2
5 , 0

1
5 , 1

4
5 , 1

3
5 , 10

2
5 , 10

1
5 , 12

4
5 , 12

Figure 37.2 A Markov decision process with six states and two actions represented by
solid and dashed arrows respectively. The numbers next to each arrow represent the
probability of transition and reward for the action respectively. For example, taking the
solid action in state three results in a reward of zero and the probability of moving to
state four is 3/5 and the probability of moving to state three is 2/5.

Probability spaces
It will be convenient to allow infinitely long interactions between the learner and
environment. In line with Fig. 37.1, when the agent or learner follows a policy π
in MDP M = (S,A, P, r) such a never ending interaction should give rise to a
random process (S1, A1, S2, A2, . . .) so that for any s, s′ ∈ S, a ∈ A and t ≥ 1,

(a) P(S1 = s) = µ(s) ;
(b) P(St+1 = s′ | Ht, At) = PAt(St, s′) ;
(c) P(At = a | Ht) = π(Ht, a) ,

where µ ∈ P(S) is the initial state distribution and π(Ht, a) stands for the
probability of the agent selecting action a in the tth round of interaction when
the history is Ht = (S1, A1, . . . , St−1, At−1, St). At this point, meticulous readers
may wonder about whether it is even true that there exist some probability
space (Ω,F ,P) and a sequence of random variables (S1, A1, S2, A2, . . .) exist
at all that make (a)–(c) hold regardless the choice of M , π and µ. This may
look like nitpicking, but if this was not guaranteed, all that comes later in this
chapter would be vacuous. Our readers should find it pleasing that the Ionescu
Tulcea theorem (Theorem 3.3) furnishes us with a positive answer (Exercise 37.1).

37.1 Problem setup 441

Item (b) above is known as the Markov property. Of course the measure P
depends on both the policy and Markov decision process. For most of the chapter
these quantities will be fixed and the dependence is omitted from the notation. In
the few places where disambiguation is necessary we provide additional notation.
The initial state distribution µ usually does not play a big role and we allow
ourselves to write P(· | S1 = s), which just means replacing µ with an alternative
initial state distribution that is a Dirac at s.

Traps and the diameter of a Markov decision process
A significant complication in MDPs is the potential for traps. A trap is a subset
of the state space that there is no escape from. For example, the MDP in Fig. 37.2
has a trap state. If being in the trap has a suboptimal yield in terms of the
reward, the learner should avoid the trap, but since the learner can only discover
that an action leads to a trap by trying that action and since, by definition, there
are no second chances (the environment-agent interaction is continuous and is
uninterrupted, with no option to somehow reset the environment), the problem of
learning while competing with a fully informed agent is hopeless (Exercise 37.18).

To avoid this complication we restrict our attention to MDPs with no traps.
Formally, we assume that for any pair of states s, s′ ∈ S there exists a policy
such that when starting from s there is a positive probability of reaching s′ some
time in the future while following the policy. MDPs with this property are called
strongly connected or communicating. One can also define a real-valued
measure of the connectedness of an MDP called the diameter. MDPs with
smaller diameter are usually easier to learn because a policy can recover from
mistakes more quickly.

definition 37.1 Define stopping time τs = min{ t ≥ 1 : St = s}. The
diameter of M is

D(M) = max
s6=s′

min
π:S→A

Eπ [τs′ | S1 = s] ,

where the expectation is taken with respect to the measure on sequences of
state/action/reward tuples induced by the interaction with Markov decision
process M and policy π.

A number of observations are in order about this definition. First, the order
of the maximum and minimum means that for any pair of states a different
policy may be used. Second, travel times are always minimized by deterministic
memoryless policies so the restriction to these policies in the minimum is
inessential (Exercise 37.3). Finally, the definition only considers distinct states.
We also note that when the number of states is finite it holds that D(M) <∞ if
and only if M is strongly connected (Exercise 37.4).

37.2 Optimal policies and the Bellman optimality equation 442

37.2 Optimal policies and the Bellman optimality equation

We now define the notion of an optimal policy and outline the proof that there
exists a deterministic memoryless optimal policy. Throughout we fix a strongly
connected Markov decision process M . The gain of a policy π is the long-term
average reward expected from using that policy when starting in state s:

ρπs = lim
n→∞

1
n

n∑

t=1
Eπ[rAt(St) | S1 = s] .

In general the limit need not exist, in which case the following quantity can be
meaningful meaningful:

ρ̄πs = lim sup
n→∞

1
n

n∑

t=1
Eπ[rAt(St) | S1 = s] .

Whenever ρπs exists we have ρπs = ρ̄πs . The optimal gain is a real value

ρ∗ = max
s∈S

sup
π
ρ̄πs ,

where the supremum is taken over all policies. A π policy is an optimal policy
if ρπ = ρ∗1. The existence of an optimal policy is far from trivial and we will
spend the next little while sketching the proof. You might be wondering why
the optimal value does not depend on the initial state. The reason is because
we have assumed the Markov decision process is strongly connected so that the
learner can travel from one state to any other in a number of rounds that is finite
in expectation. The loss suffered during this transition is not captured by the
asymptotic definition of the gain.

Before continuing we need some new notation. For memoryless policy π define

Pπ(s, s′) =
∑

a

π(s, a)Pa(s, s′) and rπ(s) =
∑

a

π(s, a)ra(s) . (37.1)

We view Pπ as an S× S transition matrix and rπ as a vector in RS. With this
notation Pπ is the transition matrix of the homogeneous Markov chain S1, S2, . . .

when At ∼ π(St, ·). The gain of memoryless policy π satisfies

ρπ = lim
n→∞

1
n

n−1∑

t=0
P tπrπ = P ∗πrπ , (37.2)

where P ∗π = limn→∞ 1
n

∑n−1
t=0 P

t
π is called the stationary transition matrix,

the existence of which you will prove in Exercise 37.9. For each k ∈ N define

v(k)
π =

k∑

t=0
P tπ(rπ − ρπ) .

For s ∈ S, v(k)
π (s) gives the total expected excess reward collected by π when

the process starts at state s. The (differential) value function of a policy is a

37.2 Optimal policies and the Bellman optimality equation 443

function vπ : S → R defined as the Cesàro sum of the sequence {P tπ(rπ−ρπ)}t≥0,

vπ = lim
n→∞

1
n

n−1∑

k=0
v(k)
π = ((I − Pπ + P ∗π)−1 − P ∗π)rπ . (37.3)

Note, the second equality is nontrivial (Exercise 37.9). The definition implies that
vπ(s)−vπ(s′) is the ‘average’ long-term advantage of starting in state s relative to
starting to state s′ when following policy π. Note these quantities are only defined
for memoryless policies where they are also guaranteed to exist (Exercise 37.9).
Combining Eq. (37.2) and Eq. (37.3) shows that for any memoryless policy π,

ρπ + vπ = rπ + Pπvπ .

A value function is a function v : S → R and its span is given by

span(v) = max
s∈S

v(s)−min
s∈S

v(s) .

As with other quantities, value functions are associated with vectors in RS. A
greedy policy with respect to value function v is a deterministic memoryless
policy πv given by

πv(s) = argmaxa∈A ra(s) + 〈Pa(s), v〉 .

There may be many policies that are greedy with respect to some value function
v due to ties in the maximum. Usually the ties do not matter, but for consistency
and for the sake of simplifying matters, we assume that ties are broken in a
systematic fashion. In particular, this makes πv well-defined for any value function.

One way to find the optimal policy is as the greedy policy with respect to a
value function that satisfies the Bellman optimality equation, which is

ρ+ v(s) = max
a∈A

(ra(s) + 〈Pa(s), v〉) for all s ∈ S . (37.4)

This is a system of S nonlinear equations with unknowns ρ ∈ R and v ∈ RS. The
reader will notice that if v : S → R is a solution to Eq. (37.4), then so is v + c1
for any constant c ∈ R and hence the Bellman optimality equation lacks unique
solutions. Furthermore, it is not true that the optimal value function is unique up
to translation, even when M is strongly connected (Exercise 37.13). The v-part
of a solution pair (ρ, v) of Eq. (37.4) is called an optimal (differential) value
function.

theorem 37.1 The following hold:

(a) There exists a pair (ρ, v) that satisfies the Bellman optimality equation.
(b) If (ρ, v) satisfies the Bellman optimality equation, then πv is optimal.
(c) There exists a deterministic memoryless optimal policy.

Proof sketch The proof of Part (a) is too long to include here, but we guide you

37.2 Optimal policies and the Bellman optimality equation 444

through it in Exercise 37.12. For Part (b) let (ρ, v) satisfy the Bellman equation
and π∗ be the greedy policy with respect to v. Then

ρπ
∗

= lim
n→∞

1
n

n−1∑

t=0
P tπ∗rπ∗ = lim

n→∞
1
n

n−1∑

t=0
P tπ∗ (ρ1 + v − Pπ∗v) = ρ .

Next let π = (π1, π2, . . .) be an arbitrary Markov policy and P tπ =
∏t
s=1 Pπt .

Then using the fact that π∗ is the greedy policy with respect to v leads to

P t−1
π rπt = P t−1

π (rπt + Pπtv − Pπtv)
≤ P t−1

π (rπ∗ + Pπ∗v − Pπtv)
= P t−1

π (ρ1 + v − Pπtv)
= ρ1 + P t−1

π v − P tπv .

Summing over t shows that

ρ̄π = lim sup
n→∞

1
n

n−1∑

t=0
P t−1
π rπt ≤ ρ1 .

Hence ρ ≥ ρ̄π for all Markov policies π. The result is completed using the result
of Exercise 37.2, where you will prove that for any policy π there exists a Markov
policy with the same expected rewards. Part (c) follows immediately from the
first two parts.

The theorem shows that there exist solutions to the Bellman optimality equation
and that the greedy policy with respect to the resulting value function is an
optimal policy. We need one more result about solutions to the Bellman optimality
equation, the proof of which you will provide in Exercise 37.14.

lemma 37.1 Suppose that (ρ∗, v) satisfies the Bellman optimality equation.
Then span(v) ≤ D(M).

The operator T : RS → RS defined by (Tv)(s) = maxa∈A ra(s) + 〈Pa(s), v〉 is
called the Bellman operator. If (ρ∗, v) is a solution to the Bellman optimality
equation, then Tv = ρ∗1 + v. Furthermore, v∗n = Tn0 is a vector with v∗n(s)
the maximum achievable expected cumulative reward over n rounds when
starting in state s. Value iteration is a procedure for finding the optimal policy
that works by starting with an arbitrary value function v0 and incrementally
updating with vk+1 = Tvk. Under certain conditions the greedy policy with
respect to vk converges to an optimal policy as k tends to infinity. For more
on this see the notes.

We have not said how to solve the Bellman optimality equation. When
computation is important this becomes surprisingly subtle. Readers who are
more interested in the learning aspect of the problem can skip the details, which
are provided in the next section.

37.3 Finding an optimal policy (†) 445

37.3 Finding an optimal policy (†)

There are many ways to find an optimal policy, including value iteration, policy
iteration and enumeration. These ideas are briefly discussed in the notes. Here
we describe an approach based on linear programming. As in the previous section
we fix a strongly connected finite Markov decision process. Consider the following
linear optimization problem.

minimize
ρ∈R,v∈RS

ρ (37.5)

subject to ρ+ v(s) ≥ ra(s) + 〈Pa(s), v〉 for all s, a .

theorem 37.2 The optimization problem in Eq. (37.5) is feasible and if (ρ, v)
is a solution, then ρ = ρ∗ is the optimal gain.

Proof By Theorem 37.1 there exists a pair (ρ∗, v∗) satisfying the Bellman
optimality equation, which means that for all state/action pairs (s, a),

ρ∗ + v∗(s) = max
a∈A

ra(s) + 〈Pa(s), v∗〉 .

Hence this pair satisfy the constraints in Eq. (37.5) and witness feasibility. Let
(ρ, v) be a solution of Eq. (37.5). Since (ρ∗, v∗) satisfy the constraints, ρ ≤ ρ∗

is immediate. It remains to prove that ρ ≥ ρ∗. Let π = πv be the greedy policy
with respect to v. Then

P tπ∗rπ∗ ≤ P tπ∗(rπ + Pπv − Pπ∗v) ≤ P tπ∗(ρ1 + v − Pπ∗v) = ρ1 + P tπ∗v − P t+1
π∗ v .

Summing over t shows that ρ∗1 = limn→∞ 1
n

∑n−1
t=0 P

t
π∗rπ∗ ≤ ρ1, which shows

that ρ ≥ ρ∗ and completes the proof.

We have not claimed that solutions to this linear program satisfy the Bellman
optimality equation or that the greedy policy is optimal. Both can fail to be true.
There are several ways to fix this deficiency. Perhaps the simplest is to solve the
linear program in Eq. (37.5) to find ρ∗ and then solve another linear program
that fixes the gain while minimizing the value function. Let s̃ ∈ S and consider
the following linear program:

minimize
v∈RS

〈v,1〉 (37.6)

subject to ρ∗ + v(s) ≥ ra(s) + 〈Pa(s), v〉 for all s, a
v(s̃) = 0 .

The second constraint is crucial in order for the minimum to exist, since otherwise
the value function can be arbitrarily small. The next theorem shows that provided
s̃ is chosen appropriately, then the solution of Eq. (37.6) satisfies the Bellman
optimality equation.

theorem 37.3 Let v be a solution of Eq. (37.6) and assume there exists an
optimal policy π∗ such that P ∗π∗(s, s̃) > 0 for all s ∈ S. Then (ρ∗, v) satisfies the
Bellman optimality equation.

37.3 Finding an optimal policy (†) 446

Proof Let ε = v + ρ∗ − Tv, which by the first constraint satisfies ε ≥ 0. Let π∗
be an optimal policy satisfying the requirements of the theorem statement and π
be the greedy policy with respect to v. Then

P tπ∗rπ∗ ≤ P tπ∗(rπ + Pπv − Pπ∗v) = P tπ∗(ρ∗ + v − ε− Pπ∗v) .

Hence ρ∗ = ρπ
∗ = ρ∗ − P ∗π∗ε, which means that P ∗π∗ε = 0 and so ε(s) = 0 for all

states s in any recurrence class of π∗. By our assumption on P ∗π∗ we conclude
that ε(s̃) = 0. It follows that ṽ = v + ε also satisfies the constraints in Eq. (37.6)
and by the assumption that v is a solution we conclude that ε = 0.

To complete the procedure we need to find a state s̃ that is recurrent under
some optimal policy. There is a relatively simple procedure for doing this using
the solution to Eq. (37.5), but its analysis depends on the basic theory of duality
from the linear programming. Instead we note that one can simply solve Eq. (37.6)
for all choices of s̃ and take the first solution that satisfies the Bellman optimality
equation.

37.3.1 Efficient computation

The general form of a linear program is an optimization problem of the form

minimize
x∈Rn

〈c, x〉

subject to Ax ≥ b ,

where c ∈ Rn and A ∈ Rm×n and b ∈ Rm are parameters of the problem. This
general problem can be solved in time that depends polynomially on n and m.
When m is very large or infinite these algorithms may become impractical, but
nevertheless one can often still solve the optimization problem in time polynomial
in n only, provided that the constraints satisfy certain structural properties. Let
K ⊂ Rn be convex and consider

minimize
x∈Rn

〈c, x〉 (37.7)

subject to x ∈ K .

Algorithms for this problem generally have a slightly different flavor because K
may have no corners. Suppose the following are known:

(a) There exists a known R > 0 such that K ⊂ {x ∈ Rn : ‖x‖ ≤ R}.
(b) There exist a separation oracle, which is a function φ on Rn with φ(x) = True

for x ∈ K and otherwise φ(x) = u and 〈y, u〉 > 〈x, u〉 for all y ∈ K (see
Fig. 37.3).

Given a separation oracle and a bound R on the size of K the ellipsoid method
can solve Eq. (37.7) to ε accuracy in time polynomial in n and log(R/ε). The
reader can find references to this method at the end of the chapter. The final

37.4 Learning in Markov decision processes 447

step is to give a condition when a separation oracle exists for the convex sets
determined by the constraints in Eq. (37.5) and Eq. (37.6). Assuming that

argmaxa∈A(ra(s) + 〈Pa(s), v〉) (37.8)

can be solved efficiently, then Algorithm 23 provides a separation oracle. For the
specialized case considered later Eq. (37.8) is trivial to compute efficiently.

K x

Figure 37.3 Separation oracle returns the normal of a hyperplane that separates x from
K whenever x /∈ K. When x ∈ K the separation oracle returns True.

In Theorem 37.1 we assumed an exact solution of the Bellman optimality
equation, which may not be possible in practice. Fortunately, approximate
solutions to the Bellman optimality equation yield approximately optimal
greedy policies. Details are in Exercise 37.24.

1: function SeparationOracle(ρ, v)
2: For each s ∈ S find a∗s ∈ argmaxa(ra(s) + 〈Pa(s), v〉)
3: if ρ+ v(s) ≥ ra∗s (s) + 〈Pa∗s (s), v〉 for all s ∈ S then
4: return True
5: else
6: Find state s with ρ+ v(s) < ra∗s (s) + 〈Pa∗s (s), v〉
7: Return (1, es − Pa∗s (s))
8: end if
9: end function

Algorithm 23: Separation oracle.

37.4 Learning in Markov decision processes

When the Markov decision process is unknown the problem of finding an optimal
policy is no longer just an optimization problem and the regret is introduced
to measure the price of the uncertainty. For simplicity we assume that only the
transition matrix is unknown while the reward function is given. This assumption

37.5 Upper confidence bounds for reinforcement learning 448

is not especially restrictive as the case where the rewards are also unknown is
easily covered using either a reduction or a simple generalization as we explain in
the notes. The regret of a policy π is the deficit of rewards suffered relative to
the expected average reward of an optimal policy:

R̂n = nρ∗ −
n∑

t=1
rAt(St) .

The reader will notice we are comparing the nonrandom nρ∗ to the random sum
of rewards received by the learner, which was also true in the study of stochastic
bandits. The difference is that ρ∗ is an asymptotic quantity while for stochastic
bandits the analogous quantity was nµ∗. The definition stills makes sense, however,
because for MDPs with finite diameter D the optimal expected value over n
rounds is at least nρ∗ −D so the difference is negligible (Exercise 37.15). The
main result of this chapter is the following.

theorem 37.4 Let C > 0 be a sufficiently large universal constant, S and A
be positive integers, and δ ∈ (0, 1). Then there exists a policy π such that for
any MDP M = (S,A, P, r) with S states, A actions and rewards from [0, 1], any
initial state distribution µ ∈ P(S) and for any horizon n ≥ 1,

P
(
R̂n ≥ CD(M)S

√
An log(nSA/δ)

)
≤ δ .

In Exercise 37.17 we ask you to use the assumption that the rewards are
bounded to find a choice of δ ∈ (0, 1) such that

E[R̂n] ≤ 1 + CD(M)S
√

2An log(n) . (37.9)

This result is complemented by the following lower bound.

theorem 37.5 Let S ≥ 3, A ≥ 2, D ≥ 6 + 2 logA S and n ≥ DSA. Then for
any policy there exists a Markov decision process with S states, A actions and
diameter at most D such that

E[R̂n] ≥ C
√
DSAn ,

where C > 0 is again a universal constant.

The upper and lower bounds are separated by a factor of at least
√
DS, which

is a considerable gap. Recent work has made progress towards closing this gap as
we explain in the notes.

37.5 Upper confidence bounds for reinforcement learning

The algorithm that establishes Theorem 37.4 combines the use of phases with
the optimism principle. At the start of each phase the algorithm computes an
optimal policy for the statistically plausible MDP with the largest optimal gain.
This policy is then implemented until the number of visits to some state/action

37.5 Upper confidence bounds for reinforcement learning 449

pair doubles when a new phase starts and the process begins again. The use
of phases is important, not just for computational efficiency. Recalculating the
optimistic policy in each round may lead to a dithering behavior in which the
algorithm frequently changes its plan and suffers linear regret (Exercise 37.22).
We first define confidence sets on the unknown quantity, which in this case is the
transition matrix. The confidence sets are centered at the empirical transition
probabilities defined by

P̂t,a(s, s′) =
∑t
u=1 I {Su = s,Au = a, Su+1 = s′}

1 ∨ Tt(s, a) ,

where Tt(s, a) =
∑t
u=1 I {Su = s,Au = a} is the number of times action a was

taken in state s. As before we let P̂t,a(s) be the vector whose s′th entry is
P̂t,a(s, s′). Given a state/action pair s, a define

Ct(s, a) =
{
P ∈ P(S) : ‖P − P̂t−1,a(s)‖1 ≤

√
SLt−1(s, a)

1 ∨ Tt−1(s, a)

}
, (37.10)

where for Tt(s, a) > 0 we set

Lt(s, a) = 2 log
(

4SATt(s, a)(1 + Tt(s, a))
δ

)

and for Tt(s, a) = 0 we set Lt(s, a) = 1. Note that in this case Ct+1(s, a) = P(S).
Then define confidence set on the space of transition kernels by

Ct = {P = (Pa(s))s,a : Pa(s) ∈ Ct(s, a) for all s, a ∈ S ×A} , (37.11)

Clearly Tt(s, a) cannot be larger than the total number of rounds n so

Lt(s, a) ≤ L = 2 log
(

4SAn(n+ 1)
δ

)
. (37.12)

The algorithm operates in phases k = 1, 2, 3, . . . with the first phase starting in
round τ1 = 1 and the (k + 1)th phase starting in round τk+1 defined inductively
by

τk+1 = 1 + min {t : Tt(St, At) ≥ 2Tτk−1(St, At)} ,

which means that the next phase starts once the number of visits to some state
at least doubles.

37.5.1 The extended Markov decision process

The confidence set Ct defines a set of plausible transition probability functions at
the start of round t. Since the reward function is known already this corresponds
to a set of plausible MDPs. The algorithm plays according to the optimal policy
in the plausible MDP with the largest gain. There is some subtlety because
the optimal policy is not unique and what is really needed is to find a policy
that is greedy with respect to a value function satisfying the Bellman optimality

37.5 Upper confidence bounds for reinforcement learning 450

equation in the plausible MDP with the largest gain. Precisely, at the start of
the kth phase the algorithm must find a value function vk, gain ρk and MDP
Mk = (S,A, Pk, r) with Pk ∈ Cτk such that

ρk + vk(s) = max
a∈A

ra(s) + 〈Pk,a(s), vk〉 for all s ∈ S and a ∈ A ,

ρk = max
s∈S

max
π∈ΠDM

max
P∈Cτk

ρπs (P) ,
(37.13)

where ρπs (P) is the gain of deterministic memoryless policy π starting in state s
in the MDP with transition probability function P . The algorithm then plays
according to πk defined as the greedy policy with respect to vk. There is quite a
lot hidden in these equations. The gain is only guaranteed to be constant when
Mk has a finite diameter, but this may not hold for all plausible MDPs. As it
happens, however, solutions to Eq. (37.13) are guaranteed to exist and can be
found efficiently. To see why this is true we introduce the extended Markov
decision process M̃k, which has state-space S and state-dependent action-space
Ãs given by

Ãs = {(a, P) : a ∈ A, P ∈ Cτk(s, a)} .

The reward function of the extended MDP is r̃(a,P)(s) = ra(s) and the transitions
are P̃a,P (s) = Pa(s). The action-space in the extended MDP allows the agent to
choose both a ∈ A and a plausible transition vector Pa(s) ∈ Cτk(s, a). By the
definition of the confidence sets, for any pair of states s, s′ and action a ∈ A there
always exists a transition vector Pa(s) ∈ Cτk(s, a) such that Pa(s, s′) > 0, which
means that M̃k is strongly connected. Hence solving the Bellman optimality
equation for M̃k yields a value function vk and constant gain ρk ∈ R that satisfy
Eq. (37.13). A minor detail is that the extended action-sets are infinite while
the analysis in previous sections only demonstrated existence of solutions to
the Bellman optimality equation for finite MDPs. We leave it to the reader to
convince themselves that Ct(s, a) is convex and has finitely many extremal points.
Restricting the confidence sets to these points makes the extended MDP finite
without changing the optimal policy.

1: Input S, A, r, δ ∈ (0, 1)
2: t = 0
3: for k = 1, 2, . . . do
4: τk = t+ 1
5: Find πk as the greedy policy with respect vk satisfying Eq. (37.13)
6: do
7: t← t+ 1, observe St and take action At = πk(St)
8: while Tt(St, At) < 2Tτk−1(St, At)
9: end for

Algorithm 24: UCRL2

37.6 Proof of upper bound 451

37.5.2 Computing the optimistic policy (†)
Here we explain how to efficiently solve the Bellman optimality equation for the
extended MDP. The results in Section 37.3 show that the Bellman optimality
equation for M̃k can be solved efficiently provided that for any value function
v ∈ RS the following computation is efficient.

argmaxa∈A
(
ra(s) + max

P∈Cτk (s,a)
〈P, v〉

)
. (37.14)

The inner optimization is another linear program with S variables and O(S)
constraints and can be solved in polynomial time. This procedure is repeated for
each a ∈ A to solve the whole thing. In fact the inner optimization can be solved
more straightforwardly by sorting the entries of v and then allocating P coordinate-
by-coordinate to be as large as allowed by the constraints in decreasing order of v.
The total computation cost of solving Eq. (37.14) in this way is O(S(A + log S)).
Combining this with Algorithm 23 gives the required separation oracle.

The next problem is to find an R such that the set of feasible solutions to the
linear programs in Eq. (37.5) and Eq. (37.6) are contained in the set {x : ‖x‖ ≤ R}.
For Eq. (37.5) no such R exists because solutions for the value function remain
solutions when translated. To get around this it is necessary to add a constraint
that v ≤ b and v ≥ −b for some carefully chosen b ∈ R. By Lemma 37.1 the
span of the value function satisfying the Bellman optimality equation is at most
the diameter. Note that for each pair of states s, s′ there exists an action a

and P ∈ Cτk(s, a) such that P (s, s′) ≥ min{1,√n} so that D(M̃k) ≤ √n. Then
we may choose b =

√
n and R =

√
1 + nS, where we used the fact that the

optimal gain is at most 1. Combining this with the tools developed in Section 37.3
shows that the Bellman optimality equation for M̃k may be solved using linear
programming in polynomial time. Note the additional constraints requires a
minor adaptation of the separation oracle, which we leave for the reader.

37.6 Proof of upper bound

The proof is developed in three steps. First we decompose the regret into phases
and define a failure event where the confidence intervals fail. In the second step
we bound the regret in each phase and in the third step we sum over the phases.
Recall that M = (S,A, P, r) is the true Markov decision process with diameter
D = D(M). The initial state distribution is µ ∈ P(S), which is arbitrary.

Step 1: Failure events and decomposition
Let K be the (random) number of phases and for k ∈ [K] let Ek = {τk, τk +
1, . . . , τk+1 − 1} be the set of rounds in the kth phase where τK+1 is defined to
be n+ 1. Let T(k)(s, a) be the number of times state/action pair s, a is visited in

37.6 Proof of upper bound 452

the kth phase:

T(k)(s, a) =
∑

t∈Ek
I {St = s,At = a} .

Define F as the failure event that P /∈ Cτk for some k ∈ [K]. The first lemma
shows that F has lower probability:

lemma 37.2 P (F) ≤ δ/2 .

The proof is based on a concentration inequality derived for categorical
distributions and is left for Exercise 37.8. When F does not hold the true
transition kernel is in Cτk for all k, which means that ρ∗ ≤ ρk and

R̂n =
n∑

t=1
(ρ∗ − rAt(St)) ≤

K∑

k=1

∑

t∈Ek
(ρk − rAt(St))

︸ ︷︷ ︸
R̃k

.

In the next step we bound R̃k under the assumption that F does not hold.

Step 2: Bounding the regret in each phase
Assume that F does not occur and fix k ∈ [K]. Recall that vk is a value function
satisfying the Bellman optimality equation in the optimistic MDP Mk and ρk is
its gain. Hence

ρk = rπk(s)− vk(s) + Pk,πk(s)>vk for all s ∈ S . (37.15)

As noted earlier, solutions to the Bellman optimality equation remain solutions
when translated so we may choose vk such that ‖vk‖∞ ≤ span(vk)/2, which
means that

‖vk‖∞ ≤
1
2 span(vk) ≤ D

2 , (37.16)

where the second inequality follows from Lemma 37.1 and the fact that when F

does not hold the diameter of Mk is at most D. By the definition of the policy
we have At = πk(St) for t ∈ Ek, which implies that

ρk = rAt(St)− vk(St) + Pk,At(St)>vk for all t ∈ Ek .

Rearranging and substituting yields

R̃k =
∑

t∈Ek

(
−vk(St) + Pk,At(St)>vk

)

=
∑

t∈Ek

(
−vk(St) + PAt(St)>vk

)
+
∑

t∈Ek
(Pk,At(St)− PAt(St))> vk

≤
∑

t∈Ek

(
−vk(St) + PAt(St)>vk

)

︸ ︷︷ ︸
(A)

+ D

2
∑

t∈Ek
‖Pk,At(St)− PAt(St)‖1

︸ ︷︷ ︸
(B)

, (37.17)

37.6 Proof of upper bound 453

where the inequality follows from Hölder’s inequality and Eq. (37.16). Let
Et[·] denote the conditional expectation with respect to P conditioned on
σ(S1, A1, . . . , St−1, At−1, St). To bound (A) we reorder the terms and use the
fact that span(vk) ≤ D on the event F c.

(A) =
∑

t∈Ek

(
vk(St+1)− vk(St) + PAt(St)>vk − vk(St+1)

)

= vk(Sτk+1)− vk(Sτk) +
∑

t∈Ek

(
PAt(St)>vk − vk(St+1)

)

≤ D +
∑

t∈Ek
(Et[vk(St+1)]− vk(St+1)) ,

where the second equality used that maxEk = τk+1 − 1 and minEk = τk. We
leave this here for now and move on to term (B) in Eq. (37.17). The definition of
the confidence intervals and the assumption that F does not occur shows that

(B) ≤ D
√
LS

2
∑

(s,a)∈S×A

T(k)(s, a)√
1 ∨ Tτk−1(s, a)

.

Combining the bounds (A) and (B) yields

R̃k ≤ D +
∑

t∈Ek
(Et[vk(St+1)]− vk(St+1)) + D

√
LS

2
∑

(s,a)∈S×A

T(k)(s, a)√
1 ∨ Tτk−1(s, a)

.

Step 3: Bounding the number of phases and summing
Let Kt be the phase in round t so that t ∈ EKt . By the work in the previous two
steps, if F does not occur then

R̂n ≤
K∑

k=1
R̃k ≤ KD +

n∑

t=1
(Et[vKt(St+1)]− vKt(St+1))

+ D
√
LS

2
∑

(s,a)∈S×A

K∑

k=1

T(k)(s, a)√
1 ∨ Tτk−1(s, a)

.

The first sum is bounded using a version of Hoeffding–Azuma (Exercise 20.6):

P

(
F c and

n∑

t=1
(Et[vKt(St+1)]− vKt(St+1)) ≥ D

√
n log(2/δ)

2

)
≤ δ

2 .

For the second term we note that T(k)(s, a)/
√

1 ∨ Tτk−1(s, a) cannot be large
too often. A continuous approximation often provides intuition for the correct
form. Recalling the thousands of integrals you did at school, for any differentiable
f : [0,∞)→ R we have

∫ K

0

f ′(k)√
f(k)

dk = 2
√
f(K)− 2

√
f(0) .

37.7 Proof of lower bound 454

Here we are thinking of f(k) as the continuous approximation of Tτk−1(s, a) and
its derivative as T(k)(s, a). In Exercise 37.20 we ask you to make this argument
rigorous by showing that

K∑

k=1

T(k)(s, a)√
T̄τk−1(s, a)

≤
(√

2 + 1
)√

Tn(s, a) .

Then by Cauchy-Schwartz and the fact that
∑
s,a∈S×A Tn(s, a) = n,

∑

s∈S

∑

a∈A

√
Tn(s, a) ≤

√
SAn .

It remains to bound the number of phases. A new phase starts when the visit
count for some state/action pair doubles. Hence K cannot be more than the
number of times the counters double in total for each of the states. It is easy to
see that 1 + log2 Tn(s, a) gives an upper bound on how many times the counter
for this pair may double (the constant 1 is there to account for the counter
changing from zero to one). Thus K ≤ K ′ =

∑
s,a 1 + log2 Tn(s, a). Noting that

0 ≤ Tn(s, a) and
∑
s,a Tn(s, a) = n and relaxing Tn(s, a) to take real values we

find that the value of K ′ is the largest when Tn(s, a) = n/(SA), which shows that

K ≤ SA
(

1 + log2

(n

SA

))
.

Putting everything together gives the desired result.

37.7 Proof of lower bound

The lower bound is proven by crafting a difficult MDP that models a bandit
with approximately SA arms. This a cumbersome endeavour, but intuitively
straightforward and the explanations that follow should be made clear in Fig. 37.4.
Given S and A the first step is to construct a tree of minimum depth with at
most A children for each node using exactly S− 2 states. The root of the tree is
denoted by s◦ and transitions within the tree are deterministic, so in any given
node the learner can simply select which child to transition to. Let L be the
number of leaves and label these states s1, . . . , sL. The last two states are sg and
sb (‘good’ and ‘bad’ respectively). For each i ∈ [L] the learner can take any action
a ∈ A and transitions to either the good state or the bad state according to

Pa(si, sg) = 1
2 + ε(a, i) and Pa(si, sb) = 1

2 − ε(a, i) .

The function ε will be chosen so that ε(a, i) = 0 for all (a, i) pairs except one. For
this special state/action pair we let ε(a, i) = ∆ for appropriately tuned ∆ > 0.
The good state and the bad state have the same transitions for all actions.

Pa(sg, sg) = 1− δ Pa(sg, s◦) = δ

Pa(sb, sb) = 1− δ Pa(sb, s◦) = δ ,

37.7 Proof of lower bound 455

where δ = 4/D, which under the assumptions of the theorem is guaranteed to be
in (0, 1] and is chosen to ensure the diameter of the described MDP is at most D.
The reward function is ra(s) = 1 if s = sg and ra(s) = 0 otherwise.

The connection to finite-armed bandits is straightforward. Each time the learner
arrives in state s◦ it selects which leaf to visit and then chooses an action from
that leaf. This corresponds to choosing one of K = LA = Ω(SA) meta actions.
The optimal policy is to select the meta action with the largest probability of
transitioning to the good state. The choice of δ means the learner expects to
stay in the good/bad state for approximately D rounds, which also makes the
diameter of this MDP about D. All up this means the learner expects to make
about n/D decisions and the rewards are roughly in [0, D] so we should expect
the regret to be Ω(D

√
n/DK) = Ω(

√
nDSA).

s◦

s1 s2 s3

sg sb

1 − δ, 1 1 − δ, 0

δ, 1 δ, 0

Good state Bad state

Figure 37.4 Lower bound construction for A = 2 and S = 8. The resulting MDP is
roughly equivalent to a bandit with six actions

One could almost claim victory here and not bother with the proof. As usual,
however, there are some technical difficulties, which in this case arise because the
number of visits to the decision state s◦ is a random quantity. For this reason we
give the proof, leaving as exercises the parts that are both obvious and annoying.

Proof of Theorem 37.5 The proof follows the path suggested in Exercise 15.1.
We break things up into two steps. Throughout we fix an arbitrary policy π.

Step 1: Notation and facts about the MDP
Let d be the depth of the tree in the MDP construction and L the number of
leaves and K = LA (d = 3 and L = 3 in Fig. 37.4). This leaves K state-action
pairs that potentially lead to either sg or sb. Let M0 be the MDP with ε(s, a) = 0
for all relevant state-action pairs s, a and Mk be the MDP with ε(s, a) = ∆ for

37.7 Proof of lower bound 456

the kth state/action pair with the state on the fringe of the tree, ordered in some
arbitrary way. Define stopping time τ by

τ = n ∧min
{
t :

t∑

s=1
I {St = s◦} ≥

n

D

}
,

which is the first round when the number of visits to state s◦ is at least n/D.
Next let Tk be the number of visits to state-action pair k until stopping time τ
and Tσ =

∑K
k=1 Tk. Let Pk be the law of T1, . . . , TK induced by the interaction

of π and Mk and Ek[·] the expectation with respect to Pk. None of the following
claims are surprising, but are tiresome to prove. They are listed in increasing
order of difficulty and left to the reader in Exercise 37.25.

claim 37.1 For all k ∈ [K] the diameter is bounded by D(Mk) ≤ D .

claim 37.2 There exist universal constants 0 < c1 < c2 <∞ such that

DE0[Tσ]/n ∈ [c1, c2] .

claim 37.3 Let Rnk be the expected regret of policy π in MDP Mk over n
rounds. There exists a universal constant c3 > 0 such that

Rnk ≥ c3∆D (Ek[Tσ − Tk]) .

Step 2: Bounding the regret
The relative entropy between P0 and Pk is easily calculated by noticing that M0
and Mk only differ when state-action pair k is visited and then using Lemma 15.1
and the entropy inequalities Eq. (14.11) and the assumption that ∆ ≤ 1/2,

D(P0,Pk) = E[Tk]d(1/2, 1/2 + ∆) ≤ 4∆2E0[Tk] ,

where d(p, q) is the relative entropy between Bernoulli distributions with biases
p and q respectively. Using the fact that Tσ ≤ n/D and Pinsker’s inequality
(Eq. (14.8)),

Ek [Tσ − Tk] ≥ E0 [Tσ − Tk]− n

D

√
D(P0,Pk)

2 ≥ E0 [Tσ − Tk]− n∆
D

√
2E0[Tk] .

Summing over k and applying Cauchy-Schwartz yields
K∑

k=1
Ek [Tσ − Tk] ≥

K∑

k=1
E0 [Tσ − Tk]− n∆

D

K∑

k=1

√
2E0[Tk]

≥ (K − 1)E0 [Tσ]− n∆
D

√
2KE0[Tσ]

≥ c1n(K − 1)
D

− n∆
D

√
2c2nK
D

≥ c1n(K − 1)
2D , (37.18)

37.8 Notes 457

where the last inequality follows by choosing

∆ = c1(K − 1)
2

√
D

2c2nK
.

By Eq. (37.18) there exists a k ∈ [K] such that

Ek [Tσ − Tk] ≥ c1n(K − 1)
2DK .

Then for last step apply Claim 37.3 to show that

Rnk ≥ c3D∆Ek[Tσ − Tk] ≥ c21c3n(K − 1)2

4K

√
D

2c2nK
.

Naive bounding and simplification concludes the result.

37.8 Notes

1 ‘Operator’ it is just a fancy word for ‘function’. The Bellman operator is a
function from the space of value functions to itself. Operators are usually
denoted by capital letters and brackets are omitted in their application so that
Tv is shorthand for T (v). It is not a requirement of the definition, but operators
are usually defined on spaces of functions and preserve certain structures of
the space.

2 MDPs in applications can have millions (or “Billions and Billions”) of states,
which should make the reader worried that the bound in Theorem 37.4 could
be extremely large. The takeaway should be that learning in large MDPs
without additional assumptions is hard, as attested by the lower bound in
Theorem 37.5.

3 The key to choosing the state space is that the state must be observable and
sufficiently informative that the Markov property is satisfied. Blowing up the
size of the state space may help to increase the fidelity of the approximation
(the entire history always works), but will almost always slow down learning.

4 A state s ∈ S is absorbing if Pa(s, s) = 1 for all a ∈ A. An MDP is episodic if
there exists an absorbing state that is reached almost surely by any policy. The
average reward criterion is meaningless in episodic MDPs because all policies
are optimal. In this case the usual objective is to maximize the expected
reward until the absorbing state is reached without limits or normalization,
sometimes with discounting. An MDP is finite-horizon if it is episodic and
the absorbing state is always reached after some fixed number of rounds. The
learning community studies these in the same way as bandits, where in each
‘round’ the learner interacts with the MDP from some starting state until the
absorbing state is reached. The simplification of the setting eases the analysis
and preserves most of the intuition from the general setting.

37.8 Notes 458

5 A partially observable MDP is a generalization where the learner does
not observe the underlying state. Instead they receive an observation that
is a (possibly random) function of the state. Given a fixed (known) initial
state distribution, any POMDP can be mapped into an MDP at the price of
enlarging the state space. A simple way to achieve this is to let the new state
be the space of all histories. However, this actually loses some information.
This is a subtle issue that is worth explaining: In an MDP actions do not carry
information: In an MDP we can give names specific to the state to every action
without changing the information structure available to the decision maker.
If we did the same in a POMDP, we would give away information about the
state. Hence, in a POMDP the fact that actions are shared across the states
has information, which would be lost if we learn using histories. A better way
is to use a sufficient statistic for the hidden state as the state. A natural choice
is the posterior distribution over the hidden state given the interaction history,
which is called the belief space. While the value function over the belief space
has some nice structure, in general even computing the optimal policy is hard
[Papadimitriou and Tsitsiklis, 1987].

6 In applications where the asymptotic nature of gain optimality is unacceptable
there are more sensitive criteria. A memoryless policy π∗ is bias optimal if it
is gain optimal and vπ∗ ≥ vπ for all memoryless policies π. Even more sensitive
criteria also exist. Some keywords to search for are Blackwell optimality
and n-discount optimality.

7 The Cesàro sum of a real-valued sequence (an)n is the asymptotic average
of the partial sums. Let sn = a0 + · · · + an−1 be the nth partial sum.The
Cesàro sum of this sequence is A = limn→∞ 1

n (s1 + · · ·+ sn) when this limit
exists. The idea is that Cesàro summation smoothens out periodicity and
thus increases the range of summable sequences. For example, the alternating
sequence (+1,−1,+1,−1, . . .) is Cesàro summable and its Cesàro sum is easily
seen to be 1/2, while it is clearly not summable in the normal sense. If the
sequence is summable, its sum and its Cesàro sum are equal. The differential
value of a policy is defined as a Cesàro sum so that it is well-defined even if
the underlying Markov chain has periodic states.

8 For γ ∈ (0, 1) the γ discounted sum of sequence (an)n is Aγ =
∑∞
n=0 γ

nan. An
elementary argument shows that for any s ∈ R and sequence (an)n for which Aα
is well-defined, Aγ = s

1−γ + (1− γ)
∑∞
n=1 γ

n−1(sn − is). When s is the Cesàro
sum A of (an)n it is not hard to see that |∑∞i=1 γ

i−1(si − iA)| = O(1/(1− γ))
and thus (1−γ)Aγ−A = O((1−γ)) as γ → 1. The approach of approximating
Cesàro sums through discounted sums with the discount factor γ approaching
one is called the vanishing discount approach.

9 We mentioned enumeration, value iteration and policy iteration as other
methods for computing optimal policies. Enumeration just means enumerating
all deterministic memoryless policies and selecting the one with the highest
gain. This is obviously too expensive. Policy iteration is an iterative process

37.8 Notes 459

that starts with a policy π0. In each round the algorithm computes πk+1 from
πk by computing vπk and then choosing πk+1 to be the greedy policy with
respect to vπk . In general this method may not converge to an optimal policy,
but by slightly modifying the update process one can prove convergence. For
more details see the Chapter 4 of Volume 2 of the book by Bertsekas [2012].
Value iteration works by choosing an arbitrary value function v0 and then
inductively defining vk+1 = Tvk where (Tv)(s) = maxa∈A ra(s) + 〈Pa(s), v〉
is the Bellman operator. Under certain technical conditions one can prove
that the greedy policy with respect to vk converges to an optimal policy. Note
that vk+1 = Ω(k), which can be a problem numerically. A simple idea is to
let vk+1 = Tvk − δk where δk = maxs∈S vk(s). Since the greedy policy is the
same for v and v + c1 this does not change the mathematics, but improves
the numerical situation. The aforementioned book by Bertsekas is again a
good source for more details. Unfortunately none of these algorithms have
known polynomial time guarantees on the computation complexity of finding
an optimal policy without stronger assumptions than we would like. In practice,
however, both value and policy iteration work quite well, while the ellipsoid
method for solving linear programs should be avoided at all costs.

10 One can modify the concept of regret to allow for MDPs that have traps,
allowing for finite MDPs with infinite diameter. The idea is as follows: In any
finite MDP there exists finitely many disjoint classes of states (what these
classes are depends only on the MDP structure) so that each class is a trap in
the sense that no policy can escape from it once entered. Now, rule out all those
policies that have linear regret in strongly connected MDPs as a reasonable
learner should achieve sublinear regret in such MDPs. What remains are policies
that will necessarily get trapped in any MDP that is not not strongly connected.
For such MDPs, the regret is redefined by ‘restarting the clock’ at the time
when the policy gets trapped. For details, see Exercise 37.19, where you are
also asked to show a policy that achieves sublinear regret in any finite MDP.

11 The assumption that the reward function is known can be relaxed without
difficulty. It is left as an exercise to figure out how to modify algorithm and
analysis to the case when r is unknown and reward observed in round t is
bounded in [0, 1] and has conditional mean rAt(St).

12 Although it has not been done yet in this setting, the path to removing the
spurious

√
S from the bound is to avoid the application of Cauchy-Schwartz

in Eq. (37.17). Instead one should define confidence intervals directly on
〈P̂k − P, vk〉, where the dependence on the state and action has been omitted.
Of course this requires one to modify the algorithm. At first sight it seems that
one could apply Hoeffding’s bound directly to the inner product, but there is a
subtle problem that has spoiled a number of attempts. The problem is that
vk and P̂k are not independent. This non-independence is unfortunately quite
pernicious and appears from many angles. We advise extreme caution (some
references for guidance are given at in the bibliographic remarks).

37.9 Bibliographical remarks 460

37.9 Bibliographical remarks

Richard Bellman

The study of sequential decision making has a long
history and we recommend the introduction of the
book by Puterman [2009] as a good starting point.
One of the main architects in modern times is Richard
Bellman, who wrote an influential book [Bellman, 1954].
Bellman had an interesting life, working at Los Alamos
near the end of the war and later at RAND. Besides
‘dynamic programming’ he also coined the term ‘curse of
dimensionality’ which, although it is not his fault, curses
us still today. His autobiography is so entertaining
that reading it slowed the writing of this chapter: ‘The
Eye of the Hurricane’ [Bellman, 1984]. As a curiosity,
Bellman knew about bandit problems after accidentally
encountering a paper by Thompson [1935]. For the tidbit see page 260 of the
aforementioned biography.

Markov decision processes are studied by multiple research communities,
including control, operations research and artificial intelligence. The two-volume
book by Bertsekas [2012] provides a thorough and formal introduction to the
basics. The perspective is quite interdisciplinary, but with a slight (good) bias
towards the control literature. The perspective of an operations researcher is
most precisely conveyed in the comprehensive book by Puterman [2009]. A very
readable shorter introductory book is by Ross [1983]. Arapostathis et al. [1993]
surveyed existing analytical results (existence, uniqueness of optimal policies,
validity of the Bellman optimality equation) for average-reward MDPs with an
emphasis on continuous state and action space models. The online lecture notes
of Kallenberg [2016] are a recent comprehensive alternate account for the theory
of discrete MDPs. There are many texts on linear/convex optimization and the
ellipsoid method. The introductory book on linear optimization by Bertsimas
and Tsitsiklis [1997] is a pleasant read while the ellipsoid method is explained in
detail by Grötschel et al. [2012].

The problem considered in this chapter is part of a broader field called
reinforcement learning (RL), which has recently seen a surge of interest. The
books by Sutton and Barto [1998] and Bertsekas and Tsitsiklis [1996] describe
the foundations. The first book provides an intuitive introduction aimed at
computer scientists, while the second book focuses on the theoretical results of
the fundamental algorithms. A book by one of the present authors focuses on
cataloging the range of learning problems encountered in reinforcement learning
and summarizing the basic ideas and algorithms [Szepesvári, 2010].

The UCRL algorithm and the upper and lower regret analysis is due to Auer
et al. [2009, 2010]. Our proofs differ in minor ways. A more significant difference
is that these works used value iteration for finding the optimistic policy and hence

37.9 Bibliographical remarks 461

cannot provide polynomial time computation guarantees. In practice this may be
preferable to linear programming anyway.

The number of rigorous results for bounding the regret of various algorithms is
limited. One idea is to replace the optimistic approach with Thompson sampling,
which was first adapted to reinforcement learning by Strens [2000] under the
name PSRL (posterior sampling reinforcement learning). Agrawal and Jia [2017]
recently made an attempt to improve the dependence of the regret on the state-
space. The proof is not quite correct, however, and at the time of writing the
holes of not yet been patched. Azar et al. [2017] also improve upon the UCRL2
bound, but for finite-horizon episodic problems where they derive an optimistic
algorithm with regret Õ(

√
HSAn), which after adapting UCRL to the episodic

setting improves on its regret by a factor of
√
SH. The main innovation is to

use Freedman’s Bernstein-style inequality for computing bonuses directly while
computing action values using backwards induction from the end of the episode
rather than keeping confidence estimates for the transition probabilities. An issue
with both of these improvements is that lower-order terms in the bounds mean
they only hold for large n. It remains to be seen if these terms arise from the
analysis or if the algorithms need modification.

Tewari and Bartlett [2008] use an optimistic version of linear programming
to obtain finite-time logarithmic bounds with suboptimal instance dependent
constants. Note this paper mistakenly drops some constants from the confidence
intervals, which after fixing would make the constants even worse. Similar
results are also available for UCRL2 [Auer and Ortner, 2007]. Burnetas and
Katehakis [1997] prove asymptotic guarantees with optimal constants, but with
the crucial assumption that the support of the next-state distributions Pa(s) are
known. Lai and Graves [1997] also consider asymptotic optimality. However, they
consider general state spaces where the set of transition probabilities is smoothly
parameterized with a known parameterization, but under the weakened goal of
competing with the best of finitely many memoryless policies given to the learner
as black-boxes.

Finite-time regret for large state and action space MDPs under additional
structural assumptions are also considered by Abbasi-Yadkori and Szepesvári
[2011], Abbasi-Yadkori [2012], Ortner and Ryabko [2012]. Abbasi-Yadkori and
Szepesvári [2011] and Abbasi-Yadkori [2012] give algorithms with O(

√
n) regret

for linearly parameterized MDP problems with quadratic cost (linear quadratic
regulation, or LQR), while Ortner and Ryabko [2012] gives O(n(2d+1)/(2d+2))
regret bounds under a Lipschitz assumption, where d is the dimensionality
of the state space. The algorithms in these works are not guaranteed to be
computationally efficient because they rely on optimistic policies. In theory, this
could be addressed by Thompson sampling, which is that is considered by Abeille
and Lazaric [2017b] who obtain partial results for the LQR setting. Thompson
sampling has also been studied in the Bayesian framework by Osband et al. [2013],
Abbasi-Yadkori and Szepesvári [2015], Osband and Roy [2017], Theocharous et al.
[2017], of which Abbasi-Yadkori and Szepesvári [2015] and Theocharous et al.

37.10 Exercises 462

[2017] consider general parametrizations, while the other papers are concerned
with finite state/action MDPs. Learning in MDPs has also been studied in the
Probability Approximately Correct (PAC) framework introduced by Kearns and
Singh [2002] where the objective is to design policies for which the number of
badly suboptimal actions is small with high probability. The focus of these papers
is on the discounted reward setting rather than average reward. The algorithms
are again built on the optimism principle. Algorithms that are known to be PAC-
MDP include R-max Brafman and Tennenholtz [2003], Kakade [2003], MBIE
Strehl and Littman [2005, 2008], Delayed Q-learning Strehl et al. [2006], the
optimistic-initialization-based algorithm of Szita and Lőrincz [2009], MorMax
by Szita and Szepesvári [2010], and an adaptation of UCRL by Lattimore and
Hutter [2012], which they call UCRLγ. The latter work presents optimal results
(matching upper and lower bounds) for the case when the transition structure
is sparse, while the optimal dependence on the number of state/action pairs
is achieved by Delayed Q-learning and Mormax [Strehl et al., 2006, Szita and
Szepesvári, 2010], though the Mormax bound is better in its dependency on
the discount factor. The idea to incorporate the uncertainty in the transitions
into the action-space to solve the optimistic optimization problem appeared in
the analysis of MBIE [Strehl and Littman, 2008]. A hybrid between stochastic
and adversarial settings is when the reward sequence is chosen by an adversary,
while transitions are stochastic. This problem has been introduced by Even-Dar
et al. [2004]. State-of-the-art results for the bandit case are due to Neu et al.
[2014], where the reader can also find further pointers to the literature. The
case when both the rewards and the transition probability distributions are also
adversarially chosen in various cases by [Abbasi-Yadkori et al., 2013].

37.10 Exercises

37.1 Let M = (S,A, P) be a finite controlled Markov environment, which
is a finite Markov decision process without the reward function. Let π be an
arbitrary policy for this environment, i.e., π : ∪∞t=0(S ×A)t×S ×A → [0, 1] such
that for any t ≥ 0, ht ∈ (S ×A)t × S,

∑
a∈A π(ht, a) = 1, and fix a distribution

µ ∈ P(S) in an arbitrary manner. Show that there exists a probability space
(Ω,F ,P) and an infinite sequence (S1, A1, S2, A2, . . .) of random elements on it
such that for t ∈ N, St is S-valued, At is A-valued, and for any s, s′ ∈ S, a ∈ A
and t ∈ N,

(a) P(S1 = s) = µ(s);
(b) P(St+1 = s′ | Ht, At) = PAt(St, s′) ;
(c) P(At = a | Ht) = π(Ht, a) ,

where Ht = (S1, A1, . . . , St−1, At−1, St).

37.10 Exercises 463

Use Theorem 3.3.

37.2 Let M = (S,A, P) be a finite controlled Markov environment, π be an
arbitrary policy and µ ∈ P(S) an arbitrary initial state distribution.

(a) Show there exists a Markov policy π′ such that

Pπµ(St = s,At = a) = Pπ
′

µ (St = a,At = a) .

for all t ≥ 1 and s, a ∈ S ×A.
(b) Conclude that for any policy π there exists Markov policies π′, π′′ such that

for any s ∈ S, ρ̄πs = ρ̄π
′

s and ρπ
s

= ρπ
′′

s
.

Define π′ in an inductive manner by first considering t = 1, then t = 2 and
so-on. [Puterman, 2009, Thm. 5.5.1] proves this result and credits Strauch
[1966].

37.3 Let P be some transition structure over some finite state space S and some
finite action space A. Show that the expected travel time between two states s, s′
of S is minimized by a deterministic policy.

Let τ∗(s, s′) be the best expected travel time between some arbitrary pairs
of states; for s = s′ we define the best travel time to be zero. Show that this
satisfies the fixed point equation

τ∗(s, s′) =
{

0, if s = s′ ;
1 + mina

∑
s′′ Pa(s, s′′) τ∗(s′′, s′) , otherwise .

37.4 Let M be an MDP. Prove that D(M) < ∞ is equivalent to M being
strongly connected.

37.5 Let M = (S,A, P, r) be any MDP. Show that D(M) ≥ logA(S)− 3.

Denote by d∗(s, s′) the minimum expected time it takes to reach state
s′ when starting from state s. The definition of d∗ can be extended to
arbitrary initial distributions µ0 over states and sets U ⊂ S of target states:
d∗(µ0, U) =

∑
s µ0(s)

∑
s′∈U d

∗(s, s′). Prove by induction on the size of U that

d∗(µ0, U) ≥ min




∑

k≥0
knk | 0 ≤ nk ≤ Ak, k ≥ 0,

∑

k≥0
nk = |U |



 (37.19)

and then conclude that the proposition holds by choosing U = S [Auer et al.,
2010, Cor. 15].

37.10 Exercises 464

37.6 Let ei be the ith element of the standard Euclidean basis and π be a
memoryless policy. Show that e>i P tπej is the probability of arriving in state j
from state i in t rounds using policy π.

37.7 Let M be a finite MDP and π a memoryless policy. Prove that for any i ∈ S
the expected cumulative reward collected by policy π in M is e>i

∑n
t=1 P

t
πrπ.

37.8 Prove Lemma 37.2.

Use the result of Exercise 5.19 and apply a union bound over all state/action
pairs and the number of samples. Use the Markov property to argue that the
independence assumption in Exercise 5.19 is not problematic.

37.9 Let P be any S× S right stochastic matrix. Show that the following hold:

(a) An = 1
n

∑n−1
t=0 P

t is right stochastic.
(b) An + 1

n (Pn − I) = AnP = PAn.
(c) P ∗ = limn→∞ 1

n

∑n−1
t=0 P

t exists.
(d) P ∗P = PP ∗ = P ∗P ∗ = P ∗.
(e) The matrix H = (I − P + P ∗)−1 is well-defined.
(f) Let D = H − P ∗. Then D = limn→∞ 1

n

∑n
i=1
∑i−1
k=0(P k − P ∗).

(g) Let r ∈ RS and ρ = P ∗r. Then v = limn→∞ 1
n

∑n
i=1
∑i−1
k=0 P

k(r − ρ) is
well-defined.

(h) With the notation of the previous part, v + ρ = r + Pv.

Note that the first four parts of this exercise are the same as in Chapter 36. For
Parts (c) and (d) you will likely find it useful that the space of right stochastic
matrices is compact. Then show that all cluster points of (An) are the same.

The previous exercise implies that the gain and the differential value function
of any memoryless policy in any MDP is well-defined. The matrix H is called
the fundamental matrix and D is called the deviation matrix.

37.10 Let γ ∈ (0, 1) and define operator Tγ : RS → RS by

(Tγv)(s) = max
a∈A

ra(s) + γ〈Pa(s), v〉 .

(a) Prove that Tγ is a contraction with respect to the supremum norm:

‖Tγv − Tγw‖∞ ≤ γ‖v − w‖∞ for any v, w ∈ RS .

(b) Prove there exists a v ∈ RS such that Tγv = v.
(c) Let π be the greedy policy with respect to v. Show v = rπ + γPπv.
(d) Prove that v = (I − γPπ)−1r.

37.10 Exercises 465

37.11 Recall that H = (I − P + P ∗)−1 − P ∗ and let P ∗γ = (1− γ)(I − γP)−1.
Show that

(a) limγ→1 P
∗
γ = P ∗.

(b) limγ→1
P∗γ−P∗

1−γ = H.

37.12 In this exercise you will prove the Part (a) of Theorem 37.1.

(a) Prove there exists a deterministic stationary policy π∗ and monotone
increasing sequence of discount rates (γn) with γn < 1 and limn→∞ γn = 1
such that π∗ is a greedy policy with respect to the fixed point vn of Tγn for
all n.

(b) Show that ρπ = ρ1 is constant.
(c) Let v be the value function such that ρ1 + v = rπ + Pπv. Show that (ρ, v)

satisfies the Bellman optimality equation.

37.13 Consider the deterministic Markov decision process shown below with
two states and two actions. The first action stay keeps the state the same and
the second action Go moves the learner to the other state while incurring a
reward of negative one. Show that in this example solutions (ρ, v) to the Bellman
optimality equations (Eq. (37.4)) are exactly the elements of the set

{(ρ, v) ∈ R× R2 : ρ = 0, v(1)− 1 ≤ v(2) ≤ v(1) + 1} .

1 2

r = −1

r = −1

r = 0 r = 0

37.14 Let M be a strongly connected MDP and (ρ∗, v) be a solution to the
Bellman optimality equation. Show that span(v) ≤ (ρ∗ −mins,a ra(s))D(M).

Fix some states s1 6= s2 and a memoryless policy π. Show that

v(s2)− v(s1) ≤ (ρ∗ −min
s,a

ra(s))Eπ[τs2 | S1 = s1] .

Note for the sake of curiosity that the above display continues to hold for
weakly communicating MDPs.

The proof of Theorem 4 in the paper by Bartlett and Tewari [2009] is incorrect,
as is the sketch of the same result by Auer et al. [2010]. The problem is that the
statement needs to hold for any solution v of the Bellman optimality equation.
Both proofs use an argument that hinges on the fact that in an aperiodic

37.10 Exercises 466

strongly connected MDP, v is in the set {c1 + limn→∞ Tn0 − nρ∗ : c ∈ R}.
However, Exercise 37.13 shows that there are some MDPs with the required
properties where this does not hold.

37.15 Let M be a strongly connected MDP with rewards in [0, 1], diameter
D <∞ and optimal gain ρ∗. Let v∗n(s) be the maximum total expected reward
in n steps when the process starts in state s. Prove that v∗n(s) ≤ nρ∗ +D.

37.16 Let M̃ be the extended MPD defined in Section 37.5.2. Prove that P ∈ C
implies that M̃ is strongly connected.

37.17 Prove that (37.9) follows from Theorem 37.4.

37.18 Fix state-space S, action-space A and reward function r. Let π be a
policy with sublinear regret in all strongly connected MDPs (S,A, r, P). Now
suppose that (S,A, r, P) is an MDP that is not strongly connected such that for
all s ∈ S there exists state s′ such is reachable from s under some policy and
where ρ∗s′ < maxu ρ∗u. Finally, assume that ρ∗S1

= maxu ρ∗u almost surely. Prove
that π has linear regret on this MDP.

37.19 This exercise develops the ideas mentioned in Note 10. First, we need some
definitions: Fix S and A and define Π0 as the set of policies (learner strategies)
for MDPs with state space S and action space A that achieve sublinear regret
in any strongly connected MDP with state space S and action space A. Now
consider an arbitrary finite MDP M = (S,A, P, r) that has S as state space
and A as action space. A state s ∈ S is reachable from state s′ ∈ S if there is
a policy that, when started in s′ reaches state s with positive probability after
one or more steps. A set of states C ⊂ S is strongly-connected component
(SCC) if every state s ∈ U is reachable from every other state s′ ∈ C (allowing
for the possibility that s = s′). Call C maximal if we cannot add more states to
C and still maintain the SCC property. A maximal SCC is called a maximal
end-component (MEC). Show the following:

(a) Two MECs C1 and C2 are either equal, or disjoint.
(b) Let C1, . . . , Ck be all the distinct MECs of an MDP. The MDP structure

defines a connectivity over C1, . . . , Ck as follows: For i 6= j, we say that Ci is
connected to Cj if from some state in Ci it is possible to reach some state of
Cj with positive probability under some policy. Show that this connectivity
structure defines a directed graph, which must be acyclic.

(c) Let C1, . . . , Cm with m ≤ k be the sinks (the nodes with no out-edges) of
this graph. Show that if M is strongly connected then m = 1 and C1 = S.

(d) Show that for any i ∈ [m] and for any policy π ∈ Π0 it holds that π will
reach Ci in finite time with positive probability if the initial state distribution
assigns positive mass to the non-trap states S \ ∪i∈[m]Ci.

37.10 Exercises 467

(e) Show that for i ≤ m, for any s ∈ Ci and any action a ∈ A, Pa(s, s′) = 0 for
any s′ ∈ S \ Ci, i.e., Ci is closed.

(f) Show that the restriction of M to Ci defined as

Mi = (Ci,A, (Pa(s))s∈Ci,a∈A, (ra(s))s∈Ci,a∈A)

is an MDP.
(g) Show that Mi is strongly connected.
(h) Let τ be the time when the learner enters one of C1, . . . , Cm and let I ∈ [m]

be the index of the class that is entered at time τ . That is, Sτ ∈ CI . Show
that if M is strongly connected then τ = 1 with probability one.

(i) We redefine the regret as follows: R′n = E
[∑τ+n−1

t=τ rAt(St)− nρ∗(MI)
]
.

Show that if M is strongly connected then Rn = R′n.
(j) Show that there exist a learner such that (37.9) continues to hold in the sense

that R′n ≤ 1 + CE
[
D(MI)|CI |

√
2An log(n)

]
.

The logic of the regret definition in Part (i) is that by Part (d), reasonable
policies cannot control which trap they fall into in an MDP that has more than
one traps. As such, policies should not be penalized for what trap they fall into.
However, once a policy falls into some “trap”, we expect it to start to behave
near optimally. What this definition is still lacking is that it is insensitive to
how fast a policy gets trapped.

lemma 37.3 Let (ak) and (Ak) be nonnegative numbers so that for any k ≥ 0,
ak+1 ≤ Ak = 1 ∨ (a1 + · · ·+ ak). Then for any m ≥ 1,

m∑

k=1

ak
Ak−1

≤
(√

2 + 1
)√

Am .

37.20 Prove Lemma 37.3.

Fix (ak)k and (Ak)k. Consider some m ≥ 1. The statement is trivial if∑m−1
k=1 ak ≤ 1. If this does not hold, use induction based on m = n, n+ 1, . . .

where n is the first integer such that
∑n−1
k=1 ak > 1.

37.21 In this exercise you will modify the algorithm to handle the situation
where r is unknown and rewards are stochastic. More precisely, assume there
exists a function ra(s) ∈ [0, 1] for all a ∈ A and s ∈ S. Then in each round the
learner observes St, chooses an action At and receives a reward Xt ∈ [0, 1] with

E[Xt | At, St] = rAt(St) .

In order to accomodate the unknown reward function we modify UCRL2 in the

37.10 Exercises 468

following way. First define the empirical reward at the start of the kth phase by

r̂k,a(s) =
τk−1∑

u=1

I {Su = s,Au = a}Xt

1 ∨ Tτk−1(s, a) .

Then let r̃t,a(s) be an upper confidence bound given by

r̃k,a(s) = r̂t,a(s) +
√

L

2(1 ∨ Tτk−1(s, a)) ,

where L is as in the proof of Theorem 37.4. The modified algorithm operates
exactly like Algorithm 24, but replaces the unknown ra(s) with r̃k,a(s) when
solving the extended MDP. Prove that with probability at least 1 − 3δ/2 the
modified policy in the modified setting has regret at most

R̂n ≤ CD(M)S

√
nA log

(
nSA
δ

)
,

where C > 0 is a universal constant.

37.22 The purpose of this exercise is to show that without phases UCRL2 may
suffer linear regret. For convenience we consider the modified version of UCRL2
in Exercise 37.21 that does not know the reward. Now suppose we further modify
this algorithm to re-solve the optimistic MDP in every round (τk = k for all k).
We make use of the following deterministic Markov decision process with two
actions A = {stay,go} represented by dashed and solid arrows respectively.

1 2

1/2 1/2

0

0

Figure 37.5 Transitions and rewards are deterministic. Numbers indicate the rewards.

(a) Find all memoryless optimal policies for the MDP in Fig. 37.5.
(b) Prove that the version of UCRL2 given in Exercise 37.21 modified to re-solve

the optimistic MDP in every round suffers linear regret on this MDP.

Since UCRL2 and the environment are both deterministic you can examine
the behavior of the algorithm on the MDP. You should aim to prove that
eventually the algorithm will alternate between actions stay and go.

37.23 Design a simple algorithm for finding a state that is recurrent under some
optimal policy using the solution to Eq. (37.5).

37.10 Exercises 469

First solve Exercise 4.15 of the second volume of the book by Bertsekas [2012].
Then adapt the argument and add some steps. Be warned this exercise is a little
fiddly. The resulting algorithm should be much faster than solving all S versions
of Eq. (37.6).

37.24 Consider a strongly connected MDP and suppose that ρ and v

approximately satisfy the Bellman optimality equation in the sense that there
exists an ε > 0 such that

∣∣∣∣ρ+ v(s)−max
a∈A

ra(s)− 〈Pa(s), v〉
∣∣∣∣ ≤ ε for all state/action pairs s, a .

Let π̃ be the greedy policy with respect to v. Show that ρπ̃(s) ≥ ρ̄π(s)− 2ε for
all policies π.

37.25 In this exercise you will prove the claims to complete the proof of the
lower bound.

(a) Prove Claim 37.1.
(b) Prove Claim 37.2.
(c) Prove Claim 37.3.

37.26 Consider the MDP M = (S,A, P, r) where Pa(s) = p for some fixed
categorical distribution p for any (s, a) ∈ S ×A, where mins∈S p(s) > 0. Assume
that the rewards for action a in state s are sampled from a distribution supported
on [0, 1] (cf. note Item 4). An MDP like this defines nothing but a contextual
bandit.

(a) Derive the optimal policy and the average optimal reward.
(b) Show an optimal value function that solves the Bellman optimality equation.
(c) Prove that the diameter of this MDP is D = maxs 1/p(s).
(d) Consider the algorithm that puts one instance of an appropriate version of

UCB into every state (the same idea was explored in the context of adversarial
bandits in Section 18.1). Prove that the expected regret of your algorithm
will be at most O(

√
SAn).

(e) Does the scaling behavior of the upper bound in Theorem 37.4 match the
actual scaling behavior of the expected regret of UCRL2? Why or why not?

(f) Design and run an experiment to confirm your claim.

37.27 This is a thinking and coding exercise to illustrate the difficulty of learning
in Markov decision processes. The RiverSwim environment is originally due to
Strehl and Littman [2008]. The environment has two actions A = {left,right}
and S = [S] with S ≥ 2. In all states s > 1, action left deterministically leads
to state s− 1 and provides no reward. In state 1, action left leaves the state
unchanged and yields a reward of 0.05. The action right tends to make the
agent move right, but not deterministically (the learner is swimming against a

37.10 Exercises 470

current). With probability 0.3 the state is incremented, with probability 0.6 the
state is left unchanged, while with probability of 0.1 the state is decremented.
This actions incurs reward zero in all states except in state S where it receives a
reward of 1. The situation when S = 5 is illustrated in Fig. 37.6.

1 2 3 4 5

1, 0.05
0.3, 0

0.7, 0

1, 0

0.3, 0

0.6, 0

0.1, 0

1, 0

0.3, 0

0.6, 0

0.1, 0

1, 0

0.3, 0

0.6, 0

0.1, 0

1, 0

0.9, 1

0.1, 1

current

Figure 37.6 The RiverSwim MDP when S = 5. Solid arrows correspond to action left
and dashed ones to action right. The right-hand bank is slippery, so the learner
sometimes falls back into the river.

(a) Show that the optimal policy always takes action right and calculate the
optimal average reward ρ∗ as a function of S.

(b) Implement the MDP and test the optimal policy when started from state 1.
Plot the total reward as a function of time and compare it with the plot of
t 7→ tρ∗. Run multiple simulations to produce error bars. How fast do you
think the total reward concentrates around tρ∗? Experiment with different
values of S.

(c) The ε-greedy strategy can also be implemented in MDPs as follows: Based
on the data previously collected estimate the transition probabilities and
rewards using empirical means. Find the optimal policy π∗ of the resulting
MDP and if the current state is s, use the action π∗(s) with probability 1− ε
and choose one of the two actions uniformly at random with the remaining
probability. To ensure the empirical MDP has a well-defined optimal policy,
mix the empirical estimate of the next state distributions Pa(s) with the
uniform distribution with a small mixture coefficient. Implement this strategy
and plot the trajectories it exhibits for various MDP sizes. Explain what you
see.

(d) Implement UCRL2 and produce the same plots. Can you explain what you
see?

(e) Run simulations in RiverSwim instances of various sizes to compare the regret
of UCRL2 and ε-greedy. What do you conclude?

This material will be published by Cambridge University Press as Bandit
Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version
is free to view and download for personal use only. Not for re-distribution, sale,
or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.
The latest version is available at http://banditalgs.com. Feedback on any
aspect is very welcome: tor.lattimore@gmail.com

Appendix A Bibliography

Y. Abbasi-Yadkori. Forced-exploration based algorithms for playing in bandits
with large action sets. PhD thesis, University of Alberta, 2009a.

Y. Abbasi-Yadkori. Forced-exploration based algorithms for playing in bandits
with large action sets. Master’s thesis, University of Alberta, Department of
Computing Science, 2009b.

Y. Abbasi-Yadkori. Online Learning for Linearly Parametrized Control Problems.
PhD thesis, University of Alberta, 2012.

Y. Abbasi-Yadkori and Cs. Szepesvári. Regret bounds for the adaptive control
of linear quadratic systems. In S. M. Kakade and U. von Luxburg, editors,
Proceedings of the 24th Annual Conference on Learning Theory, volume 19 of
Proceedings of Machine Learning Research, pages 1–26, Budapest, Hungary,
09–11 Jun 2011. PMLR.

Y. Abbasi-Yadkori and Cs. Szepesvári. Bayesian optimal control of smoothly
parameterized systems. In Proceedings of the 31st Conference on Uncertainty
in Artificial Intelligence, UAI, pages 2–11, Arlington, Virginia, United States,
2015. AUAI Press. ISBN 978-0-9966431-0-8.

Y. Abbasi-Yadkori, A. Antos, and Cs. Szepesvári. Forced-exploration based
algorithms for playing in stochastic linear bandits. In COLT Workshop on
On-line Learning with Limited Feedback, 2009.

Y. Abbasi-yadkori, D. Pál, and Cs. Szepesvári. Improved algorithms for linear
stochastic bandits. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira,
and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 24, NIPS, pages 2312–2320. Curran Associates, Inc., 2011.

Y. Abbasi-Yadkori, D. Pal, and Cs. Szepesvári. Online-to-confidence-set
conversions and application to sparse stochastic bandits. In N. D. Lawrence
and M. Girolami, editors, Proceedings of the 15th International Conference
on Artificial Intelligence and Statistics, volume 22 of Proceedings of Machine
Learning Research, pages 1–9, La Palma, Canary Islands, 21–23 Apr 2012.
PMLR.

Y. Abbasi-Yadkori, P. L. Bartlett, V. Kanade, Y. Seldin, and Cs. Szepesvári.
Online learning in Markov decision processes with adversarially chosen
transition probability distributions. In Advances in Neural Information
Processing Systems 26, NIPS, pages 2508–2516, USA, 2013. Curran Associates
Inc.

http://banditalgs.com
mailto:tor.lattimore@gmail.com

Bibliography 472

N. Abe and P. M. Long. Associative reinforcement learning using linear
probabilistic concepts. In Proceedings of the 16th International Conference on
Machine Learning, ICML, pages 3–11, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc.

M. Abeille and A. Lazaric. Linear Thompson sampling revisited. In A. Singh and
J. Zhu, editors, Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, volume 54 of Proceedings of Machine Learning
Research, pages 176–184, Fort Lauderdale, FL, USA, 20–22 Apr 2017a. PMLR.

M. Abeille and A. Lazaric. Thompson sampling for linear-quadratic control
problems. In A. Singh and J. Zhu, editors, Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, volume 54 of Proceedings
of Machine Learning Research, pages 1246–1254, Fort Lauderdale, FL, USA,
20–22 Apr 2017b. PMLR.

J. D. Abernethy and A. Rakhlin. Beating the adaptive bandit with high probability.
In COLT, 2009.

J. D. Abernethy, E. Hazan, and A. Rakhlin. Competing in the dark: An efficient
algorithm for bandit linear optimization. In Proceedings of the 21st Annual
Conference on Learning Theory, pages 263–274. Omnipress, 2008.

J. D. Abernethy, E. Hazan, and A. Rakhlin. Interior-point methods for full-
information and bandit online learning. IEEE Transactions on Information
Theory, 58(7):4164–4175, 2012.

J. D. Abernethy, C. Lee, A. Sinha, and A. Tewari. Online linear optimization
via smoothing. In M. F. Balcan, V. Feldman, and Cs. Szepesvári, editors,
Proceedings of The 27th Conference on Learning Theory, volume 35 of
Proceedings of Machine Learning Research, pages 807–823, Barcelona, Spain,
13–15 Jun 2014. PMLR.

J. D. Abernethy, C. Lee, and A. Tewari. Fighting bandits with a new kind of
smoothness. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems 28,
NIPS, pages 2197–2205. Curran Associates, Inc., 2015.

M. Abramowitz and I. A. Stegun. Handbook of mathematical functions: with
formulas, graphs, and mathematical tables, volume 55. Courier Corporation,
1964.

L. Adelman. Choice theory. In Saul I. Gass and Michael C. Fu, editors,
Encyclopedia of Operations Research and Management Science, pages 164–
168. Springer US, Boston, MA, 2013.

A. Agarwal, D. P. Foster, D. J. Hsu, S. M. Kakade, and A. Rakhlin. Stochastic
convex optimization with bandit feedback. In J. Shawe-Taylor, R. S. Zemel,
P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 24, NIPS, pages 1035–1043. Curran Associates,
Inc., 2011.

A. Agarwal, D. Hsu, S. Kale, J. Langford, L. Li, and R. Schapire. Taming the
monster: A fast and simple algorithm for contextual bandits. In E. P. Xing
and T. Jebara, editors, Proceedings of the 31st International Conference on

Bibliography 473

Machine Learning, volume 32 of Proceedings of Machine Learning Research,
pages 1638–1646, Bejing, China, 22–24 Jun 2014. PMLR.

Alekh Agarwal, Sarah Bird, Markus Cozowicz, Luong Hoang, John Langford,
Stephen Lee, Jiaji Li, Dan Melamed, Gal Oshri, Oswaldo Ribas, et al. Making
contextual decisions with low technical debt. arXiv preprint arXiv:1606.03966,
2016.

R. Agrawal. Sample mean based index policies with O(log n) regret for the multi-
armed bandit problem. Advances in Applied Probability, pages 1054–1078,
1995.

S. Agrawal and N. R. Devanur. Bandits with concave rewards and convex
knapsacks. In Proceedings of the 15th ACM conference on Economics and
computation, pages 989–1006. ACM, 2014.

S. Agrawal and N. R. Devanur. Linear contextual bandits with knapsacks. In
Advances in Neural Information Processing Systems 29, NIPS, pages 3458–3467.
Curran Associates Inc., 2016.

S. Agrawal and N. Goyal. Analysis of thompson sampling for the multi-armed
bandit problem. In Proceedings of Conference on Learning Theory (COLT),
2012.

S. Agrawal and N. Goyal. Further optimal regret bounds for Thompson
sampling. In C. M. Carvalho and P. Ravikumar, editors, Proceedings of the 16th
International Conference on Artificial Intelligence and Statistics, volume 31 of
Proceedings of Machine Learning Research, pages 99–107, Scottsdale, Arizona,
USA, 29 Apr–01 May 2013a. PMLR.

S. Agrawal and N. Goyal. Thompson sampling for contextual bandits with linear
payoffs. In S. Dasgupta and D. McAllester, editors, Proceedings of the 30th
International Conference on Machine Learning, volume 28 of Proceedings of
Machine Learning Research, pages 127–135, Atlanta, Georgia, USA, 17–19 Jun
2013b. PMLR.

S. Agrawal and R. Jia. Optimistic posterior sampling for reinforcement learning:
worst-case regret bounds. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems 30, NIPS, pages 1184–1194. Curran Associates,
Inc., 2017.

S. Agrawal, V. Avadhanula, V. Goyal, and A. Zeevi. Thompson sampling for
the mnl-bandit. In S. Kale and O. Shamir, editors, Proceedings of the 2017
Conference on Learning Theory, volume 65 of Proceedings of Machine Learning
Research, pages 76–78, Amsterdam, Netherlands, 07–10 Jul 2017. PMLR.

N. Ailon, Z. Karnin, and T. Joachims. Reducing dueling bandits to cardinal
bandits. In Proceedings of the 31st International Conference on International
Conference on Machine Learning, ICML’14, pages II–856–II–864. JMLR.org,
2014.

J. Aldrich. “but you have to remember P. J. Daniell of Sheffield”. Electronic
Journal for History of Probability and Statistics, 3(2), 2007.

Bibliography 474

C. Allenberg, P. Auer, L. Györfi, and G. Ottucsák. Hannan consistency in on-line
learning in case of unbounded losses under partial monitoring. In Proceedings
of the 17th International Conference on Algorithmic Learning Theory, ALT,
pages 229–243, Berlin, Heidelberg, 2006. Springer-Verlag.

N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the
frequency moments. In Proceedings of the 28th annual ACM symposium on
Theory of computing, pages 20–29. ACM, 1996.

N. Alon, N. Cesa-Bianchi, C. Gentile, and Y. Mansour. From bandits to experts: A
tale of domination and independence. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 26, NIPS, pages 1610–1618. Curran Associates, Inc., 2013.

N. Alon, N. Cesa-Bianchi, O. Dekel, and T. Koren. Online learning with feedback
graphs: Beyond bandits. In Peter GrÃĳnwald, Elad Hazan, and Satyen Kale,
editors, Proceedings of The 28th Conference on Learning Theory, volume 40 of
Proceedings of Machine Learning Research, pages 23–35, Paris, France, 03–06
Jul 2015. PMLR.

V. Anantharam, P. Varaiya, and J. Walrand. Asymptotically efficient allocation
rules for the multiarmed bandit problem with multiple plays-part i: Iid rewards.
IEEE Transactions on Automatic Control, 32(11):968–976, 1987.

F. J. Anscombe. Sequential medical trials. Journal of the American Statistical
Association, 58(302):365–383, 1963.

A. Antos, G. Bartók, D. Pál, and Cs. Szepesvári. Toward a classification of finite
partial-monitoring games. Theoretical Computer Science, 473:77–99, 2013.

A. Arapostathis, V. S. Borkar, E. Fernandez-Gaucherand, M. K. Ghosh, and S. I.
Marcus. Discrete-time controlled Markov processes with average cost criterion:
a survey. SIAM Journal of Control and Optimization, 31(2):282–344, 1993.

Raman Arora, Ofer Dekel, and Ambuj Tewari. Online bandit learning against an
adaptive adversary: from regret to policy regret. arXiv preprint arXiv:1206.6400,
2012.

B. Ashwinkumar, J. Langford, and A. Slivkins. Resourceful contextual bandits.
In M. F. Balcan, V. Feldman, and Cs. Szepesvári, editors, Proceedings of The
27th Conference on Learning Theory, volume 35 of Proceedings of Machine
Learning Research, pages 1109–1134, Barcelona, Spain, 13–15 Jun 2014. PMLR.

J.-V. Audibert and S. Bubeck. Regret bounds and minimax policies under partial
monitoring. Journal of Machine Learning Research, 11(Oct):2785–2836, 2010a.

J.-Y. Audibert and S. Bubeck. Minimax policies for adversarial and stochastic
bandits. In Proceedings of Conference on Learning Theory (COLT), pages
217–226, 2009.

J.-Y. Audibert and S. Bubeck. Best arm identification in multi-armed bandits.
In Proceedings of Conference on Learning Theory (COLT), 2010b.

J.-Y. Audibert, R. Munos, and Cs. Szepesvári. Tuning bandit algorithms in
stochastic environments. In M. Hutter, R. A. Servedio, and E. Takimoto,
editors, Algorithmic Learning Theory, pages 150–165, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

Bibliography 475

J.-Y. Audibert, R. Munos, and Cs. Szepesvári. Exploration-exploitation tradeoff
using variance estimates in multi-armed bandits. Theoretical Computer Science,
410(19):1876–1902, 2009.

J.-Y. Audibert, S. Bubeck, and G. Lugosi. Regret in online combinatorial
optimization. Mathematics of Operations Research, 39(1):31–45, 2013.

P. Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal
of Machine Learning Research, 3(Nov):397–422, 2002.

P. Auer and C. Chiang. An algorithm with nearly optimal pseudo-regret for both
stochastic and adversarial bandits. In V. Feldman, A. Rakhlin, and O. Shamir,
editors, 29th Annual Conference on Learning Theory, volume 49 of Proceedings
of Machine Learning Research, pages 116–120, Columbia University, New York,
New York, USA, 23–26 Jun 2016. PMLR.

P. Auer and R. Ortner. Logarithmic online regret bounds for undiscounted
reinforcement learning. In B. Schölkopf, J. C. Platt, and T. Hoffman, editors,
Advances in Neural Information Processing Systems 19, pages 49–56. MIT
Press, 2007.

P. Auer and R. Ortner. UCB revisited: Improved regret bounds for the stochastic
multi-armed bandit problem. Periodica Mathematica Hungarica, 61(1-2):55–65,
2010.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gambling in a
rigged casino: The adversarial multi-armed bandit problem. In Foundations
of Computer Science, 1995. Proceedings., 36th Annual Symposium on, pages
322–331. IEEE, 1995.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47:235–256, 2002a.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic
multiarmed bandit problem. SIAM journal on computing, 32(1):48–77, 2002b.

P. Auer, R. Ortner, and Cs. Szepesvári. Improved rates for the stochastic
continuum-armed bandit problem. In International Conference on
Computational Learning Theory, pages 454–468. Springer, 2007.

P. Auer, T. Jaksch, and R. Ortner. Near-optimal regret bounds for reinforcement
learning. In Advances in Neural Information Processing Systems 21, NIPS,
pages 89–96, 2009.

P. Auer, T. Jaksch, and R. Ortner. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 99:1563–1600, August 2010.
ISSN 1532-4435.

B. Awerbuch and R. Kleinberg. Adaptive routing with end-to-end feedback:
Distributed learning and geometric approaches. In Proceedings of the 36th
annual ACM symposium on Theory of computing, pages 45–53. ACM, 2004.

S. J. Axler. Linear algebra done right, volume 2. Springer, 1997.
M. G. Azar, I. Osband, and R. Munos. Minimax regret bounds for reinforcement

learning. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of

Bibliography 476

Machine Learning Research, pages 263–272, International Convention Centre,
Sydney, Australia, 06–11 Aug 2017. PMLR.

A. Badanidiyuru, R. Kleinberg, and A. Slivkins. Bandits with knapsacks. In
Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium
on, pages 207–216. IEEE, 2013.

K. Ball. An elementary introduction to modern convex geometry. Flavors of
geometry, 31:1–58, 1997.

P. L. Bartlett and A. Tewari. Regal: A regularization based algorithm for
reinforcement learning in weakly communicating MDPs. In Proceedings of the
25th Conference on Uncertainty in Artificial Intelligence, UAI, pages 35–42,
Arlington, Virginia, United States, 2009. AUAI Press.

G. Bartók. A near-optimal algorithm for finite partial-monitoring games
against adversarial opponents. In S. Shalev-Shwartz and I. Steinwart, editors,
Proceedings of the 26th Annual Conference on Learning Theory, volume 30,
pages 696–710. PMLR, 2013.

G. Bartók, D. Pál, and Cs. Szepesvári. Toward a classification of finite partial-
monitoring games. In International Conference on Algorithmic Learning Theory,
pages 224–238. Springer, 2010.

G. Bartók, N. Zolghadr, and Cs. Szepesvári. An adaptive algorithm for finite
stochastic partial monitoring. In Proceedings of the 29th International Coference
on International Conference on Machine Learning, ICML, pages 1779–1786,
USA, 2012. Omnipress.

G. Bartók, D. P. Foster, D. Pál, A. Rakhlin, and Cs. Szepesvári. Partial
monitoring—classification, regret bounds, and algorithms. Mathematics of
Operations Research, 39(4):967–997, 2014.

J. A. Bather and H. Chernoff. Sequential decisions in the control of a spaceship. In
Fifth Berkeley Symposium on Mathematical Statistics and Probability, volume 3,
pages 181–207, 1967.

R. Bellman. The theory of dynamic programming. Technical report, RAND
CORP SANTA MONICA CA, 1954.

R. E. Bellman. Eye of the Hurricane. World Scientific, 1984.
D. Bernoulli. Exposition of a new theory on the measurement of risk.

Econometrica: Journal of the Econometric Society, pages 23–36, 1954.
A. C. Berry. The accuracy of the gaussian approximation to the sum of

independent variates. Transactions of the american mathematical society,
49(1):122–136, 1941.

D. Berry and B. Fristedt. Bandit problems : sequential allocation of experiments.
Chapman and Hall, London ; New York :, 1985.

D. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
1st edition, 1996.

D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 1-2. Athena
Scientific, Belmont, MA, 4 edition, 2012.

D. Bertsimas and J. N. Tsitsiklis. Introduction to linear optimization, volume 6.
Athena Scientific Belmont, MA, 1997.

Bibliography 477

O. Besbes, Y. Gur, and A. Zeevi. Stochastic multi-armed-bandit problem with
non-stationary rewards. In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 28, NIPS, pages 199–207. Curran Associates, Inc., 2014.

A. Beygelzimer, J. Langford, L. Li, L. Reyzin, and R. E. Schapire. An optimal
high probability algorithm for the contextual bandit problem. arXiv, 2010.

A. Beygelzimer, J. Langford, L. Li, L. Reyzin, and R. Schapire. Contextual bandit
algorithms with supervised learning guarantees. In G. Gordon, D. Dunson,
and M. Dud́ık, editors, Proceedings of the 14th International Conference on
Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine
Learning Research, pages 19–26, Fort Lauderdale, FL, USA, 11–13 Apr 2011.
PMLR.

P. Billingsley. Probability and measure. John Wiley & Sons, 2008.
D. Blackwell. Controlled random walks. In Proceedings of the international

congress of mathematicians, volume 3, pages 336–338, 1954.
L. Bottou, J. Peters, J. Quiñonero-Candela, D. X. Charles, D. M. Chickering,

E. Portugaly, D. Ray, P. Simard, and E. Snelson. Counterfactual reasoning
and learning systems: The example of computational advertising. The Journal
of Machine Learning Research, 14(1):3207–3260, 2013.

S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities: A
nonasymptotic theory of independence. OUP Oxford, 2013.

G. EP. Box. Science and statistics. Journal of the American Statistical Association,
71(356):791–799, 1976.

G. EP. Box. Robustness in the strategy of scientific model building. Robustness
in statistics, 1:201–236, 1979.

S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press,
2004.

R. N. Bradt, S. M. Johnson, and S. Karlin. On sequential designs for maximizing
the sum of n observations. The Annals of Mathematical Statistics, pages
1060–1074, 1956.

R. Brafman and M. Tennenholtz. R-max-a general polynomial time algorithm for
near-optimal reinforcement learning. Journal of Machine Learning Research, 3:
213–231, 2003.

J. Bretagnolle and C. Huber. Estimation des densités: risque minimax. Zeitschrift
für Wahrscheinlichkeitstheorie und verwandte Gebiete, 47(2):119–137, 1979.

S. Bubeck and N. Cesa-Bianchi. Regret Analysis of Stochastic and Nonstochastic
Multi-armed Bandit Problems. Foundations and Trends in Machine Learning.
Now Publishers Incorporated, 2012.

S. Bubeck and R. Eldan. The entropic barrier: a simple and optimal universal self-
concordant barrier. In P. Grünwald, E. Hazan, and S. Kale, editors, Proceedings
of The 28th Conference on Learning Theory, volume 40 of Proceedings of
Machine Learning Research, pages 279–279, Paris, France, 03–06 Jul 2015.
PMLR.

Bibliography 478

S. Bubeck and R. Eldan. Multi-scale exploration of convex functions and bandit
convex optimization. In V. Feldman, A. Rakhlin, and O. Shamir, editors, 29th
Annual Conference on Learning Theory, volume 49 of Proceedings of Machine
Learning Research, pages 583–589, Columbia University, New York, New York,
USA, 23–26 Jun 2016. PMLR.

S. Bubeck and C. Liu. Prior-free and prior-dependent regret bounds for Thompson
sampling. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
26, NIPS, pages 638–646. Curran Associates, Inc., 2013.

S. Bubeck and A. Slivkins. The best of both worlds: Stochastic and adversarial
bandits. In COLT, pages 42.1–42.23, 2012.

S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in multi-armed bandits
problems. In International conference on Algorithmic learning theory, pages
23–37. Springer, 2009.

S. Bubeck, R. Munos, G. Stoltz, and Cs. Szepesvári. X-armed bandits. Journal
of Machine Learning Research, 12:1655–1695, 2011.

S. Bubeck, N. Cesa-Bianchi, and S. Kakade. Towards minimax policies for online
linear optimization with bandit feedback. In Annual Conference on Learning
Theory, volume 23, pages 41–1. Microtome, 2012.

S. Bubeck, N. Cesa-Bianchi, and G. Lugosi. Bandits with heavy tail. Information
Theory, IEEE Transactions on, 59(11):7711–7717, 2013a.

S. Bubeck, V. Perchet, and P. Rigollet. Bounded regret in stochastic multi-armed
bandits. In S. Shalev-Shwartz and I. Steinwart, editors, Proceedings of the
26th Annual Conference on Learning Theory, volume 30 of Proceedings of
Machine Learning Research, pages 122–134, Princeton, NJ, USA, 12–14 Jun
2013b. PMLR.

S. Bubeck, O. Dekel, T. Koren, and Y. Peres. Bandit convex optimization:√
T regret in one dimension. In P. Grünwald, E. Hazan, and S. Kale,

editors, Proceedings of The 28th Conference on Learning Theory, volume 40
of Proceedings of Machine Learning Research, pages 266–278, Paris, France,
03–06 Jul 2015a. PMLR.

S. Bubeck, R. Eldan, and J. Lehec. Finite-time analysis of projected langevin
monte carlo. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems 28,
NIPS, pages 1243–1251. Curran Associates, Inc., 2015b.

S. Bubeck, Y.T. Lee, and R. Eldan. Kernel-based methods for bandit convex
optimization. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2017, pages 72–85, New York, NY, USA, 2017.
ACM. ISBN 978-1-4503-4528-6.

S. Bubeck, M. Cohen, and Y. Li. Sparsity, variance and curvature in multi-armed
bandits. In F. Janoos, M. Mohri, and K. Sridharan, editors, Proceedings of
Algorithmic Learning Theory, volume 83 of Proceedings of Machine Learning
Research, pages 111–127. PMLR, 07–09 Apr 2018.

Bibliography 479

A. N. Burnetas and M. N. Katehakis. Optimal adaptive policies for sequential
allocation problems. Advances in Applied Mathematics, 17(2):122–142, 1996.

A. N. Burnetas and M. N. Katehakis. Optimal adaptive policies for Markov
decision processes. Mathematics of Operations Research, 22(1):222–255, 1997.

A. N. Burnetas and M. N. Katehakis. Asymptotic Bayes analysis for the
finite-horizon one-armed-bandit problem. Probability in the Engineering and
Informational Sciences, 17(1):53–82, 2003.

R. R. Bush and F. Mosteller. A stochastic model with applications to learning.
The Annals of Mathematical Statistics, pages 559–585, 1953.

O. Cappé, A. Garivier, O. Maillard, R. Munos, and G. Stoltz. Kullback–Leibler
upper confidence bounds for optimal sequential allocation. The Annals of
Statistics, 41(3):1516–1541, 2013.

A. Carpentier and A. Locatelli. Tight (lower) bounds for the fixed budget best
arm identification bandit problem. In V. Feldman, A. Rakhlin, and O. Shamir,
editors, 29th Annual Conference on Learning Theory, volume 49 of Proceedings
of Machine Learning Research, pages 590–604, Columbia University, New York,
New York, USA, 23–26 Jun 2016. PMLR.

A. Carpentier and R. Munos. Bandit theory meets compressed sensing
for high dimensional stochastic linear bandit. In N. D. Lawrence and
M. Girolami, editors, Proceedings of the 15th International Conference on
Artificial Intelligence and Statistics, volume 22 of Proceedings of Machine
Learning Research, pages 190–198, La Palma, Canary Islands, 21–23 Apr 2012.
PMLR.

O. Catoni. Challenging the empirical mean and empirical variance: a deviation
study. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 48(4):
1148–1185, 2012.

N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge
university press, 2006.

N. Cesa-Bianchi and G. Lugosi. Combinatorial bandits. Journal of Computer
and System Sciences, 78(5):1404–1422, 2012.

N. Cesa-Bianchi, G. Lugosi, and G. Stoltz. Regret minimization under partial
monitoring. Mathematics of Operations Research, 31:562–580, 2006.

N. Cesa-Bianchi, C. Gentile, Y. Mansour, and A. Minora. Delay and cooperation
in nonstochastic bandits. In Vitaly Feldman, Alexander Rakhlin, and Ohad
Shamir, editors, 29th Annual Conference on Learning Theory, volume 49 of
Proceedings of Machine Learning Research, pages 605–622, Columbia University,
New York, New York, USA, 23–26 Jun 2016. PMLR.

N. Cesa-Bianchi, C. Gentile, G. Lugosi, and G. Neu. Boltzmann exploration
done right. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 6284–6293. Curran Associates, Inc., 2017.

J. Chakravorty and A. Mahajan. Multi-armed bandits, Gittins index, and its
calculation. Methods and Applications of Statistics in Clinical Trials: Planning,
Analysis, and Inferential Methods, Volume 2, pages 416–435, 2013.

Bibliography 480

J. Chakravorty and A. Mahajan. Multi-armed bandits, Gittins index, and its
calculation. Methods and Applications of Statistics in Clinical Trials: Planning,
Analysis, and Inferential Methods, Volume 2, pages 416–435, 2014.

J. T. Chang and D. Pollard. Conditioning as disintegration. Statistica Neerlandica,
51(3):287–317, 1997.

O. Chapelle and L. Li. An empirical evaluation of Thompson sampling. In
J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 24, NIPS, pages
2249–2257. Curran Associates, Inc., 2011.

Y. R. Chen and M. N. Katehakis. Linear programming for finite state multi-armed
bandit problems. Mathematics of Operations Research, 11(1):180–183, 1986.

H. Chernoff. Sequential design of experiments. The Annals of Mathematical
Statistics, 30(3):755–770, 1959.

H. Chernoff. A career in statistics. Past, Present, and Future of Statistical
Science, page 29, 2014.

W. Chu, L. Li, L. Reyzin, and R. Schapire. Contextual bandits with linear
payoff functions. In G. Gordon, D. Dunson, and M. Dud́ık, editors, Proceedings
of the 14th International Conference on Artificial Intelligence and Statistics,
volume 15 of Proceedings of Machine Learning Research, pages 208–214, Fort
Lauderdale, FL, USA, 11–13 Apr 2011. PMLR.

A. Chuklin, I. Markov, and M. de Rijke. Click Models for Web Search. Morgan
& Claypool Publishers, 2015.

A. Cohen and T. Hazan. Following the perturbed leader for online structured
learning. In F. Bach and D. Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pages 1034–1042, Lille, France, 07–09 Jul 2015. PMLR.

A. Cohen, T. Hazan, and T. Koren. Tight bounds for bandit combinatorial
optimization. In Satyen Kale and Ohad Shamir, editors, Proceedings of the
2017 Conference on Learning Theory, volume 65 of Proceedings of Machine
Learning Research, pages 629–642, Amsterdam, Netherlands, 07–10 Jul 2017.
PMLR.

R. Combes, S. Magureanu, A. Proutiere, and C. Laroche. Learning to rank:
Regret lower bounds and efficient algorithms. In Proceedings of the 2015 ACM
SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems, pages 231–244. ACM, 2015. ISBN 978-1-4503-3486-0.

R. Combesd, M. Shahi, A. Proutiere, and M. Lelarge. Combinatorial bandits
revisited. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing Systems 28, NIPS, pages
2116–2124. Curran Associates, Inc., 2015.

T. M. Cover. Universal portfolios. Mathematical Finance, 1(1):1–29, 1991.
T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley &

Sons, 2012.
W. Cowan and M. N. Katehakis. An asymptotically optimal policy for uniform

bandits of unknown support. arXiv preprint arXiv:1505.01918, 2015.

Bibliography 481

W. Cowan, J. Honda, and M. N. Katehakis. Normal bandits of unknown means
and variances: Asymptotic optimality, finite horizon regret bounds, and a
solution to an open problem. arXiv preprint arXiv:1504.05823, 2015.

K. Crammer and C. Gentile. Multiclass classification with bandit feedback using
adaptive regularization. Machine learning, 90(3):347–383, 2013.

N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An experimental comparison of
click position-bias models. In Proceedings of the 2008 International Conference
on Web Search and Data Mining, pages 87–94. ACM, 2008.

V. Dani, T. P. Hayes, and S. M. Kakade. Stochastic linear optimization under
bandit feedback. In Proceedings of Conference on Learning Theory, COLT,
pages 355–366, 2008.

R. Degenne and V. Perchet. Anytime optimal algorithms in stochastic multi-
armed bandits. In M. F. Balcan and K. Q. Weinberger, editors, Proceedings
of The 33rd International Conference on Machine Learning, volume 48 of
Proceedings of Machine Learning Research, pages 1587–1595, New York, New
York, USA, 20–22 Jun 2016. PMLR.

O. Dekel, C. Gentile, and K. Sridharan. Robust selective sampling from single
and multiple teachers. In COLT, pages 346–358, 2010.

O. Dekel, C. Gentile, and K. Sridharan. Selective sampling and active learning
from single and multiple teachers. Journal of Machine Learning Research, 13
(Sep):2655–2697, 2012.

A. Dembo and O. Zeitouni. Large deviations techniques and applications,
volume 38. Springer Science & Business Media, 2009.

E. V. Denardo, H. Park, and U. G. Rothblum. Risk-Sensitive and Risk-Neutral
Multiarmed Bandits. Mathematics of Operations Research, 32(2):374–394,
2007.

T. Desautels, A. Krause, and J. W. Burdick. Parallelizing exploration-exploitation
tradeoffs in gaussian process bandit optimization. Journal of Machine Learning
Research, 15:4053–4103, 2014.

S. Dong and B. Van Roy. An information-theoretic analysis for thompson sampling
with many actions. arXiv preprint arXiv:1805.11845, 2018.

J. L. Doob. Stochastic processes. Wiley, 1953.
M. Dudik, D. Hsu, S. Kale, N. Karampatziakis, J. Langford, L. Reyzin, and

T. Zhang. Efficient optimal learning for contextual bandits. In Proceedings
of the 27th Conference on Uncertainty in Artificial Intelligence, UAI, pages
169–178. AUAI Press, 2011.

M. Dud́ık, K. Hofmann, R. E. Schapire, A. Slivkins, and M. Zoghi. Contextual
dueling bandits. In P. Grünwald, E. Hazan, and S. Kale, editors, Proceedings of
The 28th Conference on Learning Theory, volume 40 of Proceedings of Machine
Learning Research, pages 563–587, Paris, France, 03–06 Jul 2015. PMLR.

R. M. Dudley. Uniform central limit theorems, volume 142. Cambridge university
press, 2014.

C. G. Esseen. On the Liapounoff limit of error in the theory of probability.
Almqvist & Wiksell, 1942.

Bibliography 482

E. Even-Dar, S. Mannor, and Y. Mansour. PAC bounds for multi-armed bandit
and Markov decision processes. In Computational Learning Theory, pages
255–270. Springer, 2002.

E. Even-Dar, S. M. Kakade, and Y. Mansour. Experts in a Markov decision
process. In Advances in Neural Information Processing Systems 17, NIPS,
pages 401–408, Cambridge, MA, USA, 2004. MIT Press.

E. Even-Dar, S. Mannor, and Y. Mansour. Action elimination and stopping
conditions for the multi-armed bandit and reinforcement learning problems.
Journal of Machine Learning Research, 7(Jun):1079–1105, 2006.

S. Filippi, O. Cappe, A. Garivier, and Cs. Szepesvári. Parametric bandits: The
generalized linear case. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor,
R. S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing
Systems 23, NIPS, pages 586–594. Curran Associates, Inc., 2010.

D. Foster and A. Rakhlin. No internal regret via neighborhood watch. In N. D.
Lawrence and M. Girolami, editors, Proceedings of the 15th International
Conference on Artificial Intelligence and Statistics, volume 22 of Proceedings of
Machine Learning Research, pages 382–390, La Palma, Canary Islands, 21–23
Apr 2012. PMLR.

S. Frederick, G. Loewenstein, and T. O’donoghue. Time discounting and time
preference: A critical review. Journal of economic literature, 40(2):351–401,
2002.

E. Frostig and G. Weiss. Four proofs of Gittins’ multiarmed bandit theorem.
Applied Probability Trust, 70, 1999.

Y. Gai, B. Krishnamachari, and R. Jain. Combinatorial network optimization with
unknown variables: Multi-armed bandits with linear rewards and individual
observations. IEEE/ACM Transactions on Networking, 20(5):1466–1478, 2012.

A. Garivier. Informational confidence bounds for self-normalized averages and
applications. arXiv preprint arXiv:1309.3376, 2013.

A. Garivier and O. Cappé. The KL-UCB algorithm for bounded stochastic bandits
and beyond. In Proceedings of Conference on Learning Theory (COLT), 2011.

A. Garivier and E. Kaufmann. Optimal best arm identification with fixed
confidence. In V. Feldman, A. Rakhlin, and O. Shamir, editors, 29th Annual
Conference on Learning Theory, volume 49 of Proceedings of Machine Learning
Research, pages 998–1027, Columbia University, New York, New York, USA,
23–26 Jun 2016. PMLR.

A. Garivier and E. Moulines. On upper-confidence bound policies for switching
bandit problems. In J. Kivinen, Cs. Szepesvári, E. Ukkonen, and T. Zeugmann,
editors, Algorithmic Learning Theory, pages 174–188, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

A. Garivier, E. Kaufmann, and W. M. Koolen. Maximin action identification: A
new bandit framework for games. In V. Feldman, A. Rakhlin, and O. Shamir,
editors, 29th Annual Conference on Learning Theory, volume 49 of Proceedings
of Machine Learning Research, pages 1028–1050, Columbia University, New
York, New York, USA, 23–26 Jun 2016a. PMLR.

Bibliography 483

A. Garivier, T. Lattimore, and E. Kaufmann. On explore-then-commit strategies.
In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems 29, NIPS, pages 784–792.
Curran Associates, Inc., 2016b.

A. Garivier, P. Ménard, and G. Stoltz. Explore first, exploit next: The true shape
of regret in bandit problems. arXiv preprint arXiv:1602.07182, 2016c.

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin.
Bayesian data analysis, volume 2. CRC press Boca Raton, FL, 2014.

C. Gentile and F. Orabona. On multilabel classification and ranking with partial
feedback. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 25, NIPS, pages
1151–1159. Curran Associates, Inc., 2012.

C. Gentile and F. Orabona. On multilabel classification and ranking with bandit
feedback. Journal of Machine Learning Research, 15(1):2451–2487, 2014.

S. Gerchinovitz. Sparsity regret bounds for individual sequences in online linear
regression. Journal of Machine Learning Research, 14(Mar):729–769, 2013.

S. Gerchinovitz and T. Lattimore. Refined lower bounds for adversarial bandits.
In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems 29, NIPS, pages 1198–1206.
Curran Associates, Inc., 2016.

S. Ghosal and A. van der Vaart. Fundamentals of nonparametric Bayesian
inference, volume 44. Cambridge University Press, 2017.

J. Gittins. Bandit processes and dynamic allocation indices. Journal of the Royal
Statistical Society. Series B (Methodological), 41(2):148–177, 1979.

J. Gittins, K. Glazebrook, and R. Weber. Multi-armed bandit allocation indices.
John Wiley & Sons, 2011.

A. Gopalan and S. Mannor. Thompson sampling for learning parameterized
Markov decision processes. In P. Grünwald, E. Hazan, and S. Kale, editors,
Proceedings of The 28th Conference on Learning Theory, volume 40 of
Proceedings of Machine Learning Research, pages 861–898, Paris, France, 03–06
Jul 2015. PMLR.

T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich. Web-scale Bayesian
click-through rate prediction for sponsored search advertising in microsoft’s
bing search engine. In Proceedings of the 27th International Conference on
International Conference on Machine Learning, ICML, pages 13–20, USA, 2010.
Omnipress.

O. Granmo. Solving two-armed bernoulli bandit problems using a Bayesian
learning automaton. International Journal of Intelligent Computing and
Cybernetics, 3(2):207–234, 2010.

R. M. Gray. Entropy and information theory. Springer Science & Business Media,
2011.

K. Greenewald, A. Tewari, S. Murphy, and P. Klasnja. Action centered contextual
bandits. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,

Bibliography 484

S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 5977–5985. Curran Associates, Inc., 2017.

M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial
optimization, volume 2. Springer Science & Business Media, 2012.

F. Guo, C. Liu, and Y. M. Wang. Efficient multiple-click models in web search.
In Proceedings of the 2nd ACM International Conference on Web Search and
Data Mining, pages 124–131. ACM, 2009.

L. Györfi, M. Kohler, A. Krzyżak, and H. Walk. A Distribution-Free Theory of
Nonparametric Regression. Springer-Verlag, 2002.

A. György and Cs. Szepesvári. Shifting regret, mirror descent, and matrices.
In M. F. Balcan and K. Q. Weinberger, editors, Proceedings of The 33rd
International Conference on Machine Learning, volume 48 of Proceedings of
Machine Learning Research, pages 2943–2951, New York, New York, USA,
20–22 Jun 2016. PMLR.

A. György, T. Linder, G. Lugosi, and G. Ottucsák. The on-line shortest path
problem under partial monitoring. Journal of Machine Learning Research, 8
(Oct):2369–2403, 2007.

M. Hanawal, V. Saligrama, M. Valko, and R. Munos. Cheap bandits. In F. Bach
and D. Blei, editors, Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pages 2133–2142, Lille, France, 07–09 Jul 2015. PMLR.

J. Hannan. Approximation to Bayes risk in repeated play. Contributions to the
Theory of Games, 3:97–139, 1957.

Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.
E. Hazan. Introduction to online convex optimization. Foundations and Trends®

in Optimization, 2(3-4):157–325, 2016.
E. Hazan and S. Kale. A simple multi-armed bandit algorithm with optimal

variation-bounded regret. In S. M. Kakade and U. von Luxburg, editors,
Proceedings of the 24th Annual Conference on Learning Theory, volume 19 of
Proceedings of Machine Learning Research, pages 817–820. PMLR, 2011.

E. Hazan, Z. Karnin, and R. Meka. Volumetric spanners: an efficient exploration
basis for learning. Journal of Machine Learning Research, 17(119):1–34, 2016.

M. Herbster and M. K. Warmuth. Tracking the best expert. Machine Learning,
32(2):151–178, 1998.

M. Herbster and M. K. Warmuth. Tracking the best linear predictor. Journal of
Machine Learning Research, 1(Sep):281–309, 2001.

J. Honda and A. Takemura. An asymptotically optimal bandit algorithm for
bounded support models. In Proceedings of Conference on Learning Theory
(COLT), pages 67–79, 2010.

J. Honda and A. Takemura. An asymptotically optimal policy for finite support
models in the multiarmed bandit problem. Machine Learning, 85(3):361–391,
2011.

J. Honda and A. Takemura. Optimality of Thompson sampling for Gaussian
bandits depends on priors. In S. Kaski and J. Corander, editors, Proceedings of

Bibliography 485

the 17th International Conference on Artificial Intelligence and Statistics,
volume 33 of Proceedings of Machine Learning Research, pages 375–383,
Reykjavik, Iceland, 22–25 Apr 2014. PMLR.

J. Honda and A. Takemura. Non-asymptotic analysis of a new bandit algorithm for
semi-bounded rewards. Journal of Machine Learning Research, 16:3721–3756,
2015.

R. Huang, M. M. Ajallooeian, Cs. Szepesvári, and M. Müller. Structured best
arm identification with fixed confidence. In S. Hanneke and L. Reyzin, editors,
Proceedings of the 28th International Conference on Algorithmic Learning
Theory, volume 76 of Proceedings of Machine Learning Research, pages 593–616,
Kyoto University, Kyoto, Japan, 2017a. PMLR.

R. Huang, T. Lattimore, A. György, and Cs. Szepesvári. Following the leader
and fast rates in online linear prediction: Curved constraint sets and other
regularities. Journal of Machine Learning Research, 18:1–31, 2017b.

M. Hutter and J. Poland. Adaptive online prediction by following the perturbed
leader. Journal of Machine Learning Research, 6:639–660, 2005.

E. L. Ionides. Truncated importance sampling. Journal of Computational and
Graphical Statistics, 17(2):295–311, 2008.

K. Jamieson and R. Nowak. Best-arm identification algorithms for multi-armed
bandits in the fixed confidence setting. In Information Sciences and Systems
(CISS), 2014 48th Annual Conference on, pages 1–6. IEEE, 2014.

K. Jamieson, S. Katariya, A. Deshpande, and R. Nowak. Sparse dueling bandits.
In G. Lebanon and S. V. N. Vishwanathan, editors, Proceedings of the 18th
International Conference on Artificial Intelligence and Statistics, volume 38
of Proceedings of Machine Learning Research, pages 416–424, San Diego,
California, USA, 09–12 May 2015. PMLR.

E. T. Jaynes. Probability theory: the logic of science. Cambridge university press,
2003.

F. John. Extremum problems with inequalities as subsidiary conditions. Courant
Anniversary Volume, Interscience, 1948.

P. Joulani, A. Gyorgy, and Cs. Szepesvari. Online learning under delayed feedback.
In Sanjoy Dasgupta and David McAllester, editors, Proceedings of the 30th
International Conference on Machine Learning, volume 28 of Proceedings of
Machine Learning Research, pages 1453–1461, Atlanta, Georgia, USA, 17–19
Jun 2013. PMLR.

K. Jun, A. Bhargava, R. Nowak, and R. Willett. Scalable generalized linear
bandits: Online computation and hashing. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems 30, pages 99–109. Curran
Associates, Inc., 2017.

L. P. Kaelbling. Learning in embedded systems. MIT press, 1993.
W. Kahan. Pracniques: further remarks on reducing truncation errors.

Communications of the ACM, 8(1):40, 1965.

Bibliography 486

D. Kahneman and A. Tversky. Prospect theory: An analysis of decision under
risk. Econometrica, 47(2):263–91, 1979.

S. Kakade. On The Sample Complexity Of Reinforcement Learning. PhD thesis,
University College London, 2003.

S. M. Kakade, S. Shalev-Shwartz, and A. Tewari. Efficient bandit algorithms for
online multiclass prediction. In Proceedings of the 25th International Conference
on Machine Learning, pages 440–447, 2008.

A. Kalai and S. Vempala. Efficient algorithms for online decision problems.
Journal of Computer and System Sciences, 71(3):291–307, 2005a.

A. Kalai and S. Vempala. Efficient algorithms for online decision problems.
Journal of Computer and System Sciences, 71(3):291–307, 2005b.

L. Kallenberg. A note on M.N. Katehakis’ and Y.-R. Chen’s computation of the
Gittins index. Mathematics of operations research, 11(1):184–186, 1986.

L. Kallenberg. Markov decision processes: Lecture notes. 2016.
O. Kallenberg. Foundations of modern probability. Springer-Verlag, 2002.
Z. Karnin, T. Koren, and O. Somekh. Almost optimal exploration in multi-armed

bandits. In S. Dasgupta and D. McAllester, editors, Proceedings of the 30th
International Conference on Machine Learning, volume 28 of Proceedings of
Machine Learning Research, pages 1238–1246, Atlanta, Georgia, USA, 17–19
Jun 2013. PMLR.

S. Katariya, B. Kveton, Cs. Szepesvári, and Z. Wen. DCM bandits: Learning to
rank with multiple clicks. In Proceedings of the 33rd International Conference
on Machine Learning, pages 1215–1224, 2016.

S. Katariya, B. Kveton, Cs. Szepesvári, C. Vernade, and Z. Wen. Bernoulli
rank-1 bandits for click feedback. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, 2017a.

S. Katariya, B. Kveton, Cs. Szepesvári, C. Vernade, and Z. Wen. Stochastic rank-
1 bandits. In Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, 2017b.

M. N. Katehakis and H. Robbins. Sequential choice from several populations.
Proceedings of the National Academy of Sciences of the United States of America,
92(19):8584, 1995.

E. Kaufmann. On Bayesian index policies for sequential resource allocation. The
Annals of Statistics, 46(2):842–865, 04 2018.

E. Kaufmann, O. Cappe, and A. Garivier. On Bayesian upper confidence bounds
for bandit problems. In N. D. Lawrence and M. Girolami, editors, Proceedings
of the 15th International Conference on Artificial Intelligence and Statistics,
volume 22 of Proceedings of Machine Learning Research, pages 592–600, La
Palma, Canary Islands, 21–23 Apr 2012a. PMLR.

E. Kaufmann, N. Korda, and R. Munos. Thompson sampling: An asymptotically
optimal finite-time analysis. In NaderH. Bshouty, Gilles Stoltz, Nicolas Vayatis,
and Thomas Zeugmann, editors, Algorithmic Learning Theory, volume 7568 of
Lecture Notes in Computer Science, pages 199–213. Springer Berlin Heidelberg,
2012b. ISBN 978-3-642-34105-2.

Bibliography 487

J. Kawale, H. H. Bui, B. Kveton, L. Tran-Thanh, and S. Chawla. Efficient
Thompson sampling for online matrix-factorization recommendation. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems 28, NIPS, pages 1297–1305.
Curran Associates, Inc., 2015.

A. Kazerouni, M. Ghavamzadeh, Y. Abbasi, and B. Van Roy. Conservative
contextual linear bandits. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems 30, pages 3910–3919. Curran Associates, Inc.,
2017.

M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time.
Machine Learning, 49(2-3):209–232, 2002.

M. J. Kearns and U. V. Vazirani. An introduction to computational learning
theory. MIT press, 1994.

J. Kiefer and J. Wolfowitz. The equivalence of two extremum problems. Canadian
Journal of Mathematics, 12(5):363–365, 1960.

M. J. Kim. Thompson sampling for stochastic control: The finite parameter case.
IEEE Transactions on Automatic Control, 62(12):6415–6422, 2017.

J. Kirschner and A. Krause. Information directed sampling and bandits with
heteroscedastic noise. arXiv preprint arXiv:1801.09667, 2018.

R. Kleinberg. Nearly tight bounds for the continuum-armed bandit problem. In
L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information
Processing Systems 17, NIPS, pages 697–704. MIT Press, 2005.

R. Kleinberg, A. Slivkins, and E. Upfal. Multi-armed bandits in metric spaces.
In Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
pages 681–690. ACM, 2008.

T. Kocák, G. Neu, M. Valko, and R. Munos. Efficient learning by implicit
exploration in bandit problems with side observations. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages 613–621. Curran Associates,
Inc., 2014.

T. Kocák, M. Valko, R. Munos, and S. Agrawal. Spectral Thompson sampling.
In AAAI, pages 1911–1917, 2014.

L. Kocsis and Cs. Szepesvári. Discounted UCB. In 2nd PASCAL Challenges
Workshop, pages 784–791, 2006.

J. Komiyama, J. Honda, H. Kashima, and H. Nakagawa. Regret lower bound
and optimal algorithm in dueling bandit problem. In P. Grünwald, E. Hazan,
and S. Kale, editors, Proceedings of The 28th Conference on Learning Theory,
volume 40 of Proceedings of Machine Learning Research, pages 1141–1154,
Paris, France, 03–06 Jul 2015a. PMLR.

J. Komiyama, J. Honda, and H. Nakagawa. Regret lower bound and optimal
algorithm in finite stochastic partial monitoring. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural

Bibliography 488

Information Processing Systems 28, NIPS, pages 1792–1800. Curran Associates,
Inc., 2015b.

W. M. Koolen, M. K. Warmuth, and J. Kivinen. Hedging structured concepts.
In COLT, pages 93–105. Omnipress, 2010.

N. Korda, E. Kaufmann, and R. Munos. Thompson sampling for 1-dimensional
exponential family bandits. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 26, pages 1448–1456. Curran Associates, Inc., 2013.

S. R. Kulkarni and G. Lugosi. Finite-time lower bounds for the two-armed bandit
problem. IEEE Transactions on Automatic Control, 45(4):711–714, 2000.

B. Kveton, Cs. Szepesvári, Z. Wen, and A. Ashkan. Cascading bandits: Learning to
rank in the cascade model. In Proceedings of the 32nd International Conference
on International Conference on Machine Learning - Volume 37, pages 767–776.
JMLR.org, 2015a.

B. Kveton, Z. Wen, A. Ashkan, and Cs. Szepesvári. Tight regret bounds
for stochastic combinatorial semi-bandits. In G. Lebanon and S. V. N.
Vishwanathan, editors, Proceedings of the 18th International Conference on
Artificial Intelligence and Statistics, volume 38 of Proceedings of Machine
Learning Research, pages 535–543, San Diego, California, USA, 09–12 May
2015b. PMLR.

B. Kveton, Z. Wen, Z. Ashkan, and Cs. Szepesvári. Combinatorial cascading
bandits. In Advances in Neural Information Processing Systems 28, NIPS,
pages 1450–1458. Curran Associates Inc., 2015c.

P. Lagree, C. Vernade, and O. Cappé. Multiple-play bandits in the position-based
model. In Advances in Neural Information Processing Systems 29, NIPS, pages
1597–1605. Curran Associates Inc., 2016.

T. L. Lai. Adaptive treatment allocation and the multi-armed bandit problem.
The Annals of Statistics, pages 1091–1114, 1987.

T. L. Lai. Martingales in sequential analysis and time series, 1945–1985. Electronic
Journal for history of probability and statistics, 5(1), 2009.

T. L. Lai and T. Graves. Asymptotically efficient adaptive choice of control laws
in controlled Markov chains. SIAM Journal on Control and Optimization, 35
(3):715–743, 1997.

T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules.
Advances in applied mathematics, 6(1):4–22, 1985.

J. Langford and T. Zhang. The epoch-greedy algorithm for multi-armed bandits
with side information. In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis,
editors, Advances in Neural Information Processing Systems 20, NIPS, pages
817–824. Curran Associates, Inc., 2008.

P. Laplace. Pierre-Simon Laplace Philosophical Essay on Probabilities: Translated
from the fifth French edition of 1825 With Notes by the Translator, volume 13.
Springer Science & Business Media, 2012.

T. Lattimore. The pareto regret frontier for bandits. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in

Bibliography 489

Neural Information Processing Systems 28, NIPS, pages 208–216. Curran
Associates, Inc., 2015a.

T. Lattimore. Optimally confident UCB: Improved regret for finite-armed bandits.
arXiv preprint arXiv:1507.07880, 2015b.

T. Lattimore. Regret analysis of the finite-horizon Gittins index strategy for
multi-armed bandits. In V. Feldman, A. Rakhlin, and O. Shamir, editors, 29th
Annual Conference on Learning Theory, volume 49 of Proceedings of Machine
Learning Research, pages 1214–1245, Columbia University, New York, New
York, USA, 23–26 Jun 2016a. PMLR.

T. Lattimore. Regret analysis of the anytime optimally confident UCB algorithm.
Technical report, University of Alberta, 2016b.

T. Lattimore. A scale free algorithm for stochastic bandits with bounded kurtosis.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems
30, pages 1584–1593. Curran Associates, Inc., 2017.

T. Lattimore. Refining the confidence level for optimistic bandit strategies.
technical report, 2018.

T. Lattimore and M. Hutter. PAC bounds for discounted MDPs. In Nicolas Vayatis
Nader H. Bshouty, Gilles Stoltz and Thomas Zeugmann, editors, Proceedings
of the 23th International Conference on Algorithmic Learning Theory, volume
7568 of Lecture Notes in Computer Science, pages 320–334. Springer Berlin /
Heidelberg, 2012.

T. Lattimore and R. Munos. Bounded regret for finite-armed structured
bandits. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
27, NIPS, pages 550–558. Curran Associates, Inc., 2014.

T. Lattimore and Cs. Szepesvári. The end of optimism? an asymptotic analysis
of finite-armed linear bandits. In A. Singh and J. Zhu, editors, Proceedings
of the 20th International Conference on Artificial Intelligence and Statistics,
volume 54 of Proceedings of Machine Learning Research, pages 728–737, Fort
Lauderdale, FL, USA, 20–22 Apr 2017. PMLR.

T. Lattimore and Cs. Szepesvári. Cleaning up the neighbourhood: A full
classification for adversarial partial monitoring. submitted, 2018.

T. Lattimore, K. Crammer, and Cs. Szepesvári. Linear multi-resource allocation
with semi-bandit feedback. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information
Processing Systems 28, NIPS, pages 964–972. Curran Associates, Inc., 2015.

T. Lattimore, B. Kveton, S. Li, and Cs. Szepesvári. Toprank: A practical algorithm
for online stochastic ranking. submitted, 2018.

B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by
model selection. Annals of Statistics, pages 1302–1338, 2000.

A. Lazaric and R. Munos. Hybrid stochastic-adversarial on-line learning. In
COLT, 2009.

Bibliography 490

T. Le, Cs. Szepesvári, and R. Zheng. Sequential learning for multi-channel
wireless network monitoring with channel switching costs. IEEE Transactions
on Signal Processing, 62(22):5919–5929, 2014.

E. L. Lehmann and G. Casella. Theory of point estimation. Springer Science &
Business Media, 2006.

H. Lei, A. Tewari, and S. A. Murphy. An actor-critic contextual bandit algorithm
for personalized mobile health interventions. 2017.

J. Leike, T. Lattimore, L. Orseau, and M. Hutter. Thompson sampling is
asymptotically optimal in general environments. In Proceedings of the 32nd
Conference on Uncertainty in Artificial Intelligence, UAI, pages 417–426. AUAI
Press, 2016.

H. R. Lerche. Boundary crossing of Brownian motion: Its relation to the law of
the iterated logarithm and to sequential analysis. Springer, 1986.

D. A. Levin and Y. Peres. Markov chains and mixing times, volume 107. American
Mathematical Soc., 2017.

S. Li, B. Wang, S. Zhang, and W. Chen. Contextual combinatorial cascading
bandits. In Proceedings of the 33rd International Conference on Machine
Learning, pages 1245–1253, 2016.

N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information
and computation, 108(2):212–261, 1994.

L. Lovász and S. Vempala. The geometry of logconcave functions and sampling
algorithms. Random Structures & Algorithms, 30(3):307–358, 2007.

D. MacKay. Information theory, inference and learning algorithms. Cambridge
university press, 2003.

O. Maillard. Robust risk-averse stochastic multi-armed bandits. In ALT, pages
218–233. Springer, Berlin, Heidelberg, 2013.

O. Maillard, R. Munos, and G. Stoltz. Finite-time analysis of multi-armed bandits
problems with Kullback-Leibler divergences. In Proceedings of Conference On
Learning Theory (COLT), 2011.

S. Mannor and O. Shamir. From bandits to experts: On the value of side-
observations. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
24, pages 684–692. Curran Associates, Inc., 2011.

S. Mannor and N. Shimkin. On-line learning with imperfect monitoring. In
Learning Theory and Kernel Machines, pages 552–566. Springer, 2003.

S. Mannor and J. N. Tsitsiklis. The sample complexity of exploration in the
multi-armed bandit problem. Journal of Machine Learning Research, 5:623–648,
December 2004.

S. Mannor, V. Perchet, and G. Stoltz. Set-valued approachability and online
learning with partial monitoring. The Journal of Machine Learning Research,
15(1):3247–3295, 2014.

H. Markowitz. Portfolio selection. The journal of finance, 7(1):77–91, 1952.
M. E. Maron and J. L. Kuhns. On relevance, probabilistic indexing and

information retrieval. Journal of the ACM, 7(3):216–244, 1960.

Bibliography 491

A. Maurer and M. Pontil. Empirical bernstein bounds and sample variance
penalization. arXiv preprint arXiv:0907.3740, 2009.

B. C. May, N. Korda, A. Lee, and D. S. Leslie. Optimistic Bayesian sampling in
contextual-bandit problems. The Journal of Machine Learning Research, 13
(1):2069–2106, 2012.

C. McDiarmid. Concentration. In Probabilistic methods for algorithmic discrete
mathematics, pages 195–248. Springer, 1998.

H. B. McMahan and A. Blum. Online geometric optimization in the bandit
setting against an adaptive adversary. In COLT, volume 3120, pages 109–123.
Springer, 2004.

H. B. McMahan and M. J. Streeter. Tighter bounds for multi-armed bandits
with expert advice. In COLT, 2009.

P. Ménard and A. Garivier. A minimax and asymptotically optimal algorithm for
stochastic bandits. In S. Hanneke and L. Reyzin, editors, Proceedings of the
28th International Conference on Algorithmic Learning Theory, volume 76 of
Proceedings of Machine Learning Research, pages 223–237, Kyoto University,
Kyoto, Japan, 15–17 Oct 2017. PMLR.

S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Springer
Science & Business Media, 2012.

V. Mnih, Cs. Szepesvári, and J.-Y. Audibert. Empirical bernstein stopping. In
Proceedings of the 25th International Conference on Machine Learning, ICML,
pages 672–679, New York, NY, USA, 2008. ACM.

M. I. Muller, P. E. Valenzuela, A. Proutiere, and C. R. Rojas. A stochastic multi-
armed bandit approach to nonparametric h∞-norm estimation. In 2017 IEEE
56th Annual Conference on Decision and Control (CDC), pages 4632–4637.
IEEE, 2017.

R. Munos. Optimistic optimization of a deterministic function without the
knowledge of its smoothness. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 24, NIPS, pages 783–791. Curran Associates, Inc., 2011.

J. A. Nelder and R. W. M. Wedderburn. Generalized linear models. Journal of
the Royal Statistical Society. Series A (General), 135(3):370–384, 1972.

A. Nemirovski. Efficient methods for large-scale convex optimization problems.
Ekonomika i Matematicheskie Metody, 15, 1979.

A. Nemirovski and D. Yudin. Problem Complexity and Method Efficiency in
Optimization. Wiley, 1983.

G. Neu. Explore no more: Improved high-probability regret bounds for non-
stochastic bandits. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, editors, Advances in Neural Information Processing Systems
28, NIPS, pages 3168–3176. Curran Associates, Inc., 2015a.

G. Neu. First-order regret bounds for combinatorial semi-bandits. In P. Grünwald,
E. Hazan, and S. Kale, editors, Proceedings of The 28th Conference on Learning
Theory, volume 40 of Proceedings of Machine Learning Research, pages 1360–
1375, Paris, France, 03–06 Jul 2015b. PMLR.

Bibliography 492

G. Neu, A. György, Cs. Szepesvári, and A. Antos. Online Markov decision
processes under bandit feedback. IEEE Transactions on Automatic Control,
59(3):676–691, December 2014.

J. Von Neumann and O. Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, Princeton, 1944.

J. Niño-Mora. Computing a classic index for finite-horizon bandits. INFORMS
Journal on Computing, 23(2):254–267, 2011.

P. A. Ortega and D. A. Braun. A minimum relative entropy principle for learning
and acting. Journal of Artificial Intelligence Research, 38:475–511, 2010.

R. Ortner and D. Ryabko. Online regret bounds for undiscounted continuous
reinforcement learning. In Advances in Neural Information Processing Systems
25, NIPS, pages 1763–1771, USA, 2012. Curran Associates Inc.

R. Ortner, D. Ryabko, P. Auer, and R. Munos. Regret bounds for restless Markov
bandits. In N. Bshouty, G. Stoltz, N. Vayatis, and T. Zeugmann, editors,
Algorithmic Learning Theory, pages 214–228, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

I. Osband and B. Van Roy. Why is posterior sampling better than optimism for
reinforcement learning? In D. Precup and Y. W. Teh, editors, Proceedings of the
34th International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 2701–2710, International Convention
Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

I. Osband, D. Russo, and B. Van Roy. (more) efficient reinforcement learning via
posterior sampling. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 26, NIPS, pages 3003–3011. Curran Associates, Inc., 2013.

E. Ostrovsky and L. Sirota. Exact value for subgaussian norm of centered
indicator random variable. arXiv preprint arXiv:1405.6749, 2014.

C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov decision
processes. Mathematics of operations research, 12(3):441–450, 1987.

V. H. Peña, T.L. Lai, and Q. Shao. Self-normalized processes: Limit theory and
Statistical Applications. Springer Science & Business Media, 2008.

V. Perchet. Approachability of convex sets in games with partial monitoring.
Journal of Optimization Theory and Applications, 149(3):665–677, 2011.

G. Peskir and A. Shiryaev. Optimal stopping and free-boundary problems. Springer,
2006.

A. Piccolboni and C. Schindelhauer. Discrete prediction games with arbitrary
feedback and loss. In Computational Learning Theory, pages 208–223. Springer,
2001.

Ciara Pike-Burke, Shipra Agrawal, Csaba Szepesvari, and Steffen Grunewalder.
Bandits with delayed, aggregated anonymous feedback. In Jennifer Dy and
Andreas Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 4102–4110, StockholmsmÃďssan, Stockholm Sweden, 10–15 Jul 2018.
PMLR.

Bibliography 493

J. Poland. FPL analysis for adaptive bandits. In O. B. Lupanov, O. M.
Kasim-Zade, A. V. Chaskin, and K. Steinhöfel, editors, Stochastic Algorithms:
Foundations and Applications, pages 58–69, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

D. Pollard. A user’s guide to measure theoretic probability, volume 8. Cambridge
University Press, 2002.

M. Puterman. Markov decision processes: discrete stochastic dynamic
programming, volume 414. Wiley, 2009.

F. Radlinski, R. Kleinberg, and T. Joachims. Learning diverse rankings with
multi-armed bandits. In Proceedings of the 25th International Conference on
Machine Learning, pages 784–791. ACM, 2008.

A. N. Rafferty, H. Ying, and J. J. Williams. Bandit assignment for educational
experiments: Benefits to students versus statistical power. In Artificial
Intelligence in Education, pages 286–290. Springer, 2018.

A. Rakhlin and K. Sridharan. BISTRO: An efficient relaxation-based method
for contextual bandits. In Proceedings of the 33rd International Conference on
Machine Learning, pages 1977–1985, 2016.

A. Rakhlin and K. Sridharan. On equivalence of martingale tail bounds and
deterministic regret inequalities. In S. Kale and O. Shamir, editors, Proceedings
of the 2017 Conference on Learning Theory, volume 65 of Proceedings of
Machine Learning Research, pages 1704–1722, Amsterdam, Netherlands, 07–10
Jul 2017. PMLR.

H. Robbins. Some aspects of the sequential design of experiments. Bulletin of
the American Mathematical Society, 58(5):527–535, 1952.

H. Robbins and D. Siegmund. Boundary crossing probabilities for the wiener
process and sample sums. The Annals of Mathematical Statistics, pages 1410–
1429, 1970.

H. Robbins, D. Sigmund, and Y. Chow. Great expectations: the theory of optimal
stopping. Houghton-Nifflin, 7:631–640, 1971.

S. Robertson. The probability ranking principle in IR. 33:294–304, 12 1977.
R. T. Rockafellar. Convex analysis. Princeton university press, 2015.
R. T. Rockafellar and S. Uryasev. Optimization of conditional value-at-risk.

Journal of risk, 2:21–42, 2000.
C. A. Rogers. Packing and covering. Cambridge University Press, 1964.
S. M. Ross. Introduction to Stochastic Dynamic Programming. Academic Press,

New York, 1983.
P. Rusmevichientong and J. N. Tsitsiklis. Linearly parameterized bandits.

Mathematics of Operations Research, 35(2):395–411, 2010.
D. Russo. Simple Bayesian algorithms for best arm identification. In V. Feldman,

A. Rakhlin, and O. Shamir, editors, 29th Annual Conference on Learning
Theory, volume 49 of Proceedings of Machine Learning Research, pages 1417–
1418, Columbia University, New York, New York, USA, 23–26 Jun 2016. PMLR.

Bibliography 494

D. Russo and B. Van Roy. Eluder dimension and the sample complexity
of optimistic exploration. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 26, NIPS, pages 2256–2264. Curran Associates, Inc., 2013.

D. Russo and B. Van Roy. Learning to optimize via information-directed
sampling. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 27,
NIPS, pages 1583–1591. Curran Associates, Inc., 2014a.

D. Russo and B. Van Roy. Learning to optimize via posterior sampling.
Mathematics of Operations Research, 39(4):1221–1243, 2014b.

D. Russo and B. Van Roy. An information-theoretic analysis of Thompson
sampling. Journal of Machine Learning Research, 17(1):2442–2471, 2016. ISSN
1532-4435.

D. Russo, B. Van Roy, A. Kazerouni, and I. Osband. A tutorial on Thompson
sampling. arXiv preprint arXiv:1707.02038, 2017.

A. Rustichini. Minimizing regret: The general case. Games and Economic
Behavior, 29(1):224–243, 1999.

A. Salomon, J. Audibert, and I. Alaoui. Lower bounds and selectivity of weak-
consistent policies in stochastic multi-armed bandit problem. Journal of
Machine Learning Research, 14(Jan):187–207, 2013.

P. Samuelson. A note on measurement of utility. The Review of Economic Studies,
4(2):pp. 155–161, 1937.

A. Sani, A. Lazaric, and R. Munos. Risk-aversion in multi-armed bandits.
In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 25, pages 3275–3283.
Curran Associates, Inc., 2012.

Y. Seldin and G. Lugosi. An improved parametrization and analysis of the
EXP3++ algorithm for stochastic and adversarial bandits. In S. Kale and
O. Shamir, editors, Proceedings of the 2017 Conference on Learning Theory,
volume 65 of Proceedings of Machine Learning Research, pages 1743–1759,
Amsterdam, Netherlands, 07–10 Jul 2017. PMLR.

Y. Seldin and A. Slivkins. One practical algorithm for both stochastic and
adversarial bandits. In E. P. Xing and T. Jebara, editors, Proceedings of the
31st International Conference on Machine Learning, volume 32 of Proceedings
of Machine Learning Research, pages 1287–1295, Bejing, China, 22–24 Jun
2014. PMLR.

S. Shalev-Shwartz. Online learning: Theory, algorithms, and applications. PhD
thesis, The Hebrew University of Jerusalem, 2007.

S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press, 2009.

S. Shalev-Shwartz and Y. Singer. A primal-dual perspective of online learning
algorithms. Machine Learning, 69(2-3):115–142, 2007.

O. Shamir. On the complexity of bandit linear optimization. In P. Grünwald,
E. Hazan, and S. Kale, editors, Proceedings of The 28th Conference on Learning

Bibliography 495

Theory, volume 40 of Proceedings of Machine Learning Research, pages 1523–
1551, Paris, France, 03–06 Jul 2015. PMLR.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, and M. Lanctot. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):
484–489, 2016.

S. D. Silvey and B. Sibson. Discussion of dr. wynn’s and of dr. laycock’s papers.
Journal of Royal Statistical Society (B), 34:174–175, 1972.

M. Sion. On general minimax theorems. Pacific Journal of mathematics, 8(1):
171–176, 1958.

A. Slivkins. Contextual bandits with similarity information. Journal of Machine
Learning Research, 15(1):2533–2568, 2014.

A. Slivkins and E. Upfal. Adapting to a changing environment: the brownian
restless bandits. In COLT, pages 343–354, 2008.

M. Soare, A. Lazaric, and R. Munos. Best-arm identification in linear bandits. In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 27, NIPS, pages
828–836. Curran Associates, Inc., 2014.

I. M. Sonin. A generalized Gittins index for a Markov chain and its recursive
calculation. Statistics & Probability Letters, 78(12):1526–1533, 2008.

N. Srebro, K. Sridharan, and A. Tewari. On the universality of online mirror
descent. In Advances in neural information processing systems, pages 2645–2653,
2011.

K. Sridharan and A. Tewari. Convex games in banach spaces. In Proceedings of
the 23rd Conference on Learning Theory, pages 1–13. Omnipress, 2010.

G. Stoltz. Incomplete information and internal regret in prediction of individual
sequences. PhD thesis, Université Paris Sud-Paris XI, 2005.

R. E. Strauch. Negative dynamic programming. The Annals of Mathematical
Statistics, 37(4):871–890, 08 1966.

A. Strehl and M. Littman. A theoretical analysis of model-based interval
estimation. In Proceedings of the 22nd international conference on Machine
learning, ICML, pages 856–863, New York, NY, USA, 2005. ACM.

A. Strehl and M. Littman. An analysis of model-based interval estimation for
Markov decision processes. Journal of Computer and System Sciences, 74(8):
1309–1331, 2008.

A. Strehl, L. Li, E. Wiewiora, J. Langford, and M. Littman. PAC model-free
reinforcement learning. In Proceedings of the 23rd international conference on
Machine learning, pages 881–888, New York, NY, USA, 2006. ACM.

M. J. A. Strens. A Bayesian framework for reinforcement learning. In Proceedings
of the 17th International Conference on Machine Learning, ICML ’00, pages
943–950, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.
ISBN 1-55860-707-2.

Y. Sui, A. Gotovos, J. Burdick, and A. Krause. Safe exploration for optimization
with gaussian processes. In Francis Bach and David Blei, editors, Proceedings

Bibliography 496

of the 32nd International Conference on Machine Learning, volume 37 of
Proceedings of Machine Learning Research, pages 997–1005, Lille, France, 07–
09 Jul 2015. PMLR.

Q. Sun, W. Zhou, and J. Fan. Adaptive huber regression: Optimality and phase
transition. arXiv preprint arXiv:1706.06991, 2017.

R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press,
1998.

V. Syrgkanis, A. Krishnamurthy, and R. Schapire. Efficient algorithms for
adversarial contextual learning. In Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pages 2159–2168, New York, New York, USA, 2016. PMLR.

Cs. Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers,
2010.

I. Szita and A. Lőrincz. Optimistic initialization and greediness lead to polynomial
time learning in factored MDPs. In Proceedings of the 26th International
Conference on Machine Learning, ICML ’09, pages 1001–1008, New York, NY,
USA, 2009. ACM.

I. Szita and Cs. Szepesvári. Model-based reinforcement learning with nearly
tight exploration complexity bounds. In Proceedings of the 27th International
Conference on International Conference on Machine Learning, ICML’10, pages
1031–1038, USA, 2010. Omnipress. ISBN 978-1-60558-907-7.

M. Talagrand. The missing factor in Hoeffding’s inequalities. Annales de l’IHP
Probabilités et statistiques, 31(4):689–702, 1995.

J. Teevan, S. T. Dumais, and E. Horvitz. Characterizing the value of personalizing
search. In Proceedings of the 30th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 757–758, New
York, NY, USA, 2007. ACM.

A. Tewari and P. L. Bartlett. Optimistic linear programming gives logarithmic
regret for irreducible mdps. In J. C. Platt, D. Koller, Y. Singer, and S. T.
Roweis, editors, Advances in Neural Information Processing Systems 20, pages
1505–1512. Curran Associates, Inc., 2008.

A. Tewari and S. A. Murphy. From ads to interventions: Contextual bandits in
mobile health. In Mobile Health, pages 495–517. Springer, 2017.

G. Theocharous, Z. Wen, Y. Abbasi-Yadkori, and N. Vlassis. Posterior sampling
for large scale reinforcement learning. arXiv preprint arXiv:1711.07979, 2017.

W. Thompson. On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

W. R. Thompson. On the theory of apportionment. American Journal of
Mathematics, 57(2):450–456, 1935.

M. J. Todd. Minimum-volume ellipsoids: Theory and algorithms. SIAM, 2016.
J. R. R. Tolkien. The Hobbit. Ballantine Books, 1937.
L. Tran-Thanh, A. Chapman, E. Munoz de Cote, A. Rogers, and N. R.

Jennings. EpsilonâĂŞfirst policies for budgetâĂŞlimited multi-armed bandits.

Bibliography 497

In Proceedings of the 24th AAAI Conference on Artificial Intelligence, AAAI,
pages 1211–1216, 2010.

L. Tran-Thanh, A. Chapman, A. Rogers, and N. R. Jennings. Knapsack based
optimal policies for budget-limited multi-armed bandits. In Proceedings of the
26th AAAI Conference on Artificial Intelligence, AAAI’12, pages 1134–1140.
AAAI Press, 2012.

J. A. Tropp. An introduction to matrix concentration inequalities. Foundations
and Trends® in Machine Learning, 8(1-2):1–230, 2015.

J. N. Tsitsiklis. A short proof of the Gittins index theorem. The Annals of
Applied Probability, pages 194–199, 1994.

A. B. Tsybakov. Introduction to nonparametric estimation. Springer Science &
Business Media, 2008.

C. Ionescu Tulcea. Mesures dans les espaces produits. Atti Accad. Naz. Lincei
Rend, 7:208–211, 1949–50.

E. Uchibe and K. Doya. Competitive-cooperative-concurrent reinforcement
learning with importance sampling. In Proceedings of the International
Conference on Simulation of Adaptive Behavior: From Animals and Animats,
pages 287–296, 2004.

A. W. Van Der Vaart and J. A. Wellner. Weak convergence. In Weak Convergence
and Empirical Processes, pages 16–28. Springer, 1996.

M. Valko. Bandits on graphs and structures, 2016.
M. Valko, A. Carpentier, and R. Munos. Stochastic simultaneous optimistic

optimization. In Sanjoy Dasgupta and David McAllester, editors, Proceedings
of the 30th International Conference on Machine Learning, volume 28 of
Proceedings of Machine Learning Research, pages 19–27, Atlanta, Georgia,
USA, 17–19 Jun 2013a. PMLR.

M. Valko, N. Korda, R. Munos, I. Flaounas, and N. Cristianini. Finite-time
analysis of kernelised contextual bandits. In Proceedings of the 29th Conference
on Uncertainty in Artificial Intelligence, UAI, pages 654–663, Arlington,
Virginia, United States, 2013b. AUAI Press.

M. Valko, R. Munos, B. Kveton, and T. Kocák. Spectral bandits for smooth
graph functions. In E. P. Xing and T. Jebara, editors, Proceedings of the
31st International Conference on Machine Learning, volume 32 of Proceedings
of Machine Learning Research, pages 46–54, Bejing, China, 22–24 Jun 2014.
PMLR.

S. van de Geer. Empirical Processes in M-estimation, volume 6. Cambridge
university press, 2000.

D. van der Hoeven, T. van Erven, and W. Kot lowski. The many faces of
exponential weights in online learning. arXiv preprint arXiv:1802.07543, 2018.

H. P. Vanchinathan, G. Bartók, and A. Krause. Efficient partial monitoring with
prior information. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,
and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 27, NIPS, pages 1691–1699. Curran Associates, Inc., 2014.

Bibliography 498

L. Vandenberghe, S. Boyd, and S.-P. Wu. Determinant maximization with
linear matrix inequality constraints. SIAM journal on matrix analysis and
applications, 19(2):499–533, 1998.

P. Varaiya, J. Walrand, and C. Buyukkoc. Extensions of the multiarmed bandit
problem: The discounted case. IEEE transactions on automatic control, 30(5):
426–439, 1985.

C. Vernade, O. Cappé, and V. Perchet. Stochastic bandit models for delayed
conversions. arXiv preprint arXiv:1706.09186, 2017.

C. Vernade, A. Carpentier, G. Zappella, B. Ermis, and M. Brueckner. Contextual
bandits under delayed feedback. arXiv preprint arXiv:1807.02089, 2018.

S. Villar, J. Bowden, and J. Wason. Multi-armed bandit models for the optimal
design of clinical trials: benefits and challenges. Statistical science: a review
journal of the Institute of Mathematical Statistics, 30(2):199–215, 2015.

W. Vogel. An asymptotic minimax theorem for the two armed bandit problem.
The Annals of Mathematical Statistics, 31(2):444–451, 1960.

J. von Neumann. Zur theorie der gesellschaftsspiele. Mathematische annalen, 100
(1):295–320, 1928.

V. G. Vovk. Aggregating strategies. Proceedings of Computational Learning
Theory, 1990.

P. L Wawrzynski and A. Pacut. Truncated importance sampling for reinforcement
learning with experience replay. In Proceedings of the International
Multiconference on Computer Science and Information Technology, pages 305–
315, 2007.

R. Weber. On the Gittins index for multiarmed bandits. The Annals of Applied
Probability, 2(4):1024–1033, 1992.

R. Weber and G. Weiss. On an index policy for restless bandits. Journal of
Applied Probability, 27(3):637–648, 1990.

M. J. Weinberger and E. Ordentlich. On delayed prediction of individual sequences.
In Information Theory, 2002. Proceedings. 2002 IEEE International Symposium
on, page 148. IEEE, 2002.

T. Weissman, E. Ordentlich, G. Seroussi, and S. Verdú. Inequalities for the `1
deviation of the empirical distribution. Technical report, Hewlett-Packard
Labs, 2003.

Z. Wen, B. Kveton, and A. Ashkan. Efficient learning in large-scale combinatorial
semi-bandits. In F. Bach and D. Blei, editors, Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, pages 1113–1122, Lille, France, 07–09 Jul 2015.
PMLR.

P. Whittle. Multi-armed bandits and the Gittins index. Journal of the Royal
Statistical Society (B), pages 143–149, 1980.

P. Whittle. Restless bandits: Activity allocation in a changing world. Journal of
applied probability, 25(A):287–298, 1988.

H. Wu and X. Liu. Double Thompson sampling for dueling bandits. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances

Bibliography 499

in Neural Information Processing Systems 29, NIPS, pages 649–657. Curran
Associates, Inc., 2016.

Y. Wu, A. György, and Cs. Szepesvári. Online learning with gaussian payoffs
and side observations. In Advances in Neural Information Processing Systems
28, NIPS, pages 1360–1368. Curran Associates Inc., 2015.

Y. Wu, R. Shariff, T. Lattimore, and Cs. Szepesvári. Conservative bandits. In
M. Balcan and K. Weinberger, editors, Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pages 1254–1262, New York, New York, USA, 20–22 Jun 2016. PMLR.

Y. Xia, H. Li, T. Qin, N. Yu, and T.-Y. Liu. Thompson sampling for budgeted
multi-armed bandits. In Proceedings of the 24th International Conference
on Artificial Intelligence, IJCAI, pages 3960–3966. AAAI Press, 2015. ISBN
978-1-57735-738-4.

Y. Yao. Some results on the Gittins index for a normal reward process. In Time
Series and Related Topics, pages 284–294. Institute of Mathematical Statistics,
2006.

Y. Yue and T. Joachims. Interactively optimizing information retrieval systems as
a dueling bandits problem. In Proceedings of the 26th International Conference
on Machine Learning, pages 1201–1208. ACM, 2009.

Y. Yue and T. Joachims. Beat the mean bandit. In L. Getoor and T. Scheffer,
editors, Proceedings of the 28th International Conference on Machine Learning,
ICML, pages 241–248, New York, NY, USA, June 2011. ACM.

Y. Yue, J. Broder, R. Kleinberg, and T. Joachims. The k-armed dueling bandits
problem. In Conference on Learning Theory, 2009.

M. Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. In Proceedings of the 20th International Conference on Machine
Learning, ICML, pages 928–935. AAAI Press, 2003.

M. Zoghi, S. Whiteson, R. Munos, and M. Rijke. Relative upper confidence
bound for the k-armed dueling bandit problem. In E. P. Xing and T. Jebara,
editors, Proceedings of the 31st International Conference on Machine Learning,
volume 32 of Proceedings of Machine Learning Research, pages 10–18, Bejing,
China, 22–24 Jun 2014. PMLR.

M. Zoghi, Z. Karnin, S. Whiteson, and M. Rijke. Copeland dueling bandits. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems 28, NIPS, pages 307–315.
Curran Associates, Inc., 2015.

M. Zoghi, T. Tunys, M. Ghavamzadeh, B. Kveton, Cs. Szepesvári, and Z. Wen.
Online learning to rank in stochastic click models. In Proceedings of the 34th
International Conference on Machine Learning, volume 70 of PMLR, pages
4199–4208, 2017.

S. Zong, H. Ni, K. Sung, R. N. Ke, Z. Wen, and B. Kveton. Cascading bandits for
large-scale recommendation problems. In Proceedings of the 32nd Conference
on Uncertainty in Artificial Intelligence, UAI, 2016.

Index

D-optimal design, 242
G-optimal design, 241
χ-squared distance, 182
σ-algebra, 21
, 7, 18
a posteriori, 27
a priori, 27
absolutely continuous, 37, 58, 177
action gap, 56
action space, 438
adapted, 26
adversarial bandit, 12, 139, 141
affine hull, 415
anytime, 88
asymptotic optimality, 121, 130, 195,

356, 368, 405, 435
Bachelier-Levy formula, 123
bandits with expert advice, 211
Bayes law, 27
Bayesian regret, 55, 372
Bayesian upper confidence bound, 405
belief space, 458
Bellman optimality equation, 443
Bernoulli bandit, 53, 114
Bernoulli distribution, 32
Bernstein’s inequality, 74, 79, 461
best arm identification

fixed confidence, 361
beta distribution, 378
bias-variance tradeoff, 208
Borel, 22
Borel isomorphism, 44
Borel space, 44

Bregman divergence, 297
Brownian motion, 122, 344
canonical bandit model, 57, 185
cascade model, 346
categorical distribution, 452
Catoni’s estimator, 108
cell decomposition, 415
Cesàro sum, 443, 458
Chernoff bound, 126, 355
click model, 346
communicating MDP, 441
concave, 281
conditional entropy, 402
conditional expectation, 32
conditional probability, 26
confidence level, 97
conjugate prior, 377
consistent policy, 193, 271
context, 14
controlled Markov environment, 462
convex optimization, 296
counting measure, 38, 183, 185
covering, 232, 239
Cramer–Chernoff method, 67, 160, 234,

235, 238
cumulant generating function, 134
cumulative distribution function, 32
cumulative generating function, 69
data-dependent bound, 215, 217
degenerate action, 415
descriptive theory, 60
design matrix, 241
deviation matrix, 464
diameter, 441

INDEX 501

differential value function, 443
discount factor, 342
discounting, 342, 386, 391
domain of convex function, 280
dominated action, 415
doubling trick, 88, 152, 261, 307
dual norm, 302
easy partial monitoring problem, 414
empirical Bernstein, 104, 107
empirical process, 81
empirical risk minimization, 217
entropy, 175, 183, 402
environment, 10
epoch-greedy algorithm, 220
essentially smooth, 283
essentially strictly convex, 283
Exp3, 145, 209, 290, 292, 296, 309, 325,

337, 339, 413
Exp3-IX, 158, 200, 203, 325, 344
Exp3.P, 344
Exp3.S, 344
Exp4, 213, 338
expectation, 29
expectation operator, 39
exponential family, 114, 133, 135, 197,

363, 378, 405
exponential weighting, 145
exponential weights, 329
Exponential weights algorithm, 150
extended real line, 280
feedback matrix, 412
Fenchel dual, 281, 329
filtered probability space, 26
filtration, 26, 80, 134, 159, 234, 240, 255,

381
finite additivity, 21
first order bound, 162
first-order optimality condition, 284
Fisher information, 188
Fixed Share, 344
follow the leader, 297, 308
follow the perturbed leader, 155, 216,

329, 406

follow the regularized leader, 296
Fubini’s theorem, 38, 62
full information, 150, 289, 344
functional, 39
fundamental matrix, 464
gain, 442
generalized linear model, 228
Gittins index, 343, 386
globally observable, 417
gradient descent, 298
Gram matrix, 271
Hahn decomposition, 30
hard partial monitoring problem, 414
Hardy–Littlewood, 388
heavy tailed, 74
Hedge, 150
Hellinger distance, 182
high probability bounds, 157
history, 10
Hoeffding’s inequality, 80, 355
Hoeffding’s lemma, 74, 127, 150, 240
Hoeffding–Azuma, 239, 427
hopeless partial monitoring problem,

414
image, 431
immediate regret, 56
implicitly normalized forecaster, 312
importance-weighted estimator, 143,

144, 162, 217, 304
independent events, 28
index, 386
index policy, 386
indicator function, 22
information directed sampling, 407
instance-dependent bound, 217
integrable, 30
Ionescu Tulcea, 59
Jensen’s inequality, 37, 281
John’s theorem, 244
Jordan curve theorem, 432
Jordan-Brouwer separation theorem,

426, 432
Kahan’s algorithm, 145

INDEX 502

kernel, 431
kernel trick, 227
Kiefer–Wolfowitz Theorem, 242
Kullback-Leiblier divergence, 175
Laplace’s method, 235
law of the iterated logarithm, 105, 117,

255
lazy mirror descent, 307
learner, 10
learning rate, 145, 159, 215, 290, 291,

297, 298, 339, 423
adaptive, 307, 310, 311

least-squares, 231
Lebesgue σ-algebra, 36
Lebesgue integral, 29
Legendre function, 283, 297, 329
light tailed, 74
linear subspace, 431
link function, 228
locally observable, 417
log partition function, 135, 378
log-concave, 292
loss matrix, 412
Markov chain, 423, 440
Markov kernel, 45
Markov policy, 440
Markov process, 49
Markov property, 457
martingale, 47, 75, 79, 234
martingale difference process, 234
martingale noise, 234
maximal end-component, 466
maximal inequality, 117
maximum end-component, 467
measurable set, 21
measurable space, 21
measure, 21
median-of-means, 108
memoryless deterministic policy, 439
memoryless policy, 439
metric entropy, 239
minimax optimal, 170
minipage, 116

mirror descent, 150, 296, 329, 339
MOSS, 114, 116
multiclass classification with bandit

feedback, 218
multitask bandit, 266, 326
mutual information, 402
Nash equilibrium, 308
negentropy, 283, 299, 327, 339
neighboring actions, 415
nonoblivious, 151, 307
nonparametric, 53
nonstationary, 151
nonstationary bandit, 61
null set, 36
oblivious, 151, 302, 307
one-armed bandit, 64, 114, 381
online gradient descent, 298
online learning, 16, 217, 257, 296
online linear optimization, 296
online-to-confidence set conversion, 256
operator, 39
optimal design, 241
optimal stopping, 382
optimal value function, 443
optimization oracle, 216, 333
optional stopping theorem, 47
orthogonal complement, 431
outcome space, 19, 375
packing, 239
parameter noise, 316
parameter space, 375
parametric, 53
Pareto optimal, 173
Pareto optimal action, 415
partial monitoring, 411
partially observable Markov Decision

Prcoesses, 458
peeling device, 117
permutation, 59, 345
Pinsker’s inequality, 126, 134, 179, 181,

183, 195, 302
point-locally observable, 433
polar, 280, 315, 318

INDEX 503

policy, 10, 57
policy iteration, 458
policy regret, 151
POMDPs, 458
position-based model, 346
potential function, 297
predictable, 26
prediction with expert advice, 150
preimage, 20
premetric, 126
prescriptive theory, 60
prior, 372
prior variance, 377
probability kernel, 45, 375
probability measure, 21
probability space, 21
process, 26
product measure, 38, 58
product space, 38
projective, 45
pseudo regret, 61
pseudo regret, random, 201
pushforward, 22
quadratic variation, 163
Radon-Nikodym derivative, 37, 58, 62,

185
random regret, 61
random variable, 20
ranked bandit model, 355
reactive, 151
reduction, 314, 361
regret, 10

nonstationary, 338
tracking, 338

regret decomposition lemma, 56
regularizer, 297
relative entropy, 125, 136, 175, 283
restless bandit, 343
retirement policy, 64
ridge regression, 231
right stochastic, 423
right stochastic matrix, 423, 438
semibandit, 324

separation oracle, 292, 446
Sequential Halving algorithm, 366
signal variance, 377
signed measure, 21
similarity function, 211
simple function, 30
simple regret, 360
Snell envelope, 383
span, 443
standard optimal stopping, 382
state space, 438
static experts, 216
stationary transition matrix, 442, 464
stochastic process, 45
stopping time, 47, 92, 191, 255, 266,

361, 365, 369, 381, 441
strictly convex, 281
strongly connected component, 466
strongly connected MDP, 441
structured bandit, 54
sub-σ-algebra, 21
submartingale, 47
suboptimality gap, 56
sufficient statistic, 135, 378
supermartingale, 47, 238, 255
supervised learning, 211
support, 39, 54, 114, 142, 217, 245, 292,

328, 461
support function, 329, 335
supporting hyperplane, 285
Taylor’s theorem, 235
Thompson sampling, 61, 114
total variation distance, 182
Track-and-Stop algorithm, 364
transductive learning, 218
transition matrix, 442
trivial events, 41
trivial partial monitoring problem, 414
uniform exploration, 360
union bound, 69
unnormalized negentropy, 309
unrealizable, 267, 317
unstructured bandit, 54

INDEX 504

unstructured bandits, 193
Varaiya’s algorithm, 392
von Neumann-Morgenstern theorem, 60
weak neighbor, 433
worst case regret, 170

