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Instructions

• Write your name on top of this question sheet, attach your solution sheets to it and

return everything together.

• The total time for this exam is 3 hours. The exam has 4 questions, for a total of

45 points. Partial points will be awarded, so please attempt as much as you can.

• Feel free to use your notes for this exam.

• You can be liberal with manipulating universal constants; errors in this respect

will be tolerated.

• Academic dishonesty will not be tolerated.

Useful facts and definitions:

• ‖x‖p = (
∑

i |xi|
p)1/p for p > 0, and a ≥ b ≥ 1 ⇒ ‖x‖a ≤ ‖x‖b ∀x ∈ R

d.

• The function x 7→ ‖x‖2p is 2(p−1)-strongly convex with respect to the ‖·‖p norm for any

1 < p ≤ 2.

• A convex, differentiable function f : Rd → R satisfying ‖∇f(x)‖q ≤ ℓ is ℓ-Lipschitz

continuous with respect to ‖·‖p, with 1 < p < ∞ and q = p/(p− 1).

• Chi-square upper bound for KL divergence: For probability distributions p and q over a

finite alphabet [n], KL(p||q) ≤ Dχ2(p, q) =
∑n

i=1
(pi−qi)2

qi
.

• Bernoulli KL divergence: For 0 < p, q < 1/2, D(Ber(p)||Ber(1− q)) ≥ log 1
2.4max{p,q}

.

• A useful change of measure inequality (alternative to the one we saw in class): For

probability distributions P and Q on the same space and an event E, P [E] + Q [Ec] ≥
1
2
exp (−KL(P ||Q)).
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1. Worst case regret for Explore-Then-Commit

Consider the Explore-Then-Commit bandit algorithm1, that we studied in class, run on a

2-armed bandit with Bernoulli-distributed rewards and parameters (means) µ1, µ2 ∈ [0, 1],
a time horizon of T and an initial exploration phase of ǫT rounds with ǫ ∈ [0, 1]. Let

∆ = µ1 − µ2 > 0.

(a) (5 points) Show that there is a choice of ǫ, depending only on the time horizon T
and not depending on ∆, under which the regret of the algorithm is bounded above by

c(∆ + T 2/3), where c > 0 is a universal constant.2

(b) (5 points) Now suppose the commitment time is allowed to be data-dependent, which

means the algorithm explores each arm alternately until some condition based on the

observations is met, after which it commits to a single arm for the remainder. De-

sign a condition such that the regret of the resulting algorithm can be bounded by

c′
(

∆+ log T
∆

)

where c′ is a universal constant. Note: Your condition should only

depend on the observed rewards and the time horizon, and not on µ1, µ2 or ∆.

(c) (10 points) Lower bound for general non-adaptive-explore-then-exploit algorithms.

Consider a general two-phase algorithm that operates as follows: The first phase lasts

for f(T ) rounds for a fixed function f (i.e., its length depends only on T and not on

∆). The algorithm pre-decides the arm to pull at each of the f(T ) rounds (possibly

with internal randomness) in this phase, depending on only T again. Based on only

the data D collected in phase 1, the algorithm picks an arm I which is played in each

of the remaining rounds f(T ) + 1, . . . , T (phase 2).

Show that for any such two-phase algorithm, there exists a 2-armed stochastic ban-

dit instance with Bernoulli-distributed rewards for which the algorithm incurs at least

cT 2/3 regret where c is some universal constant. [Hint: You can try considering two

instances with arm means
(

1
2
, 1
2
− ǫ
)

and
(

1
2
, 1
2
+ ǫ
)

. Either the usual change of mea-

sure inequality from class or the alternative inequality provided here, along with the

explicit form of the regret, should give suitable ways of adjusting ǫ for getting large

regret on one of these two instances.]

2. A new algorithm for prediction with expert advice

This problem presents an alternative to the Exponential Weights algorithm for prediction

with experts with the same optimal worst case regret.

Suppose Follow The Regularized Leader (FTRL) is run with the decision space being the

m-simplex ∆m = {x ∈ R
m : ∀i xi ≥ 0,

∑

i xi = 1}, the regularizer being R(x) = 1
η
‖x‖2p

where p = log(m)
log(m)−1

, and a sequence of T linear loss functions on R
m with coefficients

bounded in [0, 1].

(a) (2 points) Write a regret bound for the algorithm (w.r.t. the single best point in ∆m

in hindsight) assuming that each loss function is ℓ-Lipschitz continuous w.r.t. some

norm ‖·‖ and the regularizer R is σ-strongly convex w.r.t. the same norm ‖·‖.

1The algorithm simply explores round-robin in an initial exploration phase and commits to the best-looking

arm for the remainder of time.
2This is known to be the best problem-independent regret rate with T that non-data (and non-problem) depen-

dent exploration with commitment can buy.
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(b) (8 points) Find a suitable norm ‖·‖ and values for σ, ℓ, η to get the best possible regret

in terms of T and m. [Hint: Use the given facts about properties of the ‖·‖p norm.]

3. Studying Stochastic Gradient Descent using Online Gradient Descent

Suppose you want to minimize a differentiable convex function f : X ⊆ R
d → R over

X . Instead of being able to observe gradients at every chosen point x, you can only re-

ceive a stochastic, independent unbiased gradient G(x), with E
[

G(x)
∣

∣ x
]

= ∇f(x) and

E
[

‖G(x)‖22
∣

∣ x
]

≤ b2 ∀x ∈ X . (Note: The expectation is over the independent, internal

randomness of the subroutine generating the stochastic gradient.) Letmaxu,v∈X ‖u− v‖2 ≤
D.

Consider running the online gradient descent algorithm with the successive stochastic gra-

dients received as follows: x1 = argminx∈X ‖x‖22, ∀s ≥ 1 : xs+1 = ΠX (xs − ηG(xs))
where ΠX denotes projection onto X w.r.t. the ‖·‖2 norm. Suppose we run t such iterations

and output the average iterate x̃t =
1
t

∑t
s=1 xs as a candidate minimizer for f . Let x∗ ∈ X

be a true minimizer of f over X .

(a) (2 points) Viewing the sequence of (noisy) gradients Gt = G(xt), t = 1, 2, . . ., as

parameterizing a sequence of linear loss functions (ft(x) = GT
t x ∀x ∈ X ), write a

(non-stochastic) regret bound for the algorithm’s choices x1, x2, . . . against this loss

function sequence.

(b) (8 points) Using the conclusion above, bound the final error E [f (x̃t)]−f(x∗). [Hint:

Use the convexity of f and the first and second moment information for G(x).]

4. (5 points) Highest Lower Confidence Bound algorithm for bandits

Consider the following ‘conservative’ variant of the upper confidence bound (UCB) algo-

rithm for stochastic multi-armed bandits with rewards in [0, 1]. The algorithm plays, at

each time t after an initial round-robin phase, the arm with highest lower confidence bound

on its mean reward:

It = argmax
i∈[K]

(

µ̂i(t)−

√

2 log t

Ni(t)

)

,

where µ̂i(t) and Ni(t) denote the observed reward sample mean and number of plays from

arm i upto (and not including) time t, respectively. What kind of regret3 (in terms of the

time horizon T ) does this algorithm get and why? (Argue as explicitly as you can.)

3expected pseudo-regret as usual


