
E1 245 - Online Prediction and Learning, Aug-Dec 2019

Homework #1

1. Exponential inequalities

Prove the following inequalities (useful in showing mistake bounds for the Weighted-Majority

algorithm, for instance):

(a) ∀x ∈ R ex ≥ 1+ x

(b) ∀0 ≤ x ≤ 1
2

− log(1− x)≤ x+ x2

2. Generalizing HALVING

We showed that the HALVING algorithm for binary prediction makes at most log2 N mis-

takes using the advice of N experts whenever some expert is always predicting correctly.

Show that a “straightforward” modification of MAJORITY makes at most O((m+1) log2 N)
mistakes1 whenever the best expert makes m ≥ 0 mistakes. (Hint: When there is no best

expert, think about how HALVING can “crash”, and a very simple way to make it carry on.)

3. Optimality of HALVING

For the problem of 1-bit prediction with expert advice, prove the following statement that

establishes that the log2 N mistake bound for HALVING, with a perfect expert, cannot be

improved.

Given any deterministic 1-bit prediction algorithm (i.e., an algorithm that issues a non-

random prediction at each round) with N = 2n experts, there exist 1-bit outcomes y1, . . . ,yn,

and 1-bit expert advice xti ∈ {0,1}, 1 ≤ i ≤ N, 1 ≤ t ≤ n, on which (a) some expert makes

no mistakes, and (b) the given algorithm makes n mistakes.

4. Smarter Exponential Weights when the best expert’s loss is known beforehand

Consider prediction with expert advice with a convex loss (in the first argument) bounded

in [0,1]. Suppose you know in advance what the best expert’s total loss is going to be at

time T (this could be much less than O(T ), e.g., a constant). The aim of this exercise is to

see if this information a priori can be used to learn faster and reduce regret. (Recall that we

already showed an analogous performance bound in the mistake count or 0-1 loss setting for

the Weighted Majority algorithm, in terms of the mistake performance of a good expert.)

(a) First, prove that logE[esX ]≤ (es−1)E[X ] for any random variable X ∈ [0,1].

(b) Let the experts be indexed by {1,2, . . . ,K}. Use the previous result instead of (the

weaker) Hoeffding’s inequality to show that LT (ExpWts)≤ (ηL∗
T + logK)/(1− e−η)

for ExpWeights run with parameter η > 0. Here, LT (ExpWts) is the cumulative loss

of the algorithm and L∗
T := mini=1,...,K Li,T is the cumulative loss of the best expert,

over T rounds.

(c) Use the elementary inequality η ≤ (eη − e−η)/2 in the above bound to obtain a fur-

ther bound. Then, assuming that the value of L∗
T is known beforehand, show that

setting the ExpWeight learning rate to η := log(1+
√

(2logK)/L∗
T ) gives regret at

most
√

2L∗
T logK + logK, which can be significantly small when the best expert’s cu-

mulative loss is small.

1Big-Oh notation: We say that f (m) = O(g(m)) if there exist constants α , m0 such that f (m) ≤ αg(m) ∀m ≥
m0.
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(d) What if the best expert’s loss L∗
t is not known beforehand, but available only sequen-

tially, i.e., at time t for each t? Using a doubling trick idea, can you design an algorithm

that does not require advance knowledge of the cumulative loss of the best expert, and

show that its regret bound is only worse by a constant factor compared to the one in

part (c) above?

5. The doubling trick for obtaining “anytime” learning algorithms

Suppose an online learning algorithm with a parameter η > 0 enjoys a regret bound of
β
η + γηT for a total of T rounds, where β and γ are some positive constants (think of the

Exponential Weights forecaster for instance). If the time horizon T is known in advance,

then setting η :=
√

β
γT

minimizes the bound. Consider the following tweak to obtain an

algorithm (and bound) that does NOT require knowing the horizon T beforehand (i.e., an

“anytime” algorithm). Time is divided into periods: the m-th period is formed by rounds

2m,2m+1, . . . ,2m+1−1, where m = 0,1,2, . . . In every m-th period, starting at round 2m, the

original algorithm is re-initialized and run with a parameter ηm :=
√

β
γ2m . Prove that for any

T , this modified algorithm enjoys a regret bound which is at most
√

2√
2−1

times the original

optimal regret bound.
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