
E1 245 - Online Prediction and Learning, Aug-Dec 2019

Homework #2

1. Exp-concavity and common loss functions

(a) Show that if for a y ∈ Y and η > 0 the function F(z) := e−ηl(z,y) is concave, then

l(z,y) is a convex function of z.

(b) Show that the relative entropy loss l(x,y) := y log
y
x
+ (1− y) log

1−y
1−x

, x,y ∈ [0,1], is

1-exp-concave for all valid values1 of y.

(c) Show that the squared loss l(x,y) := (x−y)2, x,y ∈ [0,1], is 1
2
-exp-concave for all valid

values of y.

(d) Show that the absolute value loss l(x,y) := |x − y|, x,y ∈ [0,1], cannot be η-exp-

concave for any η > 0.

2. Improved regret with exp-concave loss functions

Show that if the Exponential Weights algorithm is run in the prediction-with-expert-advice

setting with a σ -exp-concave loss function l : D ×Y → [0,1] (over D) and the learning rate

η = σ > 0 over N experts, then the algorithm enjoys the regret bound

T

∑
t=1

l(pt,yt)− min
i∈[N]

T

∑
t=1

l( fi,t,yt)≤
logN

σ
.

(note: regret does not grow with time T !) [Hint: Look at the place where Hoeffding’s lemma

was applied for the general convex loss function case.]

3. Linear programming using Exponential-Weights

Suppose we want to solve the following linear feasibility problem2: Given vectors a1, . . . ,am

in R
d , we want to find a linear half-space that contains all these vectors. More precisely, we

would like to find a vector x 6= 0 with xT a j ≥ 0 ∀ j ∈ [m]. Without loss of generality, we can

also include the condition 1T x = 1 in the specification3 for x, so that our search is over all

probability distributions on the dimensions [d].

Suppose there really exists a vector x∗ such that xT
∗ a j ≥ ε > 0 for all j ∈ [m] (this is often

called a large margin condition in machine learning). Consider the following procedure for

the linear feasibility problem, based on the Exponential-Weights online algorithm.

initialize: experts {1,2, . . . ,d}, x1 as the uniform distribution over

the experts, t = 1, ρ = max j ||a j||∞, and η > 0

while min1≤ j≤d xT
t a j < 0:

(a) set lt := −a jt/ρ, where jt ∈ [d] is some constraint that is

violated by the current distribution xt, i.e., xT
t a jt < 0

(b) run one iteration of Exponential-Weights(η), on the experts,

with the loss vector as lt, i.e., set xt+1(i) ∝ xt(i)exp(−η lt(i))
∀1 ≤ i ≤ d, such that 1T xt+1 = 1

(c) increment t to t +1

end while

return xt as a feasible solution

1By convention, we take 0
0

:= 0 & 0 · log0 := 0.
2This is actually quite a general form of linear programming problem.
31 denotes the all-ones vector in R

d .
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Intuitively, this procedure at each step feeds a ‘hard’ example (a point a j that is on the wrong

side of the current half space xt , with large loss) to Exponential-Weights, i.e., it rewards

constraint satisfaction and penalizes constraint violation to get Exponential-Weights to learn

a good half space.

(a) Note that by definition, each loss vector lt ∈ [−1,1]d. It is a standard fact that Exponential-

Weights enjoys the regret bound

T

∑
t=1

lT
t xt − min

x∈∆d

T

∑
t=1

lT
t x ≤ ηT +

log(d)

η
,

for any sequence of loss vectors l1, . . . , lT in [−1,1]d, where ∆d denotes the set of all

probability distribution vectors on [d]. Describe how you would use this to adjust the

learning rate η in the procedure above, so that the number of rounds taken by it to

terminate is bounded above by a suitable function of ρ , d and ε .

(b) What if the linear feasibility problem admits a solution x∗ but its margin ε is unknown?

How would you modify the algorithm above that assumes knowledge of ε , to get an

algorithm that still terminates, with a feasible solution, in the same number of rounds

as above (upto constants)?

4. Sequential probability estimation

Suppose you (the learner) are observing an arbitrary bit sequence y1,y2, . . ., yi ∈ {0,1},

generated from some source (think, e.g., a digital voice signal or someone typing on a key-

board). The following occurs at each round t ≥ 1: You guess a probability distribution

p̂t ≡ (p̂t(0), p̂t(1)) ∈ {(p,1− p) : 0 ≤ p ≤ 1} for the next bit yt . Following your guess, yt is

revealed and you suffer a loss of log 1
p̂t(yt)

.

Consider competing in this guessing game with the class of all constant experts. A constant

expert is a rule parameterized by p ∈ [0,1] that always guesses the probability distribution

(p,1− p) (the analog of a constantly rebalancing portfolio for 2 stocks in the sequential

investment problem).

Write down the Exponential Weights prediction algorithm with uniform initial weights and

learning rate η = 1. Can you express its prediction at each time t in the simplest possible

form4? You may use the identity

∫ 1

0
qn1(1−q)n2 dq =

1

(n1 +n2 +1)
(

n1+n2
n1

) ,

for any integers n1,n2 ≥ 0, and where
(

a
b

)

is the standard binomial coefficient
(a+b)!

a!b!
.

5. Sequential probability estimation – continued

With regard to the previous question, can you show that the (worst case) regret of the Expo-

nential Weights algorithm you wrote down (with η = 1) in T rounds with respect to all the

constant experts, for any sequence of bits y1, . . . ,yT , is no more than log(1+T )?

4implementable using finitely many arithmetic operations
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