E1 245 - Online Prediction and Learning, Aug-Dec 2019
Homework #2

1. Exp-concavity and common loss functions

(a) Show that if for a y € % and 1 > 0 the function F(z) := ¢ 1&) is concave, then
I(z,y) is a convex function of z.

(b) Show that the relative entropy loss (x,y) := ylog? + (1 —y) log+=2, x,y € [0,1], is

1—x°
1-exp-concave for all valid values' of y.
(c) Show that the squared loss I(x,y) := (x—v)?, x,y € [0, 1], is %—exp—concave for all valid
values of y.

(d) Show that the absolute value loss [(x,y) := |x —y|, x,y € [0,1], cannot be n-exp-
concave for any n > 0.

2. Improved regret with exp-concave loss functions
Show that if the Exponential Weights algorithm is run in the prediction-with-expert-advice
setting with a o-exp-concave loss function / : ¥ x % — [0, 1] (over 2) and the learning rate
N = o > 0 over N experts, then the algorithm enjoys the regret bound
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(note: regret does not grow with time 7'!) [Hint: Look at the place where Hoeffding’s lemma
was applied for the general convex loss function case. |

3. Linear programming using Exponential-Weights
Suppose we want to solve the following linear feasibility problem?: Given vectors aj, ...,
in R?, we want to find a linear half-space that contains all these vectors. More precisely, we
would like to find a vector x # 0 with x”a; > 0 Vj € [m]. Without loss of generality, we can
also include the condition 17x = 1 in the specification® for x, so that our search is over all
probability distributions on the dimensions [d].

Suppose there really exists a vector x, such that x”a; > € > 0 for all j € [m] (this is often
called a large margin condition in machine learning). Consider the following procedure for
the linear feasibility problem, based on the Exponential-Weights online algorithm.

initialize: experts {1,2,...,d}, x; as the uniform distribution over
the experts, t=1, p=max;|laj|le, and >0

while minj<j<gx/a; <O0:

(a) set Iy := —a;/p, where j; € [d] is some constraint that is
violated by the current distribution x, i.e., xtTaj,<O

(b) run one iteration of Exponential-Weights(m), on the experts,
with the loss vector as I, i.e., set x41(i) o  x(i)exp(—nmk(i))
V1<i<d, such that 1Tx =1

(¢) increment t to t+1

end while
return x; as a feasible solution

By convention, we take % =0&0-log0:=0.
2This is actually quite a general form of linear programming problem.
31 denotes the all-ones vector in R?.



Intuitively, this procedure at each step feeds a ‘hard” example (a point a; that is on the wrong
side of the current half space x;, with large loss) to Exponential-Weights, i.e., it rewards
constraint satisfaction and penalizes constraint violation to get Exponential-Weights to learn
a good half space.

(a) Note that by definition, each loss vector [, € [—1, l]d. It is a standard fact that Exponential-
Weights enjoys the regret bound
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for any sequence of loss vectors /y,...,I7 in [—1, l]d, where A; denotes the set of all

probability distribution vectors on [d]. Describe how you would use this to adjust the
learning rate 1) in the procedure above, so that the number of rounds taken by it to
terminate is bounded above by a suitable function of p, d and €.

(b) What if the linear feasibility problem admits a solution x, but its margin € is unknown?
How would you modify the algorithm above that assumes knowledge of €, to get an
algorithm that still terminates, with a feasible solution, in the same number of rounds
as above (upto constants)?

4. Sequential probability estimation
Suppose you (the learner) are observing an arbitrary bit sequence yj,y2,..., yi € {0,1},
generated from some source (think, e.g., a digital voice signal or someone typing on a key-
board). The following occurs at each round ¢ > 1: You guess a probability distribution
pr = (p:(0),p:(1)) € {(p,1 —p) : 0 < p < 1} for the next bit y,. Following your guess, y; is

revealed and you suffer a loss of log ﬁ

Consider competing in this guessing game with the class of all constant experts. A constant
expert is a rule parameterized by p € [0, 1] that always guesses the probability distribution
(p,1 — p) (the analog of a constantly rebalancing portfolio for 2 stocks in the sequential
investment problem).

Write down the Exponential Weights prediction algorithm with uniform initial weights and
learning rate 7 = 1. Can you express its prediction at each time ¢ in the simplest possible
form*? You may use the identity
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for any integers ny,n; > 0, and where (Z) is the standard binomial coefficient

5. Sequential probability estimation — continued
With regard to the previous question, can you show that the (worst case) regret of the Expo-
nential Weights algorithm you wrote down (with 1 = 1) in 7 rounds with respect to all the
constant experts, for any sequence of bits yj,...,yr, is no more than log(1+7)?

“implementable using finitely many arithmetic operations
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