
E1 245 - Online Prediction and Learning, Aug-Dec 2019

Homework #4

1. Hoeffding’s inequality

Prove the following inequality for independent random variables X1, . . . ,Xn, n ∈ N, with

values in [0,1].

∀ε ≥ 0 P

[

∑T
t=1 Xt

T
− ∑T

t=1E [Xt ]

T
≥ ε

]

≤ e−2T ε2

.

Hint: For any λ > 0 and a non-negative random variable Z, P [Z ≥ ε] = P

[

eλZ ≥ eλε
]

; use

Markov’s inequality, Hoeffding’s lemma and optimize over λ > 0.

2. Bandit algorithms

Consider the iid1 stochastic bandit problem with K Bernoulli-reward arms and total time

T . Recall that if µi denotes the expected reward of the ith arm, then the regret of a bandit

algorithm that plays an arm It ∈ [N] at each time 1≤ t ≤ T , and observes only the (random)

reward from the chosen arm, is defined to be R(T ) := T ·maxi µi−∑T
t=1E [µIt ].

Explain briefly which of the following algorithms will/will not always achieve sublinear

(pseudo-) regret with time horizon T (Recall: R(T ) is sublinear⇔ limT→∞
R(T)

T
= 0).

(a) Play all arms exactly once. For each arm i, initialize si to be its observed reward and

ni := 1. At each time t ≤ T , play It := argmaxi si/ni (break ties in any fixed manner),

get (stochastic) reward Rt and update sIt ← sIt +Rt , nIt ← nIt +1.

(b) Play all arms exactly once. For each arm i, initialize si to be its observed reward and

ni := 1. At each time t ≤ T , toss an independent coin with probability of heads p :=
1/
√

T . Play It := argmaxi si/ni (break ties in any fixed manner) if the coin lands heads,

else play a uniformly random arm, get (stochastic) reward Rt and update sIt ← sIt +Rt ,

nIt ← nIt +1.

(c) Same as the previous part but with p := 1/T .

(d) Same as the previous part but with p := 1/K.

(e) For each arm i ∈ [N], initialize ui = 1,vi = 1. At each time t ≤ T , sample independent

random variables θi(t) ∼ Beta(ui,vi), and play It := argmaxi θi(t) (break ties in any

fixed manner). Get (stochastic) reward Rt and update uIt ← uIt +Rt , vIt ← vIt +(1−Rt).

(f) Play all arms exactly once. For each arm i, initialize si to be its observed reward and

ni := 1. At each time t ≤ T , let At := argmaxi si/ni and Bt := argmaxi 6=At
si/ni denote

the best and second-best arms in terms of sample mean, respectively. Play It ∈ {At ,Bt}
chosen uniformly at random, get (stochastic) reward Rt and update sIt ← sIt +Rt , nIt ←
nIt +1.

3. Experts game with stochastic observations

Consider a stochastic online learning problem with 2 actions or arms {1,2} with Bernoulli

reward distributions. Moreover, suppose you know that the arms’ Bernoulli parameters

(µ1,µ2) can be either (µ−,µ+) or (µ+,µ−), where µ− := 1−ε
2

and µ+ := 1+ε
2

, for an un-

known ε ∈ (0, 1
2
).

At each round 1 ≤ t ≤ T , a learner plays a single action It ∈ {1,2} and gets observa-

tions as described below. Recall that the (pseudo) regret of the learner after T rounds is

ε ·E[number of times arm with mean µ− is played in T rounds].

1independent and identically distributed
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(a) Suppose that after each play, the learner only observes an independent reward sample

from the action which it plays. Describe an algorithm for playing arms and a non-trivial

(sub-linear in T ) regret bound for it.

(b) Suppose now that after each play It , the learner observes independent reward sam-

ples from both the actions’ reward distributions, i.e., it observes X1(t)∼ Ber(µ1) and

X2(t)∼ Ber(µ2) (note that the reward earned by the learner is the same, but the other,

unplayed arm’s reward is also observed). Design an algorithm with as small regret in

T rounds as possible. (A concrete regret bound is expected, but without needing to be

precise about constants.)

(Hint: You can achieve much better regret than before, with a simpler strategy.)

4. Exponential Weights as active Online Mirror Descent

(a) Prove the following result. Suppose (active) OMD is run on the convex decision set

K with a Legendre function R, where R is α-strongly convex with respect to some

norm || · || on K , R(x)−R(w1) ≤ B2 ∀x ∈K , and the gradients of the loss functions

are at most G in the dual2 norm || · ||∗. Then, with a step size η := B
G

√

2
T

, the T -round

regret of OMD is at most BG

√

2T
α .

Hint: In the regret bound for active OMD in class, find an upper bound for the term

DR(wt ,w
′
t+1)−DR(wt+1,w

′
t+1).

(b) Using this and the previous exercises, argue an appropriate regret bound for the Expo-

nential weights algorithm run on the simplex ∆d , and with linear loss functions having

weights in [0,1].

5. Worst case regret for Explore-Then-Commit

Consider the Explore-Then-Commit bandit algorithm3, that we studied in class, run on a

2-armed bandit with Bernoulli-distributed rewards and parameters (means) µ1,µ2 ∈ [0,1],
a time horizon of T and an initial exploration phase of εT rounds with ε ∈ [0,1]. Let

∆ = µ1−µ2 > 0.

(a) Show that there is a choice of ε , depending only on the time horizon T and not depend-

ing on ∆, under which the regret of the algorithm is bounded above by c(∆+T 2/3),
where c > 0 is a universal constant.4

(b) Now suppose the commitment time is allowed to be data-dependent, which means the

algorithm explores each arm alternately until some condition based on the observations

is met, after which it commits to a single arm for the remainder. Design a condition

such that the regret of the resulting algorithm can be bounded by c′
(

∆+ logT
∆

)

where

c′ is a universal constant. Note: Your condition should only depend on the observed

rewards and the time horizon, and not on µ1,µ2 or ∆.

2Recall that for a norm || · || in R
d , its dual norm is defined by ||y||∗ := maxx:||x||=1 xT y.

3The algorithm simply explores round-robin in an initial exploration phase and commits to the best-looking

arm for the remainder of time.
4This is known to be the best problem-independent regret rate with T that non-data (and non-problem) depen-

dent exploration with commitment can buy.
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