E1 245 - Online Prediction and Learning, Aug-Dec 2019 Homework #4

1. Hoeffding's inequality

Prove the following inequality for independent random variables X_1, \ldots, X_n , $n \in \mathbb{N}$, with values in [0, 1].

$$orall arepsilon \geq 0 \quad \mathbb{P}\left[rac{\sum_{t=1}^T X_t}{T} - rac{\sum_{t=1}^T \mathbb{E}\left[X_t
ight]}{T} \geq arepsilon
ight] \leq e^{-2Tarepsilon^2}.$$

Hint: For any $\lambda > 0$ and a non-negative random variable Z, $\mathbb{P}[Z \ge \varepsilon] = \mathbb{P}\left[e^{\lambda Z} \ge e^{\lambda \varepsilon}\right]$; use Markov's inequality, Hoeffding's lemma and optimize over $\lambda > 0$.

2. Bandit algorithms

Consider the iid¹ stochastic bandit problem with *K* Bernoulli-reward arms and total time *T*. Recall that if μ_i denotes the expected reward of the *i*th arm, then the regret of a bandit algorithm that plays an arm $I_t \in [N]$ at each time $1 \le t \le T$, and observes only the (random) reward from the chosen arm, is defined to be $R(T) := T \cdot \max_i \mu_i - \sum_{t=1}^T \mathbb{E}[\mu_{I_t}]$.

Explain briefly which of the following algorithms will/will not always achieve sublinear (pseudo-) regret with time horizon *T* (Recall: R(T) is sublinear $\Leftrightarrow \lim_{T\to\infty} \frac{R(T)}{T} = 0$).

- (a) Play all arms exactly once. For each arm *i*, initialize s_i to be its observed reward and $n_i := 1$. At each time $t \le T$, play $I_t := \arg \max_i s_i / n_i$ (break ties in any fixed manner), get (stochastic) reward R_t and update $s_{I_t} \leftarrow s_{I_t} + R_t$, $n_{I_t} \leftarrow n_{I_t} + 1$.
- (b) Play all arms exactly once. For each arm *i*, initialize s_i to be its observed reward and $n_i := 1$. At each time $t \le T$, toss an independent coin with probability of heads $p := 1/\sqrt{T}$. Play $I_t := \arg \max_i s_i/n_i$ (break ties in any fixed manner) if the coin lands heads, else play a uniformly random arm, get (stochastic) reward R_t and update $s_{I_t} \leftarrow s_{I_t} + R_t$, $n_{I_t} \leftarrow n_{I_t} + 1$.
- (c) Same as the previous part but with p := 1/T.
- (d) Same as the previous part but with p := 1/K.
- (e) For each arm $i \in [N]$, initialize $u_i = 1, v_i = 1$. At each time $t \leq T$, sample independent random variables $\theta_i(t) \sim \text{Beta}(u_i, v_i)$, and play $I_t := \arg \max_i \theta_i(t)$ (break ties in any fixed manner). Get (stochastic) reward R_t and update $u_{I_t} \leftarrow u_{I_t} + R_t$, $v_{I_t} \leftarrow v_{I_t} + (1 R_t)$.
- (f) Play all arms exactly once. For each arm *i*, initialize s_i to be its observed reward and $n_i := 1$. At each time $t \le T$, let $A_t := \arg \max_i s_i / n_i$ and $B_t := \arg \max_{i \ne A_t} s_i / n_i$ denote the best and second-best arms in terms of sample mean, respectively. Play $I_t \in \{A_t, B_t\}$ chosen uniformly at random, get (stochastic) reward R_t and update $s_{I_t} \leftarrow s_{I_t} + R_t$, $n_{I_t} \leftarrow n_{I_t} + 1$.
- 3. Experts game with stochastic observations

Consider a stochastic online learning problem with 2 actions or arms $\{1,2\}$ with Bernoulli reward distributions. Moreover, suppose you know that the arms' Bernoulli parameters (μ_1, μ_2) can be either (μ_-, μ_+) or (μ_+, μ_-) , where $\mu_- := \frac{1-\varepsilon}{2}$ and $\mu_+ := \frac{1+\varepsilon}{2}$, for an unknown $\varepsilon \in (0, \frac{1}{2})$.

At each round $1 \le t \le T$, a learner plays a single action $I_t \in \{1,2\}$ and gets observations as described below. Recall that the (pseudo) regret of the learner after *T* rounds is $\varepsilon \cdot \mathbb{E}$ [number of times arm with mean μ_{-} is played in *T* rounds].

¹independent and identically distributed

- (a) Suppose that after each play, the learner only observes an independent reward sample from the action which it plays. Describe an algorithm for playing arms and a non-trivial (sub-linear in *T*) regret bound for it.
- (b) Suppose now that after each play I_t , the learner observes independent reward samples from *both* the actions' reward distributions, i.e., it observes $X_1(t) \sim \text{Ber}(\mu_1)$ and $X_2(t) \sim \text{Ber}(\mu_2)$ (note that the reward earned by the learner is the same, but the other, unplayed arm's reward is also observed). Design an algorithm with as small regret in *T* rounds as possible. (A concrete regret bound is expected, but without needing to be precise about constants.)

(Hint: You can achieve much better regret than before, with a simpler strategy.)

- 4. Exponential Weights as active Online Mirror Descent
 - (a) Prove the following result. Suppose (active) OMD is run on the convex decision set \mathscr{K} with a Legendre function R, where R is α -strongly convex with respect to some norm $|| \cdot ||$ on \mathscr{K} , $R(x) R(w_1) \leq B^2 \ \forall x \in \mathscr{K}$, and the gradients of the loss functions are at most G in the dual² norm $|| \cdot ||_*$. Then, with a step size $\eta := \frac{B}{G}\sqrt{\frac{2}{T}}$, the T-round regret of OMD is at most $BG\sqrt{\frac{2T}{\alpha}}$. *Hint: In the regret bound for active OMD in class, find an upper bound for the term* $D_R(w_t, w'_{t+1}) - D_R(w_{t+1}, w'_{t+1})$.
 - (b) Using this and the previous exercises, argue an appropriate regret bound for the Exponential weights algorithm run on the simplex Δ_d , and with linear loss functions having weights in [0, 1].
- 5. Worst case regret for Explore-Then-Commit

Consider the Explore-Then-Commit bandit algorithm³, that we studied in class, run on a 2-armed bandit with Bernoulli-distributed rewards and parameters (means) $\mu_1, \mu_2 \in [0, 1]$, a time horizon of *T* and an initial exploration phase of εT rounds with $\varepsilon \in [0, 1]$. Let $\Delta = \mu_1 - \mu_2 > 0$.

- (a) Show that there is a choice of ε , depending only on the time horizon T and *not depending* on Δ , under which the regret of the algorithm is bounded above by $c(\Delta + T^{2/3})$, where c > 0 is a universal constant.⁴
- (b) Now suppose the commitment time is allowed to be data-dependent, which means the algorithm explores each arm alternately until some condition based on the observations is met, after which it commits to a single arm for the remainder. Design a condition such that the regret of the resulting algorithm can be bounded by $c'\left(\Delta + \frac{\log T}{\Delta}\right)$ where c' is a universal constant. Note: Your condition should only depend on the observed rewards and the time horizon, and *not* on μ_1, μ_2 or Δ .

²Recall that for a norm $||\cdot||$ in \mathbb{R}^d , its dual norm is defined by $||y||_* := \max_{x:||x||=1} x^T y$.

³The algorithm simply explores round-robin in an initial exploration phase and commits to the best-looking arm for the remainder of time.

⁴This is known to be the best problem-independent regret rate with T that non-data (and non-problem) dependent exploration with commitment can buy.