E1 245 - Online Prediction and Learning, Aug-Dec 2019
Homework #4

1. Hoeffding’s inequality
Prove the following inequality for independent random variables Xi,...,X,, n € N, with
values in [0, 1].

Ve>0 P

Yo X YL EX] S| < 2T
T T - -

Hint: For any A > 0 and a non-negative random variable Z, P[Z > ] =P [eu > e“] ; use
Markov’s inequality, Hoeffding’s lemma and optimize over A > 0.

2. Bandit algorithms
Consider the iid' stochastic bandit problem with K Bernoulli-reward arms and total time
T. Recall that if y; denotes the expected reward of the ith arm, then the regret of a bandit
algorithm that plays an arm I, € [N] at each time 1 <t < T, and observes only the (random)
reward from the chosen arm, is defined to be R(T) := T - max; it; — Y./, Eu,].

Explain briefly which of the following algorithms will/will not always achieve sublinear

(pseudo-) regret with time horizon T (Recall: R(T) is sublinear < limz_;. @ =0).

(a) Play all arms exactly once. For each arm i, initialize s; to be its observed reward and
n;:= 1. Ateach time t < T, play I, := argmax;s;/n; (break ties in any fixed manner),
get (stochastic) reward R; and update s;, < 57, + R;, nj, < nj, + 1.

(b) Play all arms exactly once. For each arm i, initialize s; to be its observed reward and
n; := 1. Ateach time t < T, toss an independent coin with probability of heads p :=
1/+/T. Play I, := arg max; s; /n; (break ties in any fixed manner) if the coin lands heads,
else play a uniformly random arm, get (stochastic) reward R; and update s;, <— 57, +R;,
ny < nj + 1.

(c) Same as the previous part but with p :=1/T.
(d) Same as the previous part but with p := 1/K.

(e) For each arm i € [N], initialize u; = 1,v; = 1. At each time ¢ < T, sample independent
random variables 6;(¢) ~ Beta(u;,v;), and play I, := argmax; 6;(¢) (break ties in any
fixed manner). Get (stochastic) reward R; and update uj, <— uj, +R;, vj, < v, + (1 —R;).

(f) Play all arms exactly once. For each arm i, initialize s; to be its observed reward and
ni:=1. Ateach timer < T, let A; := argmax; s;/n; and B; := argmax;,, s;/n; denote
the best and second-best arms in terms of sample mean, respectively. Play ; € {A;, B;}
chosen uniformly at random, get (stochastic) reward R; and update s;, < s;, +R;, nj, <
ny + 1.

3. Experts game with stochastic observations
Consider a stochastic online learning problem with 2 actions or arms {1,2} with Bernoulli
reward distributions. Moreover, suppose you know that the arms’ Bernoulli parameters
(11, Up) can be either (u_, ) or (U4, H—), where u_ := '_Tg and u, := “2“—8, for an un-
known € € (0,1).

At each round 1 <t < T, a learner plays a single action I, € {1,2} and gets observa-
tions as described below. Recall that the (pseudo) regret of the learner after 7 rounds is
€ - E[number of times arm with mean p_ is played in T rounds].

lindependent and identically distributed



(a)

(b)

Suppose that after each play, the learner only observes an independent reward sample
from the action which it plays. Describe an algorithm for playing arms and a non-trivial
(sub-linear in T') regret bound for it.

Suppose now that after each play /;, the learner observes independent reward sam-
ples from both the actions’ reward distributions, i.e., it observes X;(¢) ~ Ber(u;) and
X>(t) ~ Ber(l,) (note that the reward earned by the learner is the same, but the other,
unplayed arm’s reward is also observed). Design an algorithm with as small regret in
T rounds as possible. (A concrete regret bound is expected, but without needing to be
precise about constants.)

(Hint: You can achieve much better regret than before, with a simpler strategy.)

4. Exponential Weights as active Online Mirror Descent

(a)

(b)

Prove the following result. Suppose (active) OMD is run on the convex decision set
2 with a Legendre function R, where R is a-strongly convex with respect to some
norm || - || on ¢, R(x) —R(w1) < B? Vx € ¢, and the gradients of the loss functions

are at most G in the dual® norm || - ||.. Then, with a step size 1) := %\/g, the T-round

regret of OMD is at most BG\/% .

Hint: In the regret bound for active OMD in class, find an upper bound for the term
Dr(wr,wi, 1) — DR(Wr1,Wp )

Using this and the previous exercises, argue an appropriate regret bound for the Expo-

nential weights algorithm run on the simplex A, and with linear loss functions having
weights in [0, 1].

5. Worst case regret for Explore-Then-Commit
Consider the Explore-Then-Commit bandit algorithm3, that we studied in class, run on a
2-armed bandit with Bernoulli-distributed rewards and parameters (means) U, € [0,1],
a time horizon of T and an initial exploration phase of €7 rounds with € € [0,1]. Let
A= — >0

(a)

(b)

Show that there is a choice of €, depending only on the time horizon T and not depend-
ing on A, under which the regret of the algorithm is bounded above by c(A+ T2/3),
where ¢ > 0 is a universal constant.*

Now suppose the commitment time is allowed to be data-dependent, which means the
algorithm explores each arm alternately until some condition based on the observations
is met, after which it commits to a single arm for the remainder. Design a condition

such that the regret of the resulting algorithm can be bounded by ¢/ (A + loir) where

¢’ is a universal constant. Note: Your condition should only depend on the observed
rewards and the time horizon, and not on up, t or A.

*Recall that for a norm || -|| in R?, its dual norm is defined by |[y[|« := maxyjy=; x" y.

3The algorithm simply explores round-robin in an initial exploration phase and commits to the best-looking
arm for the remainder of time.

“This is known to be the best problem-independent regret rate with T that non-data (and non-problem) depen-
dent exploration with commitment can buy.



