
E1 245 - Online Prediction and Learning, Aug-Dec 2019

Homework #5

1. The Data Processing inequality for relative entropy

(a) (Log Sum inequality) Show that for non-negative numbers a1, . . . , an, b1, . . . , bn,

∑

i

ai log
ai

bi
≥

(

∑

i

ai

)

log
(
∑

i ai)

(
∑

i bi)
.

(b) Use the above to prove the following data processing inequality: If (X1, Y1) and

(X2, Y2) are two pairs of random variables, with outcomes in [n]×[n], having the same

conditional distribution of Yi givenXi, i.e., P
[

Y1 = y
∣

∣ X1 = x
]

= P
[

Y2 = y
∣

∣ X2 = x
]

∀(x, y) ∈ [n]× [n], then

D(PX1
||PX2

) ≥ D(PY1
||PY2

),

where PXi
and PYi

are the (marginal) probability distributions of Xi and Yi, respec-

tively, on [n].

(c) Under what condition on the (common) conditional distribution of Y given X does the

data processing inequality hold with equality?

(d) Under what condition on the (common) conditional distribution of Y given X does the

right hand side of the data processing inequality attain its least possible value?

2. Bandit algorithms must uniformly sample arms in the beginning

This exercise asks you to prove that any ‘intelligent’ bandit algorithm must initially spend

a basic amount of effort on all arms – observed widely in practice (after which the data

gathered can be exploited to drive regret down to being sublinear in time).

Consider multi-armed bandit problems with n arms and Gaussian-distributed rewards of

variance 1
2
. Call a bandit algorithm better-than-random if for every bandit instance ν ≡

(ν1, . . . , νn) (where νi denotes the mean reward of the ith arm), every optimal arm i∗ w.r.t.

ν and every time t, Eν [Ni∗(t)] ≥
t
n

, where Ni(t) is the total number of times the algorithm

has played arm i until time t.

Suppose a better-than-random bandit algorithm is run on a Gaussian bandit instance ν as

above.

(a) Show that for all arms i and all times t ≥ 1,

Eν [Ni(t)] ≥
t

n

(

1−
√

2t∆2
ν,i

)

,

where ∆ν,i = maxj νj − νi is the mean reward gap of arm i in the instance ν. [Hint:

Argue in a manner similar to showing the asymptotic bandit regret lower bound of

Lai-Robbins. Use the facts that follow.]

Facts:

i. D (N (µ1, σ
2)||N (µ2, σ

2)) = (µ1−µ2)2

2σ2 .

ii. D(Ber(p)||Ber(q)) ≥ 1
2q
(p− q)2 for 0 ≤ p < q ≤ 1.

iii. D(Ber(p)||Ber(·)) is an increasing function in the interval [p, 1].
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(b) Find a time t0 (depending on the instance ν) such that ∀t ≤ t0, Eν [Ni(t)] ≥
t
2n

.

3. Conjugate priors

If the posterior distributions P
[

θ
∣

∣ X
]

are in the same probability distribution family as the

prior probability distribution P [θ] upon observing X ∼ Pθ (the sample distribution), the

prior is called a conjugate prior for the likelihood (sample distribution). We have seen that

a Beta prior is a conjugate prior for a Bernoulli likelihood. Show explicitly the following

conjugate priors for various likelihoods1 (sample distributions):

(a) Beta is a conjugate prior for Binomial.

(b) Beta is a conjugate prior for Geometric.

(c) Gamma is a conjugate prior for Poisson.

(d) Dirichlet is a conjugate prior for Categorical.

(e) Normal is conjugate prior for Normal (with variance 1).

(f) Pareto is a conjugate prior for (continuous) Uniform(0, θ), θ ≥ 0.

4. Beta posterior concentration

Analyzing Thompson sampling for Bernoulli-distributed observations and Beta-distributed

priors on the Bernoulli parameters typically involves studying how a Beta prior evolves as

it is updated with observations.

Consider a simple experiment where X1, . . . , Xn are sampled iid from a Ber(p) distribution

for some fixed p ∈ (0, 1). After this, Yn is sampled independently from the

Beta(1 +
∑n

i=1Xi, 1 + n−
∑n

i=1Xi) distribution, which you will recall is the (random)

posterior distribution of p under a Uniform[0, 1] prior and observations X1, . . . , Xn. Show

that for ǫ > 0,

P [Yn > p+ ǫ] ≤ c1e
−c2nǫ

2

for some universal constants c1, c2 > 0.

[Hint: Here’s a way to proceed: (1) Split P [Yn > p+ ǫ] = P
[

Yn > p+ ǫ, S
n
> p+ ǫ

2

]

+
P
[

Yn > p+ ǫ, S
n
≤ p+ ǫ

2

]

where S =
∑n

i=1Xi, (2) Bound the first term by Hoeffding, (3)

Bound the second term using the following relationship between the cdfs2 of the Beta and

Binomial distributions: FBeta(a,b)(y) = 1− FBin(a+b−1,y)(a− 1), followed by Hoeffding.]

1Look up distribution definitions on Wikipedia.
2The cumulative distribution function (cdf) of a distribution P is FP (x) = PX∼P [X ≤ x].
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