E1 245 - Online Prediction and Learning, Aug-Dec 2019 Homework #5

- 1. The Data Processing inequality for relative entropy
 - (a) (Log Sum inequality) Show that for non-negative numbers $a_1, \ldots, a_n, b_1, \ldots, b_n$,

$$\sum_{i} a_i \log \frac{a_i}{b_i} \ge \left(\sum_{i} a_i\right) \log \frac{(\sum_{i} a_i)}{(\sum_{i} b_i)}.$$

(b) Use the above to prove the following data processing inequality: If (X₁, Y₁) and (X₂, Y₂) are two pairs of random variables, with outcomes in [n]×[n], having the same conditional distribution of Y_i given X_i, i.e., P [Y₁ = y | X₁ = x] = P [Y₂ = y | X₂ = x] ∀(x, y) ∈ [n] × [n], then

$$D(P_{X_1}||P_{X_2}) \ge D(P_{Y_1}||P_{Y_2}),$$

where P_{X_i} and P_{Y_i} are the (marginal) probability distributions of X_i and Y_i , respectively, on [n].

- (c) Under what condition on the (common) conditional distribution of Y given X does the data processing inequality hold with equality?
- (d) Under what condition on the (common) conditional distribution of Y given X does the right hand side of the data processing inequality attain its least possible value?
- 2. Bandit algorithms must uniformly sample arms in the beginning

This exercise asks you to prove that any 'intelligent' bandit algorithm must initially spend a basic amount of effort on all arms – observed widely in practice (after which the data gathered can be exploited to drive regret down to being sublinear in time).

Consider multi-armed bandit problems with n arms and Gaussian-distributed rewards of variance $\frac{1}{2}$. Call a bandit algorithm *better-than-random* if for every bandit instance $\nu \equiv (\nu_1, \ldots, \nu_n)$ (where ν_i denotes the mean reward of the *i*th arm), every optimal arm i^* w.r.t. ν and every time t, $\mathbb{E}_{\nu} [N_{i^*}(t)] \geq \frac{t}{n}$, where $N_i(t)$ is the total number of times the algorithm has played arm *i* until time *t*.

Suppose a better-than-random bandit algorithm is run on a Gaussian bandit instance ν as above.

(a) Show that for all arms i and all times $t \ge 1$,

$$\mathbb{E}_{\nu}\left[N_{i}(t)\right] \geq \frac{t}{n}\left(1 - \sqrt{2t\Delta_{\nu,i}^{2}}\right),$$

where $\Delta_{\nu,i} = \max_j \nu_j - \nu_i$ is the mean reward gap of arm *i* in the instance ν . [Hint: Argue in a manner similar to showing the asymptotic bandit regret lower bound of Lai-Robbins. Use the facts that follow.]

Facts:

- i. $D(\mathcal{N}(\mu_1, \sigma^2) || \mathcal{N}(\mu_2, \sigma^2)) = \frac{(\mu_1 \mu_2)^2}{2\sigma^2}.$
- ii. $D(\operatorname{Ber}(p)||\operatorname{Ber}(q)) \ge \frac{1}{2q}(p-q)^2$ for $0 \le p < q \le 1$.
- iii. $D(\text{Ber}(p)||\text{Ber}(\cdot))$ is an increasing function in the interval [p, 1].

- (b) Find a time t_0 (depending on the instance ν) such that $\forall t \leq t_0, \mathbb{E}_{\nu}[N_i(t)] \geq \frac{t}{2n}$.
- 3. Conjugate priors

If the posterior distributions $\mathbb{P}\left[\theta \mid X\right]$ are in the same probability distribution family as the prior probability distribution $\mathbb{P}\left[\theta\right]$ upon observing $X \sim \mathbb{P}_{\theta}$ (the sample distribution), the prior is called a conjugate prior for the likelihood (sample distribution). We have seen that a Beta prior is a conjugate prior for a Bernoulli likelihood. Show explicitly the following conjugate priors for various likelihoods¹ (sample distributions):

- (a) Beta is a conjugate prior for Binomial.
- (b) Beta is a conjugate prior for Geometric.
- (c) Gamma is a conjugate prior for Poisson.
- (d) Dirichlet is a conjugate prior for Categorical.
- (e) Normal is conjugate prior for Normal (with variance 1).
- (f) Pareto is a conjugate prior for (continuous) Uniform $(0, \theta), \theta \ge 0$.

4. Beta posterior concentration

Analyzing Thompson sampling for Bernoulli-distributed observations and Beta-distributed priors on the Bernoulli parameters typically involves studying how a Beta prior evolves as it is updated with observations.

Consider a simple experiment where X_1, \ldots, X_n are sampled iid from a Ber(p) distribution for some fixed $p \in (0, 1)$. After this, Y_n is sampled independently from the

Beta $(1 + \sum_{i=1}^{n} X_i, 1 + n - \sum_{i=1}^{n} X_i)$ distribution, which you will recall is the (random) posterior distribution of p under a Uniform[0, 1] prior and observations X_1, \ldots, X_n . Show that for $\epsilon > 0$,

$$\mathbb{P}\left[Y_n > p + \epsilon\right] \le c_1 e^{-c_2 n \epsilon^2}$$

for some universal constants $c_1, c_2 > 0$.

[Hint: Here's a way to proceed: (1) Split $\mathbb{P}[Y_n > p + \epsilon] = \mathbb{P}[Y_n > p + \epsilon, \frac{S}{n} > p + \frac{\epsilon}{2}] + \mathbb{P}[Y_n > p + \epsilon, \frac{S}{n} \le p + \frac{\epsilon}{2}]$ where $S = \sum_{i=1}^n X_i$, (2) Bound the first term by Hoeffding, (3) Bound the second term using the following relationship between the cdfs² of the Beta and Binomial distributions: $F_{\text{Beta}(a,b)}(y) = 1 - F_{\text{Bin}(a+b-1,y)}(a-1)$, followed by Hoeffding.]

¹Look up distribution definitions on Wikipedia.

²The cumulative distribution function (cdf) of a distribution P is $F_P(x) = \mathbb{P}_{X \sim P}[X \leq x]$.