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Abstract— A restless bandit is used to model a user’s interest
in a topic or item. The interest evolves as a Markov chain
whose transition probabilities depend on the action (display
the ad or desist) in a time step. A unit reward is obtained if
the ad is displayed and if the user clicks on the ad. If no ad is
displayed then a fixed reward is assumed. The probability of
click-through is determined by the state of the Markov chain.
The recommender never gets to observe the state but in each
time step it has a belief, denoted by πt, about the state of
the Markov chain. πt evolves as a function of the action and
the signal from each state. For the one-armed restless bandit
with two states, we characterize the policy that maximizes the
infinite horizon discounted reward. We first characterize the
value function as a function of the system parameters and then
characterize the optimal policies for different ranges of the
parameters. We will see that the Gilbert-Elliot channel in which
the two states have different success probabilities becomes a
special case. For one special case, we argue that the optimal
policy is of the threshold type with one threshold; extensive
numerical results indicate that this may be true in general.

I. INTRODUCTION

Consider an item that is available to be recommended to
a user, or an ad that is is available to be displayed. Different
users react differently to the frequency with which a given
item is shown to them. Some users may be annoyed if
something is offered repeatedly, which in turn may make
it less likely that they will click-through if they were shown
this itnem in the recent past. Alternatively, it could be that
the user is at first disinterested and develops a curiosity,
possibly turning into a propensity to click-through, if the
object is recommended frequently. Other users may be more
random and their behavior may not depend on the history
of the showing of the item. One way to capture the effect
of the history of showing an ad would be to assume that
the user behavior is represented by a Markov chain with
each state corresponding to the user’s ‘taste’ and hence a
different click-through probability. The state transitions occur
at the beginning of each session in which a fresh item is
shown. In each session, the recommendation system (RS) has
two options—display or desist. The Markov chain changes
state according to a transition probability matrix that depends
whether the item was shown or was not shown. The values
of these transition probabilities determine the ‘type’ of the
user. If the RS has more than one ad or item that it can
show, and wants to use a policy that maximizes a suitably
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defined reward, a reasonable model for the system is that of a
restless multiarmed bandit. Further, the only signal available
to the RS from each display of the ad is whether there was
click-through event or not. The actual state of the user is not
observable by the RS. In this paper, we describe a restless
one-armed bandit model that captures the behavior of the
preceding system in which there is just one item. This is the
first step in analyzing the multiarmed system.

For a second motivating application, consider a set of
communication links that are abstracted by the Gilbert-Elliot
model [1], [2]. Here the link is in one of two states, say 0 and
1. Let ri > 0 be the probability of a successful transmission
when the link is in state i, i = 0, 1. Assume that there is
an alternate link that has a fixed probability of success, say
r2. The state of the first link evolves according to a Markov
chain and in each slot the transmitter needs to decide which
of the two channels it is going to use to optimize a suit-
able objective function, e.g., the number of bits transmitted
through the channel. Note that in practical scenarios, the
transmitter obtains only the result of the transmission and
cannot measure the state. Since the channel state is evolving
independent of the transmissions, the restless bandit is the
appropriate model. Further, the transmitter only knows the
result of its transmission and cannot observe the state of the
channel. Thus this may be viewed as a special case of the
recommendation system, in that the transition probabilities
between states of a channel do not depend on the action
taken, i.e., to transmit or not to transmit.

Motivated by the preceding examples, we analyze a one-
armed restless bandit when the state of the bandit is never
observed by the sampling process or the controller. This is
the first step towards building and analyzing the performance
of a general restless multiarmed bandit model.

A. Related Work

Restless bandits with unobserved states are a special case
of partially observed Markov decision processes (POMDPs)
and have been studied to model several systems. Early work
is in the context of machine repair problems. In [3], a
machine is modeled as a two-state Markov chain with three
actions and it is shown that the optimal policy is of the
threshold type with three thresholds. In [4], a similar model
is considered and formulas for the optimal costs and policy
are obtained. This and some additional models are considered
in [5] and, once again, several structural results are obtained.
Also see [6] for more models in this regard.
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Recent interest in restless bandit models has been moti-
vated by scheduling in communication systems. A Gilbert-
Elliot channel in which the two states can sustain different
rates is considered in [7]. Here, in each slot, the transmitter
has to choose from three actions—transmit at a low rate, at
high rate, or spend some time and probe to obtain accurate
state information before transmitting. They characterize the
optimal policies and evaluate the objective function. For a
similar system, the conditions under which myopic poli-
cies are optimal is investigated in [8]; similar results for
multiarmed bandit problems are obtained in [9]. In [10],
scheduling in a dynamic spectrum access system is modeled
as a restless multiarmed bandit problem. Each channel is
represented by an arm of the bandit and the channels are
assumed to be Gilbert-Elliot channels with the bad state
yielding a loss and the good state yielding a success each
with probability one. Further, it is assumed that the transition
probabilities between the states are known. The authors show
that the single armed bandit has a threshold policy and then
proceed to analyze the multiarmed system. See [11], [12] for
variants of this model.

Multiarmed bandit models for recommendation systems
and for online advertising have been modeled as contextual
bandits, e.g., [13], [14], [15] and the user interests are as-
sumed to be independent of the recommendation history. To
the best of our knowledge, models in which the probability
of a success depends on the state of the user have not been
studied in this literature.

B. Our Contribution

The key modeling assumption in this paper is that the
actual state is never observed, only the signal from the state
is observed when the arm is sampled. Like in the literature
discussed above, we also consider an infinite horizon, dis-
counted reward problem.

We analyze the restless one-armed bandit model in which
the arm can be in one two states and the state is never ob-
served. Instead, a belief π about the state can be constructed
based on past observations, which serves as a sufficient
statistic. In each time step, one of two actions can be taken
and the belief evolves based on the action taken and the
reward observed. Our interest is in maximization of the
expected discounted reward over the infinite horizon. We
obtain structural properties of the value functions in terms of
the parameters and also discuss the structure of the optimal
policy for several special cases of the parameter values. For
one special case, we argue that the optimal policy is of
threshold type and that there is a single threshold. We also
present some numerical results that suggest that a threshold
type optimal policy is more generally true. The next section
describes the model. In Section III we describe the general
results that are applicable for all values of the parameters.
In Section IV we refine some of the results for some special
cases of the parameters. For a specific case, we argue the
possible optimality of the threshold policy. We conclude with
some numerical results and a discussion on directions for
future work in Section V.

II. MODEL DESCRIPTION AND PRELIMINARIES

A one arm bandit is represented as a two-state Markov
chain. Xt denotes the state at the beginning of time slot t
with Xt ∈ {0, 1}. at ∈ {0, 1} is the action in slot t with the
following interpretation.

at =

{
1 Markov chain is sampled
0 Markov chain is not sampled

Sampling corresponds to displaying the item or transmitting
the packet, and not sampling corresponds to not displaying
the item or using the second channel that has deterministic
characteristics. The Markov chain changes state at the end of
each slot according to transition probabilities that can depend
on at. Pij(a) is the transition probability from state i to state
j under action a. Define the parameters λi and µi, i = 0, 1
as

P00(0) = λ0, P10(0) = λ1,

P00(1) = µ0, P10(1) = µ1.

Rt(i, a) is the reward in slot t when the Markov chain is in
state i and the action is a. We let

Rt(i, 1) = ri Rt(i, 0) = r2.

We will assume 0 ≤ r0 < r1 ≤ 1 and not place any
restriction on r2.

Let πt denote the belief that the state of the Markov chain
is in state 0 at the beginning of slot t, i.e., πt = Pr (Xt = 0) .
πt+1 is a function of πt, at and Rt. From Bayes’ theorem,
the following can be derived. If at = 1, i.e., the arm is
sampled, and Rt = 0 then

πt+1 = γ0(πt) :=
πt(1− r0)µ0 + (1− πt)(1− r1)µ1

πt(1− r0) + (1− πt)(1− r1)
If at = 1 and Rt = 1 then

πt+1 = γ1(πt) :=
πtr0µ0 + (1− πt)r1µ1

πtr0 + (1− πt)r1
Finally, if at = 0, i.e., the arm is not sampled at t, then

πt+1 = γ2(πt) := πtλ0 + (1− πt)λ1

Using first and second derivatives the following properties
of γi(π) are straightforward.

Property 1: 1) If λ0 < λ1 then γ2(π) is linear decreas-
ing in π. Further, λ0 ≤ γ2(π) ≤ λ1.

2) If λ0 > λ1 then γ2(π) is linear increasing in π. Further,
λ1 ≤ γ2(π) ≤ λ0.

3) If µ0 > µ1 then γ1(π) is convex increasing in π.
Further, µ1 ≤ γ1(π) ≤ µ0.

4) If µ0 > µ1 then γ0(π) is concave increasing in π.
Further, µ1 ≤ γ0(π) ≤ µ0.

5) γ0(0) = γ1(0) = µ1 and γ0(1) = γ1(1) = µ0. Furthe,
if µ0 > µ1 then γ1(π) < γ0(π) for 0 < π < 1.

Let Ht denote the history of actions and rewards up to
time t. Let φt : Ht → {0, 1} be the strategy that determines
the action at time t. For a strategy φ, a discount factor β,
0 < β < 1, and an initial belief π at time t = 1 (i.e.,
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Pr (X1 = 0) = π), the expected infinite horizon discounted
reward is

Vφ(π) := E

{ ∞∑
t=1

βt−1Rt(Xt, φ(Ht))

}
.

where E denotes the expectation operator. Our interest is in
a strategy that maximizes Vφ(π) for all π, 0 ≤ π ≤ 1. The
following facts are well-known from the theory of partially
observable Markov decision processes [3], [16], [17]. πt
captures the information in Ht, control strategies can be
restricted to stationary Markov policies, and the optimum
objective function, V (π), solves the following dynamic pro-
gram

V (π) = max {ρ(π) + β (ρ(π)V (γ1(π)) + (1− ρ(π))×
V (γ0(π))) , r2 + βV (γ2(π))} , (1)

where we denote ρ(π) = πr0 +(1−π)r1. Let VS(π) be the
optimal value of the objective function if a1 = 1, i.e., if the
Markov chain is sampled, and VNS(π) be the optimal value
for a1 = 0, for not sampling it. In other words, we can write
the following.

VS(π) = ρ(π) + β (ρ(π)V (γ1(π)) + (1− ρ(π))V (γ0(π)))

VNS(π) = r2 + βV (γ2(π))

V (π) = max{VS(π), VNS(π)} (2)

The following background lemma from [18] will be useful
in our analysis.

Lemma 1 ([18]): If f : <n+ → <+ is a convex function
then for x ∈ <n+, g(x) := ||x||1f

(
x
||x||1

)
is also a convex

function.

III. GENERAL RESULTS

In this section we present some results that are applicable
for all values of the parameters. We begin by showing
that V (π), VS(π), and VNS(π) are all convex. Proof is by
induction and is omitted.

Property 2: (Convexity of value functions over the belief
state) V (π), VNS(π) and VS(π) are all convex functions of
π ∈ [0, 1].

Although the above may be anticipated because of similar
results in the literature, the non observability of the state
and the consequent structure of the γs necessitates the proof.
Next we characterize V (π) as a function of r2.

Property 3: (Convexity of value functions over passive
reward) For a fixed π, V (π, r2), VS(π, r2), and VNS(π, r2)
are non decreasing and convex in r2.

Once again, proof is by induction and is omitted. r2 plays
a central role in the development of the Whittle’s index in a
multiarmed bandit model where each arm is modeled as in
this paper.

The following property characterizes the optimal policy as
a function of r2 and π.

Property 4: (Optimal policy for extremal values of pas-
sive reward)

1) If r2 =∞ then not sampling is the optimal action for
all π. Further, for this case

VNS(π) = V (π) =
r2

1− β
(3)

2) If r2 = −∞ then sampling is the optimal action for
all π. Further, in this case

V (π,−∞) = VS(π,−∞) = mπ + c

m =
r0 − r1

1− β(µ0 − µ1)

c =
r1 +

βµ1(r0−r1)
1−β(µ0−µ1)

1− β
. (4)

The optimal action for both these cases is straightforward.
(3) is obtained by simplifying (2) while the linear form of
the value function in (4) is derived in the appendix. (3) is
also the optimal value function for all r2 for which a1 = 0
is the optimal action for all π. In this case we also have the
value function when a1 = 1 to be

VS(π) = πr0 + (1− π)r1 +
βr2
1− β

. (5)

Observe that in the preceding, VNS(π) is constant and VS(π)
is decreasing in π. Similarly, (5) is the optimal value function
for all r2 for which a1 = 1 is the optimal action for all π.
Also, in this case, the value function when a1 = 0 is

VNS(π) = r2 + βV (γ2(π))

= [βm(λ0 − λ1)]π + [r2 + β(c+ λ1m)] .(6)

We see that VNS(π) is also linear in π.
Remark 1: For r2 a large negative value VS(π, r2) >

VNS(π, r2) for all π. And, for r2 a large positive value,
VS(π, r2) < VNS(π, r2). Thus, for a fixed π, VS(π, r2) and
VNS(π, r2) intersect at least once.

We first define

r̃2(π) := {r2 : VNS(π, r2) = VS(π, r2)},

rL := min
π∈[0,1]

r̃2(π), rH := max
π∈[0,1]

r̃2(π),

πH := arg max
π∈[0,1]

r̃2(π), πL := arg min
π∈[0,1]

r̃2(π).

From the definition, for r2 > rH , not sampling is the optimal
policy and for r2 < rL, sampling is optimal for all π ∈ [0, 1].
If r2 = rH and π = πH , or if r2 = rL and π = πL, then
both actions are optimal. From this we see that for a fixed π,
VS(π, r2) and VNS(π, r2) do not intersect for r2 ∈ [−∞, rL)
or for r2 ∈ (rH ,∞] for any π ∈ [0, 1]. This in turn means
that VS(π, r2) and VNS(π, r2) intersect for r2 ∈ [rL, rH ] for
every π ∈ [0, 1]. The following obtains rH , rL, πH and πL.

Property 5: (Range of the passive reward resulting in
constant optimal policies)

rH = r1 rL = r1 +
(r0 − r1) [1− β(λ0 − µ1)]

1− β(µ0 − µ1)
πH = 0 πL = 1
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Proof: We first obtain rH and πH by equating the RHS
of (3) and (5). This gives us r2 = πr0 + (1 − π)r1 which
achieves its maximum at π = 0 corresponding to rH = r1.

To obtain rL and πL, we equate the RHS of (6) and (4)
and obtain

r2 =
(r0 − r1)(1− β(λ0 − λ1))

1− β(µ0 − µ1)
π +

r1 +
β(r0 − r1)(µ1 − λ1)

1− β(µ0 − µ1)
.

Since 0 < λ0, λ1 < 1, |λ0−λ1| < 1. Similarly, |µ0−µ1| <
1. Hence, from our assumption that r0 < r1, the coefficient
of π is always negative for sufficiently small β. Thus the
minimum value of the RHS of the preceding equation is
achieved at π = 1 corresponding to πL = 1 and rH as in
the statement of the property.

The following lemma follows from the preceding results.
Lemma 2: (Range of the passive reward resulting in con-

stant optimal policies)
1) If r2 < rL then sampling is the optimal policy for all

π.
2) If r2 > rH then not sampling is the optimal policy for

all π.

IV. SPECIAL CASES

We begin by characterizing the value function for the case
when µ0 > µ1 and λ0 > λ1 in the following lemma.

Lemma 3: If µ0 > µ1 and λ0 > λ1, then
1) V (π, r2) and VNS(π, r2) are non increasing functions

of π for a fixed r2.
2) VS(π, r2) is a decreasing function of π for a fixed r2.
Next, consider the case when µ0 ≥ λ0, λ1 ≥ µ1.

The following lemma refines the policy characterization of
Lemma 2.

Lemma 4: For µ0 ≥ µ1, and λ1, λ2 ∈ [µ1, µ0], if r2 >
ρ(µ1) and µ1 ≤ π ≤ 1, then the optimal policy is to not
sample.

Proof: First, we see that r2 > ρ(π) for every µ1 ≤ π ≤
1. The proof is by induction over the n-step value function,
followed by a limiting argument. Let VS,1(π) = ρ(π),
VNS,1(π) = r2. Then V1(π) = max{VS,1(π), VNS,1(π)} =
VNS,1(π) = r2. Writing

Vn+1(π) = max{VS,n+1(π), VNS,n+1(π)},
VS,n+1(π) = ρ(π) + βρ(π)Vn(γ1(π)),

+β(1− ρ(π))Vn(γ0(π))
VNS,n+1(π) = r2 + βVn(γ2(π)), (7)

making the induction hypothesis

Vn(π) = VNS,n(π) = r2 + βVn−1(γ2(π)),

and recursing, we obtain

Vn(π) =
1− βn+1

1− β
r2.

Substituting this Vn(π) in (7), we get

VS,n+1(π) = ρ(π) + β

(
1− βn+1

1− β
r2

)
VNS,n+1(π) = r2 + β

(
1− βn+1

1− β
r2

)
.

Since r2 > ρ(π), VS,n+1(π) < VNS,n+1(π) and hence
Vn+1(π) = VNS,n+1(π) = 1−βn+2

1−β r2. Thus by induction,
Vn(π) = VNS,n(π) for all n ≥ 1. From [3], [16], [17], we
know by the contractivity of the Bellman operator (5), that

lim
n→∞

Vn(π) = V (π)

lim
n→∞

VNS,n(π) = VNS(π)

lim
n→∞

Vn(π) = V (π) = VNS(π) =
r2

1− β
.

Remark 2: Observe that under the conditions of the pre-
ceding lemma, for all 0 ≤ π ≤ 1, γ0(π), γ1(π) and γ2(π)
are all in [µ1, 1]. Thus irrespective of the initial belief, π1,
the belief in the second slot, π2, will be in [µ1, 1]. Thus in
the second slot, we enter the regime of the lemma. Thus in
this case the optimal policy will sample at most once which
will be in the first slot.

We now consider the consider the case when µ0 = λ0
and µ1 = λ1. Recall that this corresponds to the scheduling
problem over the generalized Gilbert-Elliot channel.

Lemma 5: For λ0 = µ0 > µ1 = λ1, if r2 < ρ(µ0) and
0 ≤ π ≤ µ0, the optimal policy is to sample.

Proof: Proof is along the same lines as the preceding
lemma. From our assumption on µ0 and µ1, we see that
r2 < ρ(π) for all π ∈ [0, µ0]. Writing VS,1(π), and VNS,1(π)
as before, we now see that V1(π) = VS,1(π). Also, µ1 ≤
γ0(π), γ1(π), γ2(π) ≤ µ0 for all π ∈ [0, 1]. Writing the
recursion,

Vn+1(π) = max{VS,n+1(π), VNS,n+1(π)}
VS,n+1(π) = ρ(π) + βρ(π)Vn(γ1(π)) +

β(1− ρ(π))Vn(γ0(π))
VNS,n+1(π) = r2 + βVn(γ2(π)), (8)

and, as before, making the induction hypothesis that

Vn(π) = VS,n(π),

we can show that both VS,n+1(π) and VNS,n+1(π) are linear
in π. Hence VS,n and VNS,n(π) will be

VS,n+1(π) = mπ + c,

VNS,n+1(π) = βm(λ0 − λ1)π + r2 + βc+ βλ1m,

where,

m =
r0 − r1

1− β(µ0 − µ1)
,

c =
r1 +

βµ1(r0−r1)
1−β(µ0−µ1)

1− β
.
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We want to show that VS,n+1(π) > VNS,n+1(π), i.e.,

mπ + c > βm(λ0 − λ1)π + r2 + βc+ βλ1m

After simplifying this requirement reduces to ρ(π) > r2
for π ∈ [0, µ0] which is true. We thus have VS,n+1(π) >
VNS,n+1(π) for all π ∈ [0, µ0]. Hence Vn+1(π) =
VS,n+1(π). Thus by induction Vn(π) = VS,n(π) for all n ≥
1. taking limits as n → ∞, we know that Vn(π) → V (π),
VS,n(π)→ VS(π) and hence

V (π) = VS(π) = mπ + c.

Remark 3: Like in Lemma 4, observe that under the
conditions of Lemma 5, for 0 ≤ π ≤ 1, γ0(π), γ1(π), and
γ2(π) are all in [0, µ0]. Hence, irrespective of π1, the initial
belief, the optimal policy will sample always (except possibly
in the first slot).

Lemma 6: For λ0 = µ0 > µ1 = λ1, and rL < r2 < rH ,
the inequality V (0, r2) > V (1, r2) is satisfied.

Proof: The lemma is proved if we show the following.

V (0, r2) =


VS(0, r2) for r2 ≤ rL
VS(0, r2) for rL ≤ r2 ≤ rH
VNS(0, r2) for r2 ≥ rH

V (1, r2) =


VS(1, r2) for r2 ≤ rL
VNS(1, r2) for rL ≤ r2 ≤ rH
VNS(1, r2) for r2 ≥ rH

For r2 ≥ rH we know that not sampling is optimal for all
π. Thus, in this range of r2,

V (0, r2) = V (1, r2) = VNS(0, r2) =
r2

1− β
Similarly, for r2 ≤ rL, we know that sampling is optimal

for all π. Thus, in this range of r2, V (0, r2) = VS(0, r2) and
V (1, r2) = VS(1, r2). Further, from Property 4,

V (0, r2) =
r1 +

βµ1(r0−r1)
1−β(µ0−µ1)

1− β
.

V (1, r2) =
r0 − r1

1− β(µ0 − µ1)
+
r1 +

βµ1(r0−r1)
1−β(µ0−µ1)

1− β
.

Also observe that in this range of r2, V (0, r2) > V (1, r2).
Next, for rL < r2 < rH , we have

VS(0, r2) = r1 + βV (µ1).

VS(1, r2) = r0 + βV (µ0).

VNS(0, r2) = r2 + βV (λ1).

VNS(1, r2) = r2 + βV (λ0).

By our assumption that µ0 = λ0 and µ1 = λ1, and from
Property 5, we obtain rL = r0. Also, VS(0, r2) > VNS(0, r2)
and VS(1, r2) < VNS(1, r2). Thus V (0, r2) = VS(0, r2) and
V (1, r2) = VNS(1, r2). This completes the proof.

Note that that the above does not prove that there is one
threshold; there could be non contiguous ranges of π for
which sampling will be the optimal policy. We now argue

that there is possibly just a single threshold when λ0 = µ0 ≥
µ1 = λ1.

From Lemma 6, we know that there is at least one
threshold. Define

πT = arg min
0≤π≤1

VS(π) = VNS(π).

Observe that γ0(0) = γ1(0) = γ2(0) = µ1 and γ0(1) =
γ1(1) = γ2(1) = µ0. Also, from Property 1, γ0(π) is
concave, γ1(π) is convex and γ2(π) is linear and all are
increasing in π. Thus γ0(π) > γ2(π) > γ1(π). This means
that from Lemma 3, V (γ0(π)) ≤ V (γ2(π)) ≤ V (γ1(π)).

Next, writing VNS(π)− VS(π) as

VNS(π)− VS(π) = [r2 − ρ(π)]−
β [ρ(π) [V (γ1(π))− V (γ2(π))]

+(1− ρ(π)) [V (γ0(π))− V (γ2(π))]] , (9)

we observe that the first term increases with π. Further, from
the ordering on the γs, [V (γ1(π))− V (γ2(π))] ≥ 0 and
[V (γ0(π))− V (γ2(π))] ≤ 0 but the weight on the latter is
increasing with π. Further, since V (π) is bounded, the term
multiplying β in (9) is bounded and β can be made small
enough to make the right hand side of (9) to be an increasing
function of π for all π > πT . Thus there is a β1 ∈ (0, 1)
such that for all β < β1 there is a single threshold.

V. NUMERICAL RESULTS AND DISCUSSION

From Remark 1, when rL ≤ r2 ≤ rH , VS(π) and VNS(π)
intersect at least once. Thus the optimal policy would be of
the threshold type possibly many thresholds. We believe that
in most cases there is just one threshold, i.e., there is a πT
such that for 0 ≤ π ≤ πT , the optimal policy would be to
sample and for πT ≤ π ≤ 1, the optimal policy would be to
not sample for most other reasonable values of λi and µi.
This is also borne out by our extensive numerical study, a
sample of which is discussed below.

In Fig. 1 we have assumed that µ0 = λ0 and µ1 = λ1 and
we plot VNS(π) and VS(π) for four different values of r2.
This also corresponds to the Gilbert-Elliot channel. Observe
the lone threshold and also the decreasing of the threshold
with increasing r2. Also observe that when r2 is large, VS(π)
is linear and VNS(π) is a constant as expected and when r2
is small both VS(π) and VNS(π) are linear. In Fig. 2 we plot
the same for the case when µ0 6= λ0 and µ1 6= λ1, Once
again observe the single threshold. Here we also see that the
value functions are piecewise linear. We also observe that
VS(π) is decreasing in π.

We also see that in all the cases presented, the threshold
decreases as r2 is increased. For the restless multiarmed
bandit, in the language of [19], r2 can be interpreted as the
subsidy given to not sampling the arm. Also from [19], we
know that if πT is decreasing with increasing r2, then the
multiarmed case is indexable, i.e., the Whittle’s index can be
used to select the optimum arm in each slot.

The formal proofs for the optimality of the threshold
policy in the one armed case and the indexability in the
multiarmed case remain the subject of future work.
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Fig. 1. VNS(π) and VS(π) plotted for the case when µ0 = λ0 = 0.9, µ1 = λ1 = 0.1, r0 = 0.1, r1 = 0.8, and β = 0.9.
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Fig. 2. VNS(π) and VS(π) plotted for the case when µ0 = 0.9, µ1 = 0.1, λ0 = 0.1, λ1 = 0.9, r0 = 0.1, r1 = 0.8, and β = 0.9.
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