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Abstract We study the problem of distributed scheduling in wireless net-
works, where each node makes individual scheduling decisions based on hetero-
geneously delayed network state information (NSI). This leads to inconsistency
in the views of the network across nodes, which, coupled with interference,
makes it challenging to schedule for high throughputs.

We characterize the network throughput region for this setup, and develop
optimal scheduling policies to achieve the same. Our scheduling policies have
a threshold-based structure and, moreover, require the nodes to use only the
“smallest critical subset” of the available delayed NSI to make decisions. In
addition, using Markov chain mixing techniques, we quantify the impact of
delayed NSI on the throughput region. This not only highlights the value of
extra NSI for scheduling, but also characterizes the loss in throughput incurred
by lower complexity scheduling policies which use homogeneously delayed NSI.

Keywords Wireless Networks · Scheduling Algorithms · Delayed Information

1 Introduction

Modern data networks are increasingly being supported on the wireless medium.
In this regard, there are two primary trends which emerge. Firstly, there is an
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ever increasing demand for higher data rates, which is caused both due to
increasing number of users on such networks as well as a trend towards appli-
cations that are more data-intensive. Over the last few years, we have moved
from cellular networks dedicated to voice traffic to WiFi networks supporting
internet traffic over a small geographic area to the bandwidth demands posed
by a plethora of applications on modern ‘smartphones’, and this trend shows
no signs of abating. Due to the nature of the wireless medium, the resources
available to support this extra traffic are limited, and this puts added impor-
tance on the need for optimizing the protocols that are used for scheduling and
routing the information. A more subtle trend in wireless communications is a
move towards decentralization. The old paradigms of cellular networks with a
centralized controller are increasingly giving way to more distributed network
architectures like those seen in wireless sensor networks (WSNs), wireless mesh
networks (WMNs) and mobile ad-hoc networks (MANETs). We thus require
network algorithms that are not only capable of supporting high data-rates,
but also do so in a distributed manner.

Managing data in wireless networks, as opposed to traditional wireline net-
works, is complicated by two effects unique to the wireless medium – channel
fading and interference. Channel fading, at a high level, refers to the fact that
the wireless channel between two users is not constant (like in corresponding
wireline systems), but fluctuates in time; knowledge of these fluctuations, by
means of channel sensing, allows an algorithm to schedule transmissions in an
opportunistic manner (i.e., transmit more when the channel quality is good,
and remain silent when not). Due to the shared nature of the medium, the
successful reception of a user’s transmissions, even when the channel quality
is high, depends on its interactions with transmissions from other users. This
phenomenon is known as interference, and naturally necessitates a central-
ized scheduling approach in order to coordinate transmissions to/from various
users.

With this background in mind, the fundamental wireless scheduling prob-
lem can be viewed as one of scheduling transmissions in the network in the
presence of fading and interference in order to support data flows with as
high rates as possible. This problem is tackled by a long line of work, started
by Tassiulas and Ephremides [2] and extensively followed up by others [3–9],
resulting primarily in the celebrated Back-Pressure network scheduling algo-
rithm [2]. This algorithm schedules network links to maximize throughput in
an opportunistic fashion using instantaneous network state information (NSI),
i.e., queue and channel state knowledge across the entire network.

Though Back-Pressure scheduling guarantees the best possible through-
put performance for flows in networks, it suffers from two drawbacks – (a) the
algorithm requires solving a global optimization problem at each time to deter-
mine the schedule, making it highly centralized, and (b) it requires knowledge
of instantaneous NSI from the whole network, i.e. feedback about time-varying
channel and queue states from all links of the network. Towards addressing
these issues, researchers have developed distributed implementations of the
Max-weight algorithm [10–16], which use local NSI to achieve optimal/near-
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optimal throughput performance. Additionally, there have been studies on
scheduling in the presence of partial, noisy or delayed channel state informa-
tion (CSI). These include scheduling with limited channel sensing capabili-
ties and channel-probing costs [17–19], and scheduling with limited/uncertain
channel-state feedback [20–26].

An important problem which arises while scheduling in the presence of
channel fading and network interference, and which remains unexplored by
these works, is the fact that there is often a widespread mismatch in the
information that nodes possess. Each node has complete information about
its own queue and channel state, but has progressively “coarser” informa-
tion about other nodes’ NSI as the distance to these node increases. This
happens because: (i) prohibitive overheads in measuring and communicating
NSI, (ii)fading occurring faster than communicating NSI, leading to delayed
channel-state information and/or (iii) propagation delays due to geographic
separation of nodes. In this regard, the work of Ying and Shakkottai [27,28]
investigates distributed scheduling with delayed network state information,
i.e., with delayed topology [28] and delayed wireless channel state information
[27]. In particular, the latter paper considers networks with symmetric delays
in channel state and queue information, i.e., every node has instantaneous CSI
for itself, and CSI from other nodes delayed by a globally fixed number of time
slots. In this setting, all the nodes share a common view of the network – i.e.,
the network state with a fixed, uniform delay – which the nodes can use to
implement threshold-type scheduling based on individual instantaneous CSI
and achieve throughput-optimality.

The assumption of symmetric delayed state information is often not sat-
isfied in general networks which could have heterogeneous delays in channel
state information. For instance, two nodes in a network could possess channel
state information from a third node delayed by different amounts. This can
easily result in widely differing estimates at the first two nodes for the third
node’s network/channel state. A challenging problem thus is how to use the
heterogeneously delayed NSI to schedule. Unlike the case of homogeneous de-
layed CSI with additional individual CSI [27], the scheduling algorithm now
needs to account for the fact that the nodes can possess inconsistent network
state information – each node can potentially have a completely different view
of the network state. It is a priori unclear how distributed scheduling can be
performed when nodes have such inconsistent (i.e., heterogeneously delayed)
channel information. This paper aims to both (a) characterize the throughput
region with inconsistent NSI, and (b) develop scheduling algorithms that use
a minimal amount of heterogeneously delayed network state information and
are yet throughput-optimal. Having done this, it also examines the “value”
or “cost” of network state information, in regard to throughput, by quantita-
tively estimating throughput improvement/degradation when the nodes have
“finer/coarser” delayed NSI structures respectively.
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1.1 Our Contributions

In this work, we consider the problem of distributed wireless scheduling in
the presence of arbitrary interference set constraints and Markovian channel
fading, where each transmitter knows the other transmitters’ NSI with arbi-
trary, heterogeneous delays. This disparity in the delays of NSI available to
the transmitters can potentially result in inconsistent views of the global cur-
rent network state, causing conflicting/poor local scheduling decisions among
the transmitters. Given such a NSI structure, how can all the transmitters
in the network use their possibly inconsistent individual information to make
scheduling decisions for good overall throughout? Our main contributions in
this regard are as follows:

1. We characterize the network throughput region when each transmitter pos-
sesses instantaneous local NSI (i.e., NSI from itself) and heterogeneously
delayed NSI from other transmitters. For this purpose, we introduce a
special, restricted class of static-split scheduling policies, in which each
transmitter uses only critical delayed CSI from other nodes, along with
its own channel state information, to make transmission decisions. An im-
portant observation here is that these static-split scheduling rules, in the
conventional sense, are not necessarily throughput-optimal – determinis-
tic scheduling at all nodes still achieves corner points of the rate region,
but time sharing across the corner points is no longer possible with each
node using only local information. Rather, the throughput region results by
time sharing using global, common randomness together with static-split
strategies.

2. We develop a decentralized, threshold-based throughput-optimal schedul-
ing algorithm for the network, in which nodes use only critical NSI to
schedule. In every time slot, each node uses (delayed) network queue length
information along with critical delayed CSI from other nodes to compute a
suitable local threshold, and decides to schedule transmission by comparing
the threshold with its own channel state. Further, we show that delayed
queue length and channel state information, when used at each node to dy-
namically pick local threshold-scheduling rules, acts as a source of global,
common randomness for all the transmitters, helping to achieve stability
across the entire throughput region.

3. With respect to the canonical heterogeneous NSI setting, we quantify the
loss (gain) in throughput that results from all transmitters having the
maximum (minimum) possible homogeneously delayed NSI from other
transmitters. This quantifies the value of delayed NSI in terms of its impact
on the system throughput region, and is accomplished using techniques
from mixing of Markov chains.
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2 Scheduling with Heterogeneously Delayed NSI: An Example

Let us consider an illustrative example to help understand the essential dif-
ficulties and challenges in scheduling when the NSI available to each user is
delayed in a heterogeneous fashion. Suppose we have three wireless users A,
B and C, attempting to transmit packet data to a common receiver in a time-
slotted manner. We assume that the users are located sufficiently close to each
other so as to make their transmissions interfere, i.e., if the number of users
attempting to transmit in a time slot is more than one, no packets reach the
receiver. The channel between each user and the receiver is time-varying, and
in the event of a successful transmission, the channel state or rate of the lone
attempting user specifies how many packets can be sent to the receiver in that
time slot.

p

p

1 100

Fig. 1 User C channel Markov chain

Each user possesses instantaneous channel (and queue backlog) state infor-
mation about its own channel and receives delayed channel (and queue back-
log) state information from other users for the purpose of making transmit/no-
transmit decisions. Let us assume for simplicity that the channels for users A
and B take rates 1 or 100 (packets per time slot) each with probability 1

2
independently in each time slot; however user C’s channel state evolves as a
Markov chain between rates 1 and 100 with crossover probability p = 1

4 (Fig.
1). User A gets channel state information from users B and C delayed by 1
time slot, user B gets channel state information from users A and C delayed
by 1 and 2 time slots respectively, and user C gets channel state information
from users A and B delayed by 1 time slot. Fig. 2 depicts this NSI structure
at time t – a circle in the row of Tx A at time t − 1 indicates that it is the
latest information B has about A’s channel state, and so on.

Note that due to this information structure, at each time users A and B
have different “views” of user C’s current channel state owing to disparate
channel state information delays. For instance, if user C’s channel two time
slots ago was at rate 100 and one time slot ago was at rate 1, user A is led to
believe that user C’s current channel is very likely to have rate 1, whereas user
B’s belief would be that user C’s channel is most probably at rate 100. In such
events, how must the users act so that they can avoid excessive collision and
achieve desired data transmission rates? It turns out, as we show later on, that
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Fig. 2 Heterogeneous NSI for the 3-user network: Squares, circles and triangles represent
the most recent channel state information available to user A, B and C respectively.

the following threshold -based transmission rule, for each user, is a throughput
optimal scheduling strategy: In every time slot,

1. All the three users compute individual “threshold values” (to be used later)
as functions of their respective delayed queue length information and cer-
tain “critical” subsets of their available delayed channel state information
– user A works out a threshold value as a function of the one-step delayed
channel states of user B and user C, and so on.

2. Each user looks at the value(s) of its critical set of delayed NSI, compares
the corresponding threshold value and its own current channel state, and
attempts transmission only if its current channel state exceeds the threshold.

Now, consider the case when both user A and user B have user C’s channel
state information with a delay of 2 time slots. Compared to the earlier set of
delays, user A has one step “coarser” channel state information about user C,
so we expect a degradation in the overall set of achievable data rates that all
the users can support. In fact, it can be shown that

1. The best average sum rate achievable in the latter system is 56.69 pack-
ets/time slot, whereas

2. The best average sum rate achievable in the former system is 62.88 pack-
ets/time slot – an increase of about 11% in the sum rate with one additional
step of channel state information.

In this work, we provide a theory for wireless scheduling with heteroge-
neously delayed channel state information that answers the following useful
questions:

1. What are all the long-term average rates (i.e., the throughput region) that
such a wireless system with an arbitrary delayed NSI structure can sup-
port?

2. How can each user make scheduling (transmission) decisions – just based
on its limited amount of delayed information about other users’ channel
states – to be able to support any given feasible data rate? Moreover,
which are the time slots whose channel state information is “crucial” or
“essential” for making throughput-optimal decisions?

3. By how much does the throughput region of the system change with better
or worse delayed channel state information?
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3 System Model

This section is concerned with setting up the system model we use to develop
our results. This includes describing the network model, traffic model and the
structure of interference between wireless users. A key component of the model
is the information structure of delayed network state information available to
each user to schedule transmissions, which is described here. We conclude by
defining the performance metric of throughput that we consider in this paper.

– Network Model: We consider a wireless network consisting of L transmi-
tter-receiver pairs denoted by L. We model the (time-varying) capacity
of each link l using a discrete-time Markov chain, denoted by {Cl[t]},
on the finite state space C = {c1, c2, c3, ..., cM}, where c1 ≤ · · · ≤ cM
are nonnegative integers. Furthermore, we require that the link’s capac-
ity is independent and identically distributed, with transition probabilities
Pij := Pr[Cl[t + 1] = cj|Cl[t] = ci] for the respective Markov chain. The
above channel model is assumed for notational simplicity, and our results
hold even for the case of networks where each link can be modeled by a
separate Markov chain (different state space and different transition prob-
abilities). The only condition for our results to hold is that channels are
independent across various transmitter-receiver pairs (users).
We assume that the channel state Markov chain parameterized by the tran-
sition probabilities {Pij}i,j is irreducible and aperiodic 1. Thus the channel
state process has a stationary distribution and we denote the stationary
probability of being in a state cj , j ∈ {1, 2, 3...,M} by πj .

Finally, each link l has an associated queue of length Ql[t], which holds
data packets to be transmitted across the link.

– Interference Model:

We model radio interference in the network using a packet capture model.
Specifically, for each link l, let Il denote the set of links in the network
that interfere with l. Note that Il can be an arbitrary but fixed set of
interfering links for link l, which can be used to model geographically close
transmitters, transmitters using the same shared time/frequency resource
etc. We say that a collision occurs with a transmission scheduled on link
l if, in the same time slot, a transmission is scheduled on a link l′ ∈ Il.
When there is no collision at link l in time slot t, then min(Cl[t], Ql[t])
packets are successfully received across the link. However, when a collision
occurs on link l, we assume that min(γlCl[t], Ql[t]) packets are received
successfully across the link. For each l, we assume there exists γl ∈ [0, 1]
such that {γlc1, . . . , γlcM} are all integers (i.e., at each time t, γlCl[t] is an
integer). In general, it suffices to have all the γlci be rational numbers, for

1 This assumption is to ensure that the system state Markov chain (defined in Section
3.2) is irreducible and aperiodic, by suitably augmenting the state space.
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then the notion of a packet (equivalently, the queue length) can be suitably
redefined to satisfy this assumption.
We can consider an alternative model where if a collision occurs on link
l, then Cl[t] packets are successfully received with probability γl, else no
packets are received. In this case, γlCl[t] need not be integer since in any
event, an integer number of packets (0 or Cl[t]) is successfully received.
Setting γl = 0 for all l corresponds to a “perfect collision” interference
model, where no packets get through in the event of simultaneous trans-
missions, whereas γl > 0 models reception of packets in a probabilistic
manner. Though the results in this paper are proved for the former, de-
terministic interference model, all of them can be shown to hold for the
latter, probabilistic interference model as well.

– Traffic Model: We assume single-hop flows in the network, and that each
node does not have multiple simultaneous connections. Each link in the
network has a traffic process denoted by Al[t], that describes the number
of packets that arrive at sender node of link at time t. For every link l, we
assume that Al[t] is an integer-valued process independent across time slots
t, with 0 ≤ Al[t] ≤ Amax < ∞ almost surely, and set λl := E[Al[t]] < ∞.
We further assume that Pr[Al[t] = 0] > 0 and Pr[Al[t] = 1] > 0.2

3.1 NSI Structure and Scheduling Policies

We assume that each transmitter accesses network state information parame-
terized in terms of its information delays from other transmitters. Specifically,
at time t, transmitter l has channel and queue state information history of
link l upto and including time t, but has only delayed channel state informa-
tion and queuing history of other links in the network. Let τl(h) denote the
delay incurred in communicating the channel and queue state information of
link h to the transmitter node of link l. Thus, each transmitter node l has a
vector of delay values τl that characterizes the available delayed NSI at l. We
denote by τmin and τmax the minimum and maximum channel (and queue)
state information delay across the network, i.e.,

τmin = minl,h∈L:l 6=hτl(h); τmax = maxl,h∈L:l 6=hτl(h).

We denote the set {Cl[t− τ ], Cl[t− τ +1], ...., Cl[t]} by Cl[t](0 : τ) and the
set {Cl[t]}l∈L by C[t]. We denote the information available at transmitter l

by {Pl(C[t](0 : τmax)),Pl(Q[t](0 : τmax))}, where

Pl(C[t](0 : τmax)) := {P lm(C[t](0 : τmax))}m∈L, with

P lm(C[t](0 : τmax)) := {Cm[t− τ ]}τl(m)
τ=τmax

,

and likewise for Pl(Q[t](0 : τmax)). A scheduling policy is a map for each
link l that maps its network state information {Pl(C[t](0 : τmax)),Pl(Q[t](0 :
τmax))} to a transmit/no-transmit scheduling decision.

2 These assumptions are to ensure that the system state Markov chain (defined in Section
3.2) is irreducible and aperiodic, by suitably augmenting the state space.
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3.2 Performance Objective: Throughput/Stability

We define the state of the network at time t as the process Y[t] = {Ql[t](0 :
τmax), Cl[t](0 : τmax)}l∈L, and specifically denote this state process under a
scheduling policy F by YF [t].

Given the arrival rate vector {λl}l∈L and a scheduling policy F , we say that
the network is stochastically stable if the system state Markov chain YF [t] is
positive recurrent. We say that an arrival rate vector {λl}l∈L is supportable if
there exists a scheduling policy that makes the network stochastically stable.

4 Distributed Scheduling with Heterogeneously Delayed NSI

In this section, we first characterize the throughput region of the wireless sys-
tem, i.e., the set of all supportable arrival rates. Traditionally the through-
put region is the set of arrival rates that can be supported by Static Service
Split (SSS) scheduling rules – a restricted class of queue-length oblivious and
channel-state aware strategies [3,5,27,20]. Although we use a similar approach,
a crucial distinction arises when considering static-split scheduling in our set-
ting. In the classical framework of static-split rules, deterministic scheduling
rules achieve the corner points of the throughput region, and time sharing us-
ing randomized static-split rules then attains the entire region. However, in our
decentralized setting, though deterministic scheduling using local information
at each node still achieves all the corner points of the rate region, time sharing
among these corner points is not possible using only local information at each
node. Instead, global, common randomness is required for time-sharing and
for achieving the entire throughput region. Thus, static-split scheduling, in the
conventional sense, is not necessarily throughput-optimal for our setting.

Consider a simple example of two nodes sharing a unit-rate collision chan-
nel – in each time slot, one packet can be transmitted by each node, but a
collision occurs if both nodes simultaneously transmit. As shown in Figure 3,
the rate point (1, 0) (resp. (0, 1)) can be achieved by deterministic schedul-
ing at the nodes, i.e., if node 1 (resp. node 2) always transmits and node 2
(resp. node 1) always stays silent. The dotted line denotes rate pairs (α, 1−α)
achieved by time sharing between the corner points (1, 0) and (1, 0). This is
possible when the nodes use global, common randomness (e.g., a common se-
quence of coin tosses with the probability of heads being α), and captures the
traditional notion of randomized static split rules.

On the other hand, when the nodes can only use local information (e.g.,
individual, independent coin flips), it is not hard to see that points beyond the
curved line in Figure 3 cannot be achieved. Indeed, a point on this curved line
results when each node i ∈ {1, 2} transmits independently with probability pi,
which represents static split scheduling carried out individually at each node.

Note that SSS rules need not necessarily preclude joint decisions via com-
mon randomness. Yet, the point of the above example is to emphasize the
fact that common randomness is, in a sense, indispensable when performing
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distributed scheduling. In other words, one cannot hope to achieve the entire
throughput region by applying static split rules using only local coin flips at
each node; rather, the SSS rules need to be able to access global, common
randomness.

Fig. 3 Static-split scheduling rules, in our setting, are not necessarily throughput-optimal in
the conventional sense. For two transmitters sharing a unit-rate collision channel, the corner
points (1, 0) and (0, 1) are achieved by individual static-split scheduling at each transmitter.
However, with just local information and randomization, rates beyond the curved boundary
cannot be achieved. To time share between the corner points and attain rates on the dotted
line requires global common randomness.

Given this distinguishing feature of static-split scheduling in our setting,
we show in Section 4.1 that by combining appropriate “static” scheduling at
each transmitter with the use of global common randomness, we show that
all points in the throughput region can be achieved. Next, in Section 4.2, we
further simplify the structure of the static scheduling policies, by identifying
the “critical set” of available delayed NSI sufficient for each transmitter to
achieve any valid rate point.

Finally, in Section 4.3, we give a throughput-optimal, distributed schedul-
ing algorithm for all transmitters, that uses critical delayed queue and channel
states as a source of global common randomness along with scheduling with
suitable static rules at the transmitters. In this regard, the idea leveraged
from the above example is the following: if both nodes can access delayed
queue length information, say (Q1(t − 10), Q2(t − 10)), at every time slot t,
it is possible to time share between the two corner points. This can be done,
for instance, when node 1 transmits whenever Q1(t − 10) ≥ Q2(t − 10) and
node 2 transmits whenever Q1(t − 10) < Q2(t − 10). The key advantage of a
queue-based policy, as opposed to a fixed common random coin, is that the
joint distribution of the queues automatically adapts, and the resulting algo-
rithm achieves any point in the interior of the throughput region. Thus, this
is in the spirit of traditional Back-Pressure algorithms, but in the context of
deriving the “correct” common randomness.
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4.1 Throughput Characterization

Towards describing the throughput region, i.e., the set of all supportable ar-
rival rate vectors {λl}l∈L, consider a collection of functions {fl}, one for each
link/transmitter l ∈ L, where each fl : Pl(C[t](0 : τmax)) → {0, 1}. These
maps {fl}l∈L parameterize a static-split or stationary scheduling policy –
oblivious of queue state information, and of channel state information past
τmax – as follows: at each time t, every link l computes the binary value
fl(Pl(C[t](0 : τmax))) and attempts to transmit (i.e., schedule itself) when-
ever this binary value is 1.

If the delayed channel state information at time t is C[t− τmax] = c, then
the expected rates at time t that all links receive when each transmitter l ap-
plies the static-split scheduling policy fl is defined to be S(c, f) = {Sl(c, f )}l∈L,
as follows:

Sl(c, f ) =E
[

Cl[t]fl(Pl(.))
(

γl + (1 − γl)
∏

m∈Il

(1 − fm(Pm(.)))
)

|C[t− τmax] = c
]

,

where Pl(.) = Pl(C[t](0 : τmax)). We now define η(c) as follows,

η(c) = CHf

(

S(c, f)
)

.

Thus, η(c) ⊂ RL is the convex hull of all the possible expected transmission
rates that achieved by static-split scheduling policies in time slot t, when the
common NSI up to time t−τmax is c. Finally, our candidate for the throughput
region of the system is the region Λ ∈ RL defined by

Λ =
{

λ : λ =
∑

c∈CL

π(c)x(c), x(c) ∈ η(c) ∀c ∈ CL
}

.

In other words, Λ is the Minkowski sum of the sets {η(c)}c∈CL weighted by
the respective probabilities π(c). The corner points of Λ correspond directly
to static-split scheduling rules, and in general, each point in Λ represents the
expected rates delivered to all links obtained by time sharing across static-
split scheduling rules. Note that this time sharing across nodes’ scheduling
decisions, as described in the example above, can be achieved with global,
common randomization, e.g., a common sequence of coin flips available to all
the nodes. Thus, Λ is an inner bound for the throughput region of the system.
However, the following result establishes that the throughput region is no more
than Λ.

Lemma 4.1. Under the above NSI structure, the traffic process {A[t]}t is
supportable if (1 + ǫ)E[A[t]] ∈ Λ for some ǫ > 0, and only if E[A[t]] ∈ Λ.

The key step in the proof of Lemma 4.1 (similar to Lemma 7 in [27]) is to
build a time shared stationary policy corresponding to any given rate point
λ ∈ Λ. This is carried out by using the steady-state queue-length distribu-
tion, of an arbitrary scheduling policy that stabilizes λ, as the distribution of
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a source of global, common randomness. This randomization is then used by
each transmitter to pick a suitable static-split scheduling rule, and enable the
transmitters to appropriately time share their transmit decisions to stabilize λ.
The proof technique also hints at the fact that shared delayed queue and chan-
nel state information thus can, in fact, act as a source of common randomness –
a fact that is exploited crucially in Section 4.3 to design a throughput-optimal
scheduling policy. We refer the reader to the appendix for the detailed proof
of the lemma.

4.2 Critical NSI

As defined in the system model (Section 3), τl(h) represents the delay with
which the latest queue state and channel state information of link h is avail-
able at link l. We expect that for link l at time slot t, all the latest delayed
channel state information from other users (i.e., {Ck[t− τk(l)] : k ∈ L, k 6= l})
is the information most useful with regard to the current channel states of the
other users. In what follows, we introduce the important concept of critical
NSI for the network – essentially all the latest delayed channel state informa-
tion observed by every user in the network – which is later used to develop
a throughput-optimal scheduling policy in which each user makes scheduling
decisions just based on the critical NSI available to itself.

Given C[t](0 : τmax), the critical set of information related to link l is
defined as the the channel state information at times {t − τk(l)}k∈L:k 6=l. Let
us denote the critical NSI of the network at time t as CS(.), which can be
expressed mathematically as follows

CS(C[t](0 : τmax)) := {{Cl[t− τk(l)]}k∈L:k 6=l}l∈L.

For every l ∈ L, we define the critical NSI available at transmitter l as
follows:

CSl(C[t](0 : τmax)) := CS(C[t](0 : τmax))
⋂

Pl(C[t](0 : τmax)).

Recalling the example in Section 2, we have the τmax = 2, and critical set
at time t is {CA[t−1], CB[t−1], CC[t−1], CC[t−2]}. Thus at time t, the critical
set available at transmitter A is {CA[t− 1], CB[t− 1], CC [t− 1], CC [t− 2]}, at
B is {CA[t− 1], CB[t− 1], CC [t− 2]}, and at C is {CA[t− 1], CB[t− 1], CC [t−
1], CC [t− 2]}.

We now describe the queue dynamics at each transmitter node. Each trans-
mitter maintains a queue of packets corresponding to its destination. Once a
packet is sent, this node does not flush the packets from its queues until an
acknowledgment is received indicating successful reception. This acknowledg-
ment (ACK) is received with some delay, and this delay is consistent with
the critical channel state information delays. By this, we mean that the in-
formation contained in the acknowledgment, either explicitly (in the header)
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or implicitly (via the observation that presence of the ACK/NACK “encodes”
the interfering links’ critical NSI) does not contain additional NSI as com-
pared to the nodes’ critical NSI. This is to ensure that by learning based on
queue lengths and ACKs, nodes cannot get more NSI than the critical NSI.
This consistency of ACK “state” information can be characterized explicitly
where each transmitter node has potentially a different ACK delay, which is
“naturally” consistent with the critical NSI in the system. However, in this pa-
per, for notational simplicity, we assume that the acknowledgment is received
only after τmax time slots (thus trivially ensuring that the ACK information is
consistent with the critical NSI). The queue dynamics therefore is represented
as follows,

Ql[t+ 1] = (Ql[t] +Al[t]− Sl[t− τmax])
+,

where Sl[t] denotes the number of packets successfully transmitted at time t.

4.3 A Threshold-based Throughput-optimal Scheduling Algorithm:

The two ideas discussed so far – (a) that global, common randomness helps
span the stability region (Section 4.1), and (b) that critical delayed NSI at
each transmitter is as good as all available delayed NSI (Section 4.2), are used
in this section to design a threshold-based decentralized scheduling algorithm.
This algorithm uses shared, delayed queue-length information as a source of
common randomness, and along with local threshold-type static scheduling
with only critical NSI at each transmitter, achieves throughput-optimality,
i.e., stabilizes the network for all arrival rates in the interior of the throughput
region Λ. Note that this is done without any explicit knowledge of the arrival
rates; thus the shared queue lengths distribute themselves in such a way as
to provide the “right” time sharing fractions necessary to stabilize any valid
vector of arrival rates.

The algorithm we propose consists of two steps. At each time slot,

– Step 1: All the transmitters compute threshold functions based on com-
mon NSI available at all transmitters. These threshold functions, one for
each transmitter, map the respective transmitter’s critical NSI to a cor-
responding threshold value, and are computed by solving the following
optimization problem:

argmax
T

∑

l∈L

Ql(t− τmax)Rl,τmax
(T), (1)

where

Rl,τ (T) := E
[

Cl[t]1Cl[t]≥Tl(.)

(

γl+(1−γl)
∏

m∈Il

1Cm[t]<Tm(.)

)

|C[t−τ ]
]

, (2)

and Tl(.) := Tl(CS l(C[t](0 : τmax))).
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– Step 2: Each transmitter observes its current critical NSI, evaluates its
threshold function (found in Step 1) at this critical NSI, and attempts to
transmit if and only if its current channel rate exceeds the threshold value,
i.e., when

Cl[t] ≥ Tl(CSl(C[t](0 : τmax))).

The main result of this section is the following, which states that the above
distributed scheduling algorithm stabilizes any arrival rate vector in the system
throughput region Λ.

Theorem 4.2. The proposed algorithm is throughput-optimal.

Proof outline. We provide a sketch of the proof here – the detailed proof can
be found in the appendix. The crux of the proof lies in the following lemma,
which shows that solving an optimization problem locally in each time slot
results in (globally) throughput-optimal scheduling.

Lemma 4.3. Consider the optimization problem

argmax
F(.)

∑

l∈L

Ql(t− τmax)Rl,τmax
(F(.)), (3)

where

Rl,τ (F(.)) := E
[

Cl[t]Fl(.)
(

γl + (1− γl)
∏

m∈Il

(1− Fm(.))
)

|C[t− τ ]
]

,

and Fl(.) := Fl(Pl(C[t](0 : τmax))) ∈ {0, 1} for each l ∈ L. If each transmitter
l at time t is scheduled to transmit whenever the optimizing F ∗

l (Pl(C[t](0 :
τmax))) = 1, then any λ that satisfies (1 + ǫ)λ ∈ Λ for ǫ > 0 is supportable.

Next, we show that the optimizing solution (i.e., the functions F ∗
l (.) of the

individual NSI for all l ∈ L)

1. Satisfies a threshold property, i.e.,

F ∗
l (Pl(C[t](0 : τmax))) = 1Cl[t]≥T∗

l
(Pl(C[t](0:τmax))),

2. Depends only on the critical set of NSI for each l ∈ L, i.e.,

T ∗
l (Pl(C[t](0 : τmax))) = T ∗

l (CSl(C[t](0 : τmax))).

The proof is completed by first noting that the proposed algorithm finds the
best threshold-based scheduling decisions where each transmitter’s thresholds
are based only on its currently available NSI. And then using the two key
properties of the time-varying channels - Markov property across time and
independence property across the links in the network.
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5 Impact of Delayed NSI on the Throughput Region

With increasing delays in NSI between users, the information structure avail-
able to the users for scheduling becomes “coarser”, hence we expect that sys-
tem throughput is degraded. In this section, we present our second main result,
which describes the extent to which the throughput region shrinks with larger
delays in acquiring NSI from other users.

Let us denote the throughput region with NSI delays {τl}l∈L (which we call
our “canonical heterogeneous case”) by Λ. For an integer τ ≥ 0, let Λτ denote
the throughput region assuming that each link has its own instantaneous NSI
and knows the NSI of other links in the network with a fixed delay of τ . We
note that

Λτmax
⊆ Λ ⊆ Λτmin

.

The following theorem – our second main result – quantifies the loss (gain)
in the interior of the throughput region by using the minimum (maximum)
homogeneously delayed NSI compared to the canonical heterogeneous case.

Theorem 5.1. For integers τ1, τ2 ≥ 0, let

α(τ1, τ2) :=
2Lkoβ(τ1, τ2)
∑

j cj mini P
τ1
ij

, (4)

where ko = (1 +M |I|(1 − γ))(
∑

ci), β(τ1, τ2) = max|P τ1
ij − P τ2

kj |, γ = min γl
and |I| denotes the maximum size of an interfering set of transmitters. Then,

(1− α)Λτmin
⊆ Λ ⊆ (1 − α)−1Λτmax

,

where α := α(τmin, τmax) .

Theorem 5.1 is important for the following reasons:

1. It provides a lower bound on the fraction of the best-NSI throughput that
can be attained as delays in NSI increase. Furthermore, the bound depends
in a straightforward manner on the probability transition matrices of the
system channels and the maximum number of interfering channels.

2. From the perspective of system design, the result of the theorem is use-
ful since it specifies how much delay in the NSI can be tolerated while
guaranteeing a minimum desired throughput capability for the system.

Proof. We prove a more general result which implies the above theorem: Given
τ1 and τ2 such that τ1 ≤ τ2, we have Λτ2 ⊇ (1− α(τ1, τ2))Λτ1 .

For a NSI structure where each transmitter knows its current information
and delayed information (by τ1) of other links in the network, we have a
scheduling policy based on thresholds (from Theorem 4.2) that is throughput-
optimal. We will need the following useful lemma [7].
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Lemma 5.2. (Adapted from [7]) At any time t, given the common NSI (Q[t](τ1 :
t),C[t](τ1 : t)), let T∗

1
be the optimal set of thresholds calculated using the pro-

posed algorithm and T2 be set of thresholds computed using a scheduling policy
Sρ such that the following condition holds (for some ρ ∈ [0, 1]):

∑

l∈L

Ql(t− τ2)Rl,τ1(T2) ≥ (1− ρ)
∑

l∈L

Ql(t− τ2)Rl,τ1(T
∗
1
).

Then, the scheduling policy Sρ can stabilize any arrival rate λ ∈ (1− ρ)Λτ1 .

Let T∗
2
be the set of thresholds computed using the proposed algorithm

with the “degraded” NSI (Q[t](τ2 : t),C[t](τ2 : t)). Thus, T∗
2 need not be

an optimal set of thresholds for scheduling with the “non-degraded” partial
NSI (Q[t](τ1 : t),C[t](τ1 : t)). Also, the proposed algorithm which uses only
degraded partial NSI (τ2 instead of τ1) can stabilize the system for all arrival
rates λ ∈ Λτ2 . We can write

Rl,τ1(T
∗
2
) = E

[

Cl[t]1Cl[t]≥T∗

2,l

(

γl + (1 − γl)
∏

m∈Il

1Cm[t]<T∗

2,m

)

|C[t− τ1]

]

.

Since the random variables Cl[t] and Cm[t] are independent, we can rewrite
the above expression as

Rl,τ1(T
∗
2) =γlE

[

Cl[t]1Cl[t]≥T∗

2,l
|Cl[t− τ1]

]

+ (1 − γl)E
[

Cl[t]1Cl[t]≥T∗

2,l
|Cl[t− τ1] ×

∏

m∈Il

E
[

1Cm[t]<T∗

2,m
|Cm[t− τ1]

]

.

Let P τ
ij denote the τ -step transition probability of the channel state Markov

chain from state ci to state cj . Rewriting the above expression in terms of P τ
ij ,

we have

Rl,τ1(T
∗
2) =γl

(

M
∑

i=1

ciP
τ1
.i 1ci≥T∗

2,l

)

+

(1− γl)

(

M
∑

i=1

ciP
τ1
.i 1ci≥T∗

2,l

)

∏

m∈Il

(

M
∑

i=1

P τ1
.i 1cm≥T∗

2,l

)

.

(5)

We now state another lemma that bounds the difference between Rl,τ1(T
∗
2)

and Rl,τ2(T
∗
2
).

Lemma 5.3. |Rl,τ1(T
∗
2)−Rl,τ2(T

∗
2)| < koβ(τ1, τ2).

Using Lemma 5.3, we have that

∑

l∈L

Ql(t− τ2)Rl,τ1(T
∗
2) ≥

∑

l∈L

Ql(t− τ2) ×

(Rl,τ2(T
∗
2
)− koβ(τ1, τ2)).
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With the fact that T∗
2
is an optimal set of thresholds for the proposed algo-

rithm with NSI (Q[t](τ2 : t),C[t](τ2 : t)), we have

∑

l∈L

Ql(t− τ2)Rl,τ1(T
∗
2) ≥

∑

l∈L

Ql(t− τ2) ×

(Rl,τ2(T
∗
1
)− koβ(τ1, τ2)).

Employing Lemma 5.3 once again, we have

∑

l∈L

Ql(t− τ2)Rl,τ1(T
∗
2)

≥
∑

l∈L

Ql(t− τ2)
(

Rl,τ1(T
∗
1)− 2koβ(τ1, τ2)

)

≥
∑

l∈L

Ql(t− τ2)Rl,τ1(T
∗
1)− (LQmax)2koβ(τ1, τ2)

=
∑

l∈L

Ql(t− τ2)Rl,τ1(T
∗
1)









1−
(LQmax)2koβ(τ1, τ2)
∑

l∈L

Ql(t− τ2)Rl,τ1(T
∗
1)









.

Note that

∑

l∈L

Ql(t− τ2)Rl,τ1(T
∗
1
) ≥

∑

l∈L

Ql(t− τ2)(minRl,τ1(.)) ≥ Qmax

∑

j

cj minP τ1
ij .

where the second inequality follows from the fact that summation is larger
than maximum and Rl,τ1(.) can be lower bounded by

∑

j cj mini P
τ1
ij . Using

the above inequality, we have that

∑

l∈L

Ql(t− τ2)Rl,τ1(T
∗
2
)

≥
∑

l∈L

Ql(t− τ2)Rl,τ1(T
∗
1
)

(

1−
2Lkoβ(τ1, τ2)
∑

j cjminP τ1
ij

)

= (1− α(τ1, τ2))
∑

l∈L

Ql(t− τ2)Rl,τ1(T
∗
1
).

Using Lemma 5.2 now yields Λτ2 ⊇ (1− α(τ1, τ2))Λτ1 as desired.

Finally, as a corollary of Theorem 5.1, we characterize the throughput
region Λ∞ as a fraction of the canonical throughput region Λτ . This represents
the throughput in the “worst” possible delayed NSI case when each user has
no NSI from any other user. For the sake of simplicity, we assume Pij > 0 for
all i and j. Even if Pij are not all positive, we can find an integer mo (since
the Markov chain is aperiodic, irreducible and finite) such that Pmo

ij > 0 for
all i and j.



18 Akula Aneesh Reddy et al.

Corollary 5.4.

a) α(τmin, τmax) ≤
4Lko(1 −Mδ)τmin

∑

j cj mini P
τmin

ij

,

b) lim
τmax→∞

α(τmin, τmax) ≤
2Lko(1 −Mδ)τmin

∑

j cj mini P
τmin

ij

,

where δ = minij Pij.

Proof. The proof is based on the exponential convergence property [29] of
finite-state Markov chains and detailed proof is presented in appendix.

6 Simulations

In this section, we carry out numerical experiments using our proposed schedul-
ing algorithms to illustrate the value of delayed network state information for
throughput performance, and the efficacy of the Markov chain mixing bounds
with homogeneously delayed NSI shown in Section 5.

6.1 Methodology

For our simulations, we consider a wireless network with L = 10 links. Com-
plete interference is assumed with perfect collisions, i.e., Il = L\{l} and γl = 0
∀l. Thus, for a transmission to be successful on a link l, we need all the other
links in the network to be “silent”, otherwise no packet is transmitted. The
channel state process for each link l is assumed to be a two-state Markov chain
on the state space {0, 1}, with uniform crossover probabilities p. Throughout
this section, we assume symmetric traffic at all links, i.e., Al[t] ∼ Bernoulli(λ)
∀l. Thus all the flows are single hop. The proposed algorithm in Section 4.3 is
implemented in each time slot by solving the optimization (1) as a brute-force
search over all possible thresholds T.

6.2 Throughput Performance with Delayed NSI

We simulate in Matlab, the proposed algorithm (Section 4.3) on the 10-links
wireless network described above for various values of the channel crossover
probability p and NSI delays τ . For each value of p, Figure 4 depicts the
maximum sum-throughput, i.e., 10× λ, that the proposed algorithm achieves
as a function of increasing homogeneous NSI delay τ = 0, 1, . . . , 10.

The maximum sum-rate when all nodes have instantaneous NSI (i.e., τ = 0)
is 1. In this case, our algorithm reduces to performing standard Max-Weight
scheduling, and results in each of the the 10 nodes exclusively transmitting
1
10 -th of the time. Thereafter, as the information delay τ increases from 0 to
10, the sum-capacity decreases owing to more degradation in the nodes’ NSI
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Fig. 4 Sum-throughput performance of the proposed algorithm for a 10-node wireless net-
work with full collision interference. Traffic is symmetric with rate λl = λ, and channels are
2-state Markov with rates {0, 1} packets/slot. Each curve depicts optimal sum-rate achiev-
able for various homogeneous NSI delays τ = 0, 1, . . . , 10, for a different value of channel
state crossover probability p.

structure. This sum-throughput degradation with delay occurs faster when p

is closer to 0.5. Note that p = 0.5 represents channel states that are i.i.d.
across time slots, so there is nothing to be gained from using delayed channel
state information. Hence, the more rapid degradation of sum-rate closer to the
i.i.d. channel regime is consistent with the fact that the dependence of current
channel state decreases with p increasing to 0.5.

6.3 Throughput Region Mixing-based Bounds

We next turn to evaluating the efficacy of our bound α(·, ·) from Theorem 5.1.
Note that, from Section 5, the quantity (1− α(τ,∞)) lower bounds the factor
by which the throughput region with “infinitely delayed NSI” (i.e., NSI with
a very large delay) Λ∞ is smaller relative to the throughput region Λτ with a
homogeneous NSI delay τ . Thus, (1 − α(τ,∞)) = 1 denotes that Λτ = Λ∞,
i.e., there is no further throughput degradation beyond a NSI delay of τ .

Figure 5 plots the calculated values of (1 − α(τ,∞)) versus τ for various
values of channel state crossover probabilities p. Observe that for p = 0.5,
i.e., channel states independent across time slots, this quantity is always 1,
which agrees with the fact that throughput with delayed NSI over independent
channel states does not depend on the amount of delay. Also, note that the
closer p is to 0.5, the faster (1− α(τ,∞)) approaches 1, i.e., the more rapidly
the throughput region shrinks to Λ∞ as noted in the previous section.

Figure 5 shows that the bounds of Theorem 5.1 are indicative of the level
of NSI delay beyond which there is effectively little degradation of the system
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throughput. From Figure 5, when p = 0.4 observe that the bound is 1 for all
τ > 5. At the same time, from the simulation results of Figure 4, we notice
that for τ ≥ 3 there is no further degradation in throughput. Thus, the bound
derived in Theorem 5.1 provides an estimate of the NSI delay beyond which
there is no further degradation in throughput.
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Fig. 5 Plot of (1 − α(τ,∞)) versus homogeneous NSI delay τ . Each curve represents a
different value of channel state crossover probability p. The quantity (1 − α(τ,∞)) lower-
bounds the factor by which the throughput region with “infinitely delayed NSI” (i.e., NSI
with a very large delay) Λ∞ is smaller relative to the throughput region Λτ with a homoge-
neous NSI delay τ . Thus, (1− α(τ,∞)) = 1 denotes that Λτ = Λ∞, i.e., there is no further
throughput degradation beyond a NSI delay of τ .

7 Discussion: Implementation Complexity

We remark that the throughput-optimal algorithm developed in Section 4.3
is computationally complex. The solution which we provide is in terms of an
integer program with a high complexity if solved in a brute-force manner. We
have numerically evaluated the run times of our algorithm using Matlab simu-
lations (but without any approximations to reduce compelxity). The run time
of algorithm for network sizes with 5, 10, 15 and 20 links are 4, 110, 3900 and
81400 ms respectively. Note that the time taken roughly grows exponentially
with the number of links in the network. A simple further approximation is to
ignore the far-away links delayed channel state information and just use the
expected values instead. With this approximation, as the network scales the
complexity at an individual node will not scale after a point in network size but
will incur a loss in throughput. However, the above calculations do not use this
approximation and are computed using the “brute-force” exact solution. It is
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possible that there could be sophisticated methods that reduce this complex-
ity; instead, we have studied complexity reductions via structural properties
of the solution. In particular, our approach towards complexity reduction in
this work is the following:

1. We characterize the minimal/critical information necessary (and sufficient)
for throughput-optimality (Section 4.2). This is significant as the complex-
ity is exponential in the size of the information set.

2. We show that threshold-type policies are sufficient for throughput-optimality
(Section 4.3). Note that in general, the throughput-optimal policy in each
time slot at each node is a mapping from observed delayed channel and
queue state to a scheduling decision (i.e., transmit/no-transmit). However,
we show that threshold-type mappings, i.e., transmit only if the current
channel state exceeds a threshold, are sufficient for achieving throughput-
optimality. This reduces the complexity of the algorithm from exponential
to linear in the number of channel states, though we note that the com-
plexity remains exponential in the network size.

3. To obtain further complexity reductions, we consider alternative (sub-
optimal) schemes based on the use of “degraded common information”
(Section 5). The technical challenge here is in characterizing the loss in
throughput, and we develop novel Markov chain mixing-based techniques
to do so.

8 Conclusion

In this paper, we have addressed the problem of distributed scheduling in
wireless networks with Markovian channels and heterogeneously delayed NSI.
We have proposed a threshold-type distributed scheduling algorithm that is
provably throughput-optimal. We have shown that thresholds depend only up
on the critical set of NSI. We have also characterized the effect of delayed NSI
on the network throughput region.
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Appendix

Proof. (Lemma 4.1) First, assume that the arrival rates E[A[t]] are such that
λ̃ := (1 + ǫ)E[A[t]] ∈ Λ for some ǫ > 0. Then, by the definition of the region
Λ, it follows that we can construct a set of channel state dependent policies
(i.e., fl’s) and “time-share” over those policies to get a long-term service rate
of λ̃ (analogous to the proof of Theorem 1 in [3]). This, in turn, ensures that
the network is stochastically stable.

Now for the other direction, given A[t] is supportable, by definition, there
exists a scheduling algorithm F which makes the network stable. Since the
system state Markov chain YF [t] is positive recurrent, it exhibits a stationary
distribution. Let us denote the scheduling decision under policy F as SF(Y[t]).
We will now construct a time-sharing scheduling policy Fs that depends on
the steady state distribution of queue lengths and channel states (denoted as
π(y), y = {q(0 : τmax), c(0 : τmax)}) under policy F . Let r(y) = Pr(q|c),
computed using π(y).

At each time, when delayed channel state information C[t](0 : τmax) = c,
the policy Fs probabilistically selects the scheduling decision SF(q, c) with
probability r(y = (q, c)). We observe that the time-sharing policy Fs allocates
the same amount of service to each link as F . Since A[t] can be supported by
the time sharing policy, we have that E[A[t]] ∈ Λ.

Proof. (Theorem 4.2) The proof is split into two parts. Part one proves the
threshold property of optimal solution and part two shows that optimal solu-
tion depends only up on the critical set of NSI. In other words, part two shows
that the optimizing solution is independent of extra channel state NSI avail-
able at each node other than the critical NSI. (Proof : Part 1) We first show
the following threshold property for the optimal solution to the optimization
problem defined in equation (3),

F ∗
l (Pl(C[t](0 : τmax))) = 1Cl[t]≥T∗

l
(Pl(C[t](0:τmax))),

Let us assume that we partly know the optimal solution. In particular, we as-
sume that we are given the entire {F ∗

l (Pl(C[t](0 : τmax)))}l∈L except F ∗
k (Pk(C[t](0 :

τmax))) at two different values of NSI (Pk(C[t](0 : τmax)) = {(Ck[t] = ci, r), (Ck[t] =
cj , r)})available at transmitter k.
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To find F ∗
k (Ck[t] = ci, r), F

∗
k (Ck[t] = cj , r), we can solve the optimization

(3) with other variables being fixed to the optimal solution. Consider the
function that needs to be optimized:

∑

l

QlE
[

Cl[t]Fl(.)
(

γl + (1 − γl)
∏

m∈Il

(1 − Fm(.))
)

|c[t− τmax]
]

.

Expanding this out, we can write this as

∑

l

Ql

∑

z∈CLτmax

Pr(z|c[t− τmax])Cl(z)Fl(z)
(

γl + (1− γl)
∏

m∈Il

(1− Fm(z))
)

.

Note that z ∈ CLτmax corresponds to one particular realization of chan-
nel states of the network for the past τmax slots. Since the variables in the
above optimization are only Fk(Ck[t] = ci, r) and Fk(Ck[t] = cj , r), we ig-
nore the terms in the summation that do not involve these variables (as
they are constant and do not affect the arg max). Let Ai denote the set
{z : z ∈ CLτmax ,Pk(z) = (ci, r)}. The new function we now have is:

Qk

∑

z∈Ai∪Aj

Pr(z|c[t− τmax])Ck(z)Fk(z)
(

γk + (1− γk)
∏

m∈Ik

(1 − Fm(z))
)

+
∑

l:l∈Ik

Ql

∑

z∈Ai∪Aj

Pr(z|c[t− τmax])Cl(z)Fl(z)
(

γl + (1− γl)
∏

m∈Il

(1− Fm(z))
)

.

From the above expression, we observe that the above optimization for
finding two variables Fk(ci, r), Fk(cj , r) splits into two independent optimiza-
tion problems. First, let us consider the function that needs to be optimized
to get Fk(ci, r):

QkFk(ci, r)ci
∑

z∈Ai

(

Pr(z|c[t− τmax])
(

γk + (1 − γk)
∏

m∈Ik

(1− Fm(z))
)

)

+

(1− Fk(ci, r))
∑

l:l∈Ik

Ql

∑

z∈Ai

(

Pr(z|c[t− τmax])×

Cl(z)Fl(z)
(

γl + (1− γl)
∏

m∈Il,m 6=k

(1− Fm(z))
)

)

.

From the above equation, we observe that the optimization function is linear
in the variable Fk(ci, r). Using the fact that channels are independent across
links, we have the above function of the form Pr(C[t] = ci|r)(aciFk(ci, r) +
b(1 − Fk(ci, r))), where parameters a and b are independent of value of ci.
Similarly, we can show that the function that needs to be optimized for variable
Fk(cj , r) is of form acjFk(cj , r)+ b(1−Fk(ci, r)). Thus the optimal solution is
of the form

F ∗
k (ci, r) =

{

1 if aci ≥ b,

0 if aci < b.



Scheduling with Heterogeneously Delayed NSI 25

The above solution implies that if cj ≥ ci and F ∗
k (ci, r) = 1, then F ∗

k (cj , r) =
1. This proves the threshold nature of optimal solution.

(Proof: Part 2) Let us consider the original function that needs to be op-
timized (3)

∑

l

QlE
[

Cl[t]Fl(.)
(

γl + (1 − γl)
∏

m∈Il

(1 − Fm(.))
)

|c[t− τmax]
]

.

Expanding the above expression, we have

∑

l

Ql

∑

z∈CLτmax

Pr(z|c[t− τmax])Cl(z)Fl(z)
(

γl + (1− γl)
∏

m∈Il

(1 − Fm(z))
)

.

First, observe that each variable in the above expression has a unique
notation. In particular, a variable that is associated with link l and a particular
value of channel state z ∈ CLτmax is denoted by Fl(z) and more specifically
Fl(Pk(z)). Consider a τ(6= τ1(l)∀l) and let the set B(τ) = {z ∈ CLτmax :
C1[τ ] = c1 orC1[τ ] = c2} denote the set of variables whose optimal values are
not known. In other words, assume that the optimal values of all the variables
are known to us except those in set B.

We define the sets B1 = {z ∈ CLτmax : C1[τ ] = c1} and B2 = {z ∈ CLτmax :
C1[τ ] = c2}. The sets B1 and B2 satisfy B = B1 ∪B2. We now observe that
the optimization functions that depend on variables in sets B1 and B2 are
exactly identical up to a scaling factor. Therefore the optimal solutions are
also equal and thus we have that optimal solution is independent of channel
state information that is not critical NSI.

Proof. (Lemma 4.3) Consider the following Lyapunov function V [t], of the
system state YF [t], as follows,

V [t] :=
∑

l∈L

Q2
l [t].

We thus have,

E[V [t+ 1]− V [t]|Q[t− τmax],C[t− τmax]] =

E[
∑

l∈L

(∆Ql[t])(Ql[t+ 1] +Ql[t])|Q[t− τmax],C[t− τmax]]

where ∆Ql[t] is the difference Ql[t+1]−Ql[t]. Using the fact that arrivals and
services are bounded in each time slot, we have

E
[

V [t+ 1]− V [t]|(Q[t− τmax],C[t− τmax])
]

≤ K+

E
[

∑

l∈L

(∆Ql[t])(2Ql[t− τmax])|(Q[t− τmax],C[t− τmax])
]

.
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Using the queue update equation, we have

E
[

V [t+ 1]− V [t]|(Q[t− τmax],C[t− τmax])
]

≤ K+

E
[

∑

l∈L

(Rl,τmax
(F∗(.)))(2Ql[t− τmax])|(Q[t− τmax],C[t− τmax])

]

. (6)

Since (1 + ǫ)λ ∈ Λ, there exists {η̄(c)}c such that

∑

c∈CL

π(c)
(

(1 + ǫ)λl − η̄l(c)
)

≤ 0.

From the scheduling algorithm optimization, we also have that

E
[

(
∑

l∈L

(Rl,τmax
(F∗(.)))|C[t− τmax]−

η̄l(C[t− τmax]))Ql[t− τmax]
]

≤ 0.

Taking the expectation on both sides of inequality (6) over C[t − τmax], we
have that

E
[

V [t+ 1]− V [t]|Q[t− τmax]
]

≤ K1 − 2ǫ
∑

l

Ql[t− τmax]λl.

It now follows from the standard Foster-Lyapunov drift criterion [30] that the
network is stochastically stable.

Proof. (Lemma 5.3) From the equation (5), we have

|Rl,τ1(T
∗
2)−Rl,τ2(T

∗
2)| =

|(

M
∑

i=1

ciP
τ1
.i 1ci≥T∗

2,l
)
(

γl + (1 − γl)
∏

m∈Il

(

M
∑

i=1

P τ1
.i 1cm≥T∗

2,l
)
)

−

(

M
∑

i=1

ciP
τ2
.i 1ci≥T∗

2,l
)
(

γl + (1− γl)
∏

m∈Il

(

M
∑

i=1

P τ2
.i 1cm≥T∗

2,l
)
)

|.

Let us denote the summation
∑M

i=1 ciP
τ1
.i 1ci≥T∗

2,l
by fl(τ1) and the summation

∑M
i=1 P

τ1
.i 1cm≥T∗

2,l
by gm(τ1). Thus, we have

|Rl,τ1(T
∗
2)−Rl,τ2(T

∗
2)| =

|fl(τ1)
(

γl + (1 − γl)
∏

m∈Il

gm(τ1)
)

− fl(τ2)
(

γl + (1− γl)
∏

m∈Il

gm(τ2)
)

|.

Expanding out the terms with γl and (1− γl), we have

|Rl,τ1(T
∗
2
)−Rl,τ2(T

∗
2
)| =

|γl(fl(τ1)− fl(τ2)) + (1− γl)
(

fl(τ1)
∏

m∈Il

gm(τ1)
)

− fl(τ2)
∏

m∈Il

gm(τ2)
)

|.
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Using the triangle inequality, we have the following inequality,

|Rl,τ1(T
∗
2)−Rl,τ2(T

∗
2)| ≤

|γl(fl(τ1)− fl(τ2))|+ (1− γl)|
(

fl(τ1)
∏

m∈Il

gm(τ1)
)

− fl(τ2)
∏

m∈Il

gm(τ2)
)

|.

By adding and subtracting the term fl(τ2)
∏

m∈Il
gm(τ1), we have

|Rl,τ1(T
∗
2)−Rl,τ2(T

∗
2)| ≤

γl|(fl(τ1)− fl(τ2))|+ (1− γl)|fl(τ1)
∏

m∈Il

gm(τ1)− fl(τ2)
∏

m∈Il

gm(τ1)+

fl(τ2)
∏

m∈Il

gm(τ1)− fl(τ2)
∏

m∈Il

gm(τ2)|.

Using the triangle inequality results in

|Rl,τ1(T
∗
2)−Rl,τ2(T

∗
2)| ≤

γl|(fl(τ1)− fl(τ2))|+ (1− γl)|
(

fl(τ1)− fl(τ2)
)

∏

m∈Il

gm(τ1)|+

(1 − γl)|fl(τ2)
∏

m∈Il

gm(τ1)− fl(τ2)
∏

m∈Il

gm(τ2)|.

Let the set Il be expressed as {m1,m2,m3, ....,ml}. By iterating the above
idea of adding and subtracting terms on the second component of the above
expression and using the triangle inequality, we have

|Rl,τ1(T
∗
2)−Rl,τ2(T

∗
2)| ≤

γl|(fl(τ1)− fl(τ2))|+ (1− γl)|
(

fl(τ1)− fl(τ2)
)

∏

m∈Il

gm(τ1)|+ .....+

|fl(τ2)(gml
(τ1)− gml

(τ2))
∏

k:mk∈Il,k 6=l

gmk
(τ2)|.

Using the following upper bounds, |fl(τ1)−fl(τ2)| ≤
∑

ciβ(τ1, τ2), |gl(τ1)−
gl(τ2)| ≤ Mβ(τ1, τ2) and |fl(τ1)| ≤

∑

ci, we have

|Rl,τ1(T
∗
2)−Rl,τ2(T

∗
2)| ≤

(
∑

ci)β(τ1, τ2) + (1 − γl)(
∑

ci)|I|Mβ(τ1, τ2)

= (1 +M |I|(1− γl))(
∑

ci)β(τ1, τ2).

≤ (1 +M |I|(1− α))(
∑

ci)β(τ1, τ2).

where the last inequality follows from definition of γ = min γl.
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Proof. (Corollary 5.4) From equation (4), we have

α(τ1, τ2) :=
2Lkoβ(τ1, τ2)
∑

j cjminiP
τ1
ij

.

It is sufficient to prove that β(τ1,∞) ≤ (1 − Mδ)τ1 and β(τ1, τ2) ≤ 2(1 −
Mδ)τ1 ∀τ2 ≥ τ1. Consider the following difference:

P τ
ij − P τ

kj =
∑

u

(Piu − Pku)P
τ−1
uj

=
∑

u:Piu≥Pku

(Piu − Pku)P
τ−1
uj +

∑

u:Piu<Pku

(Piu − Pku)P
τ−1
uj .

Let us denote minuP
τ
uj by mτ

j and maxuP
τ
uj by M τ

j . We now bound the above
difference using mτ

j and M τ
j , we have

P τ
ij − P τ

kj ≤
∑

u:Piu≥Pku

(Piu − Pku)M
τ−1
j +

∑

u:Piu<Pku

(Piu − Pku)m
τ−1
j .

By noticing that
∑

u:Piu<Pku
(Piu−Pku)+

∑

u:Piu≥Pku
(Piu−Pku) = 0, we have

P τ
ij − P τ

kj ≤
∑

u:Piu≥Pku

(Piu − Pku)
(

M τ−1
j −mτ−1

j

)

=
(

M τ−1
j −mτ−1

j

)

(
∑

u:Piu≥Pku

Piu −
∑

u:Piu≥Pku

Pku)

=
(

M τ−1
j −mτ−1

j

)

(1 −
∑

u:Piu<Pku

Piu −
∑

u:Piu≥Pku

Pku)

≤ (1 −Mδ)
(

M τ−1
j −mτ−1

j

)

,

where the last inequality follows from the definition of δ.
Using the definition of M τ

j and mτ
j , we have that

M τ
j −mτ

j ≤ (1−Mδ)
(

M τ−1
j −mτ−1

j

)

≤ (1−Mδ)τ .

Using the fact that mτ
j monotonically increases with τ , M τ

j monotonically
decreases with τ , and both have a common limit πj , we have

|P τ
ij − πj | ≤ (1 −Mδ)τ . (7)

Consider the following difference:

|P τ2
ij − P τ1

kj | = |P τ2
ij − πj + πj − P τ1

kj |

≤ |P τ2
ij − πj |+ |πj − P τ1

kj |.

Using (7) in the above inequality, we have the desired corollary.


