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Abstract— We consider a single server serving a time-slotted
queued system of multiple flows, where not more than one
channel can be serviced in a single time slot. Each flow has
exogenous arrivals, and the service rates to the flows vary over
time according to a fixed distribution. The server is allowed
to observe the service rates for only a singlesubset of flows
(chosen from a fixed collection ofobservable subsets) in a time
slot for the purpose of making scheduling decisions. We provide
a precise characterization of the stability region for such a
system. We present an online scheduling algorithm that uses
information about marginal distributions to pick the subset
and the MaxWeight rule to pick a flow within the subset,
and show that it is throughput-optimal. In the case where
the observable subsets are all disjoint, we show that a simple
scheduling algorithm - Max-Sum-Queue - that essentially picks
subsets having the largest squared-sum of queues, followed by
MaxWeight within the subset, is throughput-optimal. We show
that for channels which are symmetric with respect to channel
rates and distributions, and fixed-size observable subsets, Max-
Sum-Queue is throughput-optimal. Finally, we demonstrate
that under certain conditions, Max-Sum-Queue may not be
throughput-optimal.

I. INTRODUCTION

and make scheduling decisions based on this partial channel
state information.

A. Main Contributions

We consider a base-station system where there Nre
users and channels, with each user generating data, and with
channels which have an arbitrary joint distribution over a
finite state-space (the channel is assumed to be independent
across time but not across users), and the setges not
have knowledge of the channel joint distribution.

In each time-slot, the base-station is allowed to get cHanne
staté from one among a predefined collection of subsets of
channels (for example, in a ten user system, the constraint
could be that we can acquire channel state from at-most three
users per time-slot). We henceforth refer to this as a system
with partial channel-state information.

The scheduling task at each time-slot is to first determine
the subset (of channels for which channel state will be
acquired) and then determine a single user to schedule from
within this subset. In this paper, we characterize the Etyabi

There has been much recent interest in scheduling ovesgion for this multi-user system, and develop algorithinag t

wireless cellular networks where channel state infornmaigo
available at the base-station [1], [2], [12]. A canonicateyn

consists of a base-station and a collection of mobile users(.

Time is slotted (typically of the order of a milli-second),
like in the high-speed WIMAX [9], Ultra Mobile Broadband

(UMB), GSM-based HSDPA and 1xEV-DO communications

technologies. In each time-slot, the channel state (thereda

guality such as SINR or data rate that can be sustained over
the time-slot to the mobile) is potentially available (via a
feedback channel from the mobile terminals to the base-

station) at the base-station. Based on the load (packetegque

at the base-station) as well as the channel state, the base-
station schedules users for channel access each time-slot.
However, as the capacity of the wireless system increases,

it is likely that a large number of mobile users will be

connected to the base-station. Thus, transmitting channel
state feedback from all of the mobile to the base-station
might be difficult due to feedback bandwidth constraints. A

achieve the stability region. The main contributions irsthi
paper are as follows.

i) We derive the stability region for a system witN
users and an arbitrary collection of observable subsets
(i.e., a collection of subset of users for which the
channel state can be simultaneously acquired), and for
any joint channel distribution (across users) that are
independent and identically distributed over time. The
stability region corresponds to the set of arrival rates
that can be sustained such that the queues at the base-
station are stable (positive recurrent).

We show that the stability region is described by the
convex hull of the “local” stability region for each
observable subset. In other words, for each observable
subset, we first consider the rates that can be sustained
if none of the other users had any data. This can be
characterized via a convex polytope that corresponds
to the stability region (the “local” stability region for

reasonable approach would be for the base-station to reques
channel state from a sub-collection of users (for example,
users which have a large backlog of data at the base-station)
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the subset) of a reduced system where users that do
not belong to the subset are removed, and the base-
station hascompletechannel state information for the
users within the subset. The convex hull of such “local”

1At each time-slot, the complete channel state ¥ dimensional vector,
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a sub-vector of thigV dimensional vector.



stability regions over all observable subsets describe thgoblem of minimizing the expected cost (reward for trans-
stability region with partial channel state information. missions minus the probing cost) where the cost functions
We also present a numerical example that illustratemnd the channel probabilities are known to the server. The
the degradation in the stability region as the amount aduthors in [8] develop constant factor (within the optimal
channel state information decreases (i.e., fewer simutost) approximation algorithms that operate in polynomial
taneously observable channels). The example suggestse for both the saturated data case, as well as when the user
that the stability region with partial channel information(terminal) generates packets according to a Markov chain.
can be viewed as the intersection of the stability regionghe authors in [10], [19] have earlier considered the specia
with completechannel information over all systemscases with equal probing costs and identically distributed
whose channels have a joint distribution that is consizshannels. Recent results in this context also includes [3]
tent with the subset-marginal distributions (i.e., chdnnavhere the authors develop structural properties of therati
distributions only over the observable subsets) of thprobing strategy using a dynamic programming approach.
given system with partial channel-state information. Further, for systems with channels that are independent
(i) Next, we develop a queue length based “online” polacross users and with infinitely backlogged data at the base-
icy that uses the queue-length information along witlstation, there have been studies on limited feedback from
subset-marginal distributions that is throughput-optjimathe mobile users to the base-station. In these studies, the
i.e., the policy attains all rate points within the stalilit the mobiles use thresholds to determine if their channel
region. The policy consists of two stages: In each timeguality is “good enough”, and if so, send their channel state
slot, (@) The base-station first determines the subseétformation to the base-station [6], [17], [18], [22], [16]
to request channel state from via using tepected
rates over the observable subsets weighted badtheal Il. SYSTEM MODEL AND DEFINITIONS
queue lengths at the base-station; ghyl Within the
chosen subset, the policy uses the MaxWeight rule [23], Consider a time-slotted model @f users serviced by a
[1] which uses the product of thactual channel rate single server acros® unidirectional communication chan-
(received from the mobile in the chosen subset) and tHels {c1,...,cx} =: C. An integer number of data packets
actual queue-length to make the scheduling decision. arrive at the input of every channel at the beginning of a time
(i) We develop a simpler online policy (Max-Sum-Queue3|0t’ to be serviced by the server. Packets get queued at the
ru'e) where in the first Stage’ the subset of users Chosg}puts of channels if they are not |mmed|ate|y transmitted.
is determined by only the queue-lengths and does n¥Ye assume that at most one of the channels can be activated
use the expected channel rates. The Max-Sum-Quelff transmission in a single time slot.
policy chooses that subset over which the sum of the Further, in any given time slot, the set of channel§’
squares of the queue-lengths is largest. The secof@n IV dimensional vector) assumestatel(¢) from a finite
stage is the same as before, namely, the MaxWeighet of aggregate channel statés= {1,..., L}, with the
policy restricted to the chosen subset. We show th&hannel state remaining constant within each time slot. In
if the observable subsets are disjoint or the channegach channel statec L, every channet; € C assumes a
are symmetric, this policy is throughput-optimal. Fi-data service rate ofi, i.e., a maximum of.. packets can
nally, we provide a example to show that in generaPe served from queug(corresponding to channel) when
this policy is not throughput optimal if the channel-the aggregate channel is in statdhe random channel state
symmetry/disjoint-observable-subsets condition is ndtrocessL := (I(t) € RY : ¢ =0,1,2,...) is assumed to

met. be an independent and identically distributéd)(discrete-
time random process taking values from the finite state space
B. Related Work L. We denote the distributioiPr(i(t) = i), by 7 =
There has been much work in developing schedulinfi,---, 7). Observe that the channel state procesidis

algorithms for down-link wireless systems for various perf across time, and can have any joint distribution acrosssuser

mance metrics that include stability, utility maximizatiand ~(i-e., across channels).

probabilistic delay guarantees [23], [13], [20], [11], [§]15], The packet arrival process at the input of each channel
[4], [21]. However, the above studies primarily focus on the:; is taken to be stationary and ergodic, and generated by a
case where complete channel state information is availadfigite state non-negative Discrete Time Markov Chain with

at the base-station. rate \;.
In the context of partial channel information, related work Our channel observations are limited to a given collection
includes that of [8] where the authors study the problem of af subsets of the channél = {c;,...,cy} (whose union

server (terminal) accessiny time varying channels which is C) called the collection ofobservable subsetd.et us
are independent across users and time (e.g., a multi-chandenote the (finite) set of observable subsetsCoby O =
MAC). The server has a cost for (sequentially) probingoi,os,...,0k}. In the example of Section IV, the sél
channels (with a channel dependent probing cost), and gaiesntains all subsets of size two. In a given time slot, an
areward (which depends on the user and the probed state) iblservable subse}, = {c,,,...,c,, } C Cis said to be in a
packet is transmitted successfully. The authors formutege sub-stateu” = (5 ..., ) if pi; = i forj =1,...,1.



As in [1], we define the state of the system as thexists a stochastic matrix” such that
random process$ = (S(¢),t = 0,1,2,...) where S(¢) := Uiu U U mU )
(Qi(t), .., QN (), Ui (t), ... U, (£), ... Un1(t), ..., N <o (@)= Y m ot viel,
Ungy (t),m(t)). Here, Q;(t) denotes the length of the meLy
packet queue for channej € C'in time slotz and U (t) ~ whereLy is the set of sub-states &f, 7! is the marginal
is the current delay of thé-th packet in queueé at time probability of sub-staten of U/ and ;7" is the service rate
t. In this regard, ascheduling policyP is a pair of maps for channeli in sub-staten.
(G,H), wheregG is a map from the state of the systeft)  This matrix¢V defines a Static Service Split scheduling rule
to a fixed probability distribution on the set of observabldor the subset/. The rows of¢V correspond to every sub-
subsetsD, and’H is a map which takes/(t) restricted to a state ofU and the columns apV correspond to every chan-
particular observable subset, along with its sub-state,an nel in /. WhenU is in the sub-staten = (Hep s tey )
fixed probability distribution on the channels which corspri channeli is chosen with probability)”, ' :

mi*

the subset. Such a scheduling polyis applied to selecta  ThusR(U) is a convex polytope. We can now characterize
transmitting channel using two steps. At every time sjah the achievable rate region for the system:
the first step, we pick an observable set randomly according Theorem 1:The achievable regiort, for the whole sys-

to the distributionG(S(t)) after which we are able to sampletem is the convex hull of the stabilizable regions in each
the sub-state of the chosen observable set. Then, using ithspace)(a), for a € Oy

distribution H on the observable set and its sub-state, we
pick a channel for transmission from that observable set. ca conv({R(«) : o € Onr}).

A vector or pointA = (A;,...,Ay) € R¥ is said to The proof follows from two lemmata establishing matching
be supportedby a scheduling policyP if the input packet inner and outer bounds on the gkt Achievability follows
queues at all channels in the system remain stable undesm a timesharing argument (see [7] for details):
scheduling using® when the arrival rates at the inputs of Lemma 2:C is achievable.
channels:,...,cy are ), ..., Ay respectively. Associated We next establish that this achievable region is actuailytti
with each policyP is its rate region R(P) := {A € RV : Lemma 3:If A € RY is achievable, them\ € C. In
A is supported byP}. Theachievable rate regiorR for the particular, A can be achieved by a global SSS scheduling
system described above is then defined to be the union mfle given by a stochastic matrix of the form

the rate regions for all possible scheduling policiés A o
rate vectorA is said to beachievableif it is supported by ¢ = Z 2
some scheduling policy. Likewise, a set or regidnc RY a€Om

is said to be achievable if all its elements are achievablethere ¢ are stochastic matrices as described above, and
A scheduling policy is said to béroughput-optimalif it p, is a probability distribution on the maximal observable
supports all vectors in the achievable rate region. subsetsOy,;.

We wish to characterize the achievable rate region fdsimilar to the notion of an SSS rule for a maximal observable
the model we have described. Henceforth, we shall naturalgubset, the matrixp above defines alobal SSS rule A
confine our attention to the set of maximal observable sabsetcheduling policy implementing this SSS rule for the system
Oy C O, where the maximality is with respect to setselects a subset in the first step with probability, and
inclusion. subsequently uses the subset SSS nfleto pick a queue

in . The (long-term) service rate such a rule provides to

[11. THE ACHIEVABLE RATE REGION queuei is

. . . . l,
In this section, we show two main results. First, we vi:= Y pavf(¢*) = > pa Y 7 °u"¢f.
characterize the achievable rate region for any colleation a€O0nm a€On  1€Lq
maximal observable subsets,;. Moreover, we show that The proof is available in [7]. We note that the assumption

this region is attained using Static Split ServicSSS) [1] that the channel state distributioniig over time, is critically
scheduling rule. The second part of this section charaeteri ysed in the proof of this lemma.
all such maximal SSS scheduling rules.

Consider a maximal observable subgete O,,, U = What do maximal SSS rules look like?
{Chy+Chyy-- -k, ) Where by, ...k € {1,...,N}. Let We conclude this subsection with a theorem [7] which
Q(U) denote thel-dimensional subspace dR” where provides a characterization of maximal global SSS rules. We
coordinates with indices other than,...,k; are zero. If call a global SSS rulenaximalif no vector inC dominates

only users fronlJ are served, then any stabilizable rate musits vector of service rateg;) ,, where a vectorr € RY

lie in Q(U). Denote this stabilizable rate region B(U). dominatesa vectory € RV if x; <y, for all i, andz; < y;

In particular, applying Theorem 1 in [1] to the subg&twe holds for at least oneg.

have: Theorem 2:Consider a maximal global SSS rule associ-
Lemma 1:There exists a scheduling rulé¢ stabilizing a ated with SSS rule§¢** : « € Oy} and a distribution

rate vectorA = (\;)., € R(U) C RY if and only if there {p’ : a € Oy} over subsets. Then, there exists a set of



strictly positive constants;, : = 1,..., N such that for any

The case where the three channels are independent and
pe >0, ¢ >0=1i¢€ argmaxajué’a, and identically distributed i{d) and =; = 1/8, is given by
Jea n = 1/2. Sincea < b, the “worst case” situation fof is
« 1,8 LB :
Po > 0= a € arg max o (ij.lgg a;jfij”)- whenn =0, i.e., # = 7, and the best case when= 1,

The result says that at time lifﬂhe first schedulin and# = 7).
step, a maximalyglobal SSS rule chooses a subzsérbrg FoIIowmg the garller. notation, 1% = [diilsxs denotes

! Lo Lay . o a stochastic matrix defining an SSS rule, where, recall, the
which > e, 7% (maxjea ajp;™) is maxmge:d, and fur- (4, 7)-th entry is the probability that channglis chosen for
ther picks queue in o which maximizeso;u”, where  service in system state, then a rate vectofAr, Az, A3) is
I(t) is the observed sub-state of subaet stabilized by this rule iff:

IV. EXAMPLE: RATE REGION FORTHREE SYMMETRIC
CHANNELS P1171a + Y2120 + P317m30 + -+ + Pg17eb > A,
Let us determine the achievable rate region for a three- 4 7 ¢ 1 doomoa + dgomsb 4+ - - + dgomsh > Ao,
channel systents = {c1,c2,¢3} in which the system can b b\
take one of eight possible statés, ..., ss} (Table I), and Pr3m1a + G2aT2b + GasTaa+ -+ + Peamsb > As,
where each of the channets takes a rate of eithet or b and the stability region for the full-observation case igegi
(a < b) in every state. We denote the 8 possible values of thgy the union of all these regions over all stochastic magrice
joint distribution of all three channels by, m,...,ms @s  ¢. For the case oiid channels, i.e.;r; = 1/8, this region is
shown in the table. Assume that we have partial informatiogepicted in Figure 1.
about subsets of size at most 2, i.e. we know all the joint
pairwise probabilities of rateér;; : i,j € {1,2,3}}. Thus A
the set of maximal posets 8); = {{1,2},{2,3},{3,1}}.
In particular, suppose we know that Brbas rateu;, c¢; has

rate ;) = 1/4,4,5 € {1,2,3}, ¢ # j, i, pj € {a,b}. (0, 3+ 1,0)
1y L 1
Channel\ State | s1  s2 s3 s4 S5 Sg S7 S8 o (30,50 + 54, 0)
c1 a a a a b b b b (0,56 + 5@, 3b) Lo
c2 a a b b a a b b (3b+3a,1b,0)
c3 a b b a b b - B
State Lo 10+ b, 50 + 510, 30 + 530)
probability T w2 W3 w4 w5 W W7 TS (03,36 + 30) (3a +3b,0,0) M
TABLE | (30 + 40,0, 30)
PROBABILITY ASSIGNMENTS FOR THREECHANNEL SYSTEM <O’O7%a+%b> 1 1 1
(,1()-, 0, 2b + ,,1(1)
A3

These pairwise constraints give us a feasible set of pessibl
channel distributions: it is the set of vectdrs,,...,ng) in
the simplex that satisfy the equations + 7o = 1/4, 7 +  Fig. 1.  Rate region for 3 channels with full knowledge of aini
Ty = 1/4, 7 474 = 1/4, my+75 = 1/4 etc. In matrix form, ~Probabilities.

these constraints along with the simplex constraints becom . .
The rate region for any pair of channets and ¢; for

i € {1,2,3} in a 2-dimensional projection dk* turns out

11000000 m 1/4 to be a convex region in the first quadrant enclosed by four
10100000 72 1/4 corner points and the origin, as shown in Figure 2.
10010000 73 1/4 The dotted line in Figure 2 represents the rate region if
0100100 0 T4l | 1/4 , we knew only the marginal probabilities of single channels.
) s : According to our result, the achievable rate region for the
: T 1) 4 three-channel system with partial information restricted
11111111 w7 1 size-2 subsets is the region enclosed within the convex hull
78 of the corner points of every pairwise rate region (9 in all),
with w; > 0 for all i. The set of possible so- as shown in Figure 3.
lutions of the vector 7 = (m m ... m)T Note that this region is a strict subset of the full-
is the set of convex combinations of the vectorsnformation rate region depicted in Figure 1. We also observ
Ty =(1/4 0 0 1/4 0 1/4 1/4 0)" and®;; = thatin this example, if we did not know the pairwise channel

(0 1/4 1/4 0 1/4 0 0 1/4)7 ie. probabilities of say; andc,, we would have to discard the



(0, %a + %b)

Fig. 2. Rate region for 2 channets and c;, with knowledge of joint
probabilities.

A2
(0,3a + 2b,0)
\ (3630 +1a,0)
(0,16 + 1a, 1b)
/ (3 + §a,35,0)
(0,0,0) ~\(Ga+3b,0,0)
(0,36, 16 + 1a) A
(3 +1a,0,1p)
Lo gy
(0,0, 30+ 3b) (16,0, b+ 1a)

A3

Fig. 3. Achievable rate region for 3 channels, with at mostvgiae partial
information

corner points(4b, 2b + +a,0) and (b + +a, 1b,0) when

2) After observing the statec L; of 4, schedule channel
j € ¢ using themax-weighted-queurile, i.e.

j € argmax Qi(t),uf’é.
€9

Remark By arguments used to prove Theorem 2 [7],
we have the following lemma which provides an important
equivalent characterization of the above algorithm in germ
of knowing the extreme points of the achievable rate region
C:

Lemma 4:Let E be the (finite) set of extreme points for
the achievable rate regioi. Then, Step 1 above can be
expressed as choosige Oy, which satisfies

de{a€Oy ue argmag(v,@(t)) =u € R(a)}.

That is, the algorithm selects any subset whose rate region
contains an extreme point maximizing the inner product
(z,Q(t)) over all z € E and hence a point maximizing
(y,Q(t)) over ally € C.

The chief result in this section is the following theorem,
which says that the scheduling policy defined above is
throughput-optimal for scheduling with partial channilts
information.

Theorem 3:Algorithm 1 makes the system stable if the
vector of arrival rates lies in the achievable region.

The proof of stability uses fluid limit machinery. Roughly,
the fluid limit of the (V dimensional) queue length cor-
responds to a limiting trajectory when the queue length
process is “observed” over a long interval of time (by saalin
and “compressing” time) and concurrently scaling down the
magnitude of the queue length process. Under such a scaling,
the discrete and random queue length process “looks like” a

finding the convex hull, hence the achievable region wouldeterministic fluid process henceforth denoted;fy, which
be smaller (the dotted simplex) than in the case when we driven by a (vector) constant rate fluid arrival process

know all pairwise probabilities.

V. A THROUGHPUFOPTIMAL SCHEDULING ALGORITHM

(the components corresponding to the mean arrival rates to
each of the users), and whose service rate corresponds to the
“average” service rate under the scheduling algorithm. For

Motivated by the form of the result in Theorem 2, wethe system we are considering, showing that such a limiting
present a scheduling algorithm which, for a system havinfuid queue length trajectory has negative drift (as we wall d
arrival rates in the described achievable region, takes &9 in Lemma 5) is sufficient to prove that the discrete-time
input only the state of the system at each time slot angfochastic queue length process is stable (positive reut)rr
decides which maximal subset to observe and ultimatel{d4], [1], [7].
which channel in that subset to schedule. Knowledge of the The proof requires numerous definitions and lemmata on
arrival rates is not assumed in such a case. However, it flgiid limits, their existence and their properties. We defer
presumed that the marginal probabilitie5® of the subset these to the full version ([7]) and provide here only the main
« being in the sub-statk(as in the proof of Lemma 3) are intuitive Lyapunov idea.

known.

Algorithm 1:
1) Select a poset € Oy, given by

0 € arg max lzﬁ: nhe (1%1682(@1(75)#2’&) ;

a0
€

The key step in the proof is to show that a suitably
defined Lyapunov function has negative drift. So far this
parallels the proof used for Theorem 3 of [1], however
here we face the additional difficulty of assuring that we
pick the correct observation subset< O,;, in addition
to picking the correct queue to serve inside that subset
Using the Lyapunov function introduced below, we show
that maximizing the negative drift of this Lyapunov functio

where the symbol®),,, £, and ,uﬁfa have the same is exactly the problem of maximizing the inner product

meaning as in the proof of Lemma 3 ar@;(t)

(y,Q(t)) over ally € C. If we pick the “wrong” subset

represents the length of thith queue at the beginning « € O,,, then maximizing the linear function above becomes

of time slott.

impossible. To side-step this problem, we rely on Lemma 4,



which guarantees that the chosen subset will indeed be oseheduling algorithm makes the system stable if the vector
with an extreme point maximizing the linear function. of arrival rates lies in the achievable region.
Formally, let us introduce the quadratic Lyapunov function To prove Theorem 4, we follow a similar route as in
N the previous section, defining fluid limits and proving that
Ly) = lzyf (1 a suitably defined Lyapunov function has negative drift. The
24 Lyapunov function we use here is

for a vectory = (y1,...,yn). Let ¢(t) denote a fluid B 1 9
limit of the queue-length process (this exists almost surel L(y) = hs(y) = 2 Zyi’
see [7] for precise definitions and details). The following iep

property establishes negative drift, and thus enables us where

show stability: 3 € arg max hq(y)
Lemma 5:Consider a feasible system operating under the a€Onm

described scheduling discipline. For afiy> 0, there exists and 3 is chosen according to some fixed precedence rule
d2 > 0 such that the following holds. With probability 1, a;, arg maxaco,, ha(y) , for a vectory = (y1 yn). As
(63 M « ’ g ey .

limiting set of functions defining the fluid limit, satisfieBet  \yith Lemma 5, the following lemma is used to establish
following property at any regular point t: stability.
d Lemma 6:Consider a feasible system operating under the
L{g(®) z &1 = - L(a(t) < —02 <0. _ Max-Sum-Queue scheduling discipline. For afiy > 0,
The proof relies on Lemma 4. See [7] for the full detailSere exists), > 0 such that the following holds. With prob-
As in [1], the previous lemma along with a result fromgpijity 1, a limiting set of functions defining the fluid limit
[14] together imply Theorem 3. satisfies the following additional property at any regukainp

VI. THE MAX-SUM-QUEUE ALGORITHM t

d
In this section, we present a ‘simpler’ scheduling policy L(q(t)) = 61 = —L(q(t)) < —do.
which only uses queue-length information to pick the subsé¥e refer the reader to [7] for the details. There is an intaiti
to observe, and analyze its stability properties underiipec geometric explanation for this result. It is based on two

assumptions: observations: first, due to the disjoint subset assumptioh a
the Max-Sum-Queue algorithm, if any queue is unstable, all

Algorithm 2: gueues are unstable; next, given an extreme pgjrih each

In each time slot, setR(«), the convex hull of those extreme points will always

1) Select a poset € Oy, given by lie on an exposed face @f. Note that this is not true in the
general case.
J = arg max Z Qi (t),
“€0M ia B. Max-Sum-Queue for symmetric channels

whereQ;(t) denotes the length of thith queue at the |t js instructive to note that the reason that the presented
beginning of time slot. scheduling policies work in their respective cases is beeau
2) After observing the statee L; of §, schedule channel at any pointt € [0, c0), they maximize the linear objective
j € ¢ using the MaxWeightrule (also known as function (¢(t),«) over allu in the convex polytop€ which
the Modified Largest-Weighted-Work-First (M-LWWF)epresents the achievable rate region. The drift of the stim-
rule) [23], [1], i.e. squares Lyapunov function defined by (1) happens to be pre-
j = arg max Qi () cigely the diffgre'nce betweg{q(t), A) andmaxy,cc(q(t), u).
i€s ’ This geometric interpretation allows us to prove the useful
Note A suitable rule to break ties in each case is assumetgsult that Max-Sum-Queue is actually throughput-optimal
We shall call this algorithm th#lax-Sum-Queuschedul- for systems of symmetric channels and subsets.
ing algorithm. In this section we show that it is throughput- Theorem 5:Consider a symmetric system, i.e. where all
0pt|ma| in two cases of interest: (|) when the maximal Slﬂ)sefhe N channels have an identical distribution of service
in O, are disjoint; and (i) when the channel is symmetridates. Further, let the observable subsets be all subsets of
in the users. In the next section, we prove by example thatfixed cardinalityX’. For such a system, Max-Sum-Queue
throughput-optimality does not hold in general. is throughput-optimal.
See [7] for the proof.
A geometric view of Max-Sum-Quetuie the following, we
The following result tells us that when the collection ofsee why Max-Sum-Queue is throughput-optimal by examin-
observable subsets is mutually disjoint, Max-Sum-Queue isg the geometric aspect of its working. Letbe the vector
throughput-optimal. of arrival rates to the system @¥ channels represented by
Theorem 4:Under the assumption that every pair of max-S = {1, ..., N}, such that\ € intC. As before, we consider
imal observable subsets is disjoint, the Max-Sum-Queuébe drift of the sum-of-squares Lyapunov function defined by

A. Max-Sum-Queue for disjoint subsets



(2): based on a system of three channels where under certain

N arrival rates in the stability region, all the queue fluiditsn
iL(q(t)) = Z(h’(t)()\i — fi(®) are seen to increase. Thus we can show [7] that the system
dt P exhibits instability in certain portions of the achievalégte
— (a(B). N — (a(t). F(t region, under this policy.
(a(8):2) = (a(®), F(8)), Consider a system of three channels ¢, and cs. The
where f(t) = (fi(t))Y, is the instantaneous vector ofSystem assumes four possible stafgs S, S; and S,

service rates chosen by Max-Sum-Queue at timia the With the corresponding channel rates, expressed by (rate of
fluid time scale. We will show thaf (£) € C maximizes the c¢i1, rate of c;, rate of ¢3), being (100,100,2), (100,200,2),
inner product(¢(t),z) over allz € C or equivalently over (200,100,2) and (200,200,2) respectively. Further, etate s

all the extreme points of; this establishes that the drift of occurs with probability;. The maximal observable subsets
L(q(t)) is strictly negative and bounded away from zero an@re & = {ci,c2}, 8 = {c2,c3} andy = {c3,c1}, i.e., all

hence Max-Sum-Queue is throughput-optimal. pairs of channels. The achievable rate region for the system
We observe that the subsets which Max-Sum-Queue picksshown in Figure 4.
for scheduling at are the ones of (fixed) siz& < N, say, Set the vector of arrival rates (shown in the figure) to be
that contain the top queues in the system. Without lossAs = (A1, Aap, Asp) = (22,12,0) - €(1,1,0) +4(0,0,1),
of generality, letg; (t) > ¢2(t) > ... > qn(t), and let with e = £ and0 < 6§ = 5 < ==. It is easily verifiable
) that A lies in the interior of the rate region. We will show
A= arg ﬁclsn‘%ﬁgKZ q; (t). that a regular point € [0, c0) can exist with the fluid-limit
T iep queue-length process satisfyigg(t) = ¢2(t) = ¢3(t) > 0,

Every seta € A is picked by Max-Sum-Queue in the @nd with . (t) = g¢2(t) = ¢s(t) > 0 (the full details are in
fluid timescale, and has the same queue values ordered[{d)- In such a case, the fluid levels of the queues increase
descending order. Further, since the channels are synemetffinearly) at a constant rate.
every subset rate regioR(3) for 3 c S, |8] = K, is Let us hypothesizg that is a regular point in[0, co)
identical up to a permutation of indices. It follows that theSatisfying the conditiong, (t) = ¢2(t) = g3(t) > 0,
extreme points ofC maximizing (-, ¢(¢)) must lie in the and attempt to find a valid set of the subset tlmegharlng
rate regionsR (o) wherea € A, since only thek heaviest Probabilitiesp,, ps and p,. Note that all theg;(t) being
queues can maximize this inner product over all permutatiorgdual forces the system to be ‘serving’ all three subsets wit
of extreme points. the aforementioned timesharing probabilities, which ninest

Since these extreme points are precisely the ones pickBgsitive. We can show ([7]) that the regularity hypothesis
by Max-Sum-Queue in each subset, and tifiat) lies in NOW impliesq, () = ga(¢) = ¢s(t), and hence
the convex hull of these extreme poinf§#) maximizes the 175

inner product(¢(t), z) over allz € C, and we are done. = A = 150p, = =pa
VII. M AX-SUM-QUEUE APPLIED TO ARBITRARY = A2y — 150ps — %pa
SUBSETS — gy —0=20
" = py=ps, and
B - (0,150, 0) 150ps + %pa = Agp — 0 = 86.99.

Together withp, + pg + p, = 1, we getpg = p, ~ 0.02
and p, =~ 0.96 which is the unique timesharing solution
between the subsets 5 and~. Hencet is valid as a regular
D (125,50,0) point where all the queues are equal and increase linearly at
the same raté > 0.

Remarks

1) We observe that the (mutually exclusive) conditions
E : (150,0,0) q(t) = @2(t) > gs3(t) and ¢1(t) = ¢2(t) < g3(t)
lead to all theq; becoming equal within finite time.

As M Hence the state; () = ¢2(t) = ¢3(t) is an ‘unstable
attractor’ for the fluid limits in this sense.

Fig. 4. Rate region for described 3-channel system 2) For the arrival rate vectoy, = (87,87,0) (as in Figure
4), we can similarly show that starting from (0) =

It is interesting to ask the question: Is the simple Max- q2(0) = ¢3(0) = ¢ > 0 implies thatq (t) = q2(t) =
Sum-Queue scheduling algorithm throughput-optimal for an ~ ¢3(t) = c at all timest < [0, o).
arbitrary (and, in particular, non-disjoint) system of rimaal The following proposition formalizes the case of linearly
observable subsets? In this section, we present an exameigloding fluid limits for the system defined in Section VII

A (0,100, 1)




when the vector of arrival rates ’s= )\, (as in Figure 4).
Specifically, we show that given any large time interval, we
can find a large enough initial condition for the queue leagthy, g,
such that the queue lengths grow linearly within that time
interval. We refer the reader to [7] for the proof.
Proposition 6: Fix any 7' > 0. Then, there exists(T")
such that for alln > ng, there exists > 0 such that

(1]

(2]

(3]

(4]

(5]

[6

[7

8

Q1(0) = Q2(0) = Q3(0) =n
= Qi(nT)>(1+e)n, i=1,2,3.
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