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Abstract. Block codes are first viewed as finite state automata repre-
sented as trellises. A technique termed subtrellis overlaying is introduced
with the object of reducing decoder complexity. Necessary and sufficient
conditions for subtrellis overlaying are next derived from the represen-
tation of the block code as a group, partitioned into a subgroup and its
cosets. Finally a view of the code as a graph permits a combination of two
shortest path algorithms to facilitate efficient decoding on an overlayed
trellis.

1 Introduction

The areas of system theory, coding theory and automata theory have much in
common, but historically have developed largely independently. A recent book[9]
elaborates some of the connections. In block coding, an information sequence of
symbols over a finite alphabet is divided into message blocks of fixed length;
each message block consists of k information symbols. If q is the size of the finite
alphabet, there are a total of qk distinct messages. Each message is encoded into
a distinct codeword of n (n > k) symbols. There are thus qk codewords each of
length n and this set forms a block code of length n. A block code is typically used
to correct errors that occur in transmission over a communication channel. A
subclass of block codes, the linear block codes has been used extensively for error
correction. Traditionally such codes have been described algebraically, their alge-
braic properties playing a key role in hard decision decoding algorithms. In hard
decision algorithms, the signals received at the output of the channel are quan-
tized into one of the q possible transmitted values, and decoding is performed
on a block of symbols of length n representing the received codeword, possibly
corrupted by some errors. By contrast, soft decision decoding algorithms do not
require quantization before decoding and are known to provide significant coding
gains when compared with hard decision decoding algorithms. That block codes
have efficient combinatorial descriptions in the form of trellises was discovered in
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1974 [1]. Two other early papers in this subject were [19] and [11]. A landmark
paper by Forney [3] in 1988 began an active period of research on the trellis
structure of block codes. It was realized that the well known Viterbi Algorithm
[16] (which is actually a dynamic programming shortest path algorithm) could
be applied to soft decision decoding of block codes. Most studies on the trellis
structure of block codes confined their attention to linear codes for which it was
shown that unique minimal trellises exist [13]. Trellises have been studied from
the viewpoint of linear dynamical systems and also within an algebraic frame-
work [18] [4] [7] [8]. An excellent treatment of the trellis structure of codes is
available in [15].

This paper introduces a technique called subtrellis overlaying. This essen-
tially splits a single well structured finite automaton representing the code into
several smaller automata, which are then overlayed, so that they share states.
The motivation for this is a reduction in the size of the trellis, in order to im-
prove the efficiency of decoding. We view the block code as a group partitioned
into a subgroup and its cosets, and derive necessary and sufficient conditions
for overlaying. The conditions turn out to be simple constraints on the coset
leaders. We finally present a two-stage decoding algorithm where the first stage
is a Viterbi algorithm performed on the overlayed trellis. The second stage is an
adaption of the A∗ algorithm well known in the area of artificial intelligence. It is
shown that sometimes decoding can be accomplished by executing only the first
phase on the overlayed trellis(which is much smaller than the conventional trel-
lis). Thus overlaying may offer significant practical benefits. Section 2 presents
some background on block codes and trellises; section 3 derives the conditions
for overlaying. Section 4 describes the new decoding algorithm; finally section 5
concludes the paper.

2 Background

We give a very brief background on subclasses of block codes called linear codes.
Readers are referred to the classic text [10].

Let Fq be the field with q elements. It is customary to define linear codes alge-
braically as follows:

Definition 1. A linear block code C of length n over a field Fq is a k-dimen-
sional subspace of an n-dimensional vector space over the field Fq (such a code
is called an (n, k) code).

The most common algebraic representation of a linear block code is the gen-
erator matrix G. A k×n matrix G where the rows of G are linearly independent
and which generate the subspace corresponding to C is called a generator matrix
for C. Figure 1 shows a generator matrix for a (4, 2) linear code over F2.

A general block code also has a combinatorial description in the form of a
trellis. We borrow from Kschischang et al [7] the definition of a trellis for a block
code.
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G =

[
0 1 1 0
1 0 0 1

]

Fig. 1. Generator matrix for a (4, 2) linear binary code

Definition 2. A trellis for a block code C of length n, is an edge labeled directed
graph with a distinguished root vertex s, having in-degree 0 and a distinguished
goal vertex f having out-degree 0, with the following properties:

1. All vertices can be reached from the root.
2. The goal can be reached from all vertices.
3. The number of edges traversed in passing from the root to the goal along any

path is n.
4. The set of n-tuples obtained by “reading off” the edge labels encountered in

traversing all paths from the root to the goal is C.

The length of a path (in edges) from the root to any vertex is unique and is
sometimes called the time index of the vertex. One measure of the size of a trellis
is the total number of vertices in the trellis. It is well known that minimal trellises
for linear block codes are unique [13] and constructable from a generator matrix
for the code [7]. Such trellises are known to be biproper. Biproperness is the
terminology used by coding theorists to specify that the finite state automaton
whose transition graph is the trellis, is deterministic, and so is the automaton
obtained by reversing all the edges in the trellis. In contrast, minimal trellises for
non-linear codes are, in general, neither unique, nor deterministic [7]. Figure 2
shows a trellis for the linear code in Figure 1.
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Fig. 2. A trellis for the linear block code of figure 1 with S0 = s and S9 = f
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Willems [18] has given conditions under which an arbitrary block code (which
he refers to as a dynamical system) has a unique minimal realization.

Biproper trellises minimize a wide variety of structural complexity measures.
McEliece [12] has defined a measure of Viterbi decoding complexity in terms of
the number of edges and vertices of a trellis, and has shown that the biproper
trellis is the “best” trellis using this measure, as well as other measures based
on the maximum number of states at any time index, and the total number of
states.

3 Overlaying of Subtrellises

We now restrict our attention to linear block codes. As we have mentioned ear-
lier, every linear code has a unique minimal biproper trellis, so this is our starting
point. Our object is to describe an operation which we term subtrellis overlaying,
which yields a smaller trellis. Reduction in the size of a trellis is a step in the
direction of reducing decoder complexity.

Let C be a linear (n, k) code with minimal trellis TC . A subtrellis of TC is a
connected subgraph of TC containing nodes at every time index i, 0 ≤ i ≤ n
and all edges between them. Partition the states of TC into n + 1 groups, one
for each time index. Let Si be the set of states corresponding to time index
i, and |Si| denote the cardinality of the set Si. Define Smax = maxi(|Si|). The
state-complexity profile of the code is defined as the sequence (|S0|, |S1|, · · · |Sn|).
Minimization of Smax is often desirable and Smax is referred to as the maximum
state-complexity. Our object here, is to partition the code C into disjoint sub-
codes, and “overlay” the subtrellises corresponding to these subcodes to get a
reduced “shared” trellis. An example will illustrate the procedure.

Example 1. Let C be the linear (4, 2) code defined by the generator matrix
in Figure 1. C consists of the set of codewords {0000, 0110, 1001, 1111} and is
described by the minimal trellis in Figure 2. The state-complexity profile of the
code is (1, 2, 4, 2, 1). Now partition C into subcodes C1 and C2 as follows:

C = C1 ∪C2; C1 = {0000, 0110}; C2 = {1001, 1111};

with minimal trellises shown in figures 3(a) and 3(b) respectively.
The next step is the “overlaying” of the subtrellises as follows. There are

as many states at time index 0 and time index n as partitions of C. States
(s2, s

′
2), (s3, s

′
3), (s1, s

′
1), (s4, s

′
4) are superimposed to obtain the trellis in Fig-

ure 4.

Note that overlaying may increase the state-complexity at some time indices
(other than 0 and n), and decrease it at others. Codewords are represented by
(si

0, s
i
f ) paths in the overlayed trellis, where si

0 and si
f are the start and final

states of subtrellis i. Thus paths from s0 to s5 and from s′0 to s′5 represent
codewords in the overlayed trellis of figure 3. Overlaying forces subtrellises for
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Fig. 3. Minimal trellises for (a) C1 = {0000, 0110} and (b) C2 = {1001, 1111}
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Fig. 4. Trellis obtained by overlaying trellis in figures 3(a) and 3(b)

subcodes to “share” states. Note that the shared trellis is also two way proper,
with Smax = 2 and state-complexity profile (2, 1, 2, 1, 2).

Not all partitions of the code permit overlaying to obtain biproper trellises
with a reduced value of Smax. For instance, consider the following partition of
the code.

C = C1 ∪C2; C1 = {0000, 1001}; C2 = {0110, 1111};

with minimal trellis T1 and T2 given in figures 5(a) and 5(b) respectively.
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Fig. 5. Minimal subtrellis for (a) C1 = {0000, 1001} and (b) C2 = {0110, 1111}
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It turns out that there exists no overlaying of T1 and T2 with a smaller value
of Smax than that for the minimal trellis for C.

The small example above illustrates several points. Firstly, it is possible to
get a trellis with a smaller number of states to define essentially the same code as
the original trellis, with the new trellis having several start and final states, and
with a restricted definition of acceptance. Secondly, the new trellis is obtained
by the superposition of smaller trellises so that some states are shared. Thirdly,
not all decompositions of the original trellis allow for superposition to obtain
a smaller trellis. The new trellises obtained by this procedure belong to a class
termed tail-biting trellises described in a recent paper [2]. This class has assumed
importance in view of the fact that trellises constructed in this manner can have
low state complexity when compared with equivalent conventional trellises. It
has been shown [17] that the maximum of the number of states in a tail-biting
trellis at any time index could be as low as the square root of the number of
states in a conventional trellis at its midpoint. This lower bound however, is not
tight, and there are several examples where it is not attained.

Several questions arise in this context. We list two of these below.

1. How does one decide for a given coordinate ordering, whether there exists
an overlaying that achieves a given lower bound on the maximum state
complexity at any time index, and in particular, the square root lower bound?

2. Given that there exists an overlaying that achieves a given lower bound how
does one find it? That is, how does one decide which states to overlay at
each time index?

While, to the best of our knowledge, there are no published algorithms to
solve these problems efficiently, in the general case, there are several examples of
constructions of minimal tailbiting trellises for specific examples from generator
matrices in specific forms in [2].

In the next few paragraphs, we define an object called an overlayed trellis
and examine the conditions under which it can be constructed so that it achieves
certain bounds.

Let C be a linear code over a finite alphabet. (Actually a group code would
suffice, but all our examples are drawn from the class of linear codes.) Let
C0, C1, . . . Cl be a partition of the code C, such that C0 is a subgroup of C
under the operation of componentwise addition over the structure that defines
the alphabet set of the code(usually a field or a ring), and C1, . . . Cl are cosets
of C0 in C. Let Ci = C0 + hi where hi, 1 ≤ hi ≤ l are coset leaders, with Ci

having minimal trellis Ti. The subcode C0 is chosen so that the maximum state
complexity is N (occurring at some time index, say, m), where N divides M
the maximum state complexity of the conventional trellis at that time index.
The subcodes C0, C1, . . . Cl are all disjoint subcodes whose union is C. Further,
the minimal trellises for C0, C1, . . . Cl are all structurally identical and two way
proper. (That they are structurally identical can be verified by relabeling a path
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labeled g1g2 . . . gn in C0 with g1 + hi1 , g2 + hi2 . . . gn + hin in the trellis corre-
sponding to C0 +hi where hi = hi1hi2 . . . hin .) We therefore refer to T1, T2, . . . Tl

as copies of T0.

Definition 3. An overlayed proper trellis is said to exist for C with respect to
the partition C0, C1, . . . Cl where Ci, 0 ≤ i ≤ l are subcodes as defined above,
corresponding to minimal trellises T0, T1, . . . Tl respectively,with Smax(T0) = N ,
iff it is possible to construct a proper trellis Tv satisfying the following properties:

1. The trellis Tv has l + 1 start states labeled [s0, ∅, ∅, . . .∅], [∅, s1, ∅ . . . ∅] . . . [∅,
∅, . . . ∅, sl] where si is the start state for subtrellis Ti, 0 ≤ i ≤ l.

2. The trellis Tv has l + 1 final states labeled [f0, ∅, ∅, . . .∅], [∅, f1, ∅, . . . ∅], . . . [∅,
∅, . . . ∅, fl], where fi is the final state for subtrellis Ti, 0 ≤ i ≤ l.

3. Each state of Tv has a label of the form [p0, p1, . . . pl] where pi is either ∅ or
a state of Ti, 0 ≤ i ≤ l. Each state of Ti appears in exactly one state of Tv.

4. There is a transition on symbol a from state labeled [p0, p1, . . . pl] to [q0,
q1, . . . ql] in Tv if and only if there is a transition from pito qi in Ti, provided
neither pi nor qi is ∅, for at least one value of i in the set {0, 1, 2, . . . l}.

5. The maximum width of the trellis Tv at an arbitrary time index i, 1 ≤ i ≤
n− 1 is at most N .

6. The set of paths from [∅, ∅, . . . sj , . . . ∅] to [∅, ∅, . . . , fj, . . . ∅] is exactly Cj , 0 ≤
j ≤ l.

Let the state projection of state [p0, p1, . . . , pi, . . . , pl] into subcode index i be
pi if pi 6= ∅ and empty if pi = ∅. The subcode projection of Tv into subcode index
i is defined by the symbol |Tv|i and consists of the subtrellis of Tv obtained by
retaining all the non ∅ states in the state projection of the set of states into
subcode index i and the edges between them. An overlayed trellis satisfies the
property of projection consistency which stipulates that |Tv|i = Ti. Thus every
subtrellis Tj is embedded in Tv and can be obtained from it by a projection
into the appropriate subcode index. We note here that the conventional trellis
is equivalent to an overlayed trellis with M/N = 1.

To obtain the necessary and sufficient conditions for an overlayed trellis to
exist, critical use is made of the fact that C0 is a group and Ci, 1 ≤ i ≤ l are
its cosets. For simplicity of notation, we denote by G the subcode C0 and by T ,
the subtrellis T0. Assume T has state complexity profile (mo, m1, . . .mn), where
mr = mt = N , and mi < N for all i < r and i > t. Thus r is the first time
index at which the trellis attains maximum state complexity and t is the last.
Note that it is not necessary that this complexity be retained between r and t,
i.e., the state complexity may drop between r and t. Since each state of Tv is
an M/N -tuple, whose state projections are states in individual subtrellises, it
makes sense to talk about a state in Ti corresponding to a state in Tv.

We now give a series of lemmas leading up to the main theorem which gives the
necessary and sufficient conditions for an overlayed trellis to exist for a given
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decomposition of C into a subgroup and its cosets. The proofs of these are
available in [14]

Lemma 1. Any state v of Tv at time index in the range 0 to t− 1, cannot have
more outgoing edges than the corresponding state in T . Similarly, any state v at
time index in the range r + 1 to n in Tv cannot have more incoming edges than
the corresponding state in T .

We say that subtrellises Ta and Tb share a state v of Tv at level i if v has non ∅
state projections in both Ta and Tb at time index i.

Lemma 2. If the trellises Ta and Tb share a state, say v at level i ≤ t then they
share states at all levels j such that i ≤ j ≤ t. Similarly, if they share a state v
at level i ≥ r, then they share states at all levels j such that r ≤ j ≤ i.

Lemma 3. If trellises Ta and Tb share a state at time index i, then they share
all states at time index i.

Lemma 4. If Ta and Tb share states at levels i−1 and i, then their coset leaders
have the same symbol at level i.

We use the following terminology. If h is a codeword say h1h2 . . . hn, then for
i < t, hi+1 . . . ht is called the tail of h at i; for i > r hr . . . hi is called the head
of h at level i.

Lemma 5. If Ta and Tb have common states at level i < t, then there exist
coset leaders ha and hb of the cosets corresponding to Ta and Tb such that ha

and hb have the same tails at level i. Similarly, if i > r there exist ha and hb

such that they have the same heads at level i.

Now each of the M/N copies of T has mi states at level i. Since the width of the
overlayed trellis cannot exceed N for 1 ≤ i ≤ n−1, at least (M/N2)×mi copies
of trellis T must be overlayed at time index i. Thus there are at most N/mi (i.e.
(M/N)/((M/N2 × mi))) groups of trellises that are overlayed on one another
at time index i. From Lemma 5 we know that if S is a set of trellises that are
overlayed on one another at level i, i < t, then the coset leaders corresponding to
these trellises have the same tails at level i. Similarly, if i > r the coset leaders
have the same heads at level i. This leads us to the main theorem.

Theorem 1. Let G be a subgroup of the group code C under componentwise
addition over the appropriate structure, with Smax(TC) = M , Smax(T ) = N and
let G have M/N cosets with coset leaders h0, h1, . . . hM/N−1. Let t, r be the time
indices defined earlier. Then C has an overlayed proper trellis Tv with respect to
the cosets of G if and only if:
For all i in the range 1 ≤ i ≤ n− 1 there exist at most N/mi collections of coset
leaders such that
(i) If 1 ≤ i < t, then the coset leaders within a collection have the same tails at
level i.
(ii)If r < i < n, the coset leaders within a collection have the same heads at level
i.
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Corollary 1. If M = N2 and the conditions of the theorem are satisfied, we
obtain a trellis which satisfies the square root lower bound.

Theorem 1 and corollary 1 answer both the questions about overlayed trellises
posed earlier. However, the problem of the existence of an efficient algorithm for
the decomposition of the code into a subgroup and its cosets remains open. In
the next section we describe the decoding algorithm on an overlayed trellis.

4 Decoding

Decoding refers to the process of forming an estimate of the transmitted code-
word x from a possibly garbled received version y. The received vector y consists
of a sequence of n real numbers, where n is the length of the code. The soft de-
cision decoding algorithm can be viewed as a shortest path algorithm on the
trellis for the code. Based on the received vector, a cost l(u, v) can be associated
with an edge from node u to node v. The well known Viterbi decoding algorithm
[16] is essentially a dynamic programming algorithm, used to compute a shortest
path from the source to the goal node.

4.1 The Viterbi Decoding Algorithm

For purposes of this discussion, we assume that the cost is a non negative number.
Since the trellis is a regular layered graph, the algorithm proceeds level by level,
computing a survivor at each node; this is a shortest path to the node from
the source. For each branch b, leaving a node at level i, the algorithm updates
the survivor at that node by adding the cost of the branch to the value of the
survivor. For each node at level i+1, it compares the values of the path cost for
each branch entering the node and chooses the one with minimum value. There
will thus be only one survivor at the goal vertex, and this corresponds to the
decoded codeword. For an overlayed trellis we are interested only in paths that
go from si to fi, 0 ≤ i ≤ l.

4.2 The A� Algorithm

The A∗ algorithm is well known in the literature on artificial intelligence [6] and
is a modification of the Dijkstra shortest path algorithm . That the A∗ algorithm
can be used for decoding was demonstrated in [5]. The A∗ algorithm uses, in
addition to the path length from the source to the node u, an estimate h(u, f)
of the shortest path length from the node to the goal node in guiding the search.
Let LT (u, f) be the shortest path length from u to f in T . Let h(u, f) be any
lower bound such that h(u, f) ≤ LT (u, f), and such that h(u, f) satisfies the
following inequality, i.e, for u a predecessor of v, l(u, v) + h(v, f) ≥ h(u, f). If
both the above conditions are satisfied, then the algorithm A∗, on termination,
is guaranteed to output a shortest path from s to f . The algorithm is given below.



62 Kaustubh Deshmukh et al.

Algorithm A∗

Input : A trellis T = (V, E, l) where V is the set of vertices, E is the set of
edges and l(u, v) ≥ 0 for edge (u, v) in E, a source vertex s and a destination
vertex f .
Output : The shortest path from s to f .
/* p(u) is the cost of the current shortest path from s to u and P (u) is a current
shortest path from s to u */
begin

S ← ∅, S̄ ← {s}, p(s)← 0, P (s)← ()
repeat

Let u be the vertex in S̄ with minimum value of p(u) + h(u, f).
S ← S ∪ {u}; S̄ ← S̄ \ {u};
if u = f then return P (f);
for each (u, v) ∈ E do

if v /∈ S then
begin

p(v)← min(p(u) + l(u, v), previous(p(v)));
if p(v) 6= previous(p(v)) then append (u, v) to P (u)

to give P (v);
(S̄)← (S̄) ∪ {v};

end
forever

end

4.3 Decoding on an Overlayed Trellis

Decoding on an overlayed trellis needs at most two phases. In the first phase,
a conventional Viterbi algorithm is run on the overlayed trellis Tv . The aim of
this phase is to obtain estimates h() for each node, which will subsequently be
used in the A∗ algorithm that is run on subtrellises in the second phase. The
winner in the first phase is either an sj − fj path, in which case the second
phase is not required, or an si − fj path, i 6= j, in which case the second phase
is necessary. During the second phase, decoding is performed on one subtrellis
at a time, the current subtrellis, say Tj (corresponding to subcode Cj) being
presently the most promising one, in its potential to deliver the shortest path. If
at any point, the computed estimate of the shortest path in the current subtrellis
exceeds the minimum estimate among the rest of the subtrellises, currently held
by, say, subtrellis Tk, then the decoder switches from Tj to Tk, making Tk the
current subtrellis. Decoding is complete when a final node is reached in the
current subtrellis. The two phases are described below. (All assertions in italics
have simple proofs given in [14]).
Phase 1. Execute a Viterbi decoding algorithm on the shared trellis, and obtain
survivors at each node. Each survivor at a node u has a cost which is a lower
bound on the cost of the least cost path from sj to u in an sj − fj path passing
through u, 1 ≤ j ≤ N . If there exists a value of k for which an sk − fk path is
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an overall winner then this is the shortest path in the original trellis TC. If this
happens decoding is complete. If no such sk − fk path exists go to Phase 2.
Phase 2
1. Consider only subtrellises Tj such that the winning path at Tj is an si − fj

path with i 6= j (i.e at some intermediate node a prefix of the sj − fj path
was “knocked out” by a shorter path originating at si), and such that there
is no sk−fk path with smaller cost. Let us call such trellises residual trellises.
Initialize a sequence Pj for each residual trellis Tj to the empty sequence.
Pj , in fact stores the current candidate for the shortest path in trellis Tj .
Let the estimate h(sj , fj) associated with the empty path be the cost of the
survivor at fj obtained in the first phase.

2. Create a heap of r elements where r is the number of residual trellises, with
current estimate h() with minimum value as the top element. Let j be the
index of the subtrellis with the minimum value of the estimate. Remove
the minimum element corresponding to Tj from the heap and run the A∗

algorithm on trellis Tj (called the current trellis). For a node u, take h(u, fj)
to be h(si, fj)−cost(survivor(u)) where cost(survivor(u)) is the cost of the
survivor obtained in the first phase. h() satisfies the two properties required
of the estimator in the A∗ algorithm.

3. At each step, compare p(u) + h(u, fj) in the current subtrellis with the top
value in the heap. If at any step the former exceeds the latter (associated with
subtrellis, say, Tk), then make Tk the current subtrellis. Insert the current
value of p(u) + h(u, fj) in the heap (after deleting the minimum element)
and run the A∗ algorithm on Tk either from start node sk (if Tk was not
visited earlier) or from the node which it last expanded in Tk. Stop when
the goal vertex is reached in the current subtrellis.

In the best case (if the algorithm needs to execute Phase 2 at all) the search will
be restricted to a single residual subtrellis; the worst case will involve searching
through all residual subtrellises.

5 Conclusions

This paper offers a new perspective from which block codes may be fruitfully
viewed. A technique called subtrellis overlaying is proposed , which reduces the
size of the trellis representing the block code. Necessary and sufficient conditions
for overlaying are derived from the representation of the code as a group. Fi-
nally a decoding algorithm is proposed which requires at most two passes on the
overlayed trellis. For transmission channels with high signal to noise ratio, it is
likely that decoding will be efficient. This is borne out by simulations on a code
called the hexacode[2] on an additive white Gaussian noise(AWGN) channel,
where it was seen that the decoding on the overlayed trellis was faster than that
on the conventional trellis for signal to noise ratios of 2.5 dB or more[14]. Future
work will concentrate on investigating the existence of an efficient algorithm for
finding a good decomposition of a code into a subgroup and its cosets, and on
obtaining overlayed trellises for long codes.
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