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Abstract. Codes over Fqm that form vector spaces over Fq are called
Fq-linear codes over Fqm . Among these we consider only cyclic codes
and call them Fq-linear cyclic codes (FqLC codes) over Fqm . This class
of codes includes as special cases (i) group cyclic codes over elementary
abelian groups (q = p, a prime), (ii) subspace subcodes of Reed-Solomon
codes and (iii) linear cyclic codes over Fq (m=1). Transform domain char-
acterization of FqLC codes is obtained using Discrete Fourier Transform
(DFT) over an extension field of Fqm . We show how one can use this
transform domain structures to estimate a minimum distance bound for
the corresponding quasicyclic code by BCH-like argument.

1 Introduction

A code over Fqm (q is a power of a prime) is called linear if it is a vector space
over Fqm . We consider FqLC codes over Fqm , i.e., codes which are cyclic and form
vector spaces over Fq. The class of FqLC codes includes the following classes of
codes as special cases:

1. Group cyclic codes over elementary abelian groups: When q = p the
class of FpLC codes becomes group cyclic codes over an elementary abelian
group Cm

p (a direct product of m cyclic groups of order p). A length n group
code over a group G is a subgroup of Gn under componentwise operation.
Group codes constitute an important ingredient in the construction of ge-
ometrically uniform codes [4]. Hamming distance properties of group codes
over abelian groups is closely connected to the Hamming distance properties
of codes over subgroups that are elementary abelian [5]. Group cyclic codes
over Cm

p have been studied and applied to block coded modulation schemes
with phase shift keying [8]. It is known [13],[19] that group cyclic codes over
Cm

p contain MDS codes that are not linear over Fpm .
2. SSRS codes: With n = qm − 1, the class of FqLC codes includes the

subspace subcodes of Reed-Solomon (SSRS) codes [7], which contain codes
with larger number of codewords than any previously known code for some
lengths and minimum distances.
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3. Linear cyclic codes over finite fields: Obviously, with m = 1, the FqLC
codes are the extensively studied class of linear cyclic codes.

A code is m-quasicyclic if cyclic shift of components of every codeword by m
positions gives another codeword [11]. If {β0, β1, · · · , βm−1} is a Fq-basis of Fqm ,
then any vector (a0, a1, · · · , an−1) ∈ Fn

qm can be seen with respect to this basis
as (a0,0, a0,1, · · · , a0,m−1, · · · , an−1,0, an−1,1, · · · , an−1,m−1) ∈ Fmn

q , where ai =∑m−1
j=0 ai,jβj . This gives a 1-1 correspondence between the class of FqLC codes

of length n over Fqm and the class of m-quasicyclic codes of length mn over Fq.
Unlike in [3], which considers (nm, q) = 1, FqLC codes gives rise tom-quasicyclic
codes of length mn with (n, q) = 1.

It is well known [1], [14] that cyclic codes over Fq and over the residue class
integer rings Zm are characterizable in the transform domain using Discrete
Fourier Transform (DFT) over appropriate Galois fields and Galois rings [12]
respectively and so are the wider class of abelian codes over Fq and Zm us-
ing a generalized DFT [15],[16]. The transform domain description of codes is
useful for encoding and decoding [1],[17]. DFT approach for cyclic codes of arbi-
trary length is discussed in [6]. In this correspondence, we obtain DFT domain
characterization of FqLC codes over Fqm using the notions of certain invariant
subspaces of extension fields of Fqm , two different kinds of cyclotomic cosets and
linearized polynomials.

The proofs of all the theorems and lemmas are omitted due to space limita-
tions.

2 Preliminaries

Suppose a = (a0, a1, · · · , an−1) ∈ Fn
qm , where (n, q) = 1. From now on, r will de-

note the smallest positive integer such that n|(qmr −1) and α ∈ Fqmr an element
of multiplicative order n. The set {0, 1, · · · , n−1} will be denoted by In. The Dis-
crete Fourier Transform (DFT) of a is defined to be A = (A0, A1, · · · , An−1) ∈
Fn

qmr , where Aj =
∑n−1

i=0 α
ijai , j ∈ In. Aj is called the j-th DFT coefficient

or the j-th transform component of a. The vectors a and A will be referred as
time-domain vector and the corresponding transform vector respectively.

For any j ∈ In, the q-cyclotomic coset modulo n of j is defined as
[j]qn = {i ∈ In|j ≡ iqt mod n for some t ≥ 0}, and the qm-cyclotomic coset
modulo n of j is defined as [j]q

m

n = {i ∈ In|j ≡ iqmt mod n for some t ≥ 0}.
We’ll denote the cardinalities of [j]qn and [j]q

m

n as ej and rj respectively.

Example 1. Table 1 shows [j]215, [j]2
2

15, [j]2
3

15 and [j]2
4

15 for j ∈ I15.

Mostly we’ll have n for the modulus. So we’ll drop the modulus when not
necessary. Clearly, a q-cyclotomic coset is a disjoint union of some qm-cyclotomic
cosets. If J ⊆ In, we write [J ]qn = ∪j∈J [j]qn and [J ]q

m

n = ∪j∈J [j]q
m

n .
If b is the cyclically shifted version of a, then Bj = αjAj for j ∈ In. This is

the cyclic shift property of DFT. The DFT components satisfy conjugacy
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Table 1. Cyclotomic cosets modulo 15

2/23-cycl. cosets {0} {1, 2, 4, 8} {3, 6, 9, 12} {5, 10} {7, 13, 11, 14}
cardinality 1 4 4 2 4

22-cycl. cosets {0} {1, 4} {2, 8} {3, 12} {6, 9} {5} {10} {7, 13} {14, 11}
cardinality 1 2 2 2 2 2 2 2

24-cycl. cosets {0} {1} {2} {4} {8} {3} {6} {9} {12} {5} {10} {7} {13} {11} {14}
cardinality 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

constraint[1], given by A(qmj) mod n
= Aqm

j . So, conjugacy constraint relates
the transform components in same qm-cyclotomic coset.

Let I1, I2, · · · , Il be some disjoint subsets of In and suppose RIj = {(Ai)i∈Ij
|

a ∈ C} for j = 1, 2, · · · , l. The sets of transform components {Ai|i ∈ Ij}; 1 ≤
j ≤ l are called unrelated for C if

{(
(Ai)i∈I1

, (Ai)i∈I2
, · · · , (Ai)i∈Il

) |a ∈ C} =
RI1 ×RI2 × · · · ×RIl

.
For a code C, we say, Aj takes values from {∑n−1

i=0 α
ijai|a ∈ C} ⊆ Fqmr . For

linear cyclic codes, Aj takes values from {0} or Fqmrj and transform components
in different qm-cyclotomiccosets are unrelated.

For any element s ∈ Fql , the set [s]q = {s, sq, sq2
, · · · , sqe−1}, where e is the

smallest positive integer such that sq
e

= s, is called the q-conjugacy class of s.
Note that, if α ∈ Fql is of order n and s = αj , then there is an 1-1 correspondence
between [j]qn and [s]q, namely jqt �→ sq

t

. So, |[s]q| = |[j]qn| = ej .
For any element s ∈ Fql , an Fq-subspace U of Fql is called s-invariant (or

[s, q]-subspace in short) if sU = U . An [s, q]-subspace of Fql is called minimal if it
contains no proper [s, q]-subspace. If U and V are two [s, q]-subspaces of Fql , then
so are U∩V and U+V . If e is the exponent of [s]q, then SpanFq{si|i ≥ 0} � Fqe .
So, for any g ∈ Fql \{0}, the minimal [s, q]-subspace containing g is gFqe . Clearly,
if s′ ∈ [s]q, then [s, q]-subspaces and [s′, q]-subspaces are same.

Example 2. The minimal [α5, 2] and [α10, 2]-subspaces of F24 are V1 = F4 =
{0, 1, α5, α10}, V2 = αF4, V3 = α2F4, V4 = α3F4, V5 = α4F4. The [αk, 2]-
subspaces, for k �= 0, 5, 10 are {0} and F16. Every subset {0, x ∈ F ∗

16} is a
minimal [α0, 2]-subspace.

3 Transform Domain Characterization of FqLC Codes

By the cyclic shift property, in an FqLC code C, the values of Aj constitute an
[αj , q]-subspace of Fqmr . However, this is not sufficient for C to be an FqLC code.

Example 3. Consider length 15, F2-linear codes over F16 = {0, 1, α, α2, · · · , α14}.
We have q = 2,m = 4 and r = 1. In Table 2, the code C3 is not cyclic, though
each transform component takes values from appropriate invariant subspaces.
Other five codes in the same table are F2LC codes. As DFT kernel, we have
taken a primitive element α ∈ F16 with minimal polynomial X4 +X + 1.
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The characterization of FqLC codes is in terms of certain decompositions of
the codes. In the following subsection, we discuss the decomposition of FqLC
codes and in Subsection 3.2 present the characterization.

3.1 Decomposition of FqLC Codes

We start from the following notion of minimal generating set of subcodes for
Fq-linear codes.

A set of Fq-linear subcodes {Cλ|λ ∈ Λ} of a Fq-linear code C is said to
be a generating set of subcodes if C = Σλ∈ΛCλ. A generating set of subcodes
{Cλ|λ ∈ Λ} of C is called a minimal generating set of subcodes (MGSS) if
Σλ�=λ′Cλ �= C for all λ′ ∈ Λ. MGSS of an Fq-linear code is not unique. For exam-
ple, consider the length 3 F2-linear code over F22 , C = {c1 = (00, 00, 00), c2 =
(01, 01, 01), c3 = (10, 10, 10), c4 = (11, 11, 11)}. The sets of subcodes {{c1, c2},
{c1, c3}} and {{c1, c2}, {c1, c4}} are both MGSS for C.

Suppose Aj takes values from V ⊂ Fqmr , V �= {0} for an Fq-linear code C.
Let V1 be an Fq-subspace of Fqmr .We call C′ = {a|a ∈ C, Aj ∈ V1} as the Fq-
linear subcode obtained by restricting Aj in V1. For example, the subcode C1 of
Table 2 can be obtained from C4 by restricting A5 to {0}. Clearly, if C is cyclic
and V1 is an [αj , q]-subspace, then C′ is also cyclic. If S ⊆ In, then the subcode
obtained by restricting the transform components Aj ; j �∈ S to 0 is called the
S-subcode of C and is denoted as CS .

Lemma 1. Suppose in an Fq-linear code C, Aj takes values from a subspace
V ∈ Fqmr . Let V1, V2 ⊆ V be two subspaces of V such that V = V1 +V2. (i) If C1
and C2 are the subcodes of C, obtained by restricting Aj in V1 and V2 respectively,
then C = C1 + C2. (ii) If V1 and V2 are [αj , q]-subspaces, then C is cyclic if and
only if C1 and C2 are cyclic.

Suppose for an Fq-linear code C, Aj takes values from a nonzero Fq-subspace
V of Fqmr , and V intersects with more than one minimal [αj , q]-subspace. Then,
we have two nonzero [αj , q]-subspaces V1 and V2 such that V ⊆ V1 ⊕ V2 and
V ∩V1 �= φ and V ∩V2 �= φ. Then, we can decompose the code as the sum of two
smaller codes C1 and C2 obtained by restricting Aj to V1 and V2 respectively,
i.e., C = C1 + C2. So by successively doing this for each j, we can decompose C
into a generating set of subcodes, in each of which, for any j ∈ In, transform
component Aj takes values from a Fq-subspace of a minimal [αj , q]-subspace. In
particular, if the original code was an FqLC code, all the subcodes obtained this
way will have Aj from minimal [αj , q]-subspaces. The following are immediate
consequences of this observation and Lemma 1.

1. In a minimal FqLC code, any nonzero transform component Aj takes values
from a minimal [αj , q]-subspace of Fqmr . For example, for the codes C1 and
C2 in Table 2, A5 and A10 take values from minimal [α5, 2]-subspaces.

2. A code is FqLC if and only if all the subcodes obtained by restricting any
nonzero transform component Aj in minimal [αj , q]-subspaces of Fqmr are
FqLC. The statement is also true without the word ’minimal’.
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Suppose in an Fq-linear code C, transform components Aj , j ∈ In take values
from Fq-subspaces Vj of Fqmr . A set of transform components {Al|l ∈ L ⊆ In}
is called a maximal set of unrelated components (MSUC) if they are
unrelated for C and any other transform component Ak, k �∈ L can be expressed
as Ak =

∑
l∈L σklAl such that σkl is an Fq-homomorphism of Vl into Vk.

If some disjoint sets of transform components are unrelated in two codes C′

and C′′, then so is true for the code C′ + C′′. However, the converse is not true.
For instance, for the codes C0 and C1 in Table 2, A5 and A10 are related but
they are unrelated for the sum C4 = C0 + C1.

Theorem 1. If C is an FqLC code over Fqm where any nonzero transform com-
ponent Aj takes values from a minimal [αj , q]-subspace Vj of Fqmr , then there is
an MSUC {Al|l ∈ L ⊂ In} for C.

Clearly, for a code as described in Theorem 1, if l ∈ L, the code Cl = {a ∈
C|Aj = 0 for j ∈ L \ {l}} is a minimal FqLC code. So C can be decomposed into
an MGSS as C = ⊕l∈LCl. Since any code can be decomposed into a minimal gen-
erating set of subcodes with nonzero transform components taking values from
minimal invariant subspaces by restricting the components to minimal invariant
subspaces, a minimal generating set of minimal FqLC subcodes can be obtained
by further decomposing each of the subcodes as above. So, we have,

Theorem 2. Any FqLC code can be decomposed as direct sum of minimal FqLC
codes.

Suppose, in an FqLC code, Aj and Ak take values from the [αj , q]-subspace
V1 and [αk, q]-subspace V2 respectively. Suppose Ak is related to Aj by an Fq

homomorphism σ : V1 �→ V2 i.e. Ak = σ(Aj). Then, since the code is cyclic,

σ(αjv) = αkσ(v) ∀ v ∈ V1. (1)

Clearly, for such a homomorphism, Ker(σ) is an [αj , q]-subspace.

Lemma 2. Let C be an FqLC code over Fqm where each nonzero transform
component Aj takes values from a minimal [αj , q]-subspace of Fqmr . If Ak =∑t

i=1 σji
Aji

, where Aji
, i = 1, 2, · · · , t take values freely from some respective

minimal invariant subspaces, then σji
, i = 1, 2, · · · , t are all Fq-isomorphisms.

3.2 Transform Characterization

The following theorem characterizes FqLC codes in the DFT domain.

Theorem 3. Let C ⊂ Fn
qm be an n-length Fq-linear code over Fqm Then, C is

FqLC if and only if all the subcodes of an MGSS obtained by restricting the
transform components to minimal invariant subspaces satisfy the conditions:
1. For all j ∈ In, the set of jth transform components is αj-invariant.
2. There is an MSUC {Aj |j ∈ J} where Aj takes values from a minimal [αj , q]-
subspace Vj and Ak =

∑
j∈J σkjAj for all k �∈ J , where σkj is an Fq-isomorphism

of Vj onto Vk satisfying

σkj(αjv) = αkσkj(v) ∀v ∈ Vj . (2)
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Example 4. In Table 2, the codes obtained by restricting A10 to V5 and V1 for
the code C5 are respectively C0 and C2. In both C0 and C2, the nonzero transform
components A5 and A10 take values from minimal [α5, 2] invariant subspaces
and sum of C0 and C2 is C5. So, {C0, C2} is an MGSS of C5. In both C0 and C2, A5
and A10 are related by isomorphisms. It can be checked that the isomorphisms
satisfy the condition (2).

Since for an FqLC code, transform components can be related by homomor-
phisms satisfying (1), we characterize such homomorphisms in Section 4. We
also show that for FqLC codes, Aj and Ak can be related iff k ∈ [j]qn.

4 Connecting Homomorphisms for FqLC Codes

Throughout the section an endomorphism will mean an Fq-endomorphism.
A polynomial of the form f(X) =

∑t
i=0 ciX

qi ∈ Fql [X] is called a q-
polynomial or a linearized polynomial [10] over Fql . Each q-polynomial
of degree less than ql induces a distinct Fq-linear map of Fql . So, consider-
ing the identical cardinalities, we have EndFq (Fql) = {σf : x �→ f(x)|f(X) =∑l−1

i=0 ciX
qi ∈ Fql [X]}

For any y ∈ Fql \ {0}, the automorphism induced by f(X) = yX will be de-
noted by σy. The subset {σy|y ∈ Fql \{0}} forms a cyclic subgroup of AutFq

(Fql),
generated by σβ

ql
, where βql ∈ Fql is a primitive element of Fql . In this sub-

group, σi
y = σyi . We shall denote this subgroup as Sq,l and Sq,l ∪ {0} as Sq,l,

where 0 denotes the zero map. Clearly, Sq,l forms a field isomorphic to Fql .
We shall denote the map σXq : y �→ yq of Fql onto Fql , induced by the

polynomial f(X) = Xq, as θq,l. Clearly, θq,lσx = σq
xθq,l i.e., θq,lσxθ

−1
q,l = σq

x for

all x ∈ Fql . The map induced by the polynomial f(X) = Xqi

is θiq,l. So, for any
f(X) =

∑l−1
i=0 ciX

qi

, σf =
∑l−1

i=0 σciθ
i
q,l Thus we have EndFq (Fql) = ⊕l−1

i=0Sq,lθ
i
q,l

i.e., any endomorphism σ ∈ EndFq (Fql) can be decomposed uniquely as σ =∑l−1
i=0 σ(i) where σ(i) ∈ Sq,lθ

i
q,l. We shall call this decomposition as canonical

decomposition of σ.

Theorem 4. Suppose x1, x2 ∈ Fql . Then, [x1]q = [x2]q ⇔ ∃σ ∈ AutFq (Fql)
such that σ(x1x) = x2σ(x) ∀x ∈ Fql .

Lemma 3. Let V1 ⊆ Fql be a minimal [x1, q]-subspace and σ : V1 −→ Fql be a
nonzero homomorphism of V1 into Fql , satisfying σ(x1v) = x2σ(v) ∀ v ∈ V1.
Then [x1]q = [x2]q.

Theorem 5. Suppose x1, x2 ∈ Fql . Let V1 ⊂ Fql be a [x1, q]-subspace and σ is
as in Lemma 3. Then (i) [x1]q = [x2]q and (ii) σ(V2) is a [x1, q]-subspace for
any [x1, q]-subspace V2 ⊂ V1.
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Theorem 6. In an FqLC code, the transform components of different q- cyclo-
tomic cosets are mutually unrelated.

Corollary 1. Any minimal FqLC code takes nonzero values only in one q-
cyclotomic coset in transform domain and any minimal FqLC code which has
nonzero transform components in [j]qn has size qej .

So, if J1, J2, · · · , Jt are the distinct q-cyclotomic cosets of In, then any FqLC
code C can be decomposed as C = ⊕t

i=1CJi . Corresponding m-quasi-cyclic codes
are called primary components [9] or irreducible components [2]. If a ∈ Fn

qm ,
then the intersection of all the FqLC codes containing a is called the FqLC code
generated by a. We call such FqLC codes as one-generator FqLC codes. Clearly,
For a one-generator FqLC code C, each component CJi is minimal.

Suppose V1 and V2 are two subspaces of Fql . Suppose y ∈ Fql such that V1 is
y-invariant and i is a nonnegative integer. Then, we define HomFq

(V1, V2, y, i) ={
σ ∈ HomFq

(V1, V2)|σyx = yqi

σx , ∀x ∈ V1
}

. Clearly, HomFq
(V1, V2, y, i) is a

subspace of HomFq (V1, V2). Since yqey+i

= yqi

, we shall always assume i < ey.
We are interested in HomFq (V1, V2, y, i) since, if for an FqLC code, Aj ∈ V1 and
Ajqi ∈ V2, then Aj and Ajqi can be related by a homomorphism σ : V1 → V2 if
and only if σ ∈ HomFq (V1, V2, αj , i).

Theorem 7. Any σ ∈ HomFq
(x1Fqey , x2Fqey , y, l) is induced by a polynomial

f(X) = cXqi

for some unique constant c ∈ x2x−1
1 Fqey .

For y = αj , this theorem specifies all possible homomorphisms by which Ajql

can be related to Aj for an FqLC code when Aj takes values from a minimal
[αj , q]-subspace.

Example 5. Clearly, in the codes C0 and C2 in Table 2, A5 is related to A10 by
homomorphisms. Suppose A5 = σf (A10) where f(X) is a q-polynomial over Fql .
For C0, f(X) = α8X2 and for C2, f(X) = αX2.

The following theorem specifies the possible relating homomorphisms when
Aj takes values from a nonminimal [αj , q]-subspace.

Theorem 8. Suppose V ⊆ Fql is a [y, q]-subspace and V = ⊕t−1
j=0Vj where Vj

are minimal [y, q]-subspaces. Then, for any σ ∈ HomFq (V, Fql , y, i), there is
a unique polynomial of the form f(X) =

∑t−1
j=0 ajX

qjey+i

, aj ∈ Fql such that

σ = σf . So, HomFq (V, Fql , y, i) = {σf |f(X) =
∑t−1

j=0 ajX
qjey+i

, aj ∈ Fql}
So, if j1, · · · , jw ∈ [k]qn and Ak is related to Aj1 , · · · , Ajw by homomor-

phisms i.e., if Ak = σ1(Aj1) + · · · + σw(Ajw ), where σ1, · · · , σw are homomor-
phisms, then the relation can be expressed as Ak =

∑l1−1
h1=0 c1,h1A

qh1ek+t1

j1
+ · · ·+∑lw−1

hw=0 cw,hwA
qhwek+tw

jw
, where k ≡ jqti

i mod n for i = 1, · · · , w.

Example 6. In the code C5 in Table 2, A5 is related to A10 by a homomorphism
induced by the polynomial f(X) = α14X2 + α8X8.
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5 Parity Check Matrix and Minimum Distance
of Quasicyclic Codes

For linear codes, Tanner used BCH like argument [18] to estimate minimum
distance bounds from the parity check equations over an extension field.

With respect to any basis of Fqm , there is a 1-1 correspondence between
n-length FqLC codes and m-quasi-cyclic codes of length nm over Fq. Here we
describe how in some cases one can directly get a set of parity check equations
of a quasi-cyclic code from the transform domain structure of the corresponding
FqLC code. We first give a theorem from [3] for the distance bound.

Theorem 9. [3] Suppose, the components of the vector v ∈ Fn
qr are nonzero

and distinct. If for each k = k0, k1, · · · , kδ−2, the vectors vk are in the span of a
set of parity check equations over Fqr , then the minimum distance of the code is
at least that of the cyclic code of length qr −1 with roots βk, k = k0, k1, · · · , kδ−2
where β is a primitive element of Fqr .

So, If ki = k0 + i, BCH bound gives dmin ≥ δ.
Let us fix a basis {β0, β1, · · · , βm−1} of Fqm over Fq. By our characterization

of FqLC codes in DFT domain, we know that for any j ∈ [0, n− 1], Aj can take
values from any [αj , q]-subspace of Fqrmj . In particular, Aj can take values from
subspaces of the form c−1Fql where ej |l and l|mrj . Then,

(cAj)ql

= cAj ⇔
(
c

n−1∑
i=0

αijai

)ql

= c
n−1∑
i=0

αijai

⇔
(
c

n−1∑
i=0

αij
m−1∑
x=0

aixβx

)ql

= c
n−1∑
i=0

αij
m−1∑
x=0

aixβx.

This gives a parity check vector h =
(h0,0, h0,1, · · · , h0,m−1, · · · , hn−1,0, · · · , hn−1,m−1) with hi,x =(
cq

l

αijql

βql

x − cαijβx

)
. If Aj = 0, it gives a parity check vector h with hi,x = βx.

Now, for FqLC code, Ak can be related to several other transform com-
ponents Aj1 , Aj2 , · · · , Ajw

by homomorphisms, where j1, · · · , jw ∈ [k]qn. Then,
Ak =

∑l1−1
h1=0 c1,h1A

qh1ek+t1

j1
+ · · · +

∑lw−1
hw=0 cw,hw

Aqhwek+tw

jw
for some constants

ci,hi ∈ Fqmr . It can be checked in the same way that, this gives a parity check
vector h with hi,x = βxα

ik −∑l1−1
h1=0 c1,h1β

qh1ek+t1

x αij1qh1ek+t1 − · · ·
−∑lw−1

hw=0 cw,hw
βqhwek+tw

x αijwqhwek+tw .
The component wise conjugate vectors of the parity check vectors obtained

in these ways and the vectors in their span are also parity check vectors of
the code. However, in general for any FqLC code, the components may not be
related simply by homomorphisms or components may not take values from the
subspaces of the form c−1Fql . In those cases, the parity check vectors obtained
in the above ways may not specify the code completely. But still those equations
can be used for estimating a minimum distance bound by Theorem 9.
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Since the DFT components in different q-cyclotomic cosets modulo n are
unrelated, the set of parity check equations over Fqmr are union of the check
equations corresponding to each q-cyclotomic coset modulo n. Clearly, for any
one generator code, a set of parity check vectors completely specifying the code
can be obtained in this way. There are however other codes for which complete
set of parity check vectors can be derived. In fact, codes can be constructed by
imposing simple transform domain restrictions and thus allowing derivations of
a complete set of parity check equations over Fqmr . We illustrate this with the
following example. If β is a primitive element of Fqmr , then we use α = β

qmr−1
n

as the DFT kernel and we take the basis {1, β, β2, · · · , βm−1}.

Example 7. We consider the F2LC code of length n = 3 over F24 given by
the transform domain restrictions A0 = 0 and A2 = β4A2

1 + β10A8
1. With

the chosen basis, these two restrictions give the parity check vectors of the
underlying 4-quasi-cyclic code h(1) =

(
1, β, β2, β3, 1, β, β2, β3, 1, β, β2, β3

)
and

h(2) =
(
β8, β5, β12, β6, β3, 1, β7, β, β13, β10, β2, β11

)
respectively. Component-

wise conjugates of these vectors are also parity check vectors. Moreover, h(2)
3 =(

β9, 1, β6, β3, β9, 1, β6, β3, β9, 1, β6, β3
)

= βh(1) + β8h(1)
2 + β6h(1)

4 + h(1)
8 and

h(2)
0 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) = β11h(1) + β7h(1)

2 + β15h(1)
4 + β13h(1)

8.
So, the underlying quasi-cyclic code is a [12, 4, 6] code. This code is actually
same as the [12, 4, 6] code discussed in [18].

Table 2. Few Length 15 F2-Linear Codes over F16

[Only nonzero transform components are shown. The elements of F ∗
16 are represented

by the corresponding power of the primitive element and 0 is represented by -1.]

a0a1a2a3a4a5a6a7a8a9a10a11a12a13 a14 A5A10 a0a1a2a3a4a5a6a7a8a9a10a11a12a13 a14 A5A10
C0 C2

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
0 2 8 0 2 8 0 2 8 0 2 8 0 2 8 1 4 4 3 7 4 3 7 4 3 7 4 3 7 4 3 7 1 0
8 0 2 8 0 2 8 0 2 8 0 2 8 0 2 6 14 7 4 3 7 4 3 7 4 3 7 4 3 7 4 3 6 10
2 8 0 2 8 0 2 8 0 2 8 0 2 8 0 11 9 3 7 4 3 7 4 3 7 4 3 7 4 3 7 4 11 5

C1 C3
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
4 9 14 4 9 14 4 9 14 4 9 14 4 9 14 -1 4 0 2 8 0 2 8 0 2 8 0 2 8 0 2 8 1 4
14 4 9 14 4 9 14 4 9 14 4 9 14 4 9 -1 14 5 7 13 5 7 13 5 7 13 5 7 13 5 7 13 6 9
9 14 4 9 14 4 9 14 4 9 14 4 9 14 4 -1 9 10 12 3 10 12 3 10 12 3 10 12 3 10 12 3 11 14

C4 = C0 + C1 C5 = C0 + C2
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
4 9 14 4 9 14 4 9 14 4 9 14 4 9 14 -1 4 4 3 7 4 3 7 4 3 7 4 3 7 4 3 7 1 0
14 4 9 14 4 9 14 4 9 14 4 9 14 4 9 -1 14 7 4 3 7 4 3 7 4 3 7 4 3 7 4 3 6 10
9 14 4 9 14 4 9 14 4 9 14 4 9 14 4 -1 9 3 7 4 3 7 4 3 7 4 3 7 4 3 7 4 11 5
0 2 8 0 2 8 0 2 8 0 2 8 0 2 8 1 4 0 2 8 0 2 8 0 2 8 0 2 8 0 2 8 1 4
1 11 6 1 11 6 1 11 6 1 11 6 1 11 6 1 -1 1 6 11 1 6 11 1 6 11 1 6 11 1 6 11 -1 1
3 10 12 3 10 12 3 10 12 3 10 12 3 10 12 1 9 9 10 13 9 10 13 9 10 13 9 10 13 9 10 13 11 2
7 13 5 7 13 5 7 13 5 7 13 5 7 13 5 1 14 14 12 5 14 12 5 14 12 5 14 12 5 14 12 5 6 8
8 0 2 8 0 2 8 0 2 8 0 2 8 0 2 6 14 8 0 2 8 0 2 8 0 2 8 0 2 8 0 2 6 14
5 7 13 5 7 13 5 7 13 5 7 13 5 7 13 6 9 5 14 12 5 14 12 5 14 12 5 14 12 5 14 12 11 3
6 1 11 6 1 11 6 1 11 6 1 11 6 1 11 6 -1 11 1 6 11 1 6 11 1 6 11 1 6 11 1 6 -1 11
12 3 10 12 3 10 12 3 10 12 3 10 12 3 10 6 4 13 9 10 13 9 10 13 9 10 13 9 10 13 9 10 1 12
2 8 0 2 8 0 2 8 0 2 8 0 2 8 0 11 9 2 8 0 2 8 0 2 8 0 2 8 0 2 8 0 11 9
10 12 3 10 12 3 10 12 3 10 12 3 10 12 3 11 14 10 13 9 10 13 9 10 13 9 10 13 9 10 13 9 6 7
13 5 7 13 5 7 13 5 7 13 5 7 13 5 7 11 4 12 5 14 12 5 14 12 5 14 12 5 14 12 5 14 1 13
11 6 1 11 6 1 11 6 1 11 6 1 11 6 1 11 -1 6 11 1 6 11 1 6 11 1 6 11 1 6 11 1 -1 6
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