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Abstract

We consider the index coding problem (ICP) where a server broadcasts coded messages over

a noisy channel, to a set of receivers which knows some messages a priori, in such a way

that all the receivers can decode its desired messages. It has been shown that the bandwidth

required for transmitting the coded messages can be reduced by employing index coded PSK

modulation (ICPM), where M-ary modulation is used instead of binary transmissions [14].

In this work, the message error performance of a receiver at high SNR is characterized by a

parameter called PSK index coding gain (PSK-ICG). It is shown that, for a given index code and

mapping (of index code vectors to PSK signal points), the PSK-ICG of a receiver is determined

by a metric called minimum inter-set distance. For a chosen index code and an arbitrary map-

ping (of broadcast vectors to PSK signal points), we derive a decision rule for the maximum

likelihood (ML) decoder.

For a given ICP over a single-input single-output (SISO) AWGN broadcast channel with a

priori defined arbitrary order of priority among the receivers (prioritized receivers), and a chosen 2N

PSK constellation we propose an algorithm to find an (index code, mapping) pair (not necessarily

unique), which gives the best performance in terms of PSK-ICG of the receivers in the following

sense:

• No other pair of index code of length N (with 2N index code vectors) and mapping can

give a better PSK-ICG for the highest priority receiver.

• Also, given that the highest priority receiver achieves its best performance, the next high-

est priority receiver achieves its maximum gain possible and so on.

This algorithm is based on maximising the minimum inter-set distance where as the already

available algorithm [14] is based on maximising the minimum Euclidean distance. With the
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Abstract iii

simulation based studies it is shown that the minimum inter-set distance based algorithm per-

forms much better than that based on the minimum Euclidean distance. The algorithm given

in [14] considers a chosen index code alone and can be used only for a specific order of priority

among the receivers. In the algorithm which we propose, all possible index codes of a chosen

length are considered and the receivers can have any a priori defined order of priority.

An upper bound on the coding gain that can be achieved by each of the receivers, for the

given ICP and a chosen 2N PSK modulation is also obtained.

Next, we consider ICP over a multiple-input multiple-output (MIMO) Rayleigh fading chan-

nel. The receivers are equipped with single antenna and the server with two antennas. To

obtain diversity gain along with coding gain, we propose a MIMO scheme which employs

space time coding along with index coded PSK modulation. For a chosen index code, an arbi-

trary mapping (of broadcast vectors to PSK signal points) and a 2×1 MIMO system employing

Alamouti code, we derive a decision rule for the maximum likelihood (ML) decoding. We show

that for the best coding gain at high SNR, the mapping must maximize the minimum inter-set

distance.

Finally, we discuss optimal index codes for an ICP with prioritized receivers when ICPM is used over

a SISO AWGN channel. We have obtained an expression for the length of such an optimal code.
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Chapter 1

Introduction

Network coding technique has significantly improved the performance of communication net-

works, and has been studied extensively in the past two decades. Index coding problem (ICP)

can be considered as a special case of network coding problem [1]. ICP has emerged as an im-

portant topic of recent research due to its applications in many of the practically relevant prob-

lems including that in satellite networks [2], topological interference management [3], wireless

caching and cache enabled cloud radio access networks for 5G cellular systems [4].

1.1 Index Coding Problem over Noiseless Broadcast Channels

The noiseless index coding problem with side information was first studied in [5] as an Informed-

Source Coding-On-Demand (ISCOD) problem, in which a central server (sender) wants to

broadcast data blocks to a set of clients (receivers) which already has a proper subset of the

data blocks. The problem is to minimize the data that must be broadcast, so that each receiver

can derive its required data blocks. Consider the case of a sender with n messages denoted by

the set X = {x1, x2, ..., xn}, xi ∈ Fq, Fq is a field with q elements, which it broadcasts as coded

messages, to a set of m receivers, R = {R1, R2, ..., Rm}. Each receiver Ri ∈ R wants a subset

Wi of the messages, knows a priori a proper subsetKi of the messages, whereWi∩Ki = φ, and

is identified by the pair (Wi,Ki). The noiseless index coding problem is to find the smallest

1



Chapter 1. Introduction 2

number of transmissions required and is specified by (X ,R). The set Ki is referred to as the

side information available to the receiver Ri.

Definition 1.1. An index code (IC) for a given ICP (X ,R) is defined by an encoding function,

E : Fnq → Flq, and a set of m decoding functions Di : Flq × F|Ki|
q → F|Wi|

q , ∀i ∈ {1, 2, ...,m}

corresponding to the m receivers, such that,

Di(E(x),Ki) =Wi,∀x ∈ Fnq ,∀i ∈ {1, 2, ...,m}.

In this report, we consider ICP over binary field (q = 2). The integer l, as defined above is

called the length of the index code. An index code of minimum length is called an optimal

index code for noiseless broadcast channels [6]. If the encoding function, E is linear, the index

code is said to be linear and if all the decoding functions Di are linear, the index code is said to

be linearly decodable [7].

Ong and Ho [6] classified the index coding problems into different classes based on the side

information set Ki and the want set Wi of receivers. Index coding problems where each re-

ceiver demands one unique message is called a single unicast index coding problem. For such

problems, the number of receivers equals the number of messages (m = n). An ICP of this class

can be characterised by a side information graph which is a simple directed graph with n vertices

(representing the messages as well as the receivers) and a set of edges, where an edge from

vertex i to vertex j, denoted by (i, j) exists if and only if the receiver Ri has side information xj

[7]. Bar-Yossef et al. identified that, for the class of single unicast ICP, the length of an optimal

linear index code is given by the minrank of the side information graph, where the minrank

is defined as follows: For a directed graph G with n vertices and no self loops, a 0-1 matrix

A = (aij) fits G if ∀i, j ∈ {1, 2, ...n}, aii = 1 and aij = 0, if (i, j) is not an edge in G.

Definition 1.2.

minrank2(G) , min{rank2(A) : A fits G}

where rank2(.) denotes the rank over binary field, F2.
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1.2 Index Coding Problems over Noisy Channels

So far in this chapter, we have considered index coding over noiseless broadcast channel. Even

though this is interesting theoretically, index coding over noisy channels is more practical.

ICP over binary symmetric channel (BSC) was studied by Dau et al. [8]. The concept of linear

error-correcting index code (ECIC) was introduced and the bounds on the optimal length of an

ECIC was established. Error correcting decoding and syndrome decoding using ECIC was also

discussed.

Noisy index coding over a wireless fading channel was considered in [9], [10]. Binary trans-

mission of index coded bits was assumed and so a minimum length index code minimises

the bandwidth consumed. It was found that, among the several optimal index codes, the one

which minimises the maximum number of binary transmissions used by any receiver in de-

coding its desired messages, will result in the minimum error probability. For a special class

of index coding problems, an algorithm to identify the optimal index codes which minimise

maximum probability of error, among all the optimal index codes was also given. For this set

up, the problem of identifying the number of optimal index codes possible for a given ICP is

important and that was studied in [11], [12]. These studies considered binary transmissions

and so these were not bandwidth optimal.

A special case of ICP over Gaussian broadcast channel, based on multidimensional QAM

constellation with 2n points, where every receiver demands all messages (which it does not

have) from the source, was considered by Natarajan et al. [13]. A code design metric called side

information gain was used to define the efficiency with which the index code exploits the side

information.

The case of noisy index coding over AWGN broadcast channel, along with minimum Eu-

clidean distance decoding, was studied in [14], [15], where the receivers demand a subset of

messages as defined in [5]. The bandwidth required for transmitting the index codes can be
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reduced if M-ary modulation is used instead of binary transmissions and this scheme was re-

ferred to as index coded PSK modulation (ICPM). PSK side information coding gain was defined

as the coding gain obtained by a receiver with side information, relative to a receiver with no

side information. Receivers with side information, satisfying certain specified conditions, need

to search only through a reduced number of signal points, which was referred to as the effec-

tive signal set seen by the receiver. An algorithm to map the broadcast vectors to PSK signal

points so that the receiver with maximum side information gets maximum PSK side informa-

tion coding gain, was also proposed. The algorithm assumes that an index code is given and

is applicable only for one specific order of priority (in the non increasing order of amount of

side information) among the receivers. Minimum Euclidean distance of the effective broadcast

signal set seen by a receiver, was considered as the basic parameter which decides the message

error probability of the receiver and the proposed algorithm tries to maximize the minimum

Euclidean distance.

The problem of constructing space time codes for a special case of ICP where every receiver

demands all messages (which it does not have) from the source, was considered in [16]. Even

though the problem of broadcasting over a multiple-input multiple-output (MIMO) channel

when the receivers have some side information was addressed, only a special case of ICP was

considered.

In this report, first we consider noisy index coding over a single-input single-output (SISO)

AWGN broadcast channel and discuss the maximum likelihood (ML) decoder for ICPM. We

study the case in which only the length of the index code is specified for the ICP but not nec-

essarily the index code. The receivers can have any a priori defined arbitrary order of prior-

ity among themselves (prioritized receivers). This ordering need not have any relation to the

amount of side-information the receivers have which is the only case considered in [14]. For

a chosen priority order, we consider all possible index codes, to obtain the mappings to ap-

propriate PSK constellation which will result in the best message error performance in terms
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of PSK index coding gain (PSK-ICG, defined in Section 2.4) of the receivers, respecting the de-

fined order of priority. Next, we consider the general case of a noisy index coding problem

over a MIMO Rayleigh fading channel, where the receivers demand a subset of messages as

defined in [5]. We propose a MIMO scheme, which employs the concept of ICPM, to provide

both diversity gain and coding gain over a fading channel. Finally, we obtain an expression for

the length of an optimal index code for ICP over a SISO AWGN channel when ICPM is used

for prioritized receivers.

1.3 Our Contribution

First we consider a noisy index coding problem with n messages, over F2, which uses an

AWGN broadcast channel for transmission. For the ICP (X ,R), consider index codes of length

N , N < n, which will generate 2N broadcast vectors (elements of FN2 ). The broadcast vectors

are mapped to 2N -PSK signal points, so that 2N -PSK modulation can be used, to minimize the

bandwidth requirement. Note that, transmitting one 2N -PSK signal point instead of N BPSK

signal points (as in noiseless index coding), results in N/2 fold saving in bandwidth.

Our contributions are summarized below:

• We derive a decision rule for maximum likelihood decoding which gives the best message

error performance, for any receiver Ri, for a given index code and mapping.

• We show that, at very high SNR, the message error performance of the receiver employing

ML decoder, depends on the minimum inter-set distance (defined in Section 2.4). The

mapping which maximize the minimum inter-set distance is optimal for the best message

error performance at high SNR.

• For the ICP (X ,R), when the receivers are arranged in the decreasing order of priority,

we propose an algorithm to find (index code, mapping) pairs, each of which gives the

best message error performance for the receivers, for the given order of priority. Using
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any one of the above (index code, mapping) pairs, the highest priority receiver achieves

the maximum gain (PSK-ICG), that it can get using any IC and any mapping for 2N -PSK

constellation, at very high SNR. Given that the highest priority receiver achieves its best

performance, the next highest priority receiver achieves its maximum gain possible and

so on in the specified order of priority.

• An upper bound on the coding gain (PSK-ICG) that can be achieved by each receiver for

the ICP (X ,R) and a chosen 2N PSK modulation, is obtained by considering each one of

the receivers as the highest priority receiver.

Next, we extend the SISO case with AWGN broadcast channel to MIMO with Rayleigh fading

channel. Our contributions in this extended case are summarized below:

• We propose a MIMO scheme employing Alamouti code over the 2N -PSK signal set, for

the noisy index coding problem, to achieve diversity gain.

• With the proposed scheme, for a chosen index code and 2N -PSK signal set, we show that,

for a receiver to attain its best coding gain at high SNR, the mapping (of broadcast vectors

to 2N -PSK signal points) must maximize the minimum inter-set distance.

• We derive a decision rule for maximum likelihood decoding which gives the best message

error performance, for any receiver Ri, in the MIMO scheme, for a given index code and

arbitrary mapping.

We have addressed the problem of finding the optimal index codes for a given ICP over a

SISO AWGN broadcast channel with prioritized receivers employing ICPM. In this regard, we

considered index codes of all possible lengths along with the appropriate constellation sizes.

• We have obtained an expression for the length of optimal index codes for an ICP with pri-

oritized receivers when ICPM is used over an AWGN channel. Once the optimal length

is known, we can find the best possible (index code, mapping) pairs across all possible

index codes and mappings using the proposed algorithm.
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1.4 Organisation of the Report

The main content of this report is organised into six chapters. Chapter 1 gives a background

on the index coding problem (noiseless and noisy), recent works in this area and our specific

contributions.

Chapter 2 explains the basic concepts of ICPM. The notations used through out this report are

also provided. Then, a decision rule for the ML decoder of ICPM is derived and its high SNR

approximation is obtained. The last part of this chapter explains a very important metric called

inter-set distance and a parameter called PSK index coding gain.

Chapter 3 focuses on the case of ICP with prioritised receivers over a SISO AWGN channel.

An algorithm for obtaining optimal (index code, mapping) pairs for a chosen constellation size

(length of index code) is proposed. An upper bound on the coding gain that can be achieved by

each of the receivers for a chosen 2N PSK modulation is also obtained. The chapter concludes

with the simulation results which further illustrates the efficiency of the proposed schemes.

In Chapter 4, a scheme with Alamouti code is proposed, to extend the concept of ICPM over

a SISO AWGN channel to a Rayleigh faded MIMO channel. ML decoder decision rule, its high

SNR approximation, diversity gain and coding gain of the proposed scheme, and simulation

results for the MIMO scheme are included in this chapter.

Till chapter 4, the work primarily focuses on ICPM with a chosen constellation size (that

means we considered only index codes of a chosen length). Chapter 5 addresses the problem

of finding the length of optimal index codes for an ICP with prioritized receivers when ICPM

is used over a SISO AWGN channel and an expression for the optimal length is obtained for

the case where |K1| < n− 1.

The report is concluded in Chapter 6 by listing down several interesting problems for future

work.



Chapter 2

Index Coded PSK Modulation and

Inter-Set Distance

1 In this chapter, the concept of ICPM over a SISO AWGN broadcast channel (here after referred

to as SISO-AWGN-ICPM), where the sender and the receivers have one antenna each, and the

related notions are included. We derive a decision rule for the ML decoder and discuss a high

SNR approximation for this decoder. The concept of inter-set distance and PSK-ICG, which

determines the message error performance of the receivers, is introduced.

2.1 Preliminaries and Notation

Let [n] , {1, 2, ..., n}. For a vector z = (z1z2...zn) ∈ Fn2 and a subset B = {i1, i2, ..., ib} of [n] (for

any integer b, 1 ≤ b ≤ n), where i1 < i2 < ... < ib, zB denotes the vector (zi1zi2 ...zib).

Consider the noisy index coding problem over F2 with a single sender having a set of mes-

sages X = {x1, x2, ..., xn}, xi ∈ F2, and a set of m receivers, R = {R1, R2, ..., Rm}, where each

1A part of the content of this chapter appears in

• Divya U. Sudhakaran and B. Sundar Rajan, "Maximum likelihood decoder for index coded PSK modulation
for priority ordered receivers," accepted for 2017 IEEE 86th Vehicular Technology Conference: VTC2017-Fall
24-27 September 2017, Toronto, Canada.

• Divya U. Sudhakaran and B. Sundar Rajan, "Maximum likelihood decoder for index coded PSK modulation
for priority ordered receivers," arXiv: 1703.03222v1 [cs.IT] 9 Mar 2017.

8
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receiver Ri is identified by (Wi,Ki), the want set and the known set. Let, Ii , {j : xj ∈ Ki}

be the set of indices corresponding to the known set. It is sufficient to consider the case where

each receiver demands only one message. If there is a receiver which demands more than one

message, it can be considered as |Wi| equivalent receivers each demanding one message and

having the same side information. EachRi, i ∈ [m] wants the message xf(i), where f : [m]→ [n]

and xf(i) /∈ Ki, ∀i ∈ [m].

For the given ICP, we consider scalar linear index codes of length N (not necessarily the

minimum or optimum length), such that the set of all broadcast vectors gives FN2 . Let L be an

n × N encoding matrix for one such index code, C. Let x = (x1x2...xn) and y = (y1y2...yN )

denote the message vector and the broadcast vector respectively, where y = xL.

Example 2.1. Consider the following ICP with n = m = 5 andWi = xi,∀i ∈ {1, 2, ..., 5}. The

side information available with the receivers is as follows: K1 = {x2, x3}, K2 = {x3, x4, x5},

K3 = {x2, x4, x5}, K4 = {x5}, K5 = {x4}.

For this ICP we can choose a scalar linear index code of length N = 3, as given by the follow-

ing encoding matrix L.

L =



1 1 0

0 1 0

0 1 0

1 1 1

1 1 1


.

The index coded bits are given by

(y1y2y3) = (x1x2x3x4x5)L as y1 = x1 + x4 + x5, y2 = x1 + x2 + x3 + x4 + x5, y3 = x4 + x5.

Instead of using N BPSK transmissions, the N index coded bits of y are sent as a signal point

from a 2N -PSK signal set, over an AWGN channel, to save bandwidth [14]. We assume that for

SISO-AWGN-ICPM, all the signal points are of unit energy (unless otherwise stated). In this

report, we consider index coded 2N -PSK modulation for a chosen N and so when we refer to

index codes of length N , we consider only those index codes for which the set of all broadcast
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vectors is FN2 . Let the chosen 2N -PSK signal set be denoted as S = {s1, s2, ..., s2N }. Assume

that for the index code C a mapping scheme specifies the mapping of FN2 to the signal set S . All

receivers are assumed to know the encoding matrix, L for the index code C.

Let ai ∈ F|Ki|
2 be a realization of xIi . As each receiver Ri knows some messages (from its side

information), Ri needs to consider only a subset of FN2 for decoding and this subset is called

the effective broadcast vector set.

Definition 2.1. For a chosen index code based on the encoding matrix L, the effective broadcast

vector set seen by Ri for xIi = ai is defined by,

CL(ai) , {y ∈ FN2 : y = xL,xIi = ai, xj′ ∈ F2, j
′ ∈ [n] \ Ii}.

The corresponding set of signal points in 2N -PSK constellation is referred to as the effective

broadcast signal set seen by Ri for xIi = ai and is denoted by SL(ai). For a chosen index code,

all effective broadcast signal sets and effective broadcast vector sets seen by Ri are of the same

size (|SL(ai)| = |SL(a′i)| = |CL(ai)| = |CL(a′i)|where ai,a
′
i ∈ F|Ki|

2 ).

Half the number of broadcast vectors in an effective broadcast vector set corresponds to

xf(i) = 0 and the remaining half corresponds to xf(i) = 1. So, we can partition an effective

broadcast vector set into two subsets as defined below.

Definition 2.2. The 0-effective broadcast vector set seen by Ri for xIi = ai is defined by,

CL0(ai) , {y ∈ FN2 : y = xL,xIi = ai, xf(i) = 0, xj′ ∈ F2, j
′ ∈ [n] \ (Ii ∪ {f(i)})}.

The corresponding set of signal points in 2N -PSK constellation is referred to as the 0-effective

broadcast signal set seen by Ri for xIi = ai and is denoted as SL0(ai).

Definition 2.3. The 1-effective broadcast vector set seen by Ri for xIi = ai is defined by,

CL1(ai) , {y ∈ FN2 : y = xL,xIi = ai, xf(i) = 1, xj′ ∈ F2, j
′ ∈ [n] \ (Ii ∪ {f(i)})}.
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The corresponding set of signal points in 2N -PSK constellation is referred to as the 1-effective

broadcast signal set seen by Ri for xIi = ai and is denoted as SL1(ai).

The effective broadcast vector sets, 0-effective broadcast vector sets and 1-effective broadcast

vector sets seen by R2 for the IC in Example 2.1 is given in Table 2.1. It is clear that, two differ-

ent realizations of xIi may have the same effective broadcast vector set. However, 1-effective

broadcast vector set for a particular realization of xIi may become the 0-effective broadcast

vector set of another realization of xIi and vice versa. But the way in which the effective broad-

cast vector set gets partitioned will be the same. For example consider the case of CL(011) and

CL(100) in Table 2.1.

Table 2.1: Effective broadcast vector sets and its partitions (seen by R2) for the IC in Example
2.1.

a2 CL(a2) CL0(a2) CL1(a2)
(000) {(000), (010), (110), (100)} {(000), (110)} {(010), (100)}
(001) {(111), (101), (001), (011)} {(111), (001)} {(101), (011)}
(010) {(111), (101), (001), (011)} {(111), (001)} {(101), (011)}
(011) {(000), (010), (110), (100)} {(000), (110)} {(010), (100)}
(100) {(000), (010), (110), (100)} {(010), (100)} {(000), (110)}
(101) {(111), (101), (001), (011)} {(101), (011)} {(111), (001)}
(110) {(111), (101), (001), (011)} {(101), (011)} {(111), (001)}
(111) {(000), (010), (110), (100)} {(010), (100)} {(000), (110)}

Example 2.2. Consider the following ICP with n = m = 6 and Wi = xi,∀i ∈ {1, 2, ..., 6}.

The side information available with the receivers is as follows: K1 = {x2, x3, x4, x5, x6}, K2 =

{x1, x3, x4, x5}, K3 = {x2, x4, x6}, K4 = {x1, x6}, K5 = {x3}, K6 = {} (null set).

For this ICP we can choose a scalar linear index code of length N = 4, based on encoding

matrix L, with y1 = x1 + x4, y2 = x2 + x3, y3 = x5, y4 = x6.

Then, the effective broadcast vector sets and its partitions as seen by R2 are as given in Table

2.2.

Suppose an IC based on an encoding matrix L, and an effective broadcast vector set, CL(ai)

of Ri are given. CL(ai) can be partitioned into 0-effective broadcast vector set and 1-effective

broadcast vector set as follows:
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Table 2.2: Effective broadcast vector sets and its partitions (seen by R2) for the IC in Example
2.2.

a2 CL(a2) CL0(a2) CL1(a2)
(0000) {(0000), (0100), (0001), (0101)} {(0000), (0001)} {(0100), (0101)}
(0001) {(0010), (0011), (0110), (0111)} {(0010), (0011)} {(0110), (0111)}
(0010) {(1000), (1001), (1100), (1101)} {(1000), (1001)} {(1100), (1101)}
(0011) {(1010), (1011), (1110), (1111)} {(1010), (1011)} {(1110), (1111)}
(0100) {(0000), (0100), (0001), (0101)} {(0100), (0101)} {(0000), (0001)}
(0101) {(0010), (0011), (0110), (0111)} {(0110), (0111)} {(0010), (0011)}
(0110) {(1000), (1001), (1100), (1101)} {(1100), (1101)} {(1000), (1001)}
(0111) {(1010), (1011), (1110), (1111)} {(1110), (1111)} {(1010), (1011)}
(1000) {(1000), (1001), (1100), (1101)} {(1000), (1001)} {(1100), (1101)}
(1001) {(1010), (1011), (1110), (1111)} {(1010), (1011)} {(1110), (1111)}
(1010) {(0000), (0100), (0001), (0101)} {(0000), (0001)} {(0100), (0101)}
(1011) {(0010), (0011), (0110), (0111)} {(0010), (0011)} {(0110), (0111)}
(1100) {(1000), (1001), (1100), (1101)} {(1100), (1101)} {(1000), (1001)}
(1101) {(1010), (1011), (1110), (1111)} {(1110), (1111)} {(1010), (1011)}
(1110) {(0000), (0100), (0001), (0101)} {(0100), (0101)} {(0000), (0001)}
(1111) {(0010), (0011), (0110), (0111)} {(0110), (0111)} {(0010), (0011)}

• Identify an x such that xL ∈ CL(ai). Let the corresponding realization of xIi be ai .

• For ai, partition CL(ai) into CL0(ai) and CL1(ai)

The partitioning of CL(ai) can be illustrated with the ICP given in Example 2.2. Suppose the

effective broadcast vector set, CL(a2) = {(0000), (0100), (0001), (0101)} of R2 needs to be par-

titioned into CL0(a2) and CL1(a2). Choose x = (110100) such that y = xL = (0100) ∈ CL(a2),

and then a2 = (1010). Note that y2 = x2 + x3, x3 ∈ K2, R2 wants x2, and from a2 = (1010),

x3 = 0. So y2 = x2 and only two broadcast vectors, (0000) and (0001) in CL(1010) has y2 = 0.

So CL0(1010) = {(0000), (0001)}. Similarly, CL1(1010) = {(0100), (0101)}. It should be noted

that for some other choice of x with x3 = 1, we may get CL0(a2) = {(0100), (0101)} and

CL1(a2) = {(0000), (0001)}. We are only interested in partitioning the effective broadcast vector

set into two subsets such that all broadcast vectors in each subset correspond to the same value

of xf(i).
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2.2 Maximum Likelihood Decoder

In this section we derive a decision rule for the maximum likelihood decoder for the receiver

Ri. We follow an approach similar to the one used in [17] to obtain a decision rule for the ML

decoder for the receiver Ri.

LetM be the map from FN2 to the signal set S . The received vector r is given by

r =M(xL) + w

where w is distributed as CN (0, N0). The conditional probability density of r given thatM(xL)

is transmitted (likelihood function) is

p(r|M(xL)) =
1

(πN0)
exp

(
−‖r −M(xL)‖2

N0

)
. (2.1)

Consider the decoder for a receiver Ri. The minimum error probability decoder should make

a decision x′f(i) on the desired message xf(i) based on the received vector r and the side in-

formation xIi , minimizing the probability of error. Given xIi = ai, when xf(i) = 0 the

probability of error in this decision is Pr(xf(i) = 1|xIi = ai, r) and that when xf(i) = 1 is

Pr(xf(i) = 0|xIi = ai, r). To minimize the error probability, the decision x′f(i) = 0 is taken if

Pr(xf(i) = 0|xIi = ai, r) > Pr(xf(i) = 1|xIi = ai, r) (2.2)

and the decision x′f(i) = 1 is taken if

Pr(xf(i) = 0|xIi = ai, r) < Pr(xf(i) = 1|xIi = ai, r). (2.3)

Combining (2.2) and (2.3), and ignoring ties, the decision rule can be written as

Pr(xf(i) = 0|xIi = ai, r)
1
≶
0

Pr(xf(i) = 1|xIi = ai, r). (2.4)
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Using Bayes rule in (2.4), we obtain the decision rule in terms of the likelihood functions as

p(r|xf(i) = 0,xIi = ai)Pr(xf(i) = 0)

p(r)

1
≶
0

p(r|xf(i) = 1,xIi = ai)Pr(xf(i) = 1)

p(r)
,

which implies

p(r|xf(i) = 0,xIi = ai)Pr(xf(i) = 0)
1
≶
0
p(r|xf(i) = 1,xIi = ai)Pr(xf(i) = 1). (2.5)

SL0(ai), the 0-effective broadcast signal set seen by Ri (for ai), is the set of all signal points

corresponding to broadcast vectors with xf(i) = 0 and xIi = ai. Therefore,

p(r|xf(i) = 0,xIi = ai) = p(r|SL0(ai)). (2.6)

Similarly,

p(r|xf(i) = 1,xIi = ai) = p(r|SL1(ai)). (2.7)

Assuming that all the messages take values 0 or 1 with equal probability, from (2.5), (2.6) and

(2.7) we obtain the decision rule as

∑
k:sk∈SL0(ai)

p(r|sk)
1
≶
0

∑
k:sk∈SL1(ai)

p(r|sk). (2.8)

From (2.1) and (2.8),

∑
k:sk∈SL0(ai)

(
1

(πN0)
exp

(
−‖r − sk‖

2

N0

))
1
≶
0

∑
k:sk∈SL1(ai)

(
1

(πN0)
exp

(
−‖r − sk‖

2

N0

))
.

Thus we obtain the ML decision rule as,

∑
k:sk∈SL0(ai)

(
exp

(
−‖r − sk‖

2

N0

))
1
≶
0

∑
k:sk∈SL1(ai)

(
exp

(
−‖r − sk‖

2

N0

))
. (2.9)
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2.3 High SNR Approximation for ML Decoder

At high SNR, we can approximate the ML decision rule by considering only the dominant terms

on both the sides (assuming that the SNR is high enough that the contribution of the remaining

terms will not make any change in the decision) of (2.9). In such a case, the decoding is same

as the minimum Euclidean distance decoding. The decoder will find the signal point in the

effective broadcast signal set, which is closest to r. If the decoded signal point belongs to 0-

effective broadcast signal set the desired message is decoded as 0, else 1. Simulation results

(Section 3.4.2, Figure 3.7 and Figure 3.8) also indicate that this approximation is valid at high

SNR. So, even though the minimum Euclidean distance decoder is not theoretically optimal, for

practical purposes, at high SNR, the minimum Euclidean distance decoder can be used instead

of ML decoder.

2.4 Inter-Set Distance and PSK Index Coding Gain

It is clear that the ML decoder decision (2.9) is based on the Euclidean distance of all signal

points in 0-effective broadcast signal set to the received vector r relative to that of the signal

points in 1-effective broadcast signal set. This indicates that, to reduce the message error prob-

ability, the signal points in 0-effective broadcast signal set and 1-effective broadcast signal set

must be as separated as possible in terms of Euclidean distance.

Definition 2.4. Inter-set distance of an effective broadcast signal set seen by a receiver Ri is the

minimum among the Euclidean distances between a signal point in the 0-effective broadcast

signal set and a signal point in the 1-effective broadcast signal set.

dIS(SL(ai)) , min{d(sa, sb) :sa ∈ SL0(ai), sb ∈ SL1(ai)}

where d(sa, sb) denotes the Euclidean distance between 2N -PSK signal points, sa and sb.

Consider R1 in Example 2.1. Assume that a mapping as shown in Figure 2.1(a) is chosen.
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Figure 2.1: 8-PSK mapping and inter-set distance for R1 in Example 2.1.
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Let the side information available with R1 be xI1 = (00). R1 can find the effective broadcast

vector set as CL(00) = {(000), (111), (001), (110)} and its partitions as CL0(00) = {(000), (111)}

and CL1(00) = {(110), (001)}. From the mapping, R1 finds SL(00) = {s1, s2, s5, s6}, SL0(00) =

{s1, s2} and SL1(00) = {s5, s6}. The inter-set distance of the effective broadcast signal set seen

by R1 for this case is shown in Figure 2.1(b). Next consider the case when the side infor-

mation available with R1 is xIi = (01). Then, the effective broadcast vector set is CL(01) =

{(010), (101), (100), (011)} and its partitions can be obtained as CL0(01) = {(010), (101)} and

CL1(01) = {(100), (011)}. From the mapping, SL(01) = {s3, s4, s7, s8}, SL0(00) = {s3, s4} and

SL1(00) = {s7, s8}. The inter-set distance of the effective broadcast signal set seen byR1 for this

case with, xI1 = (01) is shown in Figure 2.1(c).

For the ICP given in Example 2.2 for receiver R2, CL(0000) = {(0000), (0001), (0100), (0101)}.

The inter-set distance of SL(0000) seen by R2 for two different mappings is given in Figure 2.2.

The inter-set distance is more for mapping 3 (Figure 2.2(a)) than for mapping 4 (Figure 2.2(b)).

Definition 2.5. For a given index code and mapping, the minimum inter-set distance for a

receiver Ri, denoted by d(i)IS,min, is defined as the minimum of the inter-set distances among all

the effective broadcast signal sets seen by Ri.

d
(i)
IS,min , min{dIS(SL(ai)) : ai ∈ F|Ki|

2 }

In the case of Example 2.1 with the mapping as shown in 2.1(a), the inter-set distance of both

the effective broadcast signal sets seen by the receiver R1 is the same and so the minimum

inter-set distance is same as the inter-set distance of any one of the effective broadcast signal

sets and is as shown in Figure 2.1(b) or 2.1(c). The minimum inter-set distance forR1 for another

mapping is shown in 2.1(d). Clearly, the mapping shown in Figure 2.1(a) has a larger minimum

inter-set distance for R1 than the one in Figure 2.1(d). The minimum inter-set distance for all

the receivers is given in Table 2.3.

Similarly, the minimum inter-set for the receivers in the ICP given in Example 2.2 is given in
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Table 2.3: Minimum inter-set distance for the receivers in the ICP in Example 2.1.

Mapping d
(1)
IS,min d

(2)
IS,min d

(3)
IS,min d

(4)
IS,min d

(5)
IS,min

Mapping 1 1.8477 1.4142 1.4142 0.7653 0.7653
Mapping 2 1.4142 0.7653 0.7653 0.7653 0.7653

Table 2.4: Minimum inter-set distance for the receivers in the ICP in Example 2.2.

Mapping d
(1)
IS,min d

(2)
IS,min d

(3)
IS,min d

(4)
IS,min d

(5)
IS,min d

(6)
IS,min

Mapping 3 2 1.8477 0.7653 0.7653 0.3901 0.3901
Mapping 4 2 1.1111 0.7653 0.7653 0.3901 0.3901

Table 2.4 for the mappings given in Figure 2.2.

Definition 2.6. The PSK Index Coding Gain (PSK-ICG) of a receiver Ri, for a given IC and

mapping is defined as

gi , 20× log

d(i)IS,min
dmin,n


where d(i)IS,min is the minimum inter-set distance for Ri and dmin,n is the minimum Euclidean

distance between any two signal points in a 2n-PSK constellation.

The PSK-ICG of the receivers for the ICP discussed in Example 2.1 is given in Table 2.5.

Table 2.5: PSK-ICG (in dB) of the receivers for the ICP considered in Example 2.1.

Mapping g1 g2 g3 g4 g5
Mapping 1 19.48 17.16 17.16 11.83 11.83
Mapping 2 17.16 11.83 11.83 11.83 11.83

Similarly, the PSK-ICG of the receivers for the ICP considered in Example 2.2, is given in Table

2.6.

Table 2.6: PSK-ICG (in dB) of the receivers for the ICP discussed in Example 2.2.

Mapping g1 g2 g3 g4 g5 g6

Mapping 3 26.18 25.49 17.84 17.84 11.98 11.98

Mapping 4 26.18 21.07 17.84 17.84 11.98 11.98



Chapter 3

SISO Index Coded PSK Modulation for

Prioritized Receivers

1 In this section we consider SISO-AWGN-ICPM where the receivers are prioritized. For a

given ICP and a chosen 2N PSK constellation, we propose an algorithm to find (index code,

mapping) pairs, each of which gives the best message error performance for the receivers, for

the given order of priority. An upper bound on the coding gain that can be achieved by each

of the receivers for the given ICP and a chosen 2N PSK modulation is also obtained.

3.1 Concept of Prioritized Receivers

In many applications there can be a priori defined arbitrary order of priority among the re-

ceivers. One such application is in wireless sensor data acquisition. If we assume that a sensor

data is encoded as the message vector, we may have highest priority for the most significant

bit (MSB), as an error in this bit is more critical than that in the least significant bit (LSB). In this

1A part of the content of this chapter appears in

• Divya U. Sudhakaran and B. Sundar Rajan, "Maximum likelihood decoder for index coded PSK modulation
for priority ordered receivers," accepted for 2017 IEEE 86th Vehicular Technology Conference: VTC2017-Fall
24-27 September 2017, Toronto, Canada.

• Divya U. Sudhakaran and B. Sundar Rajan, "Maximum likelihood decoder for index coded PSK modulation
for priority ordered receivers," arXiv: 1703.03222v1 [cs.IT] 9 Mar 2017.
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case, it is desirable to improve the performance of the highest priority receiver even if it results

in a degradation in performance of a low priority receiver. By prioritized receivers, we mean

that,

• There is a priori defined arbitrary order of priority among the receivers.

• The PSK-ICG of the highest priority receiver must be maximised even if it reduces the

PSK-ICG of lower priority receivers.

• Assume that the priority order is (R1, R2, ..., Rm). Given that R1 gets it best possible

PSK-ICG, the PSK-ICG that can be achieved by R2 must be maximised. Further, given

that R1 and R2 achieves their best possible performance in this way, PSK-ICG that can be

achieved by R3 must be maximised and so on in the order of priority.

3.2 Mapping based on Inter-Set Distances

In the ML decision rule as given in (2.9), the decoder makes an error at high SNR, if the broad-

casted signal point is in 0-effective broadcast signal set but r is closest to a signal point in

1-effective broadcast signal set or vice versa. The probability of this event is more when the

minimum inter-set distance is less. At high SNR, this error is dominant and so an optimal

mapping for the best message error performance must maximize the minimum inter-set dis-

tance. Among the mappings which has the same minimum inter-set distance, the one which

has less multiplicity (of the pairs which result in the minimum inter-set distance) will perform

better and among the mappings which has the same minimum inter-set distance and multi-

plicity, the one which has more second minimum inter-set distance will perform better and so

on.

Eventhough, at high SNR, the minimum Euclidean distance decoder can be used instead of

ML decoder, the labeling needs to be done in such a way that the minimum inter-set distance

is maximized and not the minimum Euclidean distance of the effective broadcast signal sets.
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The simulation results in Section 3.4.1 illustrates this important point which is a significant

contribution of this work. For example, consider the mappings given in Figure 2.1(a) and

Figure 2.1(d). With the mapping shown in Figure 2.1(a), the minimum inter-set distance for

R1 is more but the minimum Euclidean distance of its effective broadcast signal sets is less,

compared to that with the mapping shown in Figure 2.1(d). The simulation results (discussed

in Section 3.4.1) show that R1 performs better with the mapping in Figure 2.1(a) than with the

mapping in Figure 2.1(d).

For the given ICP and 2N -PSK constellation, when the receivers are arranged in the decreasing

order of priority, we propose an algorithm which maximizes the minimum inter-set distance, to

find (index code, mapping) pairs, each of which gives the optimal message error performance

for the receivers, for the given order of priority. Assume that the decreasing order of priority

for the receivers is (R1, R2, ..., Rm). Here optimality is based on minimum inter-set distance

and is in the following sense:

• No other mapping of 2N -PSK constellation for any index code, can give PSK-ICG > g1

for R1.

• Any mapping for any index code which gives the PSK-ICG gi for receiver Ri, ∀i ∈

{1, 2, ..., j − 1} cannot give a PSK-ICG > gj for Rj , j ≤ m.

It may so turn out that maximizing the gain of a receiver Ri, minimizes the gain that can be

achieved by a lower priority receiver Rj . With this algorithm it is not necessary that a higher

priority receiver will get higher PSK-ICG compared to that of the lower priority receivers. The

PSK-ICG achieved by a receiver Rj depends on its priority,Wj , Kj ,Wi and Ki ∀i such that Ri

is a higher priority receiver than Rj . This is further explained with an example and simulation

results in Section 3.4.1.

In the following subsections, we explain the mapping algorithm and then illustrate it with

examples.
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3.2.1 Mapping Algorithm

Without loss of generality, assume that the decreasing order of priority among the receivers is

(R1, R2, ..., Rm). For a given index code based on encoding matrix L, an optimal mapping for

a receiver Ri is obtained as follows:

1. Find all effective broadcast vector sets for ai ∈ F|Ki|
2 . These sets partition FN2 .

2. Consider an effective broadcast vector set, CL(ai).

3. Partition the effective broadcast vector set into 0-effective broadcast vector set (CL0(ai))

and 1-effective broadcast vector set (CL1(ai)).

4. All the broadcast vectors in CL0(ai) must be mapped to adjacent signal points. Let the set

of signal points corresponding to CL0(ai) be SL0(ai).

5. All the broadcast vectors in CL1(ai) must be mapped to signal points diametrically oppo-

site to signal points in SL0(ai). This will result in a mapping with broadcast vectors in

CL1(ai) mapped to adjacent signal points.

6. Repeat steps 3 to 5 by considering the remaining effective broadcast vector sets one by

one.

In the case of Example 2.1, for the chosen index code, there are two effective broadcast vector

sets which partitions F3
2 for R1. Consider any one of the effective broadcast vector sets say

CL(00) and its partitions CL0(00) and CL1(00). To obtain an optimal mapping for the receiverR1,

map all the broadcast vectors in CL0(00) to adjacent signal points. Then map all the broadcast

vectors in CL1(00) to signal points diametrically opposite to signal points in SL0(00). One such

mapping is shown in Figure 2.1(b). Then consider the next effective broadcast vector set, CL(01)

and its partitions. As in the case of CL(00), map all the broadcast vectors in CL0(01) and CL1(01).

One possible way of mapping is given in Figure 2.1(c). Thus an optimal mapping for R1 is

obtained as shown in Figure 2.1(a).
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Figure 3.1: Variation of the minimum inter-set distance with |CL(ai)|.

For a receiver Ri, when we compare the optimal mappings for two different index codes, the

code which has less |CL(ai)|will perform better as the minimum inter-set distance will be more

(note that for both the index codes we do optimal mapping). For example consider an ICP and

three possible index codes based on encoding matrices L1, L2 and L3 with N = 4. Assume that

the corresponding effective broadcast vector sets have cardinality as follows: |CL1(a1)| = 2,

|CL2(a1)| = 4 and |CL3(a1)| = 8. The minimum inter-set distance seen by R1 for index codes

based on L1, L2 and L3 is shown in Figure 3.1((a), (b) and (c) respectively). It is clear from

the figure that the code which has lesser |CL(ai)|will result in better (more) minimum inter-set

distance with the optimal mapping as explained above.

The mapping algorithm is explained below. Index codes are identified using the correspond-

ing encoding matrices.

1. The algorithm starts by considering LN , the set of all index codes of length N , for the

given ICP. For Ri define,

ηi , min
L∈LN

|CL(ai)|

2. Find η1. If η1 < 2N proceed to step 4 with i = 1.

3. If η1 = 2N , R1 sees the full 2N -PSK constellation as the effective broadcast signal set.

In such a case all mappings for all the index codes will give same PSK-ICG for R1 with
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d
(1)
IS,min same as the minimum Euclidean distance between any two points of 2N -PSK

constellation. In such a case, any mapping for any index code is optimum for R1. Then

consider the next highest priority receiver, R2 and continue until a receiver Ri for which

ηi < 2N is found. If ηi = 2N for all receivers, do an arbitrary mapping and exit. Now

consider the case where a receiver Ri for which ηi < 2N is found.

4. Let {L : |CL(ai)| = ηi} be {L1, L2, ..., LnL,i}. For each Lj , j ∈ {1, 2, ..., nL,i}, find optimal

mappings for Ri. Let there be nM,i optimal mappings for each index code and denote the

mappings corresponding to index code Lj asMj1,Mj2, ...,MjnM,i . Define O, the set of

ordered pairs as,

O , {(L1,M11), (L1,M12), ..., (L1,M1nM,i), (L2,M21), (L2,M22), ..., (L2,M2nM,i), ...,

(LnL,i ,MnL,i1), (LnL,i ,MnL,i2), ..., (LnL,i ,MnL,inM,i)}.

The setO contains all the (index code, mapping) pairs which give the maximum gain pos-

sible forRi. Now from this set, identify the pairs which give maximum gain forRi+1. For

this, choose the pairs which have maximum d
(i+1)
IS,min. Now consider these pairs as set O

and continue until the last receiver Rm is considered and the pairs which have maximum

d
(m)
IS,min is obtained. These are the (index code, mapping) pairs which are optimal.

3.2.2 Illustration of Mapping Algorithm

We illustrate the mapping algorithm given as Algorithm 1 with an example. Consider the ICP

given in Example 2.1. Assume that the decreasing order of priority is (R1, R2, R3, R4, R5). Let

N = 3 which is also the length of the optimal index code in this case. Since this is a single

unicast ICP, we can find all index codes by considering fitting matrices [7] of rank 3. There are

a total of 32 such matrices. For each of these 32 matrices, choose any 3 independent rows as a

basis for the row space. So we obtain 32 row spaces (which represents 32 index codes for the

given ICP). Of these, only six row spaces are distinct. From Corollary 1 in [12], the number

of index codes possible with the optimal length c for a single-unicast IC problem is given by
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µ
c!

∏c−1
i=0 (2

c − 2i) where µ is the number of distinct row spaces of c-ranked fitting matrices.

For the example under consideration, there are a total of 168 index codes (28 index codes

for each distinct row space). So, L3 contains 168 index codes. η1 = minL∈L3 |CL(a1)| = 4.

There are 84 index codes with η1 = 4 and 32 optimal mappings for R1, for each of these index

codes. The set O has 32 ∗ 84 = 2688 (index code, mapping) pairs which are optimal for R1.

One such (L,M) pair has the index code as given in Example 2.1 and mapping as given in

Figure 2.1(a). Consider R2. After all pairs in O are considered, the maximum value possible

for d(2)IS,min = 1.414 and there are 336 pairs which are optimal for R2. Now consider R3. All

336 pairs give the same d(3)IS,min = 1.414. For R4 and R5 all pairs have same minimum inter-

set distance and these 336 pairs give the (index code, mapping) pairs which are optimal for

the ICP considered. For illustration, four such (L,M) pairs are given below and the complete

list is given in Appendix A. Index code based on encoding matrix L is given in the form of

(y1, y2, y3). M is given as an ordered list of eight integers, representing the decimal equivalent

of the 3-tuple, which is mapped to (s1, s2, ..., s8) where (s1, s2, ..., s8) are 8-PSK signal points as

shown in Figure 2.1.

• ((x1, x2 + x3, x4 + x5), (0, 1, 2, 3, 4, 5, 6, 7))

• ((x1, x2 + x3, x4 + x5), (0, 1, 6, 7, 4, 5, 2, 3))

• ((x1, x2 + x3, x1 + x4 + x5), (0, 1, 2, 3, 5, 4, 7, 6))

• ((x1, x1 + x2 + x3, x4 + x5), (0, 1, 2, 3, 6, 7, 4, 5))

Claim 1: Algorithm 1 guarantees that for a given ICP, no other mapping of 2N -PSK constella-

tion for any index code of length N , can give PSK-ICG > g1 for R1.

Proof. The coding gain (PSK-ICG) achieved by a receiver is maximized when the minimum

inter-set distance is maximum. Consider an index code of length N . Using Algorithm 1, for

each of the effective broadcast signal sets of the highest priority receiver, the broadcast vectors
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Algorithm 1 Algorithm to find optimal (index code, mapping) pairs for a given ICP.

1: i← 1
2: Find ηi = minL∈LN

|CL(ai)|
3: if (ηi = 2N ) then
4: i← i+ 1
5: if (i > m) then
6: Do an arbitrary mapping and Exit.
7: else
8: Goto 2
9: else

• Consider the set of index codes {L1, L2, ..., LnL,i} = {L : |CL(ai)| = ηi}
• Find O, the set of all (index code, optimal mapping) pairs for Ri.

10: i← i+ 1
11: if (i > m) then
12: Output O and Exit.
13: else
14: Choose any (L,M) ∈ O
15: Oi ← {(L,M)}. Find δ = d

(i)
IS,min.

16: O ← O \ {(L,M)}
17: if (O = {}) then
18: O ← Oi
19: Goto 10
20: else
21: Consider any (L,M) ∈ O. Find d(i)IS,min.

22: if (d(i)IS,min > δ) then

23: Oi ← {(L,M)}, δ = d
(i)
IS,min. Goto 16.

24: else
25: if (d(i)IS,min = δ) then
26: Oi ← Oi ∪ {(L,M)}. Goto 16.
27: else
28: Goto 16.
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in 0-effective broadcast vector set are always mapped to adjacent points. Similarly, the broad-

cast vectors in 1-effective broadcast vector set are always mapped to adjacent points. These sets

of points are placed diametrically opposite to each other. Thus, the minimum inter-set distance

is maximized for the chosen index code and the mapping is optimal.

When we compare the message error performance of R1 with respect to different possible

index codes, the code which has less |CL(ai)| performs better. Index codes with minimum

|CL(ai)| are only considered for mapping in Algorithm 1. So, the pairs considered by Algorithm

1 has index codes with minimum |CL(ai)| and mappings which are optimal. No other mapping

of 2N -PSK constellation for any index code of length N , can give PSK-ICG > g1 for R1.

Claim 2: Algorithm 1 guarantees that, any mapping for any index code which gives the PSK-

ICG gi for receiver Ri, ∀i ∈ {1, 2, ..., j − 1} cannot give a PSK-ICG > gj for Rj , j ≤ m.

Proof. Algorithm 1 finds all (index code, mapping) pairs which are optimal for R1. In the next

step, among these pairs, which ever gives the maximum gain for R2 are chosen. So, given that

R1 has the same PSK-ICG, it is not possible to find another pair for which R2 performs better.

Same argument extends to other receivers as well.

Algorithm 1 can also be used to obtain optimal (index code, mapping) pairs for a given set of

index codes of length N . In this case the algorithm must be run by considering the given set of

index codes instead of all possible index codes of lengthN . This can be illustrated using the ICP

given in Example 2.2. Assume that the decreasing order of priority is (R1, R2, R3, R4, R5, R6).

Let N = 4 and assume that only one index code as given in Example 2.2 need to be considered

(the given set of index codes is a singleton set). Consider the highest priority receiver R1.

Obtain the effective broadcast vector sets seen by R1 for a1 ∈ F5
2 and partition these sets. The

effective broadcast vector sets and its partitions forR1 are given in Table 3.1. For any realization

of xI1 = a1 which is not listed in Table 3.1, the effective broadcast vector set is same as one of

the effective broadcast vector sets given in the table.
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Table 3.1: Effective broadcast vector sets and its partitions (seen by R1) for the IC in Example
2.2.

a1 CL(a1) CL0(a1) CL1(a1)
(00000) {(0000), (1000)} {(0000)} {(1000)}
(00001) {(0001), (1001)} {(0001)} {(1001)}
(00010) {(0010), (1010)} {(0010)} {(1010)}
(00011) {(0011), (1011)} {(0011)} {(1011)}
(01000) {(0100), (1100)} {(0100)} {(1100)}
(01001) {(0101), (1101)} {(0101)} {(1101)}
(01010) {(0110), (1110)} {(0110)} {(1110)}
(01011) {(0111), (1111)} {(0111)} {(1111)}

There are 645120 optimal mappings for R1. The set O has 645120 (index code, mapping)

pairs which are optimal for R1, with the index code being the same for all the pairs. Consider

R2. After all pairs in O are considered, the maximum value possible for d(2)IS,min = 1.847 and

there are 128 pairs which are optimal for R2. Now consider R3. There are 24 pairs which

are optimal with d
(3)
IS,min = 0.765. For R4 there are 16 optimal pairs with minimum inter-

set distance d(4)IS,min = 0.765. For R5 and R6 all these pairs give the same minimum inter-set

distance. These 16 pairs are the optimal mappings for the IC considered and is given below as

an ordered list of sixteen integers, representing the decimal equivalent of the 4-tuple, which is

mapped to (s1, s2, ..., s16) where (s1, s2, ..., s16) are 16-PSK signal points as shown in Figure 3.2.

1. (0, 1, 12, 15, 2, 3, 14, 5, 8, 9, 4, 7, 10, 11, 6, 13)

2. (0, 1, 12, 7, 10, 11, 6, 5, 8, 9, 4, 15, 2, 3, 14, 13)

3. (0, 1, 12, 3, 14, 15, 2, 5, 8, 9, 4, 11, 6, 7, 10, 13)

4. (0, 1, 12, 11, 6, 7, 10, 5, 8, 9, 4, 3, 14, 15, 2, 13)

5. (0, 13, 12, 1, 10, 7, 6, 11, 8, 5, 4, 9, 2, 15, 14, 3)

6. (0, 13, 12, 1, 6, 11, 10, 7, 8, 5, 4, 9, 14, 3, 2, 15)

7. (0, 13, 12, 1, 14, 3, 2, 15, 8, 5, 4, 9, 6, 11, 10, 7)

8. (0, 13, 12, 1, 2, 15, 14, 3, 8, 5, 4, 9, 10, 7, 6, 11)
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Figure 3.2: Two 16-PSK mappings for the IC in Example 2.2.

9. (0, 3, 15, 14, 2, 9, 4, 5, 8, 11, 6, 7, 10, 1, 12, 13)

10. (0, 11, 6, 7, 10, 9, 4, 5, 8, 3, 14, 15, 2, 1, 12, 13)

11. (0, 15, 2, 3, 14, 9, 4, 5, 8, 7, 10, 11, 6, 1, 12, 13)

12. (0, 7, 10, 11, 6, 9, 4, 5, 8, 15, 2, 3, 14, 1, 12, 13)

13. (0, 13, 14, 3, 2, 15, 4, 9, 8, 5, 6, 11, 10, 7, 12, 1)

14. (0, 13, 6, 11, 10, 7, 4, 9, 8, 5, 14, 3, 2, 15, 12, 1)

15. (0, 13, 2, 15, 14, 3, 4, 9, 8, 5, 10, 7, 6, 11, 12, 1)

16. (0, 13, 10, 7, 6, 11, 4, 9, 8, 5, 2, 15, 14, 3, 12, 1)

As an example, the third mapping is shown in Figure 3.2(a).
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3.3 An Upper Bound on the Coding Gain

Using Algorithm 1, the highest priority receiver always gets its maximum possible coding gain

(PSK-ICG). Thus the coding gain achieved by it is an upper bound on the coding gain that it

can get using any other mapping or index code, for any order of priority. Now, if we consider

another receiver as the highest priority receiver, we can use the algorithm to find the upper

bound on the coding gain that it can achieve. Proceeding in a similar way, we can find the

upper bound on the coding gain for each of the receivers, for the given ICP and a chosen 2N

PSK modulation.

Consider the ICP given in Example 2.2 and assume that the index code is also specified as

given in the example.

Table 3.2: Upper bound on the PSK-ICG that can be achieved by the receivers in Example 2.2.

Parameter R1 R2 R3 R4 R5 R6

d
(i)
IS,min 2 1.9615 1.6629 1.6629 0.3901 0.3901

PSK-ICG (in dB) 26.18 26.01 24.58 24.58 11.98 11.98

By considering each one of the receivers as the highest priority receiver, mapping is done as

per the proposed algorithm and the upper bound on the PSK-ICG that can be achieved by each

one of these receivers for the chosen index code is given in Table 3.2.

3.4 Simulation Results

3.4.1 Comparison of Mapping Algorithms

We have considered the ICP given in Example 2.1 over a SISO AWGN channel and used Al-

gorithm 1 to obtain all optimal (index code, mapping) pairs. One such pair, (L1,M1) has the

index code as given in Example 2.1 and mapping as given in Figure 2.1(a). We compared this

optimal mapping with another mappingM2 (shown in Figure 2.1(d)) which is not optimal for

the same index code, L1. The pair (L1,M2) /∈ O, the output set obtained from the execution of
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the algorithm. The second mapping (M2) used an algorithm based on maximizing the mini-

mum Euclidean distances [14]. By simulation, we have obtained the message error probability

of the receivers for the two different mappings. Simulation results are given in Figure 3.3.
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Figure 3.3: Simulation results comparing the performance of receivers for two different map-
pings for the ICP in Example 2.1

The performance of receivers R1, R2 and R3 is significantly better with M1 than with M2

at high SNR. The minimum inter-set distances are more for M1 (Figure2.1(a)) than for M2

(Figure2.1(d)). For receivers R4 and R5, the minimum inter-set distances are same for both the

mappings.

We have carried out simulation based studies to compare the performance of the receivers

for the ICP and the IC given in Example 2.2 for two different mappings as given in Figure 3.2.

The mapping (M3) given in Figure 3.2(a) used Algorithm 1 and the mapping (M4) given in
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Figure 3.2(b) used the algorithm based on maximizing the minimum Euclidean distances [14].

Simulation results are given in Figure 3.4.
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Figure 3.4: Simulation results comparing the performance of receivers for two different map-
pings for the ICP in Example 2.2

For R1, R3, R4, R5 and R6, the minimum inter-set distances and hence the performances are

the same for both the mappings. But the performance of receiver R2 is significantly better with

M3 than withM4 at high SNR.

The simulation results indicate the effectiveness of the algorithm based on minimum inter-set

distances (Algorithm 1) for mapping the broadcast vectors to PSK signal points.

It should be noted that Algorithm 1 does not guarantee that all the receivers will perform

better or as good as that with any other algorithm. It is possible that, a mapping based on

some algorithm (say, Algorithm 2) gives a better performance to a receiver Rj than that with
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Algorithm 1. But then there will be a receiver Ri which performs better with Algorithm 1 than

with Algorithm 2, where Ri is a higher priority receiver than Rj . In other words, Algorithm

1 attempts to maximize the gain achieved by the receivers by considering the receivers in the

given order of priority. This is illustrated in Example 3.1.

Example 3.1. Consider the following ICP with n = m = 5 and Wi = xi,∀i ∈ {1, 2, ..., 5}.

The side information available with the receivers is as follows: K1 = {x2, x3, x4, x5}, K2 =

{x1, x4, x5}, K3 = {x1, x4}, K4 = {x2}, K5 = {}.

For this ICP a scalar linear index code of length N = 4 (not optimal), is specified as y1 =

x1 + x2, y2 = x3, y3 = x4, y4 = x5. Assume that the decreasing order of priority is given as

(R1, R2, R3, R4, R5).

Using Algorithm 1, optimal mappings for the specified IC is obtained, of which one mapping

(M5) is given in Figure 3.5(a). Another mappingM6, is found by using the algorithm based

on maximizing the minimum Euclidean distances [14] and is given in Figure 3.5(b). Simulation

results comparing the performance of the receivers for these two mappings are given in Figure

3.6.

It is clear from Figure 3.6 that, R2 performs better withM5 than withM6. But R3, which is of

lower priority than R2, has better performance withM6.

3.4.2 High SNR Approximation of ML Decoder

Simulations were carried out to verify the high SNR approximation of ML decoder. For the ICP

and the index code given in Example 2.1, we first considered the mappingM1 (Figure 2.1(a)),

which maximizes the minimum inter-set distance of the receivers. We carried out ML decoding

and minimum Euclidean distance decoding for the SISO-AWGN-ICPM. The simulation results

are given in Figure 3.7.

The simulation results given in Figure 3.8 compares the performance of ML decoding with

minimum Euclidean distance decoding for mappingM2 (Figure 2.1(d)).
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Figure 3.5: Two 16-PSK mappings for the IC in Example 3.1.
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Figure 3.8: Simulation results comparing the performance of ML decoder (ML) and minimum
Euclidean distance decoder (MED) with mappingM2 for SISO-AWGN-ICPM.
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With mapping M1, the performance of ML decoder and minimum Euclidean distance de-

coder is very similar for any receiver Ri. In the case of mapping M2, ML decoder performs

slightly better than minimum Euclidean distance decoder for receivers R4 and R5 at low SNR.

But at high SNR, the performance of both the decoders is the same for any receiver.

3.4.3 Upper Bound on the Coding Gain

For the ICP and the IC in Example 2.2, we have found the upper bound on the PSK-ICG that

can be achieved by the receivers as given in Table 3.2.
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Figure 3.9: Message error performance with mappings which achieve the upper bound on the
PSK-ICG for each one of the receivers, and the mapping given in Figure 3.2(a).

With the mappings which achieve the upper bound on PSK-ICG for each of the receivers, the

message error performance is studied using simulations (with MED) and is given in Figure 3.9.

The message error performance using the mapping given in Figure 3.2(a) is also shown.



Chapter 4

MIMO Index Coded Modulation

1 In this chapter we consider noisy index coding problem over a Rayleigh fading channel. We

propose a MIMO scheme which provides diversity gain and coding gain to the receivers. We

derive a decision rule for the maximum likelihood decoder for the receivers when Alamouti

code is employed but the derivation is extendable for any space-time code obtained from or-

thogonal designs [18]. The diversity gain and the coding gain of the proposed scheme are also

discussed.

4.1 Proposed MIMO Scheme

We explain MIMO scheme using 2× 1 MIMO Rayleigh fading channel and the Alamouti code.

The sender has two transmit antennas and each of the receivers has one receive antenna. In

each symbol time, the sender has n messages (x = (x1x2...xn)) to be transmitted to the re-

ceivers. Each of the receivers wants one message and knows some messages. Let x[1] and x[2]

be the message vectors corresponding to symbol time t = 1 and t = 2. Let y[1] and y[2] de-

note the corresponding broadcast vectors, and, s[1] = M(x[1]L) and s[2] = M(x[2]L) be the

corresponding 2N -PSK signal points (whereM is the map from FN2 to the signal set S). After

1A part of the content of this chapter appears in:
Divya U. Sudhakaran and B. Sundar Rajan, "Alamouti-index-coded PSK modulation for priority ordered receivers,"
Communicated to IEEE GLOBECOM 2017, 04-08 December 2017, Singapore.
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mapping the broadcast vectors to 2N -PSK signal points the sender employs 2 × 2 Alamouti

code as follows to obtain transmit diversity.

s[1] −s∗[2]
s[2] s∗[1]

 .
Consider a receiver, Ri. The channel is assumed to be quasi static and the channel coefficients

h1 (between the first transmit antenna and the receive antenna) and h2 (between the second

transmit antenna and the receive antenna) are independent and identically distributed (i.i.d)

as CN (0, 1). Assume that the perfect channel state information is available at the receiver. The

signal received at t = 1 and t = 2 can be written as

r[1] =h1s[1] + h2s[2] + w[1]

r[2] =− h1s∗[2] + h2s
∗[1] + w[2]

(4.1)

respectively, where the additive noises,w[1] andw[1], are i.i.d CN (0, N0) random variables. The

average energy spent by the sender in each symbol time is unity and the total energy spent for

each message vector (across two symbol times) is also unity.

4.2 Maximum Likelihood Decoder

In this section we derive a decision rule for the maximum likelihood decoder, for the receiver

Ri. From (4.1), we obtain,

h∗1r[1] + h2r
∗[2] =(|h1|2 + |h2|2)s[1] + h∗1w[1] + h2w

∗[2] (4.2)

h∗2r[1]− h1r∗[2] =(|h1|2 + |h2|2)s[2] + h∗2w[1]− h1w∗[2] (4.3)

Equations (4.2) and (4.3) are of the form

r = (|h1|2 + |h2|2)M(xL) + w
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where w is distributed as CN (0, N0(|h1|2 + |h2|2)). Consider the decoding of messages at t = 1

(corresponding to message vector x[1]). Then, r = h∗1r[1] + h2r
∗[2] andM(xL) = s[1]. The re-

ceiver Ri wants xf(i). The conditional probability density of r given thatM(xL) is transmitted

and the channel coefficients are known to the receiver, is

p(r|M(xL), h1, h2) =
exp

(
− |r−(|h1|

2+|h2|2)M(xL)|2
N0(|h1|2+|h2|2)

)
(πN0(|h1|2 + |h2|2))

. (4.4)

Following an approach similar to the one used in the case of SISO-AWGN-ICPM (Section 2.2),

we obtain the ML decision rule as,

∑
k:sk∈SL0(ai)

(
exp

(
−|r − (|h1|2 + |h2|2)sk|2

N0(|h1|2 + |h2|2)

))
1
≶
0

∑
k:sk∈SL1(ai)

(
exp

(
−|r − (|h1|2 + |h2|2)sk|2

N0(|h1|2 + |h2|2)

))
.

(4.5)

The ML decoder decision is based on the Euclidean distance of all signal points scaled by

(|h1|2 + |h2|2), in 0-effective broadcast signal set to the received vector r relative to that of the

scaled signal points in 1-effective broadcast signal set. To reduce the message error probability,

the minimum inter-set distance must be maximised. In the MIMO scheme also, the ML decod-

ing can be approximated by minimum Euclidean distance decoding at high SNR (simulation

results are provided in Section 4.4.2, Figure 4.3 and Figure 4.4).

4.3 Diversity Gain and Coding Gain

In this section, we derive an upper bound on the pairwise error probability for the proposed

MIMO scheme. We make use of the approach in [19] for this derivation.

To find the pairwise error probability we consider the minimum Euclidean distance decoding

which is a high SNR approximation of the ML decoder. Consider a receiver Ri and assume

that its required message, xf(i) = 0. The decoder will find the signal point in SL(ai) which is

closest to r (after scaling). If this signal point belongs to SL0(ai) the decoding is error free (as all

signal points in SL0(ai) will give xf(i) = 0). So when a signal point sk ∈ SL0(ai) is transmitted
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(that means xf(i) = 0), the decoder makes an error if and only if it decodes to a signal point

sk′ ∈ SL1(ai). In such a case,

|r − (|h1|2 + |h2|2)sk′ |2 < |r − (|h1|2 + |h2|2)sk|2. (4.6)

But when ever, sk ∈ SL0(ai) and sk′ ∈ SL1(ai) satisfies (4.6), an error may not occur, as there

can be a signal point sk′′ ∈ SL0(ai) which satisfies,

|r − (|h1|2 + |h2|2)sk′′ |2 < |r − (|h1|2 + |h2|2)sk′ |2. (4.7)

We can write an upper bound on the pairwise error probability when sk ∈ SL0(ai) is transmit-

ted and the decoder decodes to sk′ ∈ SL1(ai) as,

Pr{sk → sk′ |h1, h2} ≤ Q

(
|(|h1|2 + |h2|2)(sk − sk′)|
2
√
N0(|h1|2 + |h2|2)/2

)
(4.8)

Assuming normalized signal power, we have SNR = 1/N0 and (4.8) implies,

Pr{sk → sk′ |h1, h2} ≤ Q

(√
SNR(|h1|2 + |h2|2)|(sk − sk′)|2

2

)
. (4.9)

Since Q(x) is upper bounded by exp(−x2/2), we have,

Pr{sk → sk′ |h1, h2} ≤ exp

(
−SNR(|h1|2 + |h2|2)|(sk − sk′)|2

4

)
. (4.10)

Averaging (4.10) with respect to h1 and h2 we get,

Pr{sk → sk′} ≤ Eh1,h2
[
exp

(
−SNR(|h1|2 + |h2|2)|(sk − sk′)|2

4

)]
.

Under the independent Rayleigh fading assumption and making use of the fact that the mo-

ment generating function for a unit mean exponential random variableX is E(esX) = 1/(1−s),
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the upper bound can be obtained as,

Pr{sk → sk′} ≤

(
1

1 +
SNR|sk−sk′ |2

4

)2

.

So, we have the upper bound on the pairwise error probability as,

Pr{sk → sk′} ≤
16

SNR2|sk − sk′ |4
, (4.11)

where sk ∈ SL0(ai) and sk′ ∈ SL1(ai). From (4.11) it is clear that the proposed scheme gives a

diversity of two. It is interesting that, unlike the classical MIMO case, the coding gain of the

MIMO scheme for noisy index coding problem over fading channel is decided by the inter-set

distance. The mapping of broadcast vectors, FN2 to the signal set S is very crucial in decid-

ing the coding gain. The mapping must maximize the minimum inter-set distance to obtain

best coding gain. Among the mappings which has the same minimum inter-set distance, the

one which has less multiplicity (of the pairs which result in the minimum inter-set distance)

will perform better. The Algorithm 1 can be used to obtain a mapping which maximizes the

minimum inter-set distance, for prioritized receivers.

4.4 Simulation Results

4.4.1 Diversity Gain and Coding Gain

Similar to the case of SISO-AWGN-ICPM, we have considered the ICP and the index code given

in Example 2.1 for the proposed MIMO scheme in the case of prioritized receivers. Assume

that the decreasing order of priority is (R1, R2, R3, R4, R5). For N = 3, we have used the

mappingM1 (Figure 2.1(a)), which maximizes the minimum inter-set distance of the receivers,

considered in the given order of priority.

We studied the message error performance of receivers for the proposed MIMO scheme with

the 2 × 2 Alamouti code by simulation and compared it with that of a SISO scheme (for the
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Figure 4.1: Simulation results comparing the performance of proposed MIMO scheme with a
SISO scheme.

same index code, mapping and over Rayleigh fading channel), where the sender has only one

transmit antenna. ML decoding was performed in both the cases. The simulation results are

given in Figure 4.1.

The variation in the performance of the receivers in the MIMO scheme is due to the differ-

ence in the inter-set distance distribution of the receivers. When we focus on the performance

of a receiver Ri, it is very clear that the proposed MIMO scheme gives a diversity gain of 2

compared to the diversity gain of 1 for the SISO scheme.

Let us move on to consider the coding gain. For the same ICP and index code, the perfor-

mance of receivers for the proposed MIMO scheme with mappingM1 is compared with that

of the mappingM2 (Figure 2.1(d)). The simulation results are given in Figure 4.2. In both the
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Figure 4.2: Simulation results comparing the performance of proposed MIMO scheme for two
different mappings.

cases we have used ML decoding.

As in the case of SISO AWGN channel, the performance of receivers R1, R2 and R3 is sig-

nificantly better withM1 than withM2 at high SNR. For receivers R4 and R5, the minimum

inter-set distances are same for both the mappings. But the multiplicity is more forM1 than

forM2 and this resulted in the better performance of the receivers, withM2 than withM1. In

the case of SISO AWGN channel, this difference is hardly noticeable as the probability of error

has an inverse exponential relation with inter-set distance and the effect of multiplicity is not

as significant as in the case of the fading channel (where the probability of error has inverse

polynomial relation with inter-set distance).

The simulation results validate our claim that the proposed MIMO scheme gives a diversity
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gain of two and the coding gain is controlled by the minimum inter-set distance distribution.

4.4.2 High SNR Approximation of ML Decoder

As in the case of SISO-AWGN-ICPM, simulations were carried out to verify the high SNR

approximation of ML decoder. For the ICP and the index code given in Example 2.1, we first

considered the mappingM1, which maximizes the minimum inter-set distance of the receivers.

We carried out ML decoding and minimum Euclidean distance decoding for the proposed

MIMO scheme. The simulation results are given in Figure 4.3.

We repeated the simulation with mapping M2, which maximizes the minimum Euclidean

distance, and compared the performance of ML decoding with minimum Euclidean distance

decoding. The simulation results are given in Figure 4.4.

Similar to the case of the case of SISO-AWGN-ICPM, with mapping M1, the performance

of ML decoder and minimum Euclidean distance decoder is very similar for any receiver Ri.

In the case of mapping M2, ML decoder performs slightly better than minimum Euclidean

distance decoder for receiversR4 andR5 at low SNR. But at high SNR, the performance of both

the decoders is the same for any receiver.
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Figure 4.3: Simulation results comparing the performance of ML decoder (ML) and minimum
Euclidean distance decoder (MED) with mappingM1 for the proposed MIMO scheme.
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Chapter 5

Optimal Index Codes for ICPM for

Prioritized Receivers

Consider an ICP (X ,R), over a SISO AWGN broadcast channel with n messages and m re-

ceivers where each receiver demands one message. Let No be the length of the optimal IC for

the ICP when the broadcast channel is noiseless. So far we have discussed the optimal mapping

for a given ICP, chosen N and a defined order of priority among the receivers. In this chap-

ter, we address the case where N is varied from No to n, to find the length of optimal index

codes for the ICP when ICPM is employed over an AWGN broadcast channel. For this optimal

length, we can use the algorithm proposed in Chapter 3 (Algorithm 1) to obtain optimal (index

code, mapping) pairs across all possible mappings for all possible index codes (of any length).

For comparing the performance of a receiver with varying constellation size, the average

energy of the signal points is assumed to be the same (unity) irrespective of the constellation

size. Consider N such that No < N ≤ n. Since the index code length is a variable and the

PSK-ICG depends on the index code length, let us denote the PSK-ICG obtained by the highest

priority receiver R1, when an optimal (index code, mapping) pair and 2N PSK modulation is

used, by g1,N in this chapter. As illustrated in Example 5.1, g1,N can be greater than g1,No and

this implies that in the case of noisy index coding with PSK modulation, an index code of length

N 6= No used along with 2N PSK constellation may perform better than an index code of length

46
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No used along with 2No PSK constellation for the given order of priority among the receivers.

Example 5.1. Consider the ICP given in Example 2.1. Let C1 be an optimal index code (for a

noiseless channel) of length N = No = 3 with y1 = x1+x4+x5, y2 = x1+x2+x3+x4+x5 and

y3 = x4+x5. An optimal mapping corresponding to this index code obtained using Algorithm

1 is shown in Figure 5.1(a). Let C2 be a non-optimal index code (over a noiseless channel) of

length N = 4 with y1 = x1, y2 = x2, y3 = x3 and y4 = x4 + x5. For C2 an optimal mapping for

R1 is shown in Figure 5.1(b). It is clear from the figure that d(1)IS,min with N = 4 is more than

that with N = No = 3. So for the given order of priority, choosing non-optimal index codes

(of noiseless ICP) along with optimal mappings for appropriate PSK constellations, gives more

PSK-ICG. The improved message error performance of R1 is due to the following reasons:

• The size of the effective broadcast vector set remains the same even though the total

number of broadcast vectors has increased.

• Since the constellation size has increased, the broadcast vectors in the 0-effective broad-

cast vector set are mapped to signal points which are closer. Similarly, the broadcast

vectors in the 1-effective broadcast vector set are also mapped to signal points which are

closer and diametrically opposite to that of the broadcast vectors in the 0-effective broad-

cast vector set. This implies that the minimum inter-set distance has increased.

However, the performance of the lower priority receivers can be adversely affected when

the index code length increases. For example, the PSK-ICG obtained by R4 and R5 which has

d
(4)
IS,min = d

(5)
IS,min = dmin,N decreases as N increases from 3 to 4.

It is worth noting that the improvement in the performance of the highest priority receiver

can be obtained only if we use the algorithm which maximises the minimum inter-set distance.

If we employ an algorithm which maximises the minimum Euclidean distances of the effective

signal sets [14], the performance of R1 will be the same for C1 and C2, and the PSK-ICG will be

the same, but less than that obtained using Algorithm 1 for C1 or C2.
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Figure 5.1: Optimal mappings for R1 with three different constellation sizes as in Example 5.1

Now consider the IC, C3 with N = 5 where the index coded bits are same as the message bits.

An optimal mapping for R1 is shown in Figure 5.1(c). N has increased from 4 to 5 and the size

of the effective signal set seen by R1 has increased from 4 to 8. In this case, even though the

constellation size has increased, d(1)IS,min is less than that with N = 4 but higher than that with

N = 3.

So for this example, executing Algorithm 1 with N = 4 will give optimal (index code, map-

ping) pairs across all possible constellation sizes, 2N with 3 ≤ N ≤ 5. In other words, for this

ICP, an optimal (index code, mapping) pair obtained from Algorithm 1 with N = 4, will give
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the best message error performance for the receivers, among all possible index codes of any

length and any mapping for PSK modulation, with the given order of priority.

It is clear that when ICPM is used, an optimal index code for a noiseless channel need not

provide the optimum performance for the prioritized receivers over a noisy channel. In the

subsequent part of this chapter, we obtain an expression for the length of an optimal index

code for ICPM with prioritized receivers, provided |K1| < n− 1.

Definition 5.1. An index code based on an encoding matrix Lopt is said to be an optimal index

code for the ICP with prioritized receivers when ICPM is used over a SISO AWGN broadcast channel,

if there exists a mappingMopt such that the pair, (Lopt,Mopt) gives the best PSK-ICG for the

prioritized receivers among all possible pairs (L,M), where L corresponds to an index code of

length N , No ≤ N ≤ n andM is a mapping from FN2 to 2N PSK constellation. Let the length of

the index code based on Lopt be denoted as Nopt.

It must be noted that all index codes of length Nopt need not be optimal index codes for the

ICP with prioritized receivers when ICPM is employed.

For the given ICP (X ,R) withRi demanding xf(i) and the decreasing order of priority among

the receivers as (R1, R2, ..., Rm), we can always obtain a reduced ICP (Xred,Rred) as follows:

• Remove all receivers which demand messages in K1. That is,Rred = {Rj : xf(j) /∈ K1}.

• Remove all messages that are present as side information of R1 from the problem. So

we have, Xred = X \ K1. Let the receivers in Rred be specified as (Wi,red,Ki,red) where

Wi,red =Wi and Ki,red = Ki \ K1 ∀i such that Ri ∈ Rred.

The length of the optimal index code for the reduced ICP (Xred,Rred) over a noiseless broadcast

channel is denoted as No,red.

Theorem 5.1. The length of an optimal index code for an ICP with prioritized receivers when

index coded PSK modulation is employed over a SISO AWGN broadcast channel is given by

Nopt = |K1|+No,red (5.1)
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provided |K1| < n− 1.

Proof. Let the number of independent binary linear combinations of the encoded bits which

are known to receiver R1 be k. Then the size of the effective broadcast vector set seen by R1 is

2(N−k). For clarity, let us denote the minimum inter-set distance for receiverR1 by d(1)IS,min(N, k)

for a chosen index code of length N .

Claim 3: In an optimal index code for an ICP with prioritized receivers using ICPM over an

AWGN broadcast channel, k = |K1|, provided |K1| < n− 1.

Proof. We prove the claim by contradiction. Suppose Nopt = N ′ and k = k′ < |K1|. Assuming

the signal points to be of unit energy we have,

(d
(1)
IS,min(N

′, k′))2 = 2

(
1− cos

(
π − 2π

2N ′

(
2(N

′−k′−1) − 1
)))

. (5.2)

But in this case, we can always find another index code of length N ′′ = N ′ + (|K1| − k′) such

that k = k′′ = |K1|.

(d
(1)
IS,min(N

′′, k′′))2 = 2

(
1− cos

(
π − 2π

2N ′′

(
2(N

′−k′−1) − 1
)))

. (5.3)

From (5.2) and (5.3),

(d
(1)
IS,min(N

′′, k′′))2 > (d
(1)
IS,min(N

′, k′))2 (5.4)

provided k′ 6= N ′ − 1. It is easy to verify that k′ = N ′ − 1 if and only if |K1| = n − 1. For R1

to obtain maximum PSK-ICG, the minimum inter-set distance must be maximised. From (5.4)

and the fact that k ≤ |K1| the claim follows.

Let the length of an optimal index code based on Lopt for a noisy ICP as being discussed

be Nopt. Since k = |K1| for the IC based on Lopt, we can always find another IC based on

L′opt of length Nopt such that k encoded bits are the messages available as side information

of R1. It suffices to find the length of the IC based on L′opt. The k encoded bits (messages

available as side information of R1) satisfies the requirements of all the receivers (and only
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those receivers) which demand messages belonging to K1. The remaining encoded bits must

satisfy the demands of all other receivers. Consider two index codes with lengths N ′ and N ′′

such that k = k′ = k′′ = |K1| and N ′′ > N ′. Then,

(d
(1)
IS,min(N

′, k′))2 =2

(
1− cos

(
π − 2π

2N ′

(
2(N

′−k′−1) − 1
)))

=2

(
1− cos

(
π − 2π

2(k+1)
+

2π

2N ′

))
,

(d
(1)
IS,min(N

′′, k′′))2 =2

(
1− cos

(
π − 2π

2N ′′

(
2(N

′′−k′′−1) − 1
)))

=2

(
1− cos

(
π − 2π

2(k+1)
+

2π

2N ′′

))
and

(d
(1)
IS,min(N

′′, k′′))2 < (d
(1)
IS,min(N

′, k′))2. (5.5)

From (5.5), it is clear that to maximise the minimum inter-set distance for R1, N must be as

small as possible. So for an optimal index code for a noisy ICP as being discussed, k = |K1|

and N must be as small as possible. The k = |K1| encoded bits can meet the demands of all the

receivers and only those receivers which want messages belonging to K1. To obtain as small

an N as possible, we consider the reduced ICP (Xred,Rred) (as already defined in this chapter)

over a noiseless broadcast channel. The encoded bits corresponding to, an optimal index code

of (Xred,Rred) (No,red bits), and K1 (|K1| bits), gives an optimal index code for an ICP with

prioritized receivers using index coded PSK modulation over a noisy broadcast channel.

5.1 Simulation Results

Consider the ICP given in Example 2.1 over a SISO AWGN channel. The reduced ICP (Xred,Rred)

has Rred = {R1, R4, R5}, Xred = {x1, x4, x5}, Wi = xi, i ∈ {1, 4, 5}, K1 = {}, K4 = {x5} and

K5 = {x4}. In this case No,red = 2 and Nopt = |K1| + 2 = 4. We have simulated the message

error performance of the receivers for three constellation sizes (No < N ≤ n) using the index

codes C1, C2 and C3 as given in Example 5.1 and mappings as shown in Figure 5.1(a) (N = 3),
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Figure 5.1(b) (N = 4) and Figure 5.1(c) (N = 5). The simulation results as given in Figure 5.2

and Figure 5.3, show that the message error performance of R1 is optimum when N = 4. Any

other value of N will result in a lower PSK-ICG for R1. Since we are considering prioritized

receivers, we can conclude that N = 4 is the optimum length for this ICP over AWGN channel.

However, it should be noted that a slight improvement in performance of R1 is achieved at

the cost of considerable degradation of performance of low priority receivers (like R5 and R3).
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Figure 5.2: Performance comparison of receivers with three different constellation sizes as in
Example 5.1
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Figure 5.3: Performance comparison of R1 with three different constellation sizes at high SNR
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Conclusion

6.1 Summary of Results

We have shown that, when ICPM is used over a SISO AWGN channel, for a given index code

and mapping, the performance of a receiver at high SNR is determined primarily by the mini-

mum inter-set distance. A decision rule for the ML decoder is obtained for SISO-AWGN-ICPM.

In the case of ICP with prioritized receivers, we have considered the problem of finding opti-

mal (index code, mapping) pairs across all possible mappings for all possible index codes of

a chosen length. This problem was not addressed so far in literature. For any given ICP with

|K1| < n − 1 over an AWGN channel, optimal length of an index code can be found using the

proposed theorem (Theorem 5.1) and then the proposed algorithm can be executed to obtain

optimal (index code, mapping) pairs across all possible mappings for all possible index codes,

each of which gives the best PSK-ICG for the receivers, for any given order of priority.

Finding all index codes of a chosen length (greater than or equal to the optimal length) for a

given ICP is in general NP hard. If it is too complex to find all the index codes, the algorithm

can be executed by considering a chosen set of index codes. But the complexity of the proposed

algorithm increases exponentially with the length of the index code.

Then we considered noisy index coding problem, where the receivers demand a subset of

messages, over Rayleigh fading channel. We have proposed a MIMO scheme and studied the

54
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performance over a 2× 1 MIMO channel, which was not considered so far in the literature. We

have also shown that in the case of a noisy index coding problem the mapping of broadcast

vectors to constellation points is very crucial and the coding gain is decided by the inter-set

distance distribution.

6.2 Scope for Future Work

Some interesting directions for future research are as follows.

• We have considered ICP where each receiver demands only one message. If a receiver

wants |Wi| messages, it is considered as |Wi| equivalent receivers each demanding one

message and having the same side information. An interesting future work would be to

study whether an improvement in the message error performance can be obtained if the

receivers demanding more than one message are considered without splitting.

• The proposed algorithm to find the set of optimal (index code, mapping) pairs is based on

minimum inter-set distance. It may be useful to study whether the receiver performance

can be improved by considering the inter-set distance distribution, especially at low SNR.

• It would be interesting to compare the performance of index coded PSK modulation with

index coded QAM modulation or other similar schemes, when an algorithm based on

inter-set distances is employed.

• Another open problem is to consider arbitrary number of transmit and receive antennas

with space-time codes that are not obtained from orthogonal designs.



Appendix A

Optimal (index code, mapping) pairs (C,M), for Example 2.1 is given in Table A.1. C is given in

the form of (y1, y2, y3).M is given as an ordered list of eight integers, representing the decimal

equivalent of the 3-tuple, in the order of (s1, s2, ...s8) where (s1, s2, ...s8) are signal points as

shown in Figure 2.1.

Sl. No. C M

1 (x1, x2 + x3, x4 + x5) (0, 1, 2, 3, 4, 5, 6, 7)

2 (x1, x2 + x3, x4 + x5) (0, 1, 6, 7, 4, 5, 2, 3)

3 (x1, x2 + x3, x4 + x5) (0, 3, 2, 5, 4, 7, 6, 1)

4 (x1, x2 + x3, x4 + x5) (0, 7, 6, 5, 4, 3, 2, 1)

5 (x1, x2 + x3, x2 + x3 + x4 + x5) (0, 1, 3, 2, 4, 5, 7, 6)

6 (x1, x2 + x3, x2 + x3 + x4 + x5) (0, 1, 7, 6, 4, 5, 3, 2)

7 (x1, x2 + x3, x2 + x3 + x4 + x5) (0, 2, 3, 5, 4, 6, 7, 1)

8 (x1, x2 + x3, x2 + x3 + x4 + x5) (0, 6, 7, 5, 4, 2, 3, 1)

9 (x1, x2 + x3, x1 + x4 + x5) (0, 1, 2, 3, 5, 4, 7, 6)

10 (x1, x2 + x3, x1 + x4 + x5) (0, 1, 7, 6, 5, 4, 2, 3)

11 (x1, x2 + x3, x1 + x4 + x5) (0, 3, 2, 4, 5, 6, 7, 1)

12 (x1, x2 + x3, x1 + x4 + x5) (0, 6, 7, 4, 5, 3, 2, 1)

13 (x1, x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 1, 3, 2, 5, 4, 6, 7)

14 (x1, x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 1, 6, 7, 5, 4, 3, 2)

15 (x1, x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 2, 3, 4, 5, 7, 6, 1)

16 (x1, x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 7, 6, 4, 5, 2, 3, 1)

17 (x1, x1 + x2 + x3, x4 + x5) (0, 1, 2, 3, 6, 7, 4, 5)
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18 (x1, x1 + x2 + x3, x4 + x5) (0, 1, 4, 5, 6, 7, 2, 3)

19 (x1, x1 + x2 + x3, x4 + x5) (0, 3, 2, 7, 6, 5, 4, 1)

20 (x1, x1 + x2 + x3, x4 + x5) (0, 5, 4, 7, 6, 3, 2, 1)

21 (x1, x2 + x3 + x4 + x5, x4 + x5) (0, 3, 2, 1, 4, 7, 6, 5)

22 (x1, x2 + x3 + x4 + x5, x4 + x5) (0, 3, 6, 5, 4, 7, 2, 1)

23 (x1, x2 + x3 + x4 + x5, x4 + x5) (0, 1, 2, 7, 4, 5, 6, 3)

24 (x1, x2 + x3 + x4 + x5, x4 + x5) (0, 5, 6, 7, 4, 1, 2, 3)

25 (x1, x1 + x2 + x3 + x4 + x5, x4 + x5) (0, 3, 2, 1, 6, 5, 4, 7)

26 (x1, x1 + x2 + x3 + x4 + x5, x4 + x5) (0, 3, 4, 7, 6, 5, 2, 1)

27 (x1, x1 + x2 + x3 + x4 + x5, x4 + x5) (0, 1, 2, 5, 6, 7, 4, 3)

28 (x1, x1 + x2 + x3 + x4 + x5, x4 + x5) (0, 7, 4, 5, 6, 1, 2, 3)

29 (x1, x1 + x2 + x3, x2 + x3 + x4 + x5) (0, 1, 3, 2, 6, 7, 5, 4)

30 (x1, x1 + x2 + x3, x2 + x3 + x4 + x5) (0, 1, 5, 4, 6, 7, 3, 2)

31 (x1, x1 + x2 + x3, x2 + x3 + x4 + x5) (0, 2, 3, 7, 6, 4, 5, 1)

32 (x1, x1 + x2 + x3, x2 + x3 + x4 + x5) (0, 4, 5, 7, 6, 2, 3, 1)

33 (x1, x1 + x2 + x3, x1 + x4 + x5) (0, 1, 2, 3, 7, 6, 5, 4)

34 (x1, x1 + x2 + x3, x1 + x4 + x5) (0, 1, 5, 4, 7, 6, 2, 3)

35 (x1, x1 + x2 + x3, x1 + x4 + x5) (0, 3, 2, 6, 7, 4, 5, 1)

36 (x1, x1 + x2 + x3, x1 + x4 + x5) (0, 4, 5, 6, 7, 3, 2, 1)

37 (x1, x1 + x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 1, 3, 2, 7, 6, 4, 5)

38 (x1, x1 + x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 1, 4, 5, 7, 6, 3, 2)

39 (x1, x1 + x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 2, 3, 6, 7, 5, 4, 1)

40 (x1, x1 + x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 5, 4, 6, 7, 2, 3, 1)

41 (x1, x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 3, 2, 1, 5, 6, 7, 4)

42 (x1, x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 3, 7, 4, 5, 6, 2, 1)

43 (x1, x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 1, 2, 6, 5, 4, 7, 3)

44 (x1, x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 4, 7, 6, 5, 1, 2, 3)

45 (x1, x1 + x4 + x5, x1 + x2 + x3 + x4 + x5) (0, 3, 1, 2, 7, 4, 6, 5)

46 (x1, x1 + x4 + x5, x1 + x2 + x3 + x4 + x5) (0, 3, 6, 5, 7, 4, 1, 2)

47 (x1, x1 + x4 + x5, x1 + x2 + x3 + x4 + x5) (0, 2, 1, 4, 7, 5, 6, 3)

48 (x1, x1 + x4 + x5, x1 + x2 + x3 + x4 + x5) (0, 5, 6, 4, 7, 2, 1, 3)
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49 (x1 + x2 + x3, x2 + x3, x4 + x5) (0, 1, 2, 3, 4, 5, 6, 7)

50 (x1 + x2 + x3, x2 + x3, x4 + x5) (0, 1, 6, 7, 4, 5, 2, 3)

51 (x1 + x2 + x3, x2 + x3, x4 + x5) (0, 3, 2, 5, 4, 7, 6, 1)

52 (x1 + x2 + x3, x2 + x3, x4 + x5) (0, 7, 6, 5, 4, 3, 2, 1)

53 (x1 + x4 + x5, x2 + x3, x4 + x5) (0, 5, 2, 7, 4, 1, 6, 3)

54 (x1 + x4 + x5, x2 + x3, x4 + x5) (0, 5, 6, 3, 4, 1, 2, 7)

55 (x1 + x4 + x5, x2 + x3, x4 + x5) (0, 7, 2, 1, 4, 3, 6, 5)

56 (x1 + x4 + x5, x2 + x3, x4 + x5) (0, 3, 6, 1, 4, 7, 2, 5)

57 (x1 + x2 + x3 + x4 + x5, x2 + x3, x4 + x5) (0, 5, 2, 7, 4, 1, 6, 3)

58 (x1 + x2 + x3 + x4 + x5, x2 + x3, x4 + x5) (0, 5, 6, 3, 4, 1, 2, 7)

59 (x1 + x2 + x3 + x4 + x5, x2 + x3, x4 + x5) (0, 7, 2, 1, 4, 3, 6, 5)

60 (x1 + x2 + x3 + x4 + x5, x2 + x3, x4 + x5) (0, 3, 6, 1, 4, 7, 2, 5)

61 (x1 + x2 + x3, x2 + x3, x2 + x3 + x4 + x5) (0, 1, 3, 2, 4, 5, 7, 6)

62 (x1 + x2 + x3, x2 + x3, x2 + x3 + x4 + x5) (0, 1, 7, 6, 4, 5, 3, 2)

63 (x1 + x2 + x3, x2 + x3, x2 + x3 + x4 + x5) (0, 2, 3, 5, 4, 6, 7, 1)

64 (x1 + x2 + x3, x2 + x3, x2 + x3 + x4 + x5) (0, 6, 7, 5, 4, 2, 3, 1)

65 (x1 + x2 + x3, x2 + x3, x1 + x4 + x5) (0, 1, 3, 2, 5, 4, 6, 7)

66 (x1 + x2 + x3, x2 + x3, x1 + x4 + x5) (0, 1, 6, 7, 5, 4, 3, 2)

67 (x1 + x2 + x3, x2 + x3, x1 + x4 + x5) (0, 2, 3, 4, 5, 7, 6, 1)

68 (x1 + x2 + x3, x2 + x3, x1 + x4 + x5) (0, 7, 6, 4, 5, 2, 3, 1)

69 (x1 + x2 + x3, x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 1, 2, 3, 5, 4, 7, 6)

70 (x1 + x2 + x3, x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 1, 7, 6, 5, 4, 2, 3)

71 (x1 + x2 + x3, x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 3, 2, 4, 5, 6, 7, 1)

72 (x1 + x2 + x3, x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 6, 7, 4, 5, 3, 2, 1)

73 (x1 + x4 + x5, x2 + x3, x2 + x3 + x4 + x5) (0, 5, 7, 2, 4, 1, 3, 6)

74 (x1 + x4 + x5, x2 + x3, x2 + x3 + x4 + x5) (0, 5, 3, 6, 4, 1, 7, 2)

75 (x1 + x4 + x5, x2 + x3, x2 + x3 + x4 + x5) (0, 2, 7, 1, 4, 6, 3, 5)

76 (x1 + x4 + x5, x2 + x3, x2 + x3 + x4 + x5) (0, 6, 3, 1, 4, 2, 7, 5)

77 (x1 + x2 + x3 + x4 + x5, x2 + x3, x2 + x3 + x4 + x5) (0, 5, 2, 7, 4, 1, 6, 3)

78 (x1 + x2 + x3 + x4 + x5, x2 + x3, x2 + x3 + x4 + x5) (0, 5, 6, 3, 4, 1, 2, 7)

79 (x1 + x2 + x3 + x4 + x5, x2 + x3, x2 + x3 + x4 + x5) (0, 7, 2, 1, 4, 3, 6, 5)
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80 (x1 + x2 + x3 + x4 + x5, x2 + x3, x2 + x3 + x4 + x5) (0, 3, 6, 1, 4, 7, 2, 5)

81 (x1 + x2 + x3, x2 + x3 + x4 + x5, x4 + x5) (0, 3, 2, 1, 4, 7, 6, 5)

82 (x1 + x2 + x3, x2 + x3 + x4 + x5, x4 + x5) (0, 3, 6, 5, 4, 7, 2, 1)

83 (x1 + x2 + x3, x2 + x3 + x4 + x5, x4 + x5) (0, 1, 2, 7, 4, 5, 6, 3)

84 (x1 + x2 + x3, x2 + x3 + x4 + x5, x4 + x5) (0, 5, 6, 7, 4, 1, 2, 3)

85 (x1 + x2 + x3, x1 + x4 + x5, x4 + x5) (0, 3, 2, 1, 6, 5, 4, 7)

86 (x1 + x2 + x3, x1 + x4 + x5, x4 + x5) (0, 3, 4, 7, 6, 5, 2, 1)

87 (x1 + x2 + x3, x1 + x4 + x5, x4 + x5) (0, 1, 2, 5, 6, 7, 4, 3)

88 (x1 + x2 + x3, x1 + x4 + x5, x4 + x5) (0, 7, 4, 5, 6, 1, 2, 3)

89 (x1 + x2 + x3, x1 + x2 + x3 + x4 + x5, x2 + x3 + x4 + x5) (0, 3, 2, 1, 5, 6, 7, 4)

90 (x1 + x2 + x3, x1 + x2 + x3 + x4 + x5, x2 + x3 + x4 + x5) (0, 3, 7, 4, 5, 6, 2, 1)

91 (x1 + x2 + x3, x1 + x2 + x3 + x4 + x5, x2 + x3 + x4 + x5) (0, 1, 2, 6, 5, 4, 7, 3)

92 (x1 + x2 + x3, x1 + x2 + x3 + x4 + x5, x2 + x3 + x4 + x5) (0, 4, 7, 6, 5, 1, 2, 3)

93 (x1 + x2 + x3, x1 + x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 3, 1, 2, 7, 4, 6, 5)

94 (x1 + x2 + x3, x1 + x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 3, 6, 5, 7, 4, 1, 2)

95 (x1 + x2 + x3, x1 + x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 2, 1, 4, 7, 5, 6, 3)

96 (x1 + x2 + x3, x1 + x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 5, 6, 4, 7, 2, 1, 3)

97 (x1 + x2 + x3 + x4 + x5, x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 7, 6, 1, 5, 2, 3, 4)

98 (x1 + x2 + x3 + x4 + x5, x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 7, 3, 4, 5, 2, 6, 1)

99 (x1 + x2 + x3 + x4 + x5, x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 1, 6, 2, 5, 4, 3, 7)

100 (x1 + x2 + x3 + x4 + x5, x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 4, 3, 2, 5, 1, 6, 7)

101 (x1 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5) (0, 7, 2, 5, 4, 3, 6, 1)

102 (x1 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5) (0, 7, 6, 1, 4, 3, 2, 5)

103 (x1 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5) (0, 5, 2, 3, 4, 1, 6, 7)

104 (x1 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5) (0, 1, 6, 3, 4, 5, 2, 7)

105 (x1 + x2 + x3 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5) (0, 7, 2, 5, 4, 3, 6, 1)

106 (x1 + x2 + x3 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5) (0, 7, 6, 1, 4, 3, 2, 5)

107 (x1 + x2 + x3 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5) (0, 5, 2, 3, 4, 1, 6, 7)

108 (x1 + x2 + x3 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5) (0, 1, 6, 3, 4, 5, 2, 7)

109 (x1 + x4 + x5, x1 + x2 + x3 + x4 + x5, x4 + x5) (0, 7, 2, 5, 6, 1, 4, 3)

110 (x1 + x4 + x5, x1 + x2 + x3 + x4 + x5, x4 + x5) (0, 7, 4, 3, 6, 1, 2, 5)
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111 (x1 + x4 + x5, x1 + x2 + x3 + x4 + x5, x4 + x5) (0, 5, 2, 1, 6, 3, 4, 7)

112 (x1 + x4 + x5, x1 + x2 + x3 + x4 + x5, x4 + x5) (0, 3, 4, 1, 6, 5, 2, 7)

113 (x1 + x2, x2 + x3, x4 + x5) (0, 1, 2, 3, 4, 5, 6, 7)

114 (x1 + x2, x2 + x3, x4 + x5) (0, 1, 6, 7, 4, 5, 2, 3)

115 (x1 + x2, x2 + x3, x4 + x5) (0, 3, 2, 5, 4, 7, 6, 1)

116 (x1 + x2, x2 + x3, x4 + x5) (0, 7, 6, 5, 4, 3, 2, 1)

117 (x1 + x2, x2 + x3, x2 + x3 + x4 + x5) (0, 1, 3, 2, 4, 5, 7, 6)

118 (x1 + x2, x2 + x3, x2 + x3 + x4 + x5) (0, 1, 7, 6, 4, 5, 3, 2)

119 (x1 + x2, x2 + x3, x2 + x3 + x4 + x5) (0, 2, 3, 5, 4, 6, 7, 1)

120 (x1 + x2, x2 + x3, x2 + x3 + x4 + x5) (0, 6, 7, 5, 4, 2, 3, 1)

121 (x1 + x2, x2 + x3, x1 + x4 + x5) (0, 1, 2, 3, 5, 4, 7, 6)

122 (x1 + x2, x2 + x3, x1 + x4 + x5) (0, 1, 7, 6, 5, 4, 2, 3)

123 (x1 + x2, x2 + x3, x1 + x4 + x5) (0, 3, 2, 4, 5, 6, 7, 1)

124 (x1 + x2, x2 + x3, x1 + x4 + x5) (0, 6, 7, 4, 5, 3, 2, 1)

125 (x1 + x2, x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 1, 3, 2, 5, 4, 6, 7)

126 (x1 + x2, x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 1, 6, 7, 5, 4, 3, 2)

127 (x1 + x2, x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 2, 3, 4, 5, 7, 6, 1)

128 (x1 + x2, x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 7, 6, 4, 5, 2, 3, 1)

129 (x1 + x2, x1 + x2 + x3, x4 + x5) (0, 1, 2, 3, 6, 7, 4, 5)

130 (x1 + x2, x1 + x2 + x3, x4 + x5) (0, 1, 4, 5, 6, 7, 2, 3)

131 (x1 + x2, x1 + x2 + x3, x4 + x5) (0, 3, 2, 7, 6, 5, 4, 1)

132 (x1 + x2, x1 + x2 + x3, x4 + x5) (0, 5, 4, 7, 6, 3, 2, 1)

133 (x1 + x2, x2 + x3 + x4 + x5, x4 + x5) (0, 3, 2, 1, 4, 7, 6, 5)

134 (x1 + x2, x2 + x3 + x4 + x5, x4 + x5) (0, 3, 6, 5, 4, 7, 2, 1)

135 (x1 + x2, x2 + x3 + x4 + x5, x4 + x5) (0, 1, 2, 7, 4, 5, 6, 3)

136 (x1 + x2, x2 + x3 + x4 + x5, x4 + x5) (0, 5, 6, 7, 4, 1, 2, 3)

137 (x1 + x2, x1 + x2 + x3 + x4 + x5, x4 + x5) (0, 3, 2, 1, 6, 5, 4, 7)

138 (x1 + x2, x1 + x2 + x3 + x4 + x5, x4 + x5) (0, 3, 4, 7, 6, 5, 2, 1)

139 (x1 + x2, x1 + x2 + x3 + x4 + x5, x4 + x5) (0, 1, 2, 5, 6, 7, 4, 3)

140 (x1 + x2, x1 + x2 + x3 + x4 + x5, x4 + x5) (0, 7, 4, 5, 6, 1, 2, 3)

141 (x1 + x2, x1 + x2 + x3, x2 + x3 + x4 + x5) (0, 1, 3, 2, 6, 7, 5, 4)



Appendix A. 61

142 (x1 + x2, x1 + x2 + x3, x2 + x3 + x4 + x5) (0, 1, 5, 4, 6, 7, 3, 2)

143 (x1 + x2, x1 + x2 + x3, x2 + x3 + x4 + x5) (0, 2, 3, 7, 6, 4, 5, 1)

144 (x1 + x2, x1 + x2 + x3, x2 + x3 + x4 + x5) (0, 4, 5, 7, 6, 2, 3, 1)

145 (x1 + x2, x1 + x2 + x3, x1 + x4 + x5) (0, 1, 2, 3, 7, 6, 5, 4)

146 (x1 + x2, x1 + x2 + x3, x1 + x4 + x5) (0, 1, 5, 4, 7, 6, 2, 3)

147 (x1 + x2, x1 + x2 + x3, x1 + x4 + x5) (0, 3, 2, 6, 7, 4, 5, 1)

148 (x1 + x2, x1 + x2 + x3, x1 + x4 + x5) (0, 4, 5, 6, 7, 3, 2, 1)

149 (x1 + x2, x1 + x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 1, 3, 2, 7, 6, 4, 5)

150 (x1 + x2, x1 + x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 1, 4, 5, 7, 6, 3, 2)

151 (x1 + x2, x1 + x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 2, 3, 6, 7, 5, 4, 1)

152 (x1 + x2, x1 + x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 5, 4, 6, 7, 2, 3, 1)

153 (x1 + x2, x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 3, 2, 1, 5, 6, 7, 4)

154 (x1 + x2, x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 3, 7, 4, 5, 6, 2, 1)

155 (x1 + x2, x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 1, 2, 6, 5, 4, 7, 3)

156 (x1 + x2, x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 4, 7, 6, 5, 1, 2, 3)

157 (x1 + x2, x1 + x4 + x5, x1 + x2 + x3 + x4 + x5) (0, 3, 1, 2, 7, 4, 6, 5)

158 (x1 + x2, x1 + x4 + x5, x1 + x2 + x3 + x4 + x5) (0, 3, 6, 5, 7, 4, 1, 2)

159 (x1 + x2, x1 + x4 + x5, x1 + x2 + x3 + x4 + x5) (0, 2, 1, 4, 7, 5, 6, 3)

160 (x1 + x2, x1 + x4 + x5, x1 + x2 + x3 + x4 + x5) (0, 5, 6, 4, 7, 2, 1, 3)

161 (x1 + x3, x2 + x3, x4 + x5) (0, 1, 2, 3, 4, 5, 6, 7)

162 (x1 + x3, x2 + x3, x4 + x5) (0, 1, 6, 7, 4, 5, 2, 3)

163 (x1 + x3, x2 + x3, x4 + x5) (0, 3, 2, 5, 4, 7, 6, 1)

164 (x1 + x3, x2 + x3, x4 + x5) (0, 7, 6, 5, 4, 3, 2, 1)

165 (x1 + x2 + x4 + x5, x2 + x3, x4 + x5) (0, 5, 2, 7, 4, 1, 6, 3)

166 (x1 + x2 + x4 + x5, x2 + x3, x4 + x5) (0, 5, 6, 3, 4, 1, 2, 7)

167 (x1 + x2 + x4 + x5, x2 + x3, x4 + x5) (0, 7, 2, 1, 4, 3, 6, 5)

168 (x1 + x2 + x4 + x5, x2 + x3, x4 + x5) (0, 3, 6, 1, 4, 7, 2, 5)

169 (x1 + x3 + x4 + x5, x2 + x3, x4 + x5) (0, 5, 2, 7, 4, 1, 6, 3)

170 (x1 + x3 + x4 + x5, x2 + x3, x4 + x5) (0, 5, 6, 3, 4, 1, 2, 7)

171 (x1 + x3 + x4 + x5, x2 + x3, x4 + x5) (0, 7, 2, 1, 4, 3, 6, 5)

172 (x1 + x3 + x4 + x5, x2 + x3, x4 + x5) (0, 3, 6, 1, 4, 7, 2, 5)
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173 (x1 + x3, x2 + x3, x2 + x3 + x4 + x5) (0, 1, 3, 2, 4, 5, 7, 6)

174 (x1 + x3, x2 + x3, x2 + x3 + x4 + x5) (0, 1, 7, 6, 4, 5, 3, 2)

175 (x1 + x3, x2 + x3, x2 + x3 + x4 + x5) (0, 2, 3, 5, 4, 6, 7, 1)

176 (x1 + x3, x2 + x3, x2 + x3 + x4 + x5) (0, 6, 7, 5, 4, 2, 3, 1)

177 (x1 + x3, x2 + x3, x1 + x4 + x5) (0, 1, 3, 2, 5, 4, 6, 7)

178 (x1 + x3, x2 + x3, x1 + x4 + x5) (0, 1, 6, 7, 5, 4, 3, 2)

179 (x1 + x3, x2 + x3, x1 + x4 + x5) (0, 2, 3, 4, 5, 7, 6, 1)

180 (x1 + x3, x2 + x3, x1 + x4 + x5) (0, 7, 6, 4, 5, 2, 3, 1)

181 (x1 + x3, x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 1, 2, 3, 5, 4, 7, 6)

182 (x1 + x3, x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 1, 7, 6, 5, 4, 2, 3)

183 (x1 + x3, x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 3, 2, 4, 5, 6, 7, 1)

184 (x1 + x3, x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 6, 7, 4, 5, 3, 2, 1)

185 (x1 + x2 + x4 + x5, x2 + x3, x2 + x3 + x4 + x5) (0, 5, 7, 2, 4, 1, 3, 6)

186 (x1 + x2 + x4 + x5, x2 + x3, x2 + x3 + x4 + x5) (0, 5, 3, 6, 4, 1, 7, 2)

187 (x1 + x2 + x4 + x5, x2 + x3, x2 + x3 + x4 + x5) (0, 2, 7, 1, 4, 6, 3, 5)

188 (x1 + x2 + x4 + x5, x2 + x3, x2 + x3 + x4 + x5) (0, 6, 3, 1, 4, 2, 7, 5)

189 (x1 + x3 + x4 + x5, x2 + x3, x2 + x3 + x4 + x5) (0, 5, 2, 7, 4, 1, 6, 3)

190 (x1 + x3 + x4 + x5, x2 + x3, x2 + x3 + x4 + x5) (0, 5, 6, 3, 4, 1, 2, 7)

191 (x1 + x3 + x4 + x5, x2 + x3, x2 + x3 + x4 + x5) (0, 7, 2, 1, 4, 3, 6, 5)

192 (x1 + x3 + x4 + x5, x2 + x3, x2 + x3 + x4 + x5) (0, 3, 6, 1, 4, 7, 2, 5)

193 (x1 + x3, x2 + x3 + x4 + x5, x4 + x5) (0, 3, 2, 1, 4, 7, 6, 5)

194 (x1 + x3, x2 + x3 + x4 + x5, x4 + x5) (0, 3, 6, 5, 4, 7, 2, 1)

195 (x1 + x3, x2 + x3 + x4 + x5, x4 + x5) (0, 1, 2, 7, 4, 5, 6, 3)

196 (x1 + x3, x2 + x3 + x4 + x5, x4 + x5) (0, 5, 6, 7, 4, 1, 2, 3)

197 (x1 + x3, x1 + x4 + x5, x4 + x5) (0, 3, 2, 1, 6, 5, 4, 7)

198 (x1 + x3, x1 + x4 + x5, x4 + x5) (0, 3, 4, 7, 6, 5, 2, 1)

199 (x1 + x3, x1 + x4 + x5, x4 + x5) (0, 1, 2, 5, 6, 7, 4, 3)

200 (x1 + x3, x1 + x4 + x5, x4 + x5) (0, 7, 4, 5, 6, 1, 2, 3)

201 (x1 + x3, x1 + x2 + x3 + x4 + x5, x2 + x3 + x4 + x5) (0, 3, 2, 1, 5, 6, 7, 4)

202 (x1 + x3, x1 + x2 + x3 + x4 + x5, x2 + x3 + x4 + x5) (0, 3, 7, 4, 5, 6, 2, 1)

203 (x1 + x3, x1 + x2 + x3 + x4 + x5, x2 + x3 + x4 + x5) (0, 1, 2, 6, 5, 4, 7, 3)
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204 (x1 + x3, x1 + x2 + x3 + x4 + x5, x2 + x3 + x4 + x5) (0, 4, 7, 6, 5, 1, 2, 3)

205 (x1 + x3, x1 + x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 3, 1, 2, 7, 4, 6, 5)

206 (x1 + x3, x1 + x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 3, 6, 5, 7, 4, 1, 2)

207 (x1 + x3, x1 + x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 2, 1, 4, 7, 5, 6, 3)

208 (x1 + x3, x1 + x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 5, 6, 4, 7, 2, 1, 3)

209 (x1 + x3 + x4 + x5, x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 7, 6, 1, 5, 2, 3, 4)

210 (x1 + x3 + x4 + x5, x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 7, 3, 4, 5, 2, 6, 1)

211 (x1 + x3 + x4 + x5, x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 1, 6, 2, 5, 4, 3, 7)

212 (x1 + x3 + x4 + x5, x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 4, 3, 2, 5, 1, 6, 7)

213 (x1 + x2 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5) (0, 7, 2, 5, 4, 3, 6, 1)

214 (x1 + x2 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5) (0, 7, 6, 1, 4, 3, 2, 5)

215 (x1 + x2 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5) (0, 5, 2, 3, 4, 1, 6, 7)

216 (x1 + x2 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5) (0, 1, 6, 3, 4, 5, 2, 7)

217 (x1 + x3 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5) (0, 7, 2, 5, 4, 3, 6, 1)

218 (x1 + x3 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5) (0, 7, 6, 1, 4, 3, 2, 5)

219 (x1 + x3 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5) (0, 5, 2, 3, 4, 1, 6, 7)

220 (x1 + x3 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5) (0, 1, 6, 3, 4, 5, 2, 7)

221 (x1 + x2 + x4 + x5, x1 + x2 + x3 + x4 + x5, x4 + x5) (0, 7, 2, 5, 6, 1, 4, 3)

222 (x1 + x2 + x4 + x5, x1 + x2 + x3 + x4 + x5, x4 + x5) (0, 7, 4, 3, 6, 1, 2, 5)

223 (x1 + x2 + x4 + x5, x1 + x2 + x3 + x4 + x5, x4 + x5) (0, 5, 2, 1, 6, 3, 4, 7)

224 (x1 + x2 + x4 + x5, x1 + x2 + x3 + x4 + x5, x4 + x5) (0, 3, 4, 1, 6, 5, 2, 7)

225 (x1 + x3, x2 + x3, x4 + x5) (0, 1, 2, 3, 4, 5, 6, 7)

226 (x1 + x3, x2 + x3, x4 + x5) (0, 1, 6, 7, 4, 5, 2, 3)

227 (x1 + x3, x2 + x3, x4 + x5) (0, 3, 2, 5, 4, 7, 6, 1)

228 (x1 + x3, x2 + x3, x4 + x5) (0, 7, 6, 5, 4, 3, 2, 1)

229 (x1 + x3, x2 + x3, x2 + x3 + x4 + x5) (0, 1, 3, 2, 4, 5, 7, 6)

230 (x1 + x3, x2 + x3, x2 + x3 + x4 + x5) (0, 1, 7, 6, 4, 5, 3, 2)

231 (x1 + x3, x2 + x3, x2 + x3 + x4 + x5) (0, 2, 3, 5, 4, 6, 7, 1)

232 (x1 + x3, x2 + x3, x2 + x3 + x4 + x5) (0, 6, 7, 5, 4, 2, 3, 1)

233 (x1 + x3, x2 + x3, x1 + x4 + x5) (0, 1, 2, 3, 5, 4, 7, 6)

234 (x1 + x3, x2 + x3, x1 + x4 + x5) (0, 1, 7, 6, 5, 4, 2, 3)
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235 (x1 + x3, x2 + x3, x1 + x4 + x5) (0, 3, 2, 4, 5, 6, 7, 1)

236 (x1 + x3, x2 + x3, x1 + x4 + x5) (0, 6, 7, 4, 5, 3, 2, 1)

237 (x1 + x3, x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 1, 3, 2, 5, 4, 6, 7)

238 (x1 + x3, x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 1, 6, 7, 5, 4, 3, 2)

239 (x1 + x3, x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 2, 3, 4, 5, 7, 6, 1)

240 (x1 + x3, x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 7, 6, 4, 5, 2, 3, 1)

241 (x1 + x3, x1 + x2 + x3, x4 + x5) (0, 1, 2, 3, 6, 7, 4, 5)

242 (x1 + x3, x1 + x2 + x3, x4 + x5) (0, 1, 4, 5, 6, 7, 2, 3)

243 (x1 + x3, x1 + x2 + x3, x4 + x5) (0, 3, 2, 7, 6, 5, 4, 1)

244 (x1 + x3, x1 + x2 + x3, x4 + x5) (0, 5, 4, 7, 6, 3, 2, 1)

245 (x1 + x3, x2 + x3 + x4 + x5, x4 + x5) (0, 3, 2, 1, 4, 7, 6, 5)

246 (x1 + x3, x2 + x3 + x4 + x5, x4 + x5) (0, 3, 6, 5, 4, 7, 2, 1)

247 (x1 + x3, x2 + x3 + x4 + x5, x4 + x5) (0, 1, 2, 7, 4, 5, 6, 3)

248 (x1 + x3, x2 + x3 + x4 + x5, x4 + x5) (0, 5, 6, 7, 4, 1, 2, 3)

249 (x1 + x3, x1 + x2 + x3 + x4 + x5, x4 + x5) (0, 3, 2, 1, 6, 5, 4, 7)

250 (x1 + x3, x1 + x2 + x3 + x4 + x5, x4 + x5) (0, 3, 4, 7, 6, 5, 2, 1)

251 (x1 + x3, x1 + x2 + x3 + x4 + x5, x4 + x5) (0, 1, 2, 5, 6, 7, 4, 3)

252 (x1 + x3, x1 + x2 + x3 + x4 + x5, x4 + x5) (0, 7, 4, 5, 6, 1, 2, 3)

253 (x1 + x3, x1 + x2 + x3, x2 + x3 + x4 + x5) (0, 1, 3, 2, 6, 7, 5, 4)

254 (x1 + x3, x1 + x2 + x3, x2 + x3 + x4 + x5) (0, 1, 5, 4, 6, 7, 3, 2)

255 (x1 + x3, x1 + x2 + x3, x2 + x3 + x4 + x5) (0, 2, 3, 7, 6, 4, 5, 1)

256 (x1 + x3, x1 + x2 + x3, x2 + x3 + x4 + x5) (0, 4, 5, 7, 6, 2, 3, 1)

257 (x1 + x3, x1 + x2 + x3, x1 + x4 + x5) (0, 1, 2, 3, 7, 6, 5, 4)

258 (x1 + x3, x1 + x2 + x3, x1 + x4 + x5) (0, 1, 5, 4, 7, 6, 2, 3)

259 (x1 + x3, x1 + x2 + x3, x1 + x4 + x5) (0, 3, 2, 6, 7, 4, 5, 1)

260 (x1 + x3, x1 + x2 + x3, x1 + x4 + x5) (0, 4, 5, 6, 7, 3, 2, 1)

261 (x1 + x3, x1 + x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 1, 3, 2, 7, 6, 4, 5)

262 (x1 + x3, x1 + x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 1, 4, 5, 7, 6, 3, 2)

263 (x1 + x3, x1 + x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 2, 3, 6, 7, 5, 4, 1)

264 (x1 + x3, x1 + x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 5, 4, 6, 7, 2, 3, 1)

265 (x1 + x3, x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 3, 2, 1, 5, 6, 7, 4)
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266 (x1 + x3, x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 3, 7, 4, 5, 6, 2, 1)

267 (x1 + x3, x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 1, 2, 6, 5, 4, 7, 3)

268 (x1 + x3, x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 4, 7, 6, 5, 1, 2, 3)

269 (x1 + x3, x1 + x4 + x5, x1 + x2 + x3 + x4 + x5) (0, 3, 1, 2, 7, 4, 6, 5)

270 (x1 + x3, x1 + x4 + x5, x1 + x2 + x3 + x4 + x5) (0, 3, 6, 5, 7, 4, 1, 2)

271 (x1 + x3, x1 + x4 + x5, x1 + x2 + x3 + x4 + x5) (0, 2, 1, 4, 7, 5, 6, 3)

272 (x1 + x3, x1 + x4 + x5, x1 + x2 + x3 + x4 + x5) (0, 5, 6, 4, 7, 2, 1, 3)

273 (x1 + x2, x2 + x3, x4 + x5) (0, 1, 2, 3, 4, 5, 6, 7)

274 (x1 + x2, x2 + x3, x4 + x5) (0, 1, 6, 7, 4, 5, 2, 3)

275 (x1 + x2, x2 + x3, x4 + x5) (0, 3, 2, 5, 4, 7, 6, 1)

276 (x1 + x2, x2 + x3, x4 + x5) (0, 7, 6, 5, 4, 3, 2, 1)

277 (x1 + x3 + x4 + x5, x2 + x3, x4 + x5) (0, 5, 2, 7, 4, 1, 6, 3)

278 (x1 + x3 + x4 + x5, x2 + x3, x4 + x5) (0, 5, 6, 3, 4, 1, 2, 7)

279 (x1 + x3 + x4 + x5, x2 + x3, x4 + x5) (0, 7, 2, 1, 4, 3, 6, 5)

280 (x1 + x3 + x4 + x5, x2 + x3, x4 + x5) (0, 3, 6, 1, 4, 7, 2, 5)

281 (x1 + x2 + x4 + x5, x2 + x3, x4 + x5) (0, 5, 2, 7, 4, 1, 6, 3)

282 (x1 + x2 + x4 + x5, x2 + x3, x4 + x5) (0, 5, 6, 3, 4, 1, 2, 7)

283 (x1 + x2 + x4 + x5, x2 + x3, x4 + x5) (0, 7, 2, 1, 4, 3, 6, 5)

284 (x1 + x2 + x4 + x5, x2 + x3, x4 + x5) (0, 3, 6, 1, 4, 7, 2, 5)

285 (x1 + x2, x2 + x3, x2 + x3 + x4 + x5) (0, 1, 3, 2, 4, 5, 7, 6)

286 (x1 + x2, x2 + x3, x2 + x3 + x4 + x5) (0, 1, 7, 6, 4, 5, 3, 2)

287 (x1 + x2, x2 + x3, x2 + x3 + x4 + x5) (0, 2, 3, 5, 4, 6, 7, 1)

288 (x1 + x2, x2 + x3, x2 + x3 + x4 + x5) (0, 6, 7, 5, 4, 2, 3, 1)

289 (x1 + x2, x2 + x3, x1 + x4 + x5) (0, 1, 3, 2, 5, 4, 6, 7)

290 (x1 + x2, x2 + x3, x1 + x4 + x5) (0, 1, 6, 7, 5, 4, 3, 2)

291 (x1 + x2, x2 + x3, x1 + x4 + x5) (0, 2, 3, 4, 5, 7, 6, 1)

292 (x1 + x2, x2 + x3, x1 + x4 + x5) (0, 7, 6, 4, 5, 2, 3, 1)

293 (x1 + x2, x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 1, 2, 3, 5, 4, 7, 6)

294 (x1 + x2, x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 1, 7, 6, 5, 4, 2, 3)

295 (x1 + x2, x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 3, 2, 4, 5, 6, 7, 1)

296 (x1 + x2, x2 + x3, x1 + x2 + x3 + x4 + x5) (0, 6, 7, 4, 5, 3, 2, 1)



Appendix A. 66

297 (x1 + x3 + x4 + x5, x2 + x3, x2 + x3 + x4 + x5) (0, 5, 7, 2, 4, 1, 3, 6)

298 (x1 + x3 + x4 + x5, x2 + x3, x2 + x3 + x4 + x5) (0, 5, 3, 6, 4, 1, 7, 2)

299 (x1 + x3 + x4 + x5, x2 + x3, x2 + x3 + x4 + x5) (0, 2, 7, 1, 4, 6, 3, 5)

300 (x1 + x3 + x4 + x5, x2 + x3, x2 + x3 + x4 + x5) (0, 6, 3, 1, 4, 2, 7, 5)

301 (x1 + x2 + x4 + x5, x2 + x3, x2 + x3 + x4 + x5) (0, 5, 2, 7, 4, 1, 6, 3)

302 (x1 + x2 + x4 + x5, x2 + x3, x2 + x3 + x4 + x5) (0, 5, 6, 3, 4, 1, 2, 7)

303 (x1 + x2 + x4 + x5, x2 + x3, x2 + x3 + x4 + x5) (0, 7, 2, 1, 4, 3, 6, 5)

304 (x1 + x2 + x4 + x5, x2 + x3, x2 + x3 + x4 + x5) (0, 3, 6, 1, 4, 7, 2, 5)

305 (x1 + x2, x2 + x3 + x4 + x5, x4 + x5) (0, 3, 2, 1, 4, 7, 6, 5)

306 (x1 + x2, x2 + x3 + x4 + x5, x4 + x5) (0, 3, 6, 5, 4, 7, 2, 1)

307 (x1 + x2, x2 + x3 + x4 + x5, x4 + x5) (0, 1, 2, 7, 4, 5, 6, 3)

308 (x1 + x2, x2 + x3 + x4 + x5, x4 + x5) (0, 5, 6, 7, 4, 1, 2, 3)

309 (x1 + x2, x1 + x4 + x5, x4 + x5) (0, 3, 2, 1, 6, 5, 4, 7)

310 (x1 + x2, x1 + x4 + x5, x4 + x5) (0, 3, 4, 7, 6, 5, 2, 1)

311 (x1 + x2, x1 + x4 + x5, x4 + x5) (0, 1, 2, 5, 6, 7, 4, 3)

312 (x1 + x2, x1 + x4 + x5, x4 + x5) (0, 7, 4, 5, 6, 1, 2, 3)

313 (x1 + x2, x1 + x2 + x3 + x4 + x5, x2 + x3 + x4 + x5) (0, 3, 2, 1, 5, 6, 7, 4)

314 (x1 + x2, x1 + x2 + x3 + x4 + x5, x2 + x3 + x4 + x5) (0, 3, 7, 4, 5, 6, 2, 1)

315 (x1 + x2, x1 + x2 + x3 + x4 + x5, x2 + x3 + x4 + x5) (0, 1, 2, 6, 5, 4, 7, 3)

316 (x1 + x2, x1 + x2 + x3 + x4 + x5, x2 + x3 + x4 + x5) (0, 4, 7, 6, 5, 1, 2, 3)

317 (x1 + x2, x1 + x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 3, 1, 2, 7, 4, 6, 5)

318 (x1 + x2, x1 + x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 3, 6, 5, 7, 4, 1, 2)

319 (x1 + x2, x1 + x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 2, 1, 4, 7, 5, 6, 3)

320 (x1 + x2, x1 + x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 5, 6, 4, 7, 2, 1, 3)

321 (x1 + x2 + x4 + x5, x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 7, 6, 1, 5, 2, 3, 4)

322 (x1 + x2 + x4 + x5, x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 7, 3, 4, 5, 2, 6, 1)

323 (x1 + x2 + x4 + x5, x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 1, 6, 2, 5, 4, 3, 7)

324 (x1 + x2 + x4 + x5, x2 + x3 + x4 + x5, x1 + x4 + x5) (0, 4, 3, 2, 5, 1, 6, 7)

325 (x1 + x3 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5) (0, 7, 2, 5, 4, 3, 6, 1)

326 (x1 + x3 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5) (0, 7, 6, 1, 4, 3, 2, 5)

327 (x1 + x3 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5) (0, 5, 2, 3, 4, 1, 6, 7)
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328 (x1 + x3 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5) (0, 1, 6, 3, 4, 5, 2, 7)

329 (x1 + x2 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5) (0, 7, 2, 5, 4, 3, 6, 1)

330 (x1 + x2 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5) (0, 7, 6, 1, 4, 3, 2, 5)

331 (x1 + x2 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5) (0, 5, 2, 3, 4, 1, 6, 7)

332 (x1 + x2 + x4 + x5, x2 + x3 + x4 + x5, x4 + x5) (0, 1, 6, 3, 4, 5, 2, 7)

333 (x1 + x3 + x4 + x5, x1 + x2 + x3 + x4 + x5, x4 + x5) (0, 7, 2, 5, 6, 1, 4, 3)

334 (x1 + x3 + x4 + x5, x1 + x2 + x3 + x4 + x5, x4 + x5) (0, 7, 4, 3, 6, 1, 2, 5)

335 (x1 + x3 + x4 + x5, x1 + x2 + x3 + x4 + x5, x4 + x5) (0, 5, 2, 1, 6, 3, 4, 7)

336 (x1 + x3 + x4 + x5, x1 + x2 + x3 + x4 + x5, x4 + x5) (0, 3, 4, 1, 6, 5, 2, 7)

Table A.1: Optimal (C,M) pairs for Example 2.1.
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