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Abstract— Recently, the idea of space-time coding has been
applied to wireless relay networks wherein a set of geographically
separated relay nodes cooperate to process the received signal
from the source and forward them to the destination such that the
signal received at the destination appears like a Space-Time Block
Code (STBC). Such STBCs (referred to as Distributed Space-
Time Block Codes (DSTBCs)) when appropriately designed are
known to offer spatial diversity. It is known that different classes
of DSTBCs can be designed primarily depending on (i) whether
the Amplify and Forward (AF) protocol or the Decode and
Forward (DF) protocol is employed at the relays and (ii) whether
the relay nodes are synchronized or not. In this paper, we present
a survey on the problems and results associated with the design
of DSTBCs for the following classes of two-hop wireless relay
networks: (i) synchronous relay networks with AF protocols, (ii)
asynchronous relay networks with AF protocols (iii) synchronous
relay networks with DF protocols and (iv) asynchronous relay
networks with DF protocols.

Index Terms— Cooperative diversity, distributed space-time
block codes, relay channel, space-time coding.

I. INTRODUCTION AND PRELIMINARIES
For point to point communication in co-located Multiple-
Input Multiple-Output (MIMO) channels (shown in Fig. I)),
space-time coding has been an effective technique to combat
the degrading effects of multi-path fading. In particular, with
such techniques, a spatial diversity order equal to the product
of the number of transmit antennas and receive antennas can
potentially be obtained in slow-fading scenarios [1]. It is also
known that the capacity of a co-located MIMO channel scales
linearly with the minimum of the number of transmit and
receive antennas for high receive Signal to Noise Ratio (SNR)
values when perfect estimates of the channel are available at
the receiver [2], [3].
In a wireless network, if the source terminal and the

destination terminal are engaged in a point to point com-
munication and are precluded from using multiple antennas
(wherein all the terminals are assumed to be small devices,
examples include mobile units or wireless nodes in sensor

Fig. 1. Co-located MIMO channel model

network applications [4]), then it is well known that spatial
diversity cannot be obtained. Recently, a promising technique
called cooperative communication has attracted a lot of at-
tention in the research community wherein several users in
the network which are geographically separated support the
source in transmitting information to the destination (see Fig.
2). Since, the destination receives the source signal through
several independent paths, a potential spatial diversity order of
at most the number of relays (including the source terminal)
is promised. Such a method of obtaining spatial diversity
is termed as cooperative diversity [4]-[9]. Moving one step
further, the idea of space-time coding which was originally
devised for a Multiple-Input Multiple-Output (MIMO) channel
has been applied to wireless networks under the frame-work
of cooperative communication [6], [9]. In this scenario, the
source broadcasts its signal to several terminals in the net-
work referred to as relays excluding/including the destination
terminal. The half duplex constrained relay nodes cooperate
to process the received source signal and forward them to
the destination such that the signal received at the destination
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Fig. 2. A cooperative communication model

appears like a Space-Time Block Code (STBC) [1] (in general,
a finite set of complex matrices constitute an STBC. A design
[18] in complex variables can be used to construct an STBC by
making the variables take values from an underlying complex
signal set). Such a cooperative scenario is referred to as a
two-hop cooperative communication, the signaling scheme is
referred to as Distributed Space-Time Coding (DSTC) and the
corresponding codes are called Distributed Space-Time Block
Codes (DSTBC). Apart from using DSTBCs, there are several
other techniques of obtaining spatial diversity in a wireless
network. One such method is to select a single best relay
among the several users in the network based on some criterion
to support the communication between the source and the
destination [10]. For more details on relay selection, we refer
the readers to [11] and the references within. Such schemes
are also shown to provide spatial diversity at the cost of using
additional resources (such as power and bandwidth) on the
training sequences in selecting the best relay. In this paper, we
only focus on the design of DSTBCs to obtain full diversity
in two-hop relay networks.
Several protocols such as Amplify and Forward (AF),

Decode and Forward (DF), Compress and Forward (CF)
and Demodulate and Forward (DF) [12], [13] protocols are
available for user cooperation. For various other protocols, we
refer the reader to [7]. Among them, the prominent ones such
as AF and DF protocols are amenable for the construction
of DSTBCs [7]. Diversity Multiplexing Tradeoff (DMT) [14]
analysis of AF and DF protocols in co-operative networks can
also be found in [15]. Henceforth, throughout the paper we
consider only AF and DF protocols at the relays. With the
DF protocol, it is difficult to achieve full diversity because
of the possible erroneous decoding at some of the relays and
forwarding of the same. To mitigate such scenarios, use of
relay selection strategies or cyclic redundancy check (CRC)
codes or fountain codes [16] becomes essential which in turn
increases the overhead on the system and/or requires more
resources such as power and bandwidth. The former protocol
is attractive considering the simplicity of the underlying tech-
nique wherein, every relay node normalizes its received signal
and forwards an appropriately scaled version to the destination.
A generalized protocol to AF is Linear-Process and Forward
(LPF) protocol wherein every relay linearly processes the

.
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Fig. 3. Two-hop wireless relay network model.

received signal before transmitting to the destination [9]. The
choice of the linear processing at every relay will determine
the error performance of the overall protocol. Henceforth,
throughout the paper, we consider only LPF protocol. Further,
we assume an orthogonal LPF protocol where the source
and the relays do not transmit simultaneously in the same
frequency band.
In this survey paper, cooperative communications in two-

hop wireless networks is studied wherein the source signal
reaches the destination terminal through two sets of channels.
The first set consists of the channels from the source to the
relays and the second set consists of the channels from the
relays to the destination (see Fig. 3 for a two-hop model).
In DSTC, the signals transmitted from all the relays may or
may not reach the destination coherently, i.e. all the relay
nodes may or may not be time synchronized. Depending on
whether the relay nodes are time synchronized or not, DSTC
schemes can be broadly classified in to two classes namely
(i) synchronous DSTC schemes and (ii) asynchronous DSTC
schemes. For synchronous DSTC schemes, it is assumed
that each relay knows the timing offset from itself to the
destination. As a result, the signals transmitted from the relays
can be apriori time shifted such that all the signals are received
at the destination with symbol level synchronisation. However,
there is an overhead in conveying the timing offset (timing
offset from the relay to the destination) to each relay. To
avoid the overhead or the difficulty in conveying the timing
offsets to the relays, one can design DSTBCs when only the
maximum of the timing delays is known to all the relays. In
this paper, we present a survey on DSTBCs for synchronous
and asynchronous relay networks based on both AF and DF
protocols (see Fig. 4 for the classification of DSTBCs in two-
hop relay networks) wherein, we address the problems and
solutions involving the design, construction and performance
analysis (in terms of PEP) of DSTBCs.

Organization of the paper: In Section II, a short review on
space-time coding for co-located MIMO channels is provided.
In Section III, we present an overview on distributed space-
time coding techniques in wireless networks. Section IV,
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Fig. 4. Classification of DSTBCs for two-hop wireless relay networks

Section V, Section VI and Section VII respectively deals
with designing DSTBCs for (i) synchronous relay networks
with AF protocols, (ii) asynchronous relay networks with AF
protocols (iii) synchronous relay networks with DF protocols
and (iv) asynchronous relay networks with DF protocols.
Finally, possible directions of future work and concluding
remarks constitute Section VIII.

Notations: Throughout the paper, lower case boldface letters
and capital boldface letters are used to represent vectors and
matrices respectively. For a complex matrix X, the matrices
X∗, XT , XH , |X|, Re X and Im X denote, respectively, the
conjugate, transpose, conjugate transpose, determinant, real
part and imaginary part of X. The element in the r1-th row and
the r2-th column of the matrix X is denoted by [X]r1,r2

. The
T×T identity matrix and the T×T zero matrix are respectively
denoted by IT and 0T . The magnitude of a complex number x,
is denoted by |x| and E [x] is used to denote the expectation
of the random variable x. A circularly symmetric complex
Gaussian random vector x, with mean µ and covariance matrix
Γ is denoted by x ∼ CSCG (µ,Γ). The set of all integers,
the real numbers and the complex numbers are respectively,
denoted by Z, R and C, and j is used to represent

√−1.

II. DESIGN OF STBCS FOR CO-LOCATED MIMO SYSTEMS

A MIMO channel with Nt antennas at the source (transmit-
ter) and Nr antennas at the destination (receiver) as shown in
Fig. I is considered. The channel between every pair of the
source and the destination antennas is assumed to be i.i.d. flat
fading. The channels are also assumed to be constant over
a block of T complex channel uses and take independent
realizations in every block. The MIMO channel equation for
one block (one block corresponds to T complex channel uses)

is given by,

Y =

√
ρ

Nt
XlH + N, (1)

where Y is the T × Nr received matrix, Xl is the T × Nt

transmitted codeword matrix, [H]i,j , is the fade coefficient
between the i-th transmit antenna and the j-th receive antenna
which is distributed as CSCG (0, 1) for all i = 1, 2, · · ·Nt

and j = 1, 2, · · ·Nr. The additive Gaussian noise matrix at
the destination is N whose components are also distributed as
CSCG (0, 1) and ρ is the receive SNR at each of the destination
antenna. The collection C of matrices

C = {Xl | l = 1, 2, · · ·L}

is called a Space-Time Block code (STBC). When the perfect
estimate of H is available at the destination (referred to as
the Channel State Information (CSI)), the channel is referred
to as a coherent co-located MIMO channel. However, the
overhead and/or the difficulty involved in obtaining these
perfect estimates at the receiver leads to the need for designing
signaling schemes assuming that the receiver does not have
the knowledge of the channel. Such a channel is referred to as
non-coherent co-located MIMO channel and the corresponding
signaling schemes are called non-coherent signaling schemes.
For a coherent MIMO channel, the Maximum Likelihood
(ML) decoder decodes for a codeword X̂ given by,

X̂ = arg min
X∈C

||Y −
√

ρ

Nt
XH||2. (2)

For a non-coherent MIMO channel with the class of unitary
STBCs, the Maximum Likelihood (ML) decoder (referred to
as non-coherent ML decoder) decodes for a codeword X̂ given
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by
X̂ = arg max

X∈C
Trace ||YHXXHY||2. (3)

Note that the above decoder does not need the knowledge of H
for decodingX. The codebook C can be appropriately designed
to obtain a diversity order of NtNr. However, the design
criteria for full diversity depends on whether H is known at
the destination or not. Signal designs for both coherent [18]-
[25] and non-coherent co-located MIMO channels [65] have
been fairly well developed.

III. INTRODUCTION TO COOPERATIVE COMMUNICATIONS
FOR WIRELESS NETWORKS

In a wireless relay network, if the source and the destination
terminals (each equipped with only single antenna) are en-
gaged in a point to point communication, then spatial diversity
is forbidden unlike that of a MIMO system as described in
Section II. For such a model, other users in the network which
are geographically separated can act as relays and assist the
source in forwarding the information to the destination [4],
[5]. In such a scenario, the source broadcasts its signal to
all the relays and all the relays forward the source signal to
the destination. Since the source signal reaches the destination
through independent paths, a diversity order equal to the
number of relays can potentially be obtained [6]. Therefore,
some users in the network can act as virtual transmit antennas
of the source and help the source to provide transmit diversity.
As a result, existing space-time schemes for co-located MIMO
channels can potentially be implemented in a distributed way
and such schemes are referred to as distributed space-time
coding (DSTC) schemes [6], [7]. However, the performance
benefits of DSTC schemes depend on the type of processing
employed at the relays [7]. Also, since the users are separated
geographically, signals transmitted by all the users may not
reach the destination at the same time, i.e. the relays may not
be synchronized. In the rest of this paper, we present a survey
of DSTBCs for wireless relay networks (i) when different
protocols such as AF and DF protocols are employed at the
relays and (ii) when the relays in the network are synchronized
or not [51].

IV. DSTBCS FOR SYNCHRONOUS NETWORKS WITH AF
PROTOCOL

In this section, we discuss the design of DSTBCs for
synchronous cooperative networks based on AF protocols.
In particular, we consider DSTBC design based on LPF
protocol (a generalization of the AF protocol). We introduce
the network model and provide various ingredients required
in the network to construct STBCs in a distributed way.

A. Signal model

The wireless network considered as shown in Fig. 3
consists of K + 2 nodes, each having a single antenna. There
is one source node and one destination node. All the other
K nodes are relays. We denote the channel from the source
node to the k-th relay as hk and the channel from the k-th
relay to the destination node as gk for k = 1, 2, · · · , K . The

following assumptions are made in the channel model: (i) All
the nodes are half duplex constrained, (ii) Fading coefficients
hk and gk are i.i.d. CSCG (0, 1) with a coherence time
interval of at least N and T channel uses respectively, (iii)
All the nodes are synchronized at the symbol level, (iv) Relay
nodes do not have the knowledge of the fade coefficients
hk, (v) Destination knows all the fade coefficients gk, hk for
k = 1, 2, · · ·K .
The source is equipped with a codebook S =

{x1, x2, x3, · · · , xL} consisting of information vectors
xl ∈ CN×1 such that E

[
xH

l xl

]
= 1. Every transmission from

the source to the destination comprises of two phases. When
the source needs to transmit an information vector x ∈ S to
the destination, it broadcasts the vector x to all the K relays
(but not to the destination since it is assumed to be far from
the source). The received vector at the k-th relay is given
by rk =

√
P1Nhkx + nk, for all k = 1, 2, · · · , K where

nk ∼ CSCG (0N×1, IN ) is the additive noise at the k-th
relay and P1 is the total power used at the source node for
every channel use. In the second phase, all the relay nodes
are scheduled to transmit T length vectors to the destination
simultaneously. Each relay is equipped with a fixed T × N
matrix Ak called the relay matrix1 and is allowed to linearly
process the received vector. The k-th relay is scheduled to
transmit

tk =

√
P2T

(1 + P1)N
Akr̄k

where r̄k can either be rk or r∗k. Note that P2 is the total
power used at each relay for every channel use in the second
phase. The vector received at the destination is given by

y =

K∑
k=1

gktk + w

where w ∼ CSCG (0T×1, IT ) is the additive noise at the
destination. Substituting for tk, y can be written as

y =

√
P1P2T

(1 + P1)
X (x) f + n (7)

where
• n =

√
P2T

(1+P1)N

[∑K
k=1 gk {Aknk}

]
+ w.

• The equivalent channel f is given by
[g1h̄1 g2h̄2 · · · gK h̄K ] ∈ CK×1 wherein h̄i is
either hi or h∗

i for all i = 1 to K .
• Every codeword X (x) ∈ CT×K which is of the form
(4) (shown at the top of next page) is a function of the
information vector x.

The covariance matrix R ∈ CT×T of the noise vector n is
given in (5). The Maximum Likelihood (ML) decoder decodes
for a vector x̂ where x̂ is given in (6) (shown at the top of this
page).

Definition 1: The collection C of T × K codeword ma-
trices shown below,
1In general, each relay can be equipped with a fixed pair of T × N

rectangular matrices Ak , Bk for more complex linear processing. For example,
the relays can also perform conjugation operation on the received vector as
Ak r̄k + Bk r̄∗

k
.
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X (x) = [A1x A2x · · · AKx] . (4)

R =
P2T

(1 + P1)N

[
K∑

k=1

|gk|2
{

AkAH
k

}]
+ IT . (5)

x̂ = arg min
x∈S

[
−2Re

(√
P1P2T

(1 + P1)
gXR−1yH

)
+

P1P2T

(1 + P1)
gXR−1XHgH

]
. (6)

C = {X(x) | ∀ x ∈ S} (8)

is called a Distributed Space-Time Block Code (DSTBC)
which is determined by the set of relay matrices {Ak} and,
S.
The channel equation in (7) looks similar to the MIMO
channel except that every component of f is a product of
two Gaussian random variables instead of a single Gaussian
random variable. The vector f can be written as the component
wise product of two vectors h, the set of source to relay
channels and g, the set of relay to destination channels. Recall
that for a MIMO channel, STBCs are constructed based on
different design criteria which depends on the availability
of the CSI at the destination. Similarly, in a cooperative
channel, DSTBCs are constructed based on different design
criteria which depends on the availability of f at the desti-
nation through the knowledge of the vectors h and g. The
performance of a DSTBC in terms of the Pairwise Error
Probability (PEP) is determined by the set of relay matrices
A = {A1, A2 · · ·AK} and the set of information bearing
vectors S. From the results of [9], for the set C to be fully
diverse, for any X1, X2 ∈ C, the matrix X1 − X2 should have
full rank. Since the design criteria for full diversity is same as
that for coherent MIMO channels [1], all STBCs well known
for coherent MIMO channels are potentially applicable for
coherent DSTC.
In particular, for a given extent of the channel knowledge
at the destination, the sets A and S must be chosen such that
the DSTBC provides a diversity order equal to the number
of relays. Towards that direction, DSTBCs are classified into
different groups depending on the channel knowledge at the
destination. The following definition partitions DSTBCs into
two classes based on the knowledge of hk’s and gk’s at the
destination.

Definition 2: A DSTBC is referred to as coherent DSTBC,
when the destination has the knowledge of both hk’s and gk’s.
Otherwise, it is called non-coherent DSTC. In a non-coherent
DSTBC, if the destination has the knowledge of only hk’s but
not gk’s, then it is called partially coherent DSTBC. When the
destination has no knowledge of both hk’s and gk’s, then it is
called fully non-coherent DSTBC.

B. Distributed STBCs with low ML decoding complexity for
relay networks

Since the work of [4]-[9], lot of efforts have been made
to generalize various aspects of space-time coding which
were originally proposed for co-located MIMO systems to the
distributed framework. One such important aspect is the design
of low-complexity ML decodable DSTBCs. In the following
subsections, we provide a survey on DSTBCs with low-ML
decoding complexity.

1) Single-Symbol ML Decodable Distributed STBCs for
relay networks: For a co-located MIMO channel, an STBC
is said to be Single-Symbol Maximum Likelihood (ML)
Decodable (SSD) if the ML decoding metric splits as a sum
of several terms, with each term being a function of only one
of the information symbols. A DSTBC is said to be SSD if
the STBC seen by the destination from the set of relays is
SSD. For a background on SSD STBCs for co-located MIMO
channels, we refer the reader to [18] - [24]. In this subsection,
we discuss the issues related to the design of SSD DSTBCs
only.
Recently, in [26], Distributed Orthogonal Space-Time Codes
(DOSTBCs) achieving single-symbol decodability have been
introduced for cooperative networks. The authors considered
a special class of DOSTBCs which makes the covariance
matrix R, a diagonal matrix and such a class of codes has
been referred to as row monomial DOSTBCs. The maximum
symbol-rate (in complex symbols per channel use in the
second phase) of row monomial DOSTBCs have been derived
and is shown to be upper-bounded by 2

K where K denotes the
number of relays in the network. A systematic construction of
such codes has also been proposed. The constructed codes are
shown to meet the upper bound for even number of relays. In
[27], the same authors have also derived an upper bound on
the symbol-rate of DOSTBCs when the additive noise at the
destination is correlated and have shown that the improvement
in the rate is not significant when compared to the case when
the noise at the destination is uncorrelated [26]. An example
of DOSTBC for K = 4 is presented in (9) (shown at the top
of the next page).
In [27] and [42], SSD DSTBCs have been proposed when
every relay node is assumed to have the perfect knowledge of
the phase component of the channel from the source to the
relay. An upper bound on the symbol rate for such a set up is
shown to be 1

2 which is independent of the number of relays.
The codes proposed in [27] and [42] are derived from Real
Orthogonal Designs (RODs). Hence, such designs are referred
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X′ (4, 4) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1x1 −h∗
2x

∗
2 0 0

h1x2 h∗
2x

∗
1 0 0

h1x3 −h∗
2x

∗
4 0 0

h1x4 h∗
2x

∗
3 0 0

0 0 h3x1 −h∗
4x

∗
2

0 0 h3x2 h∗
4x

∗
1

0 0 h3x3 −h∗
4x

∗
4

0 0 h3x4 h∗
4x

∗
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

to as ”CODs from RODs” in this paper. An example for the
codes proposed in [27] for K = 4 is given below.

XCOD from ROD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4

−x2 x1 −x4 x3

−x3 x4 x1 −x2

−x4 −x3 x2 x1

x∗
1 x∗

2 x∗
3 x∗

4

−x∗
2 x∗

1 −x∗
4 x∗

3

−x∗
3 x∗

4 x∗
1 −x∗

2

−x∗
4 −x∗

3 x∗
2 x∗

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

In [26], [27] and [42], the source node transmits the infor-
mation symbols to all the relays without any processing. Using
the framework proposed in [26], the authors in [30] propose
SSD DSTBCs aided by linear precoding of the information
vector at the source. In such a set-up, the relay nodes do not
have the knowledge of the channel from the source to itself. A
new class of DSTBCs called Precoded DSTBCs (PDSTBCs)
is introduced where the source performs linear precoding of
information symbols appropriately before transmitting it to
all the relays. Within this class, the authors identify codes
that are SSD PDSTBCs referred to as Semi-orthogonal SSD-
PDSTBCs (Semi-SSD-PDSTBC). An upper bound on the
maximal symbol-rate of row monomial Semi-SSD-PDSTBCs
is derived. It is shown that, the symbol rate of such codes is
upper bounded by 4

K . Construction of row monomial Semi-
SSD-PDSTBCs is also presented when K ≥ 4. The proposed
construction provides codes achieving the upper bound on the
symbol rate when K is 0 or 3 modulo 4. For other values
of K , the constructed codes do not achieve the upper bound,
but have higher rates than DOSTBCs. An example of a Semi-
SSD-PDSTBC for 4 relays is given below,

X (4, 4) =

⎡
⎢⎢⎣

h1x̃1 −h∗
2x̃

∗
2 h3x̃3 −h∗

4x̃
∗
4

h1x̃2 h∗
2x̃

∗
1 h3x̃4 h∗

4x̃
∗
3

h1x̃3 −h∗
2x̃

∗
4 h3x̃1 −h∗

4x̃
∗
2

h1x̃4 h∗
2x̃

∗
3 h3x̃2 h∗

4x̃
∗
1

⎤
⎥⎥⎦ , (11)

where x̃1 = x1I + jx4Q; x̃2 = x2I + jx3Q; x̃3 = x1Q +
jx4I and x̃4 = x2Q + jx3I . The variables x̃1, x̃2, · · · x̃4 are
obtained using the precoding matrices at the source.

2) Training embedded Single-Symbol ML Decodable Dis-
tributed STBCs for relay networks: For point to point co-
located MIMO channels, complex orthogonal designs (CODs)
[18], [20], coordinate interleaved orthogonal designs (CIODs)
[23] and Clifford unitary weight designs (CUWDs) [24] are
well known for their SSD property when used to generate
STBCs. Note that, with the assumption of the knowledge of
the phase component of the source-relay channel at the relays,

all CODs can be constructed as DSTBCs. The extensions of
CODs such as CIODs and CUWDs can also be distributively
constructed. However, CODs (other than the Alamouti design),
CIODs and CUWDs (other than that for 4 antennas) do not
retain the SSD property.
In [31], the authors propose high rate, training embedded
SSD DSTBCs. The proposed codes include the training sym-
bols in the structure of the code which is shown to be the
key point to obtain high rate as well as the SSD property.
In [31], the number of channel uses spent on transmitting
training signals from the source to the relays are accounted
in computing the rate of the proposed DSTBCs. When all the
zero entries of a COD (square or non-square) are replaced by
a non-zero constant, the resulting design is called a Training-
Embedded-COD (TE-COD). These are shown to generate SSD
DSTBCs. This essentially enables all CODs to be usable
as SSD DSTBCs with full-diversity for arbitrary complex
constellations. Compared to the existing SSD codes of [42],
the class of non-square TE-CODs are shown to provide higher
rates for two-hop networks with number of relays less than 10.
Example of a square TE-COD for 4 relays is shown below.
For the well known 4×4 COD [18] of rate 3

4 , with x1, x2 and
x3 being the complex variables, the corresponding TE-COD
is given by,

XTE-COD =

⎡
⎢⎢⎣

x3 α x2 x1

α x3 x∗
1 −x∗

2

x∗
2 x1 −x∗

3 α
x∗

1 −x2 α −x∗
3

⎤
⎥⎥⎦ . (12)

To implement the above design, the number of channel uses
required in the first phase is 4 (3 channel uses for the variables
and the rest for transmitting α). The number of channel uses
in the second phase is also 4. Hence, the rate of this scheme
is 3

8 .
Note that, the known codes in [27], [42] and [31] (non-
square TE-CODs) have exponential decoding delay and hence,
in [32] the authors focus on constructing SSD DSTBCs with
low delay. Also, the number of complex symbols that a TE-
COD for 2a relays can accommodate is only a + 1 (which is
same as that of a COD for 2a antennas). Therefore, the rate
of TE-DSTBCs from TE-CODs (in symbols per channel use)
when employed as in [31] is given by

RTE-COD =
a + 1

a + 1 + � 2a−a−1
2 � + 2a

. (13)

In [32], the authors propose training embedded SSD DST-
BCs for relay networks with rates higher than that of DSTBCs
from TE-CODs (given in (13)). In particular, the authors
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employ linear precoding of information symbols at the source
[30] and use CIODs of [23] instead of CODs to obtain a
class of high-rate SSD DSTBCs. Using square TE-CODs as
ingredients, TE-CIODs are constructed using the coordinate
interleaved variables. Unlike TE-CODs, not all the entries of a
TE-CIOD are non-zero. In particular, TE-CIODs have a block
diagonal structure. Exploiting the block diagonal structure of
TE-CIODs, it is shown that the rate of TE-DSTBCs from TE-
CIODs is

RTE-CIODs =
2a

2a + � 2a−1−a
2 � + 2a

, (14)

which is larger than RTE-COD given by (13), while retaining
the SSD and full-diversity property. Example of a TE-CIOD
for 8 relays is given below.

Example 1: The 8 × 8 TE-CIOD is given by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃3 α x̃2 x̃1 0 0 0 0
α x̃3 x̃∗

1 −x̃∗
2 0 0 0 0

x̃∗
2 x̃1 −x̃∗

3 α 0 0 0 0
x̃∗

1 −x̃2 α −x̃∗
3 0 0 0 0

0 0 0 0 x̃6 α x̃5 x̃4

0 0 0 0 α x̃6 x̃∗
4 −x̃∗

5

0 0 0 0 x̃∗
5 x̃4 −x̃∗

6 α
0 0 0 0 x̃∗

4 −x̃5 α −x̃∗
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(15)
where x̃m = xmI + jx(m+3)Q and x̃m+3 = x(m+3)I + jxmQ

for m = 1 to 3. The number of channel uses in the first phase
and second phase are 7 and 8, respectively. Therefore, the rate
of the scheme is 6

15 complex symbols per channel use.
3) Distributed STBCs from Real Orthogonal Designs: A
scheme to apply the rate-1 real orthogonal designs (RODs)
[18] in relay networks with single real-symbol decodability
of the symbols at the destination for any arbitrary number
of relays is proposed in [33]. In the case where the relays
do not have any information about the channel gains from
the source to themselves, the best known distributed space-
time block codes (DSTBCs) for K relays with single real-
symbol decodability offer an overall rate of 2

2+K complex
symbols per channel use [26]. The scheme proposed in [33]
offers an overall rate of 1

4 complex symbol per channel use,
which is independent of the number of relays. Furthermore, in
the scenario where the relays have partial channel information
in the form of channel phase knowledge, the best known
DSTBCs with single real-symbol decodability offer an overall
rate of 1

3 complex symbols per channel use [42]. In [33],
making use of RODs, a scheme which achieves the same
overall rate of 1

3 complex symbols per channel use but with
a decoding delay that is 50 percent of that of the best known
DSTBCs, is presented.

4) Multi-group ML Decodable Distributed STBCs for relay
networks: In a co-located MIMO channel, an STBC is said
to be multi-group Maximum Likelihood (ML) Decodable if
the ML decoding metric splits as a sum of several terms,
with each term being a function of a disjoint subset of the
information symbols. In [38], DSTBCs which admit four-
group maximum likelihood (ML) decoding are studied. In
particular, the Jing-Hassibi protocol [9] is generalized to allow
non-unitary matrices at the relays. The necessary and sufficient

conditions needed for DSTBCs to be multi-group ML decod-
able are identified and three new classes of four group ML
decodable DSTBCs which achieve full cooperative diversity
for any number of relays are also provided. The proposed
DSTBCs achieve the least possible ML decoding complexity
compared to all other DSTBC constructions, having the same
transmission rate in complex symbols per channel use in the
literature. Two-group decodable DSTBCs have been proposed
in [64] and [41]. A thorough survey on STBCs with low ML
decoding complexity can be found in [39].

C. DSTBCs for wireless relay networks with multiple antenna
nodes

In [9], the idea of space-time coding devised for point to
point co-located multiple antenna systems has been applied for
a wireless relay network with single antenna nodes and PEP
(Pairwise Error Probability) of such a scheme was derived. It
is shown that in a relay network with a single source, a single
destination with K single antenna relays, DSTC achieves the
diversity of a co-located multiple antenna system with K
transmit antennas and one receive antenna, asymptotically.
Subsequently, in [17], the idea of [9] is extended to relay
networks where the source, the destination and the relays
have multiple antennas. But, co-operation between the multiple
antennas of each relay is not used, i.e., the co-locatedness of
the antennas is not exploited. Hence, a total of K relays each
with a single antenna is assumed in the network instead of
a total of K antennas in a smaller number of relays. With
this set up, for a network with M antennas at the source, N
antennas at the destination and a total of K antennas at K
relays, for large values of P (where P is the total power used
by all the nodes per channel use), the PEP of the network,
varies with P as(

1

P

)min(M,N)K

if M �= N and
(

(log1/M
e P )

P

)MK

if M = N.

In particular, the PEP of the scheme in [17] for large P when
specialized to M = N = 1 with 2K antennas at relays is
upper-bounded by[

32R

T (ρ′)2

]2R [
(loge(P ))2R

P 2R

]
, (16)

where (ρ′)2 is the minimum singular value of (X−X′)H(X−
X′), where X and X′ are the two distinct codewords of a
distributed space-time block code.
In [29], it is shown that multiple antennas at the relays
can be exploited to improve the performance of the network.
Towards this end, a single antenna source and a single antenna
destination with two antennas at each of the K relays is
considered. Also, the two phase protocol as in [17] is assumed
where the first phase consists of transmission of a T length
complex vector from the source to all the relays (not to the
destination) and the second phase consists of transmission of
a T length complex vector from each of the antennas of the
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relays to the destination. The modification in the protocol
introduced in [29] is that the two received vectors at the
two antennas of a relay during the first phase is coordinate
interleaved as defined below.

Definition 3: Given two complex vectors y1, y2 ∈ CT , we
define a Coordinate Interleaved Vector Pair of y1, y2, denoted
as CIVP {y1, y2} to be the pair of complex vectors {y′

1, y′2} ,
where y′1, y′2 ∈ CT , given by

y′1 = Re y1 + j Im y2, y′2 = Re y2 + j Im y1,

or equivalently,

y′1 = (y1 + y∗1 + y2 − y∗2)/2, (17)

y′2 = (y2 + y∗2 + y1 − y∗1)/2. (18)
Then, multiplying the coordinate interleaved vector with
the predecided antenna specific T × T unitary matrices, each
antenna produces a T length vector that is transmitted to
the destination in the second phase. The collection of all
such vectors, as columns of a T × 2K matrix constitutes a
codeword matrix and collection of all such codeword matrices
is referred to as coordinate interleaved distributed space-time
code (CIDSTC). For T ≥ 4K , an upper bound on the
PEP with fully diverse CIDSTC, at large values of the total
power P has been derived. For T ≥ 2K, the PEP derived
in [17] with fully diverse DSTBC is upper bounded by the
expression given in (16). Comparing this bound, with the one
in [29], for equal number of 2K antennas, CIDSTC scheme
is shown to provide asymptotic coding gain compared to
the scheme in [17]. Note that the improvement in the PEP
comes just by vector co-ordinate interleaving at every relay
whose complexity is negligible. Following the work of [17],
constructions of DSTBCs for networks with multiple antenna
nodes are presented in [61], [62]. In [62], a full rate strategy
is proposed which relies on division algebras, an algebraic
object which allows the design of fully diverse matrices. The
code construction is shown to be applicable to systems with
any number of transmit/receive antennas and relays, and has
better performance than random code constructions, with much
less encoding complexity. The robustness of the proposed
distributed space-time codes to node failures is also exhibited.

D. Non-coherent distributed space-time codes

From Definition 2, a DSTBC is referred to as fully non-
coherent DSTBC, when the destination has no knowledge
of both hk’s and gk’s. For such a scenario, the overhead or
the difficulty in conveying all the channel information in the
network to the destination is avoided. In the rest of this section,
we consider designing DSTBCs based on differential schemes
for fully non-coherent, synchronous relay networks. Several
code construction procedures based on differential techniques
are also provided. A thorough survey on non-coherent space-
time codes for co-located MIMO systems and distributed relay
networks can be found in [65] and [35] respectively.

1) Differential coding technique for non-coherent cooper-
ative communications: In the differential encoding scheme
for the MIMO channel, the source conveys information to
the destination by transmitting one of the several unitary

matrices using two successive codeword uses. However, in a
cooperative set-up, the source node is restricted to transmit
only vectors (this is because the source node is assumed to
have single antenna) and hence the techniques for co-located
MIMO channel cannot be trivially extended. In this subsection,
a differential coding scheme is briefly presented for the co-
operative channel which is a generalized version of the scheme
for the MIMO channel. With reference to channel model in
Section IV-A, we assume N = T throughout this section. i.e
the number of channel uses in the first phase and the second
phase are equal.
For the differential encoding scheme, the source node is
equipped with a code {x,G}, where x is a fixed T ×1 complex
vector and G is a finite set of T ×T unitary matrices such that
Gis �= Gjs for all Gi �= Gj . The two sets A and G should
satisfy the following conditions

GiAk = AkGj for 1 ≤ j, k ≤ |G|
and

XHX = IK

where X (x) = [A1x A2x · · · AKx] is the initial matrix
corresponding to the vector x used in the code. The transmis-
sion follows the two stages per block model with differential
encoding performed at the source node. If x(t−1) denotes the
transmitted vector by the source in the (t−1)-block, the vector
transmitted in the t-block is of the form x(t) = Gx(t − 1)
where G(t) ∈ G is chosen based on the information to be
transmitted. The vector x is the initial vector used by the
source, i.e. x(0) = x. After linear processing from the relays,
the received vector at the destination in the t-th block is
y(t) = X(t)f + n(t) (excluding the scaling factors) where

X(t) = [A1x(t) A2x(t) · · ·AKx(t)] .

If the code {x,G} and the set of relay matrices A satisfy the
condition GiAk = AkGj for all i, j, then

X(t) = G(t) [A1x(t − 1) A2x(t − 1) · · · AKx(t − 1)]

for some G(t) ∈ G. Therefore,
y(t) = G(t)X(t − 1)f + n(t) = G(t)y(t − 1) + n′(t)

where n′(t) = n(t)−G(t)n(t−1). Thus the distributed STBC
is given by,

C =

{
GX | G = IK or

∏
k

Gk such that Gk ∈ G
}

.

The following decoder has been commonly used (referred to
as ML 1-lag detector) for decoding the codewords of G,

Ĝ(t) = arg min
G(t)∈G

||y(t) − G(t)y(t − 1)||2. (19)

Notice that the decoder in (19) is fully non-coherent since it
does not use the knowledge of the channel vector f. In [63] a
Chernoff bound on the PEP is derived for the above decoder
and it is shown that, for full diversity, the design criterion on
the codebook is the same as that of the codebook for coherent
DSTC [9]. One of the key requirements in the distributed
construction of differential codes is to generate two commuting
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sets of unitary matrices. Even though several full diversity
achieving unitary codes are available for the MIMO channel,
such codes cannot be directly applied in the distributed set-up
since the codewords need to commute with the relay matrices.
In the following subsection, various techniques of constructing
the sets A and G are presented.
Different tools and methods to generate the necessary in-
gredients, A and G are provided in the following subsections.
The methods presented include algebraic tools such as division
algebras, Cayley Algebras, and cyclic groups.

2) Constructing commuting set of matrices from division
algebras: The authors in [43] have introduced commuting sets
of unitary matrices from division algebra for the sets A and
G. We give only a flavor on how to choose such matrices and
refer the readers to the literature for a detailed treatment on
space-time code constructions based on division algebra. A
division algebra D is a vector space over a field, F which
is also an associative ring, not necessarily commutative and
every element d ∈ D has a multiplicative inverse. Let n
denote the dimension of the vector space D over F. For an
arbitrary element, d ∈ D the map Ld(x) = dx is a F linear
isomorphism from D to D. This defines a one-one map from
d to the set of all F linear isomorphism of D which associates
d to Ld. With a fixed basis of D, every d can be associated
with an n×n invertible matrix over F denoted as Ld. This is
referred to as the left regular representation of D. Similarly,
right regular representation of D is denoted by Rd. The most
important fact about these two representations is that these
two commute. Thus, the commuting sets of n × n matrices
each of them isomorphic to the division algebra have been
identified. The set G is chosen as a subset of unitary matrices
from L (set of matrices from left regular representation of D)
and A as a subset from R (set of matrices from right regular
representations of D). This ensures that any matrix from G
commutes with any matrix from A. Furthermore since D is a
division algebra, full diversity requirement is also guaranteed.

3) Codes from cyclic groups: A distributed differential
coding scheme is proposed in [62] where diagonal unitary
matrices have been used for the sets G and A. Since the
matrices in each set are diagonal, the two sets will trivially
satisfy the commutative property. Additionally, G is given the
structure of a cyclic group. It is shown that full diversity can
be obtained by choosing the generator of the group with an
appropriate structure. The relay matrix set A is constructed
from a Generalized Butson Hadamard (GBH) matrix M ∈
C

K×K (see the following definition).
Definition 4: [58] A Generalized Butson-Hadamard (GBH)
matrix is a T × T matrix M with entries such that MHM =
MMH = T IT and the conjugate of every entry [M]ij is its
inverse.
The matrix M is used to construct A where the elements of
the i-th column of M are used as the diagonal elements of Ai.
An example for such a code is provided below for a network
with K = 3 and |G| = 63.

Example 2:

G =

⎧⎨
⎩Di, D =

⎡
⎣ w63 0 0

0 w17
63 0

0 0 w26
63

⎤
⎦
⎫⎬
⎭

for i = 1, · · · 63 and x = 1√
K

[11 · · · 1]T ∈ CK where w63 =

exp(2πj
63 ). The corresponding GBH matrix is

M =

⎡
⎣ 1 1 1

1 w3 w2
3

1 w2
3 w3

⎤
⎦

where w3 = exp( 2πj
3 ).

4) Non-differential codes from cyclic groups: Recently in
[34] STBCs are constructed based on non-intersecting sub-
spaces for partially coherent channel. The proposed codes also
make use of unitary matrix groups at the source and diagonal
matrices at the relays. When the group is cyclic, a necessary
and sufficient condition on the generator of the cyclic group
to achieve full diversity and to minimize the PEP is proved.
Certain conditions on the choice of a generator of the cyclic
group are provided to reduce the decoding complexity at the
destination as well.

5) Codes from Cayley algebra: Recently, differential DST-
BCs have been proposed using unitary Cayley transforms [60]
using which the set G can be constructed. For a Hermitian
matrix X, the unitary Cayley transform U is defined by U =
(I + jX)−1(I − jX). A Cayley code G is a family of unitary
matrices given by

G =
{

Uj = (I + jXj)
−1(I − jXj) | j = 1, 2, · · ·L}

for a family X = {Xj} of Hermitian matrices. It is proved
that the set G is fully diverse if the set X is designed using
the multiplication matrices from the number fields. Note that
the above construction is available for any number of relays.
Differential DSTBCs have also been proposed using circu-
lant matrices with M -PSK signal sets in [59]. More details on
this can be found in [59] and [35].

6) Codes with low encoding and decoding complexity:
In [37], unitary DSTBCs from linear designs having low
encoding and decoding complexity is proposed for distributed
differential coding. The readers can refer [25], [18] for details
on linear designs. Towards constructing unitary STBCs from
linear designs, codebooks G consisting of unitary matrices are
generalized to allow codebooks consisting of scaled unitary
matrices. It is shown that the use of scaled unitary matrices in
G provides opportunity to use linear designs in the differential
set-up. Motivated by the low decoding complexity of the
Alamouti design, four group decodable codes were proposed
recently in [37] for networks with number of relays of the
form 2a for any positive integer a.
Notice that the 4-group decodability is the property of
the linear design. Linear designs with four-group decodable
property are constructed using extended Clifford algebras.
However, the STBCs from the proposed designs are not
fully diverse for an arbitrary signal set and moreover, all the
columns of the design are not orthogonal. Hence, such designs
cannot be directly used to construct scaled unitary matrices
using arbitrary signal set. Therefore, the authors explicitly
construct signal sets for the proposed linear designs such
that the resulting linear STBCs have scaled unitary matrices
meeting the power constraint and provide full diversity as well.
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Example 3: For K = 4, the unitary STBC G is obtained
using the following design,

X =
1√
4

⎡
⎢⎢⎣

x1 x2 −x∗
3 −x∗

4

x2 x1 −x∗
4 −x∗

3

x3 x4 x∗
1 x∗

2

x4 x3 x∗
2 x∗

1

⎤
⎥⎥⎦ .

Note that the first column of the design is not orthogonal to the
second column. The appropriate signal set for the above design
can be obtained using Construction 4.4 in [37]. This code is 4-
group decodable or single complex symbol decodable (since
the number of real symbols is 8).

V. DSTBCS FOR ASYNCHRONOUS NETWORKS WITH AF
PROTOCOL

A. A distributed space-time coding in asynchronous wireless
relay networks

The authors in [9] recently presented a detailed analysis on
the problem of distributed space-time coding for a synchro-
nized two-hop wireless relay network. In [47], the authors
extend the work of [9] to asynchronous wireless networks
by employing orthogonal frequency division multiplexing
(OFDM) to combat timing errors from relay nodes. Based
on a layered structure, a distributed space-time code design
is presented which achieves full spatial diversity for an asyn-
chronous wireless relay network. In the rest of this subsection,
we provide the channel model and the code constructions
presented in [47] along with an example.
The wireless network considered in this section is similar to
the one considered in Section III. The broadcast phase remains
same as in Section III, however, there are changes in the
second phase, and hence we only point out the changes in
the (i) processing and (ii) the ingredients at the relay nodes to
handle the asynchronous condition. The k-th relay is scheduled
to transmit

tk =

√
P2T

Pr
Akrk ∈ C

T×1 (20)

where Pr is the average norm of the vector rk. It is assumed
that the transmission delay in the path between the k-th relay
and the destination is δk. Each relay is assumed to know lp,
the maximum of δk for all k = 1, 2, · · ·K . The k-th relay
applies a N -point IDFT (N ≥ T ) on tk and adds the cyclic
prefix of length lp before transmitting it to the destination.
At the destination node, after the CP removal and N-Point
FFT transformation, the received signal can be written as

y = T

√
P1P2

Pr
Xf + n ∈ C

T×1,

where w ∼ CSCG (0T×1, IT ) is the additive noise at
the destination. The equivalent channel f is given by
[h1g1 h2g2 · · · hKgK ]T ∈ C

K×1. Every codeword X ∈
CT×K which is of the form,

X = [A1x ◦ dτ1 xA2x ◦ dτ2 · · · AKx ◦ dτK ] ∈ C
T×K ,
(21)

where the elements of dτk are some powers of exp( j2πτk

N ).
From the results of [9], for the set C to be fully diverse, for any
X1, X2 ∈ C, the matrix X1−X2 should have full rank. For full

Source
Destination

Relay 1

Relay 2

h1 g1

h2 g2

Fig. 5. Wireless relay network model with two relays.

diversity, the codewords have to satisfy the full rank property
in the presence of the vectors dτk . In the same paper, the
authors present a method of constructing full diversity codes
which are based on layered structure (Section III, [47]). For
example, a DSTBC for K = 5 and T = 5 is presented below.

X =

⎡
⎢⎢⎢⎢⎣

x1 x5γ
4 x4γ

3 x3γ
2 x2γ

x2γ x1 x5γ
4 x4γ

3 x3γ
2

x3γ
2 x2γ x1 x5γ

4 x4γ
3

x4γ
3 x3γ

2 x2γ x1 x5γ
4

x5γ
4 x4γ

3 x2γ
2 x2γ x1

⎤
⎥⎥⎥⎥⎦ ,

where the variables xi’s take values from a QAM constellation.
A 64-tone (N = 64) OFDM is employed at each relay. The
presented code is fully diverse for arbitrary timing errors when
γ = exp( j2π

37 ).

B. A Simple Alamouti Space-Time Transmission Scheme for
Asynchronous Cooperative Systems

In [46], the authors propose DSTBCs based on orthogonal
frequency-division multiplexing (OFDM) for an asynchronous
cooperative system with two relays (shown in Fig. 5). In
such a scheme, OFDM is implemented at the source node
wherein the OFDM symbol is preceded with a cyclic prefix
(CP) of length lp before broadcasting it to all the relays.
The cyclic prefix length lp corresponds to the maximum of
the possible relative timing errors of the signals arrived at
the destination from the relay nodes. At the relay nodes, the
OFDM symbols undergo a time-reversion and complex conju-
gation processing before getting forwarded to the destination.
It is emphasized that the relay nodes only need to implement
the time-reversion, some sign changes from plus to minus,
and/or the complex conjugation to the received signals, and
hence the processing complexity at the relays is low. In this
scheme, the received signals at the destination node have the
Alamouti code structure on each sub-carrier, and thus, it has
the fast symbol-wise ML decoding. The authors show that this
simple scheme achieves second-order diversity gain without
the synchronization requirement at the relay nodes.
When there are more than two relay nodes, the authors use
the idea of clustered nodes wherein all the relay nodes can
be split in to two clusters of nodes. The nodes in the same
cluster implement the same space-time processing. The first
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cluster serves as one relay and the second cluster serves as
the other relay. However, the diversity offered by such an
implementation is only 2 irrespective of the number of relays.
In [48], the same authors extend their work in [46] and pro-
pose Alamouti coded orthogonal frequency-divisionmultiplex-
ing (OFDM) scheme for cooperative communication system
based on decode and forward protocol. The proposed scheme
is shown to be robust to both timing errors and frequency
offsets. In order to mitigate the inter-carrier interference (ICI)
caused by multiple frequency offsets in the cooperative system,
an ICI-self cancellation scheme is constructed, which can sup-
press ICI effectively. Moreover, in the proposed scheme, if the
channels are real-valued fading channels, the received signals
at the destination node have the Alamouti code structure on
each sub-carrier and thus it has the fast symbol-wise ML
decoding and when frequency offsets are not large, the new
scheme can achieve diversity order 2.

C. OFDM based Distributed Space-Time Coding for Asyn-
chronous Relay Networks

Motivated by the simplicity of the scheme proposed in [46],
the authors in [40] have proposed more general transmission
schemes that can achieve full cooperative diversity for any
number of relays. The conditions on the distributed space-
time block code (DSTBC) structure that admit its application
in the proposed transmission scheme are identified and it
is pointed out that the recently proposed full diversity four
group decodable DSTBCs [36] from precoded co-ordinate
interleaved orthogonal designs and extended Clifford algebras
satisfy these conditions. It is then shown how differential
encoding at the source can be combined with the proposed
transmission scheme to arrive at a new transmission scheme
that can achieve full cooperative diversity in asynchronous
wireless relay networks with no channel information and also
no timing error knowledge at the destination node. Finally,
four group decodable distributed differential space-time block
codes [37] applicable in this new transmission scheme for
power of two number of relays are also provided.

VI. DSTBCS FOR SYNCHRONOUS NETWORKS WITH DF
PROTOCOL

A. Signal model for decode and forward protocol

The wireless network considered in this section is similar
to the one considered in Section III. With reference to the
signal model in Section III, we only point out the changes in
the (i) processing and (ii) the ingredients at the various nodes
required for the DF protocol.
As against one of the assumptions listed in Section III,
in this set-up, we assume that the relay nodes have the
knowledge of all the fade coefficients hk’s. Note that if the
above assumption is not made, then each relay has to use a
non-coherent decoder (for decoding the information symbols)
which is sub-optimal in terms of error performance compared
to the coherent decoder. The broadcast phase remains same as
that for the AF protocol, however, in the second phase, the k-th
relay node decodes the information vector x using the received

vector, rk. Using the decoded information symbols, all the
relays distributively construct a chosen STBC by transmitting
the predecided column of the codeword. For example, if the
relay nodes decide to distributively transmit the following
STBC

X (x) = [A1x A2x · · · AKx]

then, the k-th relay will transmit the vector Akx. The vector
received at the destination is given by

y =
√

P2X (x) g + w

where w ∼ CSCG (0T×1, IT ) is the additive noise at the
destination. The channel g is given by [g1 g2 · · · gK ] ∈ C

K×1.
The above channel equation looks similar to that of a MIMO
channel with single receive antenna. As a result, all the existing
STBCs for a MISO channel are applicable in this set-up.
Note that DSTBCs based on the DF protocol provide a
diversity order of K only if all the K relays decode the
information symbols of the source without error for every
codeword use. However, in practice, all the K relays need
not decode the information symbols without error and hence,
for a relay network with K relays using the DF protocol,
a diversity order of K is not guaranteed. To mitigate such
scenarios, use of relay selection strategies or cyclic redundancy
check (CRC) codes or fountain codes [16] become essential
which in turn increases the overhead on the system and/or
requires more resources such as power and bandwidth. With
such schemes, nodes which decode the information without
error participates in relaying. Considering the above factors,
the diversity order obtained with above selection based DF
protocol is a random number upper-bounded by K . Also, note
that the computational complexity at the relays is assumed
to be high for the purpose of (i) channel estimation and (ii)
decoding the information symbols.
Now, we present the DSTBC construction proposed in [44]
for the DF protocol. The DSTBCs in [44] are designed for
networks which have a large set of single-antenna relay nodes
N . However, because of the DF protocol, at any given time
only a small, apriori unknown subset of nodes can be active
(as exemplified in Fig. 6). In their proposed scheme, each
relay is assigned a unique node signature vector of length
Nc. The signal transmitted by an active relay node is the
product of a predecided STBC and the signature vector. Unlike
the earlier explained processing at the relays, the relays do
not transmit a column of a STBC. It is shown that existing
STBCs designed for Nc > 2 co-located antennas are favorable
choices for the code matrix, guaranteeing a diversity order
of d = min(NS , Nc) if NS nodes are active. For the case,
NS > Nc, the performance loss entailed by the distributed
implementation is analytically characterized. Furthermore, the
authors provide efficient methods for the optimization of the
set of signature vectors. Depending on the chosen design,
the proposed DSTBCs allow for low-complexity coherent,
differential, and non-coherent detection, respectively.

VII. DSTBCS FOR ASYNCHRONOUS NETWORKS WITH DF
PROTOCOL

In this section, we discuss the design of DSTBCs for
asynchronous relay networks when all the relays employ the
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Fig. 6. Example for the communication network considered in [44] with a
total of 9 relay nodes. Only the nodes {4, 2, 3, 7} are active and transmit to
the destination.

DF protocol. To focus on the problems involved in the code
design for asynchronous networks, we assume that all the K
relay nodes that participate in the cooperation have decoded
the information symbols without error.
Let C be a T × K STBC (designed for synchronous
relay networks) to be distributively constructed by all the
relays. In asynchronous networks, the columns of a codeword
may reach the destination with different delays. Let all the
timing delays in the channel be captured by the delay profile
∆ = (δ1, δ2, · · · , δK) where δk denotes the relative delay of
the signal received from the k-th relay as referenced to the
earliest received relay signal. Let δmax denote the maximum
component of ∆. When a codeword X ∈ C is distributively
transmitted from all the relays, the received vector (excluding
the scaling factors) at the destination is given by y = X̄g + n,
where y ∈ C(T+δmax) and, X̄ ∈ C(T+δmax)×K is given by

X̄ =

⎡
⎣ 0δ1

0δ2
0δK

c1 c2 · · · cK

0δmax−δ1
0δmax−δ2

0δmax−δK

⎤
⎦

such that ck denotes the k-th column of X and 0δk
denotes a

zero vector of length δk. Therefore, C̄ is the equivalent STBC
seen by the destination which contains matrices of the form X̄.
Hence, for full diversity, all the pairwise difference matrices
between the codewords of C̄ must have full rank. An STBC
C is said to have a delay tolerance of τ for an asynchronous
relay network if the equivalent STBC C̄ is fully diverse for
arbitrary delays of duration up to τ symbols.
Through an example, we show that STBCs that are fully
diverse for a synchronous relay network need not be fully
diverse when employed in an asynchronous relay network. We
consider the example of Alamouti code

X =

[
x −y∗

y x∗

]
,

where the complex variables x and y take values from a
complex signal set. Note that the columns correspond to relay
indices and the rows correspond to complex channel uses.
The first relay transmits the symbols x and y in consecutive

time slots. whereas the second relay transmits −y∗ and x∗

in consecutive time slots. For the synchronous case, it is
well known that the Alamouti code provides full diversity.
However, in an asynchronous network, when the delay profile
is ∆ = (0, 1) (when the second column is delayed by one
symbol compared to the first column), the difference matrix
between two codewords is of the form

∆X̄ =

⎡
⎣ x1 0

y1 −y∗
1

0 x∗
1

⎤
⎦−
⎡
⎣ x2 0

y2 −y∗
2

0 x∗
2

⎤
⎦ =

⎡
⎣ ∆x 0

∆y −∆y∗

0 ∆x∗

⎤
⎦ ,

where xi and yi correspond to the realizations of x and y
respectively. When x1 = x2 and y1 �= y2, the difference matrix
will be

∆X =

⎡
⎣ 0 0

∆y −∆y∗

0 0

⎤
⎦

which does not have rank two. Hence, the Alamouti code is not
fully diverse in asynchronous relay networks. On the similar
lines, it can be shown that the well known, high rate STBCs
from cyclic division algebras (CDA) [66] are not fully diverse
in asynchronous networks [56].
In the rest of this section, we present some well known
constructions of full diversity DSTBCs for asynchronous relay
networks based on the DF protocol.
In [49], Hammons and El Gamal developed binary rank cri-
teria that allowed algebraic design of STBCs with full diversity
for any number of antennas. From such binary rank criteria,
the same authors developed the general stacking construction
for full diversity STBCs, examples of which include STBCs
derived from Galois rings/fields and space-time trellis codes
(STTC) corresponding to rate 1

K convolutional codes.
Li and Xia [51] later investigated the use of binary trellis
codes derived from the Hammons-El Gamal stacking construc-
tions for asynchronous relay networks. The authors showed
that when these codes are used in the multilevel Lu-Kumar
construction [50] for PSK and QAM modulation, the resulting
STBCs also achieve full diversity in asynchronous networks.
Some diversity product properties of space-time trellis codes
are also studied and simplified decoding methods are dis-
cussed. However, the memory sizes of the STTCs in [51]
grow exponentially in terms of the number of relays which
may cause a high decoding complexity when the number of
relays is not small. To avoid such a problem, Shang and Xia
[52] studied a systematic method of generating delay tolerant
STTCs with smallest possible constraint length.
In [53], Hammons has shown that various generalizations of
Lu-Kumar multilevel construction to more general AM-PSK
constellations also preserve delay tolerance. In particular, the
first delay tolerant DSTBC was proposed in [53]. The author
shows that for small constellation sizes, the proposed codes
can be decoded by brute-force and for larger constellations
one can use lattice decoders. In the sequel, [54] discusses
how lattice decoding techniques can be adapted to perform
decoding of such STBCs for asynchronous diversity.
For point-point MIMO channels, there has been substan-
tial work on the design STBCs that provide full diversity
and admit near ML lattice based decoders with reasonable
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X1 =

⎡
⎣ 0 x

x∗ 0
x∗ 0

⎤
⎦+ j

⎡
⎣ y 0

0 y∗

0 y∗

⎤
⎦ . (22)

X2 =
1√

2(1 + r2)

⎡
⎣ x2 − rx3 x1 + jrx4

jrx1 + x4 rx2 + x3

jrx1 + x4 rx2 + x3

⎤
⎦ where r =

−1 +
√

5

2
. (23)

complexity. Specifically, CDA based STBCs and Threaded
Algebraic Space-Time (TAST codes) [55] provide high rate
(in symbol per channel use) and full diversity order. However,
both TAST codes and CDA based STBCs are not delay
tolerant. In particular, all STBCs with minimum delay (i.e.
K = T ) have been shown not to be delay tolerant since
they contain diagonal matrices as one of their threads and
diagonal matrices are not delay tolerant [56]. As a result, non-
square DSTBCs (such that T > K) have to be constructed for
asynchronous networks. Towards that direction the authors in
[56] propose distributed TAST codes that are delay tolerant.
Instead of presenting a detailed construction of distributed
TAST codes, we present two DSTBCs as examples in (22)
and (23) for a network with 2 relays. The presented codes in
(22) and (23) are variants of the well known Alamouti code
and the Golden code respectively. More details on this can be
found in [56]. Similar to TAST codes, the new delay tolerant
codes can also be decoded by lattice decoding algorithms
such as sphere or sequential decoders. The readers can also
refer to [57] for more details on delay tolerant DSTBCs for
asynchronous networks.

VIII. CONCLUSION AND FUTURE TRENDS

A survey of distributed space-time coding was presented for
two-hop wireless relay networks. In particular, DSTC schemes
for asynchronous networks (both with AF and DF protocols)
were also covered. We point out that DSTC schemes based on
DF protocol are not favourable because of (i) high complexity
needed at the relay nodes and (ii) moreover, a fixed diversity
order is not guaranteed. On the other hand, DSTC schemes
based on AF protocol are favourable since complexity is
required at the relays and a fixed diversity order is guaranteed.
To summarize, out of the four classes of DSTBCs studied, we
believe that DSTC schemes with AF protocol for asynchronous
networks are of at most practical importance. Some possible
directions for future work in this area are as follows:

• DSTBCs with low ML decoding complexity have been
well studied for synchronous networks with AF protocol
(see Section IV). An interesting direction is to design
low ML decoding complexity DSTBCs for asynchronous
networks. In particular, it is interesting to design SSD
DSTBCs for asynchronous, AF based protocols.

• In Subsection IV-B, a training based DSTC technique is
presented to construct the variants of the well known class
of CODs in two-hop relay networks using the amplify
and forward protocol. The inclusion of training symbols
into the structure of the code has been shown to provide
high rate along with the SSD property for the constructed

codes. This idea can be extended to construct all the
multi-group decodable codes [67] existing for point-to-
point co-located MIMO channels in two-hop wireless
networks.

• We are not aware of constructions of non-coherent DST-
BCs which are delay tolerant in DF protocol based
two-hop wireless networks. This is also an interesting
direction for further research.
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