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Abstract

An index coding scheme in which the source (transmitter) transmits binary symbols over a wireless

fading channel is considered. Index codes with the transmitter using minimum number of transmis-

sions are known as optimal index codes. Different optimal index codes give different performances

in terms of probability of error in a fading environment and this also varies from receiver to receiver.

The thesis consists of three parts.

In the first part, the goal is to identify optimal index codes which minimizes the maximum prob-

ability of error among all the receivers. A criterion for optimal index codes that minimizes the

maximum probability of error among all the receivers is identified. For a special class of index

coding problems, an algorithm to identify optimal index codes which minimize the maximum error

probability is given. Techniques and claims with simulation results are illustrated leading to con-

clude that a careful choice among the optimal index codes will give a considerable gain in fading

channels.

In the second part of the thesis, an algebraic formulation of index codes is given from which a

lower bound on the total number of index codes possible is found. A criterion to find optimal index

codes with minimum-maximum error probability is found for the special case of single unicast index

coding problems.

In a general index coding problem, there is a single sender with multiple messages and multiple

receivers wanting a set of messages and knowing a different set of messages. The last part of

the thesis considers the case where in-spite of this requirement, each receiver also has a restricted

message set assigned to it, out of which it is not supposed to receive any. We find the possible

rates for some special cases of index coding with restricted information by following an interference

alignment approach.
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Chapter 1

Introduction and Background

The problem of index coding with side information was introduced by Birk and Kol [1] in which a

central server (source/transmitter) has to transmit a set of data blocks to a set of caching clients

(receivers). The clients may receive only a part of the data which the central server transmits. The

receivers inform the server about the data blocks which they possess through a backward channel.

The server has to make use of this additional information and find a way to satisfy each client using

minimum number of transmissions. This problem of finding a code which uses minimum number

of transmissions is the index coding problem.

Bar-Yossef et al. [2] studied a type of index coding problem in which each receiver demands

only one single message and the number of receivers equals number of messages. A side information

graph was used to characterize the side information possessed by the receivers. It was found that

the length of the optimal linear index code is equal to the minrank of the side information graph

of the index coding problem. Also few classes of index coding problems in which linear index codes

are optimal were identified. However Lubetzky and Stav [13] showed that, in general, non-linear

index codes are better than linear codes.

Ong and Ho [4] classify the index coding problem depending on the demands and the side

information possessed by the receivers. An index coding problem is unicast if the demand sets of

the receivers are disjoint. It is referred to as single unicast if it is unicast and the size of each

of the demand set is one. If the side information possessed by the receivers are disjoint then the

problem is referred to as uniprior index coding problem. A uniprior index coding problem in which

the size of the side information is one at all receivers is referred to as single uniprior problem. All

1



1.1 Optimal index codes with min-max error probability 2

other types of index coding problems are referred to as multicast/multiprior problems. It is proved

that for single uniprior index coding problems, linear index codes are sufficient to get optimality in

terms of minimum number of transmissions.

The work reported in this thesis focuses on 1) Optimal index codes with min-max error probability

2) The number of optimal index codes 3) Index coding with restricted information

1.1 Optimal index codes with min-max error probability

1First we consider the scenario in which the binary symbols are transmitted in a fading channel

and hence are subject to channel errors. We assume a fading channel between the source and

the receivers along with additive white Gaussian noise (AWGN) at the receivers. Each of the

transmitted symbol goes through a Rayleigh fading channel. This is the first work that considers

the performance of index coding in a fading environment. The following decoding procedure is

used. A receiver decodes each of the transmitted symbol first and then uses these decoded symbols

to obtain the message demanded by the receiver. Simulation curves showing Bit Error Probability

(BEP) as a function of SNR are provided. One can observe that the BEP performance at each

receiver depends on the optimal index code used. A condition which minimizes the maximum

probability of error among all the receivers is derived. For a special class of index coding problems,

an algorithm to identify an optimal index code which gives the best performance in terms of minimal

maximum error probability across all the receivers is given.

1.2 The number of optimal index codes

Towards identifying the best optimal length index code one needs to know the number of optimal

length index codes. In this work, we present results on the number of optimal length index codes

making use of the representation of an index coding problem by an equivalent network code. We

give the minimum number of codes possible with the optimal length. This is done using a simpler

algebraic formulation of the problem compared to the approach of Koetter and Medard [6].

1The content of this chapter is a joint work with Anoop Thomas and A. Chandramouli.



1.3 Index coding with restricted information 3

1.3 Index coding with restricted information

In a general index coding problem, there is a single sender with multiple messages and multiple

receivers wanting a set of messages and knowing a different set of messages. We consider the case

where in-spite of this, each receiver also have a restricted message set assigned to it,out of which

it is not supposed to receive any. This is a case introduced by Dau et. al. in section IV.E of their

work [18]. We have extended the theorems in [17] for the new scenario and find the possible rates

for some special cases of index coding by following an interference alignment approach.

1.4 Organisation of The Report

The report is organized as follows.

• In Chapter 2, we begin with introduction of the system model and necessary notations. In

Section 2.1 we present a criterion for an index code to minimize the maximum probability of

error. In Section 2.2 we give an algorithm to identify an optimal index code which minimizes

the maximum probability of error for single uniprior problems. In Section 2.3 we show the

simulation results.

• In Chapter 3, through an algebraic characterization, we give a method to identify the optimal

length of a linear solution for a single unicast index coding problem. This is done by finding

a transfer matrix (whose elements depend on the index code we choose) which relates the

input messages and the decoded messages. This is done in Section 3.2. We give the minimum

number of codes possible with the optimal length for a single unicast index coding problem.

This is done in Section 3.3. We find this by finding the minimum number of feasible solutions

of a linear system of equations which represents our index coding problem. We give a method

to find the best linear solution in terms of minimum-maximum error probability among all

codes with the optimal length for a single unicast case in Section 3.4 and we give simulation

results verifying our claim.

• In Chapter 4, we use interference alignment techniques to find feasible rates for an index

coding problem. First, we define index coding with restricted information which was first
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introduced by Dau et. al. in their work[18]. We extend the theorems and results in [17] by

considering this extra condition. This is done in Sections 4.1 and 4.2. In Section 4.3, we find

the capacities of two index coding settings one of whose special case is addressed in [17].



Chapter 2

Optimal Index Coding with Min-Max

Probability of Error over Fading

Channels

In 1 index coding problems, there is a unique source S having a set of nmessagesX = {x1, x2, . . . , xn}

and a set of m receivers R = {R1, R2, . . . , Rm}. Each message xi ∈ X belongs to the finite field F2.

Each Ri ∈ R is specified by the tuple (Wi,Ki), where Wi ⊆ X are the messages demanded by Ri

and Ki ⊆ X \Wi is the information known at the receiver. An index coding problem is completely

specified by (X,R) and the index coding problem is referred as I(X,R).

The set {1, 2, . . . , n} is denoted by dnc. An index code for an index coding problem is defined

as:

Definition 1. An index code over F2 for an instance of the index coding problem I(X,R), is an

encoding function C : Fn2 → FN2 such that for each receiver Ri, i ∈ dmc, there exists a decoding

function Di : FN2 ×F|Ki|2 → FWi
2 satisfying Di(C(X),Ki) =Wi, ∀ X ∈ Fn2 .The parameter N is called

the length of the index code.

An index code is said to be linear if the encoding function C is linear over F2. A linear index

code can be described as C(x) = xL,∀ x ∈ Fn2 where L is an n × N matrix over Fq. The matrix

1The content of this chapter is a joint work with Anoop Thomas and A. Chandramouli. Also communicated to
IEEE Trans. on Vehicular Technology and a shorter version to appear in Proc. PIMRC’2015, Hong Kong, Aug.,
2015.

5



6

L is called the matrix corresponding to the linear index code C. The code C is referred to as the

linear index code based on L.

Consider an index coding problem I(X,R) with index code C, such that C(X) = {c1, c2, . . . , cN}.

The source has to transmit the index code over a fading channel. Let S denote the constellation

used by the source. Let ν : F2 → S denote the mapping of bits to the channel symbol used at

the source. Let ν(C(X)) = sX , denote the sequence of channel symbols transmitted by the source.

Assuming quasi-static fading, the received symbol sequence at receiver Rj corresponding to the

transmission of sX is given by yj = hjsX +nj where hj is the fading coefficient associated with the

link from source to receiver Rj . The additive noise nj is assumed to be a sequence of noise samples

distributed as CN (0, 1), which denotes circularly symmetric complex Gaussian random variable

with variance one. Coherent detection is assumed at the receivers. In the model considered, the

receiver decodes C(X) and then tries to find the demanded message xi ∈ Wi using the decoded

index code. In this report it is shown that different optimal index codes give rise to different

performance in terms of probability of error.

We recall few of the relevant standard definitions in graph theory. A graph is a pair G = (V,E)

of sets where the elements of V are the vertices of graph and the elements of E are its edges. The

vertex set of a graph is referred to as V (G), its edge set as E(G). Two vertices v1, v2 of G are

adjacent if v1v2 is an edge of G. An arc is a directed edge. For an arc v1v2, vertex v1 is the tail

of the arc and vertex v2 is the head of the arc. If all the vertices of G are pairwise adjacent then

G is complete. Consider a graph G′ = (V ′, E′). If V ′ ⊆ V and E′ ⊆ E, then G′ is a subgraph of

G written as G′ ⊆ G. A subgraph G′ is a spanning subgraph if V ′ = V . A path is a non-empty

graph P = (V,E) of the form V = {v0, v1, . . . , vk}, E = {v0v1, v1v2, . . . , vk−1vk} where the vi are

all distinct. If P = v0v1 . . . vk−1 is a path and k ≥ 3, then a cycle is a path with an additional

edge vk−1v0. A graph is acyclic if it does not contain any cycle. The number of edges of a path

is its length. The distance dG(x, y) in G of two vertices x, y is the length of a shortest x-y path in

G. The greatest distance between any two vertices in G is the diameter of G. A graph G is called

connected if any two of its vertices are linked by a path in G. A tree is a connected acyclic graph.

A spanning tree is a tree which spans the graph. For two graphs G1 = (V1, E1) and G2 = (V2, E2),

G1 ∪G2 := (V1 ∪ V2, E1 ∪ E2), G1 ∩G2 := (V1 ∩ V2, E1 ∩ E2) and G1\G2 := (V1\V2, E1\E2).
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2.1 A Criterion for Minimum Maximum Probability of Error

In this section we identify a condition that is required to minimize the maximum probability of

error for decoding a message across all the receivers. Since the transmissions are over a fading

channel each transmitted symbol has a probability of error. Let the probability of error of each

transmitted symbol (denoted by tx) be p. Let us consider an index code C of length N for an

index coding problem I(X,R). Consider a receiver Ri ∈ R, which uses c of the N transmissions

to recover a message xi ∈ Wi. We try to find the probability of error in decoding the message xi.

Let the decoded message be x̂i. The probability of error in decoding the message xi is

Pr(x̂i 6= xi) = Pr(1 tx in error ∪ 3 tx in error ∪ . . . c tx in error )

=
∑

i odd,i≤c
Pr(i tx in error ) =

∑
i odd,i≤c

 c

i

 pi(1− p)c−i.
(2.1)

We show that the probability of error in decoding a message decreases if receiver uses less number

of transmissions to decode that message.

Lemma 1. The probability of error in decoding a message at a particular receiver decreases with a

decrease in the number of transmissions used to decode the message.

Proof. This lemma can be proved by showing that the upper bound in (2.1) is an increasing function

on c which is the number of transmissions used to decode the message. We have

∑
i odd,i≤c

 c

i

 pi(1− p)c−i =
(p+ (1− p))c − ((1− p)− p)c

2
=

1− (1− 2p)c

2
.

Consider,

1− (1− 2p)c+1

2
− 1− (1− 2p)c

2
=

(1− 2p)c(1− (1− 2p))

2
= (1− 2p)cp.

As c increases the difference remains positive as long as p < 0.5. As probability of transmitted

symbol to be in error is less than 0.5, the lemma is proved.

We have considered only decoding of one message at a particular receiver. However a receiver

may have multiple demands. Also there are many receivers to be considered. So we try to bound
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the maximum error probability. To achieve this we try to identify those optimal index codes

which will reduce the maximum number of transmissions used by any receiver to decode any of

its demanded message. Such optimal index codes perform better than other optimal index codes

of the same number of transmissions. Such index codes are not only bandwidth optimal (since

the minimum number of transmissions are used) but are also optimal in the sense of minimum

maximum probability of error.

2.2 Bandwidth optimal index code which minimizes the maximum

probability of error

In Section 2.1, we derived a condition for minimizing the maximum probability of error. The index

code should be such that the maximum number of transmissions used by any receiver to decode

any of its demands should be as less as possible. In this section, we identify such index codes for

single uniprior index coding problems. Recall that in a single uniprior problem each receiver Ri

demands a set of messages Wi and knows only one message xi. There are several linear solutions

which are optimal in terms of least bandwidth for this problem but among them we try to identify

the index code which minimizes the maximum number of transmissions that is required by any

receiver in decoding its desired messages. We motivate our problem with the following example.

Example 1. Consider a single uniprior index coding problem I(X,R) with X = {x1, x2, . . . , x9}

and R = {R1, R2, . . . , R9}. Each receiver Ri ∈ R, knows xi and demands xi+2 where + denotes

modulo 9 addition. In addition to the above demands, receiver R1 and R2 also demands x2 and x3

respectively. The length of the optimal linear code for this problem is eight. In this example we

consider four optimal linear codes and shows that the number of transmissions used in decoding

the demands at receivers depends on the code.

Consider codes C1,C2,C3 and C4 represented by the matrices L1, L2, L3 and L4 respectively.

The matrices representing the codes are given in Table 2.1. The number of transmissions required

by each receiver in decoding its demand for each of the codes is given in Table 2.2. Since receivers

R1 and R2 have two demands, two entries are given in its column each corresponding to one of

its demands. The maximum number of transmissions used by each of the receivers is highlighted.

From the table we can observe that the maximum number of transmissions required by a receiver
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L1 =



1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


L2 =



1 1 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0



L3 =



1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


L4 =



1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0
0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1



Table 2.1 Matrices describing codes C1,C2,C3 and C4 of Example 1

Codes R1 R2 R3 R4 R5 R6 R7 R8 R9

C1 1, 1 2, 2 2 2 2 2 2 1 2
C2 2, 1 1, 4 4 1 1 2 1 1 1
C3 1, 1 2, 1 1 1 1 1 1 1 4
C4 4, 5 1, 1 1 1 1 1 1 1 4

Table 2.2 Number of transmissions used at receivers to decode its demands for codes C1,C2,C3 and C4.

in decoding its demands is four for codes C2 and C3. For code C4, the maximum number of

transmissions used to decode the message is five. However for code C1, the maximum number is

two. Among the four codes considered, code C1 gives minimum maximum error probability across

the receivers. In this section we give an algorithm to identify such codes which gives minimum

maximum error probability across receivers.

The single uniprior problem can be represented by information flow graph G of m vertices

each representing a receiver, with directed edge from vertex i to vertex j if and only if node j

wants xi. Note that in a single uniprior problem the number of receivers is equal to the number

of messages. This is because each receiver knows only one message and the message known to

each receiver is different. So n > m implies that there are some messages which does not form

part of side information of any of the receivers. Such messages have to be transmitted directly

and we can reduce that to an index coding problem where n = m. Ong and Ho have proved that

all single uniprior problems have bandwidth optimal linear solutions. The Algorithm 1 (Pruning

algorithm), which takes information flow graph as input was proposed. The output of Algorithm 1

is G′ which is a set of non-trivial strongly connected components each represented by G′sub,i and a

collection of arcs. The benefit is that a coding scheme satisfying G′ will satisfy the original index

coding problem G as well. We propose Algorithm 2 for the single uniprior problem which finds the

bandwidth optimal index code that minimizes the maximum probability of error.



2.2 Bandwidth optimal index code which minimizes the maximum probability of
error 10

Algorithm 1 The Pruning Algorithm

Initialization: G′ = (V ′, E′)← G = (V,A)
1)Iteration

while there exists a vertex i ∈ V ′ with

(i) more than one outgoing arc, and

(ii) an outgoing arc that does not belong to any cycle [denote any such arc by (i,j)]

do

remove from G′, all outgoing arcs of vertex i except for the arc (i, j);

end

2) label each non-trivial strongly connected component in G′ as G′sub,i, i ∈ {1, 2, . . . , Nsub};

Algorithm 2
1. Perform the pruning algorithm on the information flow graph of the single uniprior problem and obtain

the sets G′ and G′sub,i, i ∈ {1, 2, . . . , Nsub}.

2. For each G′sub,i perform the following:

• Form a complete graph on vertices of G′sub,i.

• Identify the spanning tree T , which has the minimum maximum distance between (i, j) for all
(i, j) ∈ E(G′sub,i).

• For each edge (i, j) of T , transmit xi ⊕ xj .

3. For each edge (i, j) of G′\G′sub, transmit xi.
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The first step of Algorithm 2 is the pruning algorithm which gives G′ and its connected com-

ponents G′sub,i. The number of such connected components in G′ is Nsub. Algorithm 2 operates

on each of the connected components G′sub,i. A complete graph is formed on the vertices of G′sub,i.

Recall that in a complete graph all the vertices are pairwise adjacent. Consider a spanning tree

Ti of the complete graph on vertices of G′sub,i. Consider an edge (i, j) ∈ E(G′sub,i). An edge

(i, j) ∈ E(G′sub,i) indicates that vertex j demands the message xi. In the spanning tree Ti, there

will be a unique path between the vertices i and j. Algorithm 2 computes the distance of that

unique path. This is done for all edges (i, j) ∈ E(G′sub,i) and the maximum distance is observed.

This is repeated for different spanning tress and among the spanning tress the one which has the

minimum maximum distance is identified by the algorithm. Let T be the spanning tree identified

by the algorithm. From T we obtain the index code as follows. For each edge (i, j) of T , transmit

xi⊕xj . There will be few demands which correspond to arcs in G′ \G′sub where G′sub is the union

of all connected components G′sub,i. For each arc (i, j) ∈ G′ \G′sub, xi is transmitted.

Theorem 1. For every single uniprior index coding problem, the Algorithm 2 gives the bandwidth

optimal index code which minimizes the maximum probability of error. Moreover the number of

transmissions used by any receiver in decoding any of its message is at most two for the index code

obtained from Algorithm 2.

Proof. First we prove that Algorithm 2 gives a valid index code. Symbols transmitted in third

step of algorithm are messages itself and any receiver demanding those messages gets satisfied. All

receiver nodes in T are able to decode the message of every other vertex in T in the following

way. Consider two vertices i and j with vertex j demanding xi. Since T is a spanning tree

there exists a unique path between any pair of its vertices. Consider that unique path P =

(i, k1, k2, . . . , j) between i and j. Receiver j can obtain xi⊕xj by performing XOR operation on all

the transmitted symbols corresponding to the edges in the path P . Now we prove the optimality

in bandwidth. The number of edges of every spanning tree is V (G′sub,i) − 1. For each G′sub,i we

transmit V (G′sub,i) − 1 symbols. The total number of transmissions for our index code is equal

to
Nsub∑
i=1

(V (G′sub,i) − 1) + |E(G′\G′sub)|. The index code of Algorithm 2 uses the same number of

transmissions as the bandwidth optimal index code [4]. Observe that for every connected graph

Gconn representing a single uniprior problem, the source cannot achieve optimal bandwidth if
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it transmits any of the message directly. Let us assume that the source transmits xi. Note that

message xi is the side information of one of the receivers say j. So to satisfy the demands of receiver

j the source has to transmit its want-set directly. Thus to satisfy all the receivers, the source needs

to transmit |V (Gconn)| symbols where as the optimal number of transmissions is |V (Gconn) − 1|.

Hence for any connected component G′sub,i source cannot transmit the messages directly. Finally,

observe that the number of transmissions used by the receiver to decode the desired message is

equal to the distance between the vertices in the corresponding spanning tree. So the spanning tree

which minimizes the maximum distance for all the demands of the index coding problem gives the

index code which minimizes the maximum probability of error. There exists spanning trees for a

complete graph with diameter two, so every receiver can decode any of its desired message using

at most two transmissions.

Algorithm 2 identifies an index code which minimizes the maximum number of transmissions

required by any receiver to decode its demanded message. Note that the spanning tree identified in

step 2 of the algorithm need not be unique. Hence there are multiple index codes which offers the

same minimum maximum number of transmissions. Among these we could find those index codes

which reduces the total number of transmissions used by all the receivers. This could be achieved

by modifying the step 2 of Algorithm 2. Identify the set of spanning trees which has the minimum

maximum distance between (i, j) for all (i, j) ∈ E(G′sub,i). Among these spanning trees we can

compute the total distance between all edges (i, j) ∈ E(G′sub,i) and identify the spanning tree Ti

which minimizes the overall sum. For each edge (i, j) ∈ Ti transmit xi + xj . This will give the

index code which minimizes the total number of transmissions used in decoding all the messages

at all the receivers.

In the remainder of this section we show few examples which illustrate the use of the algorithm.

The simulation results showing the improved performance at receivers is given in Section 2.3.

Example 2. In this example we consider a single uniprior index coding problem having three re-

ceivers. The index coding problem has a message set X = {x1, x2, x3} and the set of receivers

R = {R1, R2, R3}. Receiver R1 demands messages x2 and x3. Receiver R2 demands x1 and re-

ceiver R3 demands x1 and x2. The information flow graph G for this problem is given in Figure 2.1.

For this index coding problem, length of the optimal index code is two. Total number of optimal
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1 2

3

Fig. 2.1 Information flow graph G of Example 2.

Code Encoding
R1 R2 R3

x2 ∈ W1 x3 ∈ W1 x1 ∈ W2 x1 ∈ W3 x2 ∈ W3

C1 x1 + x2, x1 + x3 1 1 1 1 2
C2 x2 + x1, x2 + x3 1 2 1 1 2
C3 x3 + x1, x3 + x2 1 2 2 1 1

Table 2.3 Comparison of optimal length linear codes for Example 2. Each row in the table gives code and the corresponding
number of transmissions the receiver uses in decoding its demanded messages.

linear index codes is three. The list of optimal index codes are as follows:

• Code C1 which transmits {x1 + x2, x1 + x3}.

• Code C2 which transmits {x1 + x2, x2 + x3}.

• Code C3 which transmits {x1 + x3, x2 + x3}.

The number of transmissions used by each of the receivers in decoding its demanded message for the

codes above is given in Table 2.3. From Table 2.3, we can infer that for all the optimal index codes,

the maximum number of transmissions used by any receiver is two. So for this specific instance of

index coding problem, any index code which is optimal in terms of bandwidth is optimal in terms

of minimum maximum error probability.

Example 3. Consider a single uniprior index coding problem with four messages x1, x2, x3, x4 and

four receivers R1, R2, R3, R4. Each receiver Ri knows xi and wants xi+1 where + denotes modulo

4 addition. The information flow graph G for this problem is given in Figure. The optimal length

of the index code for this index coding problem is three. We list out all possible optimal length

linear index codes by an exhaustive search. Total number of optimal length linear index codes for

this problem is 28. We list out all possible index codes in Table ??. There are many index codes in

which the maximum number of transmissions used by a receiver is three. However there are twelve

index codes in which the maximum number of transmissions used is two. The output of Algorithm

2 belongs to the category of index codes which allows any receiver to decode its wanted message

with the help of at most any two of the 3 transmissions. Observe that out of the 28 codes, 12 of
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1 2
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Fig. 2.2 Information flow graph G of Example 3.

them are good in terms of minimum-maximum error probability. Among the 12, there is one code

which is the best in terms of minimizing the error probabilities of all the receivers as well. Our

algorithm may not give that one. Algorithm 2 ensures that the code which it outputs will belong

to this group of 12 codes whose worst case error probabilities are same. Note that the number of

codes which perform better in terms of minimizing the maximum error probability is less than 50%

of the total number of optimal length index codes. For a similar problem involving five receivers

we were able to identify the total number of optimal length index codes as 840 and out of which

at least 480 codes does not satisfy the minimum maximum error probability criterion. Hence we

conclude that arbitrarily choosing an optimal length index code could result in using an index code

which performs badly in terms of minimizing the maximum probability of error.

Example 4. Consider a single uniprior index coding problem with four messages x1, x2, x3, x4 and

four receivers R1, R2, R3 and R4. Each receiver Ri knows xi. The want-sets for the receivers are as

follows: W1 = {x2, x4},W2 = {x3},W3 = {x1} and W4 = {x2, x3}. The information flow graph G

43 1

2

(a) Information flow graph G

43 1

2

(b) Spanning tree T

Fig. 2.3 Information flow graph G and Spanning tree T of Example 4.

of the problem is given in Figure 2.3(a). Note that the side information flow graph is a strongly

connected graph. Hence the output of the pruning algorithm is G itself. We perform Algorithm
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Code Encoding
R1 R2 R3 R4

W1 = {x2} W2 = {x3} W3 = {x4} W4 = {x1}
C1 x1 + x2, x2 + x3, x3 + x4 1 1 1 3
C2 x1 + x2, x2 + x3, x2 + x4 1 1 2 2
C3 x1 + x2, x2 + x3, x1 + x2 + x3 + x4 1 1 2 2
C4 x1 + x2, x2 + x3, x1 + x4 1 1 3 1
C5 x1 + x2, x3 + x4, x1 + x3 1 2 1 2
C6 x1 + x2, x3 + x4, x2 + x4 1 2 1 2
C7 x1 + x2, x3 + x4, x1 + x4 1 3 1 1
C8 x1 + x2, x1 + x3, x2 + x4 1 2 3 2
C9 x1 + x2, x1 + x3, x1 + x2 + x3 + x4 1 2 2 3
C10 x1 + x2, x1 + x3, x1 + x4 1 2 2 1
C11 x1 + x2, x2 + x4, x1 + x2 + x3 + x4 1 3 2 2
C12 x1 + x2, x1 + x2 + x3 + x4, x1 + x4 1 2 2 1
C13 x2 + x3, x3 + x4, x1 + x3 2 1 1 2
C14 x2 + x3, x3 + x4, x1 + x2 + x3 + x4 2 1 1 2
C15 x2 + x3, x3 + x4, x1 + x4 3 1 1 1
C16 x2 + x3, x1 + x3, x2 + x4 2 1 2 3
C17 x2 + x3, x1 + x3, x1 + x2 + x3 + x4 2 1 3 2
C18 x2 + x3, x1 + x3, x1 + x4 2 1 2 1
C19 x2 + x3, x2 + x4, x1 + x2 + x3 + x4 3 1 2 2
C20 x2 + x3, x2 + x4, x1 + x4 2 1 2 1
C21 x3 + x4, x1 + x3, x2 + x4 3 2 1 2
C22 x3 + x4, x1 + x3, x1 + x2 + x3 + x4 2 3 1 2
C23 x1 + x3, x2 + x4, x1 + x4 2 3 2 1
C24 x1 + x3, x1 + x2 + x3 + x4, x1 + x4 3 2 2 1
C25 x2 + x4, x1 + x2 + x3 + x4, x1 + x4 2 2 3 1
C26 x3 + x4, x2 + x4, x1 + x2 + x3 + x4 2 2 1 3
C27 x3 + x4, x2 + x4, x1 + x4 2 2 1 1
C28 x3 + x4, x1 + x2 + x3 + x4, x1 + x4 2 2 1 1

Table 2.4 Comparison of optimal length linear codes for Example 3. Each row in the table gives code and the corresponding
number of transmissions the receiver uses in decoding its demanded messages.
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Receivers Demands Decoding procedure

R1
x2 x1 ⊕ c2
x4 x1 ⊕ c2 ⊕ c3

R2 x3 x2 ⊕ c1
R3 x1 x3 ⊕ c2 ⊕ c1
R4

x2 x4 ⊕ c3
x3 x4 ⊕ c3 ⊕ c1

Table 2.5 Decoding procedure for Example 4.
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1
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3

4

5

(b) Spanning tree T obtained from Al-
gorithm 2 for Example 5.

Fig. 2.4 Information flow graph G and Spanning tree T of Example 4.

2 and the spanning tree obtained is given in Figure 2.3(b). The index code which minimizes the

maximum probability of error is {c1, c2, c3} where c1 = x2 ⊕ x3, c2 = x2 ⊕ x1 and c3 = x2 ⊕ x4.

This enables all the receivers to decode any of its demands by using at most two transmissions.

At receiver R1, x2 can be obtained by performing x1 ⊕ c2 and x4 can be obtained by performing

x1 ⊕ c2 ⊕ c3. The decoding procedure used by receivers is given in Table 2.5.

Example 5. Consider a single uniprior problem with five messages x1, x2, x3, x4, x5 and five receivers

R1, R2, R3, R4, R5. Each Ri knows xi and wants xi+1 and xi+2 where + denotes modulo 5 addition.

The information flow graph G2 is given in Figure 2.4(a). The graph is strongly connected and all

the edges are parts of some cycle. We perform Algorithm 2 on G2 and the spanning tree which

minimizes the maximum distance is given in Figure 2.4(b).

The index code which minimizes the maximum probability of error is {c1, c2, c3, c4} where

c1 = x1 ⊕ x3, c2 = x2 ⊕ x3, c3 = x3 ⊕ x4 and c4 = x3 ⊕ x5. The decoding procedure at receivers

is given in Table 2.6. From the table we can observe that any receiver would take at most two
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Receivers Demands Decoding procedure

R1
x2 x1 ⊕ c1 ⊕ c2
x3 x1 ⊕ c1

R2
x3 x2 ⊕ c2
x4 x2 ⊕ c2 ⊕ c3

R3
x4 x3 ⊕ c3
x5 x3 ⊕ c4

R4
x5 x4 ⊕ c3 ⊕ c4
x1 x4 ⊕ c3 ⊕ c1

R5
x1 x5 ⊕ c4 ⊕ c1
x2 x5 ⊕ c4 ⊕ c2

Table 2.6 Decoding procedure for Example 5.
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(a) Information flow graph G of
Example 6.
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(b) Spanning tree T ob-
tained from Algorithm 2 for
Example 6.

Fig. 2.5 Information flow graph G and Spanning tree T of Example 6.

transmissions to decode any of its messages. We also observe that for any n (number of receivers), we

will get a similar solution and number of transmissions required to decode any particular demanded

message would be at most two.

Example 6. Consider the index coding problem of Example 1. The information flow graph G of

this problem is given in Figure 2.5(a). To obtain the index code which gives minimum maximum

probability of error across all receivers, we perform Algorithm 2. The spanning tree obtained from

Algorithm 2 is given in Figure 2.5(b). The index code which minimizes the maximum probability

of error is C1 described by matrix L1 given in Example 1. Length of the code is eight and can be

represented as {c1, c2, . . . , c8} where ci = x1 ⊕ xi+1. The decoding procedure at receivers for the

code C1 is given in Table 2.7. It is evident from the table that for code C1, the maximum number

of transmissions required to decode any demanded message across all receivers is two.
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Receivers Demands Decoding procedure

R1
x2 x1 ⊕ c1
x3 x1 ⊕ c2

R2
x3 x2 ⊕ c1 ⊕ c2
x4 x2 ⊕ c1 ⊕ c3

R3 x5 x3 ⊕ c2 ⊕ c4
R4 x6 x4 ⊕ c3 ⊕ c5
R5 x7 x5 ⊕ c4 ⊕ c6
R6 x8 x6 ⊕ c5 ⊕ c7
R7 x9 x7 ⊕ c6 ⊕ c8
R8 x1 x8 ⊕ c7
R9 x2 x9 ⊕ c8 ⊕ c1

Table 2.7 Decoding procedure for Example 5.

2.3 Simulation Results

In this section we give simulation results 2 which show that the choice of the optimal index codes

matters. We show that optimal index codes which use lesser number of transmissions to decode the

messages perform better than those using more number of transmissions. We consider the index

coding problem in Example 7 below and observe an improvement in the performance by choosing

index code obtained from Algorithm 2 over another arbitrary optimal index code. This shows the

significance of optimal index codes which use small number of transmissions to decode the messages

at the receivers.

Example 7. Consider a single uniprior index coding problem I(X,R) with X = {x1, x2, . . . , x7}

and R = {R1, R2, . . . , R7}. Each receiver Ri ∈ R, knows xi and has a want-set Wi = X \ {xi}. We

consider two index codes for the problem and show by simulation the improvement in using the

index code obtained from Algorithm 2.

Let C1 be the linear index code obtained from the proposed Algorithm 2. We use code C2,

another valid index code of optimal bandwidth for performance comparison. Codes C1 and C2 are

described by the matrices L1 and L2 respectively. The matrices are given below.

L1 =



1 1 1 1 1 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, L2 =



1 0 0 0 0 0

1 1 0 0 0 0

0 1 1 0 0 0

0 0 1 1 0 0

0 0 0 1 1 0

0 0 0 0 1 1

0 0 0 0 0 1


.

Consider receiver R1. For code C1, receiver R1 uses only one transmission for decoding any of its

2The simulation in this section were done by A. Chandramouli
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demands. However for code C2, receiver R1 uses more than one transmission for decoding all the

demands. For example in order to decode message x4 ∈ W1, receiver R1 has to make use of three

transmissions.

In the simulation, the source uses symmetric 4-PSK signal set which is equivalent to two binary

transmissions. The mapping from bits to complex symbols is assumed to be Gray Mapping. We

first consider the scenario in which the fading is Rayleigh and the fading coefficient hj of the channel

between source and receiver Rj is CN (0, 1). The SNR Vs. BEP curves for all the receivers for code

C1 is plotted in Fig. 2.6. From Fig 2.6, we can observe that maximum error probability occurs at

receiver R7. Similar plot for all the receivers while using code C2 is shown in Fig 2.7. From Fig.

2.7 we can observe that for code C2 maximum error probability occurs at receiver R7. We compare

the performance of both the codes at receiver R7 in Fig. 2.8. We can observe from Fig. 2.8 that

the maximum probability of error across receivers is less for code C1 compared to code C2.

0 5 10 15 20 25 30 35 40
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR in db (Eb/No)

B
E

P

 

 
R1

R2

R3

R4

R5

R6

R7

Fig. 2.6 SNR Vs BEP for code C1 for Rayleigh fading scenario, at all receivers of Example 7.

The SNR Vs. BEP curves for codes C1 and C2 for remaining receivers are shown in Fig. 2.9

- Fig. 2.14. Fig. 2.9 shows the SNR Vs. BEP at receiver R1. From Fig. 2.9, we can clearly see

that code C1 shows a better performance of around 4.5dB compared to code C2. Similar increase

in performance was observed at all other receivers. We can observe that in all receivers Code C1
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Fig. 2.7 SNR Vs BEP for code C2 for Rayleigh fading scenario, at all receivers of Example 7.
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Fig. 2.8 SNR Vs BEP for codes C1 and C2 for Rayleigh fading scenario, at receiver R7 of Example 7.
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Fig. 2.9 SNR Vs BEP for codes C1 and C2 for Rayleigh
fading scenario, at receiver R1 of Example 7.
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Fig. 2.10 SNR Vs BEP for codes C1 and C2 for Rayleigh
fading scenario, at receiver R2 of Example 7.
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Fig. 2.11 SNR Vs BEP for codes C1 and C2 for Rayleigh
fading scenario, at receiver R3 of Example 7.
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Fig. 2.12 SNR Vs BEP for codes C1 and C2 for Rayleigh
fading scenario, at receiver R4 of Example 7.
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Fig. 2.13 SNR Vs BEP for codes C1 and C2 for Rayleigh
fading scenario, at receiver R5 of Example 7.
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Fig. 2.14 SNR Vs BEP for codes C1 and C2 for Rayleigh
fading scenario, at receiver R6 of Example 7.
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Fig. 2.15 SNR Vs BEP for code C1 for Rician fading scenario, at all receivers of Example 7.

performs at least as good as code C2. So in terms of reducing the probability of error, Code C1

performs better than Code C2.

We also consider the scenario in which the channel between source and receiver Rj is a Rician

fading channel. The fading coefficient hj is Rician with a Rician factor 2. The source uses 4-PSK

signal set along with Gray mapping. The SNR Vs. BEP curves for all receivers while using code

C1 and code C2 is given in Fig. 2.15 and Fig. 2.16 respectively. We observe that maximum error

probability occurs at receiver R7 for both the codes C1 and C2. The SNR Vs. BEP curves for both

the codes at receiver R7 is shown in Fig. 2.17. From Fig. 2.17 we observe that maximum error

probability for code C1 is lesser than for code C2. The SNR Vs. BEP plots for both the codes at

other receivers are given in Fig. 2.18 - Fig. 2.23. It is evident from the plots that code C1 performs

better than code C2. Though at some receivers it matches the performance, improvement is evident

at receivers R1 and R7. From the simulation results we can conclude that in both Rayleigh and

Rician fading models, code C1 performs better than code C2 in terms of reducing the probability

of error.

Example 8. In this example we consider the index coding problem in Example 1. We compare the
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Fig. 2.16 SNR Vs BEP for code C2 for Rician fading scenario, at all receivers of Example 7.
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Fig. 2.17 SNR Vs BEP for codes C1 and C2 for Rician fading scenario, at receiver R7 of Example 7.
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Fig. 2.18 SNR Vs BEP for codes C1 and C2 for Rician
fading scenario, at receiver R1 of Example 7.
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Fig. 2.19 SNR Vs BEP for codes C1 and C2 for Rician
fading scenario, at receiver R2 of Example 7.
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Fig. 2.20 SNR Vs BEP for codes C1 and C2 for Rician
fading scenario, at receiver R3 of Example 7.
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Fig. 2.21 SNR Vs BEP for codes C1 and C2 for Rician
fading scenario, at receiver R4 of Example 7.
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Fig. 2.22 SNR Vs BEP for codes C1 and C2 for Rician
fading scenario, at receiver R5 of Example 7.
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Fig. 2.23 SNR Vs BEP for codes C1 and C2 for Rician
fading scenario, at receiver R6 of Example 7.
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performance of codes C1 and C2 of Example 1. The matrices describing code C1 and code C2 are

L1 =



1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



L2 =



1 1 0 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 1 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1

1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0


respectively. The source uses symmetric 4-PSK signal set for transmission. The mapping used

from bits to complex symbols is Gray mapping. Rayleigh fading scenario is considered first in

which the fading coefficient hj of the channel between the source and receiver Rj is CN (0, 1). The

simulation curves showing, SNR Vs. BEP for all the receivers while using code C1 is given in Fig

2.24. From Fig. 2.24, we can observe that maximum error probability occurs at all receivers except

R1, R2 and R8. The SNR Vs. BEP curves for all the receivers while using code C2 is given in Fig.

2.25. From Fig 2.25 we can observe that maximum error probability of error occurs at receiver R3.

In Fig. 2.26 we compare these maximum error probabilities by showing the SNR Vs. BEP curves

for both the codes at receiver R3. From Fig. 2.26 we are able to observe a gain of 2dB at Receiver

R3 by using code C1 over code C2.

In Fig. 2.27 - Fig. 2.34, SNR Vs. BEP plots for all receivers other than R3 are given. We

can observe from Fig. 2.27 and Fig. 2.28 that code C1 performs better than code C2 at receivers

R1 and R2 also. However for receiver R4, code C2 performs better than code C1. The reason is

that the number of transmissions used by receiver R4 in decoding its demand is more for code C1

than code C2. The SNR Vs. BEP for the two codes for receiver R4 is given in Fig. 2.29. Note

that the index code given by proposed Algorithm 2, does not guarantee better performance at all

receivers. The algorithm ensures that the index code has minimum maximum error probability

across all receivers.

Simulations were also carried out with the channel between source and receiver Rj modelled

as a Rician fading channel. The fading coefficient hj is Rician with a Rician factor 2. The source

uses 4-PSK signal set along with Gray mapping. The SNR Vs. BEP curves for all receivers while
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Fig. 2.24 SNR Vs BEP for code C1 for Rayleigh fading scenario, at all receivers of Example 8.
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Fig. 2.25 SNR Vs BEP for code C2 for Rayleigh fading scenario, at all receivers of Example 8.
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Fig. 2.26 SNR Vs BEP for codes C1 and C2 for Rayleigh fading scenario, at receiver R3 of Example 8.
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Fig. 2.27 SNR Vs BEP for codes C1 and C2 for Rayleigh
fading scenario, at receiver R1 of Example 8.
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Fig. 2.28 SNR Vs BEP for codes C1 and C2 for Rayleigh
fading scenario, at receiver R2 of Example 8.
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Fig. 2.29 SNR Vs BEP for codes C1 and C2 for Rayleigh
fading scenario, at receiver R4 of Example 8.
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Fig. 2.30 SNR Vs BEP for codes C1 and C2 for Rayleigh
fading scenario, at receiver R5 of Example 8.
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Fig. 2.31 SNR Vs BEP for codes C1 and C2 for Rayleigh
fading scenario, at receiver R6 of Example 8.
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Fig. 2.32 SNR Vs BEP for codes C1 and C2 for Rayleigh
fading scenario, at receiver R7 of Example 8.
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Fig. 2.33 SNR Vs BEP for codes C1 and C2 for Rayleigh
fading scenario, at receiver R8 of Example 8.
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Fig. 2.34 SNR Vs BEP for codes C1 and C2 for Rayleigh
fading scenario, at receiver R9 of Example 8.
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Fig. 2.35 SNR Vs BEP for code C1 for Rician fading scenario, at all receivers of Example 8.

using code C1 and code C2 is given in Fig. 2.35 and Fig. 2.36 respectively. Similar to the Rayleigh

fading scenario maximum error probability was observed at receiver R3. The SNR Vs. BEP curves

for both the codes at receiver R3 are given in Fig. 2.37. We can observe from Fig. 2.37 that for

the Rician fading scenario also, maximum error probability is less for code C1. The SNR Vs. BEP

plots for both the codes at receivers other than R3 are given in Fig. 2.38-Fig. 2.45. For Rician

fading also we infer the same results from the plots. Code C2 performs better than code C1 for few

receivers where the number of transmissions used for decoding its demand is less, but in terms of

minimizing maximum error probability across all receivers code C1 performs better.

2.4 Results and Discussion

In this work, we considered a model for index coding problem in which the transmissions are

broadcasted over a wireless fading channel. To the best of our knowledge, this is the first work

that considers such a model. We have described a decoding procedure in which the transmissions

are decoded to obtain the index code and from the index code messages are decoded. We have

shown that the probability of error increases as the number of transmissions used for decoding the

message increases. This shows the significance of optimal index codes such that the number of
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Fig. 2.36 SNR Vs BEP for code C2 for Rician fading scenario, at all receivers of Example 8.
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Fig. 2.37 SNR Vs BEP for codes C1 and C2 for Rician fading scenario, at receiver R3 of Example 8.
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Fig. 2.38 SNR Vs BEP for codes C1 and C2 for Rician
fading scenario, at receiver R1 of Example 8.
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Fig. 2.39 SNR Vs BEP for codes C1 and C2 for Rician
fading scenario, at receiver R2 of Example 8.
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Fig. 2.40 SNR Vs BEP for codes C1 and C2 for Rician
fading scenario, at receiver R4 of Example 8.
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Fig. 2.41 SNR Vs BEP for codes C1 and C2 for Rician
fading scenario, at receiver R5 of Example 8.
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Fig. 2.42 SNR Vs BEP for codes C1 and C2 for Rician
fading scenario, at receiver R6 of Example 8.
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Fig. 2.43 SNR Vs BEP for codes C1 and C2 for Rician
fading scenario, at receiver R7 of Example 8.
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Fig. 2.44 SNR Vs BEP for codes C1 and C2 for Rician
fading scenario, at receiver R8 of Example 8.
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Fig. 2.45 SNR Vs BEP for codes C1 and C2 for Rician
fading scenario, at receiver R9 of Example 8.

transmissions used for decoding the message is minimized.

For single uniprior index coding problems, we described an algorithm to identify the index code

which minimizes the maximum probability of error. We showed simulation results validating our

claim. The problem remains open for all other class of index codes. For other class of index coding

problems the upper bound on the number of transmissions required by receivers to decode the

messages is not known. Finally other methods of decoding could also be considered and this could

change the criterion required in reducing the probability of error. The optimal index codes in terms

of error probability and bandwidth using such a criterion could also be explored.



Chapter 3

On the number of optimal index codes

1 As seen before general index coding problem can be formulated as follows: There are n messages,

x1, x2, . . . , xn and m receivers. Each receiver wants a set of messages, Wi and knows a set of

messages Ki. For a general unicast problem, Wi ∩ Wj = ∅, for i 6= j. The special case when

m = n and Wi = {xi} is called a single unicast problem. We focus on a single unicast problem in

this chapter. A general unicast problem can always be reduced to a single unicast problem with

| Wi |= 1 by replication of receivers. Hence the observations in this work applies to a general

unicast problem as well. The best linear solution in terms of minimum-maximum error probability

among all codes with the optimal length is identified. Also, a lower bound on the total number of

linear index coding solutions with the optimal length for a single unicast problem is identified. Any

single unicast problem can be represented by an equivalent network coding problem as in Fig.3.1.

This was proposed by El Rouayheb et. al. in [5].

Here each of the messages x1, x2, . . . , xn is represented by a source node and g1, g2, . . . , gN

represent the broadcast channel and l1, l2, . . . , lN , l
′
1, l
′
2, . . . , l

′
N represent the intermediate nodes.

When two or more edges have the same tail node, they carry the same message. Also l′i transmits

to its outgoing edges whatever it gets by gi. The source nodes transmit their respective messages as

such through their outgoing edges. The length of the index code is represented by N . The optimal

value of N among all linear solutions of an IC problem is to be found. Our operations are over the

finite field F2. But the results in this paper can be carried over to other fields also. The dashed

1A Part of this work appears in Proc. ISIT’2015, Wanchai, Hong Kong, June, 2015.
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Fig. 3.1 Representation of a unicast IC problem by an equivalent network code.

lines represent the connection between a receiver node and its prior message (node) among the set

of messages (nodes) i.e, they represent the side information possessed by the receivers. For every

single unicast problem, we can find a graph like given in Fig.3.1. Let us call it G. The graph G can

be represented as G = (V,E), where V = {x1, x2, . . . , xn, l1, l2, . . . , lN , l
′
1, l
′
2, . . . , l

′
N , R1, R2, . . . , Rn}

is the vertex set and E is the edge set. We can observe that | E | = (2n + 1)N +
n∑
i=1
| Ki |. An

edge connecting vertex v1 to v2 is denoted by (v1, v2) where v1 is the tail of the edge and v2 is the

head of the edge. For an edge e, Y (e) represents the message passed in that edge. We can get a

transfer matrix Mn×n (which is shown in section 3.1) such that Z
¯

= [z1 z2 . . . zn]T , the vector of

output messages at each of the receivers, can be expressed as

Z
¯

= M X
¯
, (3.1)

where X
¯

= [x1 x2 . . . xn]T , the vector of input messages. Hence, we can solve the IC in N number

of transmissions if M is an identity matrix.
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Y
¯
T = [Y ((x1, l1)) Y ((x1, l2)) . . . Y ((x1, lN ))

Y ((x2, l1)) Y ((x2, l2)) . . . Y ((x2, lN ))

...

Y ((xn, l1)) Y ((xn, l2)) . . . Y ((xn, lN ))

Y ((xK1,1 , R1)) Y ((xK1,2 , R1)) . . . Y ((xK1,|K1|
, R1))

Y ((xK2,1 , R2)) Y ((xK2,2 , R2)) . . . Y ((xK2,|K2|
, R2))

...

Y ((xKn,1 , Rn)) Y ((xKn,2 , Rn)) Y ((xKn,|Kn| , Rn))] (3.5)

3.1 Problem Formulation

For a general single unicast problem, we can find a matrix Mn×n such that the vector of output

bits Z
¯

= M X
¯

. We can observe that M is a product of three matrices as given in (3.3).2 We will

give the structure of each of these matrices first and then explain how we derived (3.3).

M = B F A (3.2)

The matrix A relates the input messages and the messages flowing through the outgoing edges of

all the source nodes. A satisfies the following relation.

M = B F A (3.3)

The matrix A relates the input messages and the messages flowing through the outgoing edges of

all the source nodes. A satisfies the following relation.

Y
¯

= A X
¯
, (3.4)

where Y
¯
T is as in (3.5). Y

¯
is the vector of messages flowing through the outgoing edges of all the

source nodes and is of order ((nN +
n∑
i=1
| Ki |)× 1). Here Ki,j denotes the index of j-th message in

2We are not following Koetter and Medard’s approach [6]. If we had followed their approach in a strict sense we
would have got matrix A of order (| E | ×n), F of order (| E | × | E |)and B of order (n× | E |). We give a simpler
formulation for the matrices A, F and B for a given index coding problem.



3.1 Problem Formulation 36

the side information set of receiver Ri and X
¯

= [x1 x2 x3 . . . xn]T is the vector of input messages.

The matrix A is of order (nN +
n∑
i=1
| Ki |)× n and it can be split in the form,

A =

 AB

ASI

 (3.6)

where AB is of order nN × n and ASI is of order
n∑
i=1
| Ki | ×n. The matrix AB is a matrix formed

by row-concatenation of matrices Ai, i = 1, . . . n where each Ai is a N × n matrix in which all

elements in the i-th column are ones and the rest all are zeros as given in (3.7).

A1



A2


.

.

An





1 0 0 0 . . . 0

1 0 0 0 . . . 0

.

.

1 0 0 0 . . . 0

0 1 0 0 . . . 0

0 1 0 0 . . . 0

.

.

0 1 0 0 . . . 0

.

.

0 0 0 0 . . . 1

0 0 0 0 . . . 1

.

.

0 0 0 0 . . . 1



(3.7)

Each Ai corresponds to the message passed by the source node xi to the intermediate nodes, lj ,

j = 1, . . . , N . The matrix ASI has only one non-zero element (which is one) in each row. This

matrix corresponds to the side information possessed by the receivers and each successive set of
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Y
¯
′T = [Y ((l′1, R1)) Y ((l′1, R2)) . . . Y ((l′1, Rn))

Y ((l′2, R1)) Y ((l′2, R2)) . . . Y ((l′2, Rn))

...

Y ((l′N , R1)) Y ((l′N , R2)) . . . Y ((l′N , Rn))

Y ((xK1,1 , R1)) Y ((xK1,2 , R1)) . . . Y ((xK1,|K1|
, R1))

Y ((xK2,1 , R2)) Y ((xK2,2 , R2)) . . . Y ((xK2,|K2|
, R2))

...

Y ((xKn,1 , Rn)) Y ((xKn,2 , Rn)) . . . Y ((xKn,|Kn| , Rn))] (3.9)

FB =



β(x1,l1) 0 . . . 0 β(x2,l1) 0 . . . 0 . . . β(xn,l1) 0 . . . 0

β(x1,l1) 0 . . . 0 β(x2,l1) 0 . . . 0 . . . β(xn,l1) 0 . . . 0

.

.
β(x1,l1) 0 . . . 0 β(x2,l1) 0 . . . 0 . . . β(xn,l1) 0 . . . 0

0 β(x1,l2) . . . 0 0 β(x2,l2) . . . 0 . . . 0 β(xn,l2) . . . 0

0 β(x1,l2) . . . 0 0 β(x2,l2) . . . 0 . . . 0 β(xn,l2) . . . 0

.

.
0 β(x1,l2) . . . 0 0 β(x2,l2) . . . 0 . . . 0 β(xn,l2) . . . 0

.

.

.
0 0 . . . β(x1,lN ) 0 0 . . . β(x2,lN ) . . . 0 0 . . . β(xn,lN )

0 0 . . . β(x1,lN ) 0 0 . . . β(x2,lN ) . . . 0 0 . . . β(xn,lN )

.

.
0 0 . . . β(x1,lN ) 0 0 . . . β(x2,lN ) . . . 0 0 . . . β(xn,lN )


(3.10)

| Ki | rows correspond to the side information possessed by Ri for i = 1 to n. In each set of | Ki |

rows, each row is distinct and has only one non-zero element (which is one as we operate over the

finite field F2.) which occupies the respective column-position of one of the messages in the prior

set of Ri. Hence the matrix A is fixed for a fixed N .

The matrix F relates to the messages sent in the broadcast channel and the side information pos-

sessed by the the receivers and is of order (nN +
n∑
i=1
| Ki |) × (nN +

n∑
i=1
| Ki |). It is the matrix

that satisfies the following relation.

Y
¯
′ = F Y

¯
= F A X

¯
, (3.8)

where Y
¯
′T is as in (3.9). Y

¯
′ is the vector of messages flowing to each of the receiver. We can

observe that F can be split into four block matrices as given below.
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BB =


ε(l1,R1) 0 0 . . . 0 ε(l2,R1) 0 0 . . . 0 . . . ε(lN ,R1) 0 0 . . . 0

0 ε(l1,R2) 0 . . . 0 0 ε(l2,R2) 0 . . . 0 . . . 0 ε(lN ,R2) 0 . . . 0

....
.....
.....
0 0 0 . . . ε(l1,Rn) 0 0 0 . . . ε(l2,Rn) . . . 0 0 0 . . . ε(lN ,Rn)


(3.13)

F =

 FB 0

0 I

 (3.11)

Matrix FB is a square matrix of order nN which is of the form given in (3.10) and I is the identity

matrix. The elements β(xi,lj), ∀i = 1, . . . , n and j = 1, . . . , N belong to the finite field F2. Every

((i− 1)n+ 1)-th to ((i− 1)n+ n)-th row are identical for i = 1, 2, . . . , N . If ((i− 1)n+ 1)-th row

is denoted as ti,

ti AB X
¯

= gi (3.12)

for i = 1, 2, . . . , N . The matrix B is of order n × (nc +
n∑
i=1
| Ki |). It relates to the decoding

operations done at the receivers. It is the matrix that satisfies the following relation,

Z
¯

= B Y
¯
′ = B F A X

¯
, (3.14)

where Z
¯

= [z1 z2 z3 . . . zn]T , is the vector of output messages decoded at the receivers. The matrix

B can be split into two block matrices as below.

B =
[
BB BSI

]
, (3.15)

where BB is a matrix of order n × nN and in every row only N elements are non-zero and the

non-zero elements corresponds to whether or not Ri uses that particular transmission to decode

its wanted message. The matrix BSI is of order n ×
n∑
i=1
| Ki |. It relates to the side information

possessed by the receivers. In this matrix all elements except the i-th element in every successive

set of | Ki | columns are strictly zeros, for all i = 1 to n. The rest of the elements are either one or

zero and it depends on the messages used by a receiver to decode its wanted message. The matrix

BB is as in (3.13). The elements εlj ,Ri for j = 1, . . . , N and i = 1, . . . , n belong to the finite field
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F2. From (3.4), (3.8) and (3.14), we get

Z
¯

= B F A X
¯
. (3.16)

So,

M = B F A. (3.17)

An index code is solvable with N number of transmissions if we can find variables (β’s and ε’s)

such that M is an identity matrix. Now we will illustrate an example.

Example 9. Let m = n = 3. Each Ri wants xi and knows xi+1, where + is mod-3 addition. The

optimal length of a linear IC solution for this problem is 2, which we prove in section 3.2. The

graph G for N = 2 is as in Fig.3.2:

R1 R2

l1 l2

x1 x2 x3

R3

l′1 l′2

g1 g2

z1 z3z2

Fig. 3.2 Equivalent network code corresponding to the IC problem in Example 9

Y
¯
T = [Y ((x1, l1)) Y ((x1, l2)) Y ((x2, l1) Y ((x2, l2) Y ((x3, l1)) Y ((x3, l2)) Y ((x2, R1)) Y ((x3, R2))

Y ((x1, R3))], i.e., the set of all outgoing messages from the source nodes. The vector of input mes-

sages is X
¯

= [x1 x2 x3]T . The vector Y
¯
′T = [Y ((l′1, R1)) Y ((l′1, R2)) Y ((l′1, R3)) Y ((l′2, R1))Y ((l′2, R2))

Y ((l′2, R3)) Y ((x2, R1)) Y ((x3, R2)) Y ((x1, R3)], i.e., the vector of messages flowing to each of the
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FB =



β(x1,l1) 0 β(x2,l1) 0 β(x3,l1) 0

β(x1,l1) 0 β(x2,l1) 0 β(x3,l1) 0

β(x1,l1) 0 β(x2,l1) 0 β(x3,l1) 0

0 β(x1,l2) 0 β(x2,l2) 0 β(x3,l2)

0 β(x1,l2) 0 β(x2,l2) 0 β(x3,l2)

0 β(x1,l2) 0 β(x2,l2) 0 β(x3,l2)

 (3.19)

B =

 ε(l1,R1) 0 0 ε(l2,R1) 0 0 ε(x2,R1) 0 0

0 ε(l1,R2) 0 0 ε(l2,R2) 0 0 ε(x3,R2) 0

0 0 ε(l1,R3) 0 0 ε(l2,R3) 0 0 ε(x1,R3)

 (3.20)

receivers. The output at the receivers after decoding, is Z = [z1 z2 z3]T . The A matrix is as below.

A =



1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1

0 1 0

0 0 1

1 0 0



(3.18)

The FB is as in (3.19) and B matrix is as in (3.20). The number of linear codes which are optimal

in terms of length is three. They are C1 : x1 ⊕ x2, x2 ⊕ x3, C2 : x1 ⊕ x3, x3 ⊕ x2, C3 : x1 ⊕ x3,

x1 ⊕ x2. For the code C1, the matrices FB and B are as in (3.21). For the code C2, the matrices

FB and B are as in (3.22). For the code C3, the matrices FB and B are as in (3.23).

3.2 Method to Identify the Optimal Length for a Linear solution

We have analysed the structures of the three matrices in the previous section. We need M = B F A

to be I, the identity matrix. Here for a fixed length N , A is fixed and as can be verified all the

columns of A are independent. Hence the rank of A is n. So columns of In (identity matrix of order
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FB =



1 0 1 0 0 0
1 0 1 0 0 0
1 0 1 0 0 0
0 0 0 1 0 1
0 0 0 1 0 1
0 0 0 1 0 1

 , B =

 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

 (3.21)

FB =



1 0 0 0 1 0
1 0 0 0 1 0
1 0 0 0 1 0
0 0 0 1 0 1
0 0 0 1 0 1
0 0 0 1 0 1

 , B =

 1 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 1

 (3.22)

FB =



1 0 0 0 1 0
1 0 0 0 1 0
1 0 0 0 1 0
0 1 0 1 0 0
0 1 0 1 0 0
0 1 0 1 0 0

 , B =

 0 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 1

 (3.23)

n) lies in the column space of AT . Hence the equation ATT
(nN+

n∑
i=1
|Ki|)×n

= In has at least one

solution for T . Observe that the number of free variables in T is (n2N − n2 + n
n∑
i=1
| Ki |) and the

number of pivot variables is n2 [7]. Hence the number of right inverses of AT is 2
n2N−n2+n

n∑
i=1
|Ki|

.

We need to find a matrix T which is a right inverse of AT as well is a product of some F T and

BT in the required form. Let us call the set of all such matrices which satisfy both the conditions

as S(N). It is a function of N . The cardinality of the set S(N) for a given length N is unknown.

To analyse it, let us assume that S(N) is non-empty. Take a T which belongs to S(N). So, there

exists a B and F such that B F = T T . Let,

T T =
[
TB TSI

]
, (3.24)
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where TB is a n× nN matrix. Hence,

[
BBBSI

] FB 0

0 I

 = T T . (3.25)

This gives TSI = BSI . So the positions which are to be strictly occupied by zeros in BSI are zeros

in TSI also. Therefore, TSI which is of order n×
n∑
i=1
| Ki | has (n− 1)(

n∑
i=1
| Ki |) zeroes and when

the rest of the elements of TSI are fixed, BSI also gets fixed. Keeping this in mind, we find out

how many such T ’s are possible at the most. As the rank of A is n, the total number of right

inverses of AT with restrictions said above (regarding the presence of zeroes at specific places) is

2
n2N−n2+

n∑
i=1
|Ki|

. Let us call this set S′(N). Clearly S(N) ⊆ S′(N). Hence,

|S(N)| ≤ 2
n2N−n2+

n∑
i=1
|Ki|

. (3.26)

We will have to identify the elements in the set S′(N) which also belong to S(N). But a matrix

belongs to S(N) if and only if at least one pair of (B,F ) exists such that their product is the

transpose of the matrix itself. For each T from S(N), how many (B,F ) pairs are possible is

unknown. First of all, when we fix T , BSI gets fixed. So for a pair (B,F ) whose product is T T

(which belongs to set S(N)),

BBFB = TB. (3.27)

From (3.27) we get relations of the form,



εli,R1

.

.

εli,Rn

 β(xk,li)
=
[
Tcol(k−1)N+i

]
(3.28)

∀k ∈ {1, 2...n} and ∀i ∈ {1, 2....N} where Tcoli is the i-th column of TB.

Lemma 2. Any matrix T which belongs to S′(N) also belongs to S(N) if and only if the following

condition is satisfied:
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The space spanned by the set of columns {Tcoli , TcolN+i
...Tcol(n−1)N+i

} in TB is one or zero dimen-

sional for all i.

Proof. Proof of only-if part: If T ∈ S(N), From (3.28), we get relations of the form as below.



εli,R1

εli,R2

.

.

εli,Rn


β(xk,li)

=
[
Tcol(k−1)N+i

.

]
(3.29)

Also, 

εli,R1

εli,R2

.

.

εli,Rn


β(xk′ ,li)

=
[
Tcol(k′−1)N+i

.

]
(3.30)

Hence Tcol(k′−1)N+i
has to be expressible as a multiple of Tcol(k−1)N+i

or vice verse, ∀ k, k′ ∈ {1, 2...n}

and for every i ∈ {1, 2...N}. This is not possible unless any such set of columns is one dimensional

or has only all-zero columns which makes it zero dimensional.

Proof of if part : If the space spanned by the set of columns {Tcoli , TcolN+i
...Tcol(n−1)N+i

} in TB is

one or zero dimensional for all i for a T ∈ S′(N), one can always find values for variables (ε’s and

β’s) satisfying (3.28) for each of these sets. Hence one can get a pair (B,F ) such that (3.27) is

satisfied by substituting these values. Hence T ∈ S(N). Hence the proof is complete.

However for a T ∈ S(N), if any such set of columns in TB (i.e., the set {Tcoli , TcolN+i
, . . . , Tcol(n−1)N+i

},∀i) has only all-zero columns, then either all the β’s or ε’s corresponding to that set are com-

pletely zeros. When the β’s are zeros, the ε’s can take any of the 2n values possible and vice versa.

Hence the number of possibilities for such a set of all-zero columns is 2n+1 − 1. Hence the total

number of (B,F ) possible for a T matrix is (2n+1−1)λ, where λ, 0 ≤ λ ≤ N is the number of sets of

columns whose all elements are all-zero columns among the sets {Tcoli , TcolN+i
, . . . , Tcol(n−1)N+i

}, ∀i.
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Theorem 2. A length N is optimal for a linear index coding problem if and only if all the matrices

in S(N) have λ = 0.

Proof. proof for only if part: We need to prove that if there exists a T ∈ S(N) whose λ 6= 0 for

a particular length N , then N is not the optimal transmission length. When such a set exists, as

described above, either all the β’s or ε’s corresponding to that are completely zeros. If all the ε

are zeroes, that means that one particular transmission is not even used by any of the receivers.

Else if all the β’s corresponding are kept zeroes, then we transmit no message in one particular

transmission. So we can remove at least one transmission. Hence the proof of only if part is

complete.

The proof for if part goes as follows: We prove this by contradiction. Assume that a length N exists

such that it is feasible but not optimal and all the matrices in S(N) have λ = 0. Assume further

that N ′ = N − r for some r > 0, is the optimal length. Then take one feasible solution with length

N ′. Add extra nr rows to the corresponding FB matrix and some extra nN all zero columns to BB.

Let us call the new matrices F ′B and B′B. Let g′i, i = 1, . . . N be the set of broadcast messages given

by F ′B and gi be those which are given by FB. One can observe that {g′1, g′2, . . . , g′N} is nothing

but {g1, g2, . . . , gN ′} plus some additional information. Hence when one sends {g′1, g′2, . . . , g′N}, the

receivers get whatever they would have got if {g1, g2, . . . , gN ′} was sent. Hence even if they do not

use the extra transmissions given by F ′B, they will be able to decode their wanted messages. Hence

the product of F ′B and B′B matrices should belong to S(N) (as it is a feasible index code) and has

λ 6= 0, which is a contradiction. Hence c is the optimal length.

Example 9. (continued). We will illustrate Theorem 1 for the problem in Example 9. We will

prove N = 1 is not possible in this case. We can observe that n = 3. Hence, from (3.26), 23 = 8

matrices are there which belong to S′(1). We found them by brute force among 212 matrices which

has zeros at places which are occupied by zeros strictly in the corresponding BSI . Let us denote
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them by T1, T2, ...T8. They are as given below.



1 0 0

1 1 0

0 0 1

1 0 0

0 0 0

0 0 0


,



1 0 1

1 1 0

0 0 1

1 0 0

0 0 0

0 0 1


,



1 0 0

1 1 0

0 1 1

1 0 0

0 1 0

0 0 0


,



1 0 1

1 1 0

0 1 1

1 0 0

0 1 0

0 0 1




1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0


,



1 0 1

0 1 0

0 0 1

0 0 0

0 0 0

0 0 1


,



1 0 0

0 1 0

0 1 1

0 0 0

0 1 0

0 0 0


,



1 0 1

0 1 0

0 1 1

0 0 0

0 1 0

0 0 1


Denote by TB,k, the matrix formed by taking the first nc columns of T Tk and Tcoli,k is the i-th column

of TB,k, for k = 1, . . . , 8. As can be seen none of the Tk matrices satisfy the criterion of having

dimension 1 or less for the sets of columns of TB,k (the set {Tcoli,k, TcolN+i,k, . . . , Tcol(n−1)N+i,k
},∀i).

Hence, there does not exist a solution with N = 1.

Example 10. Let m = n = 3 and Ri wants xi, ∀i ∈ {1, 2, 3}. R1 knows x2 and x3. R2 knows x3.

R3 knows x1.

The optimal value of N is 2. For N = 1, size of S′(N) = 16 (from (3.26)). The matrices

Tk, k = 1, . . . , 16 which belong to S′(1) are found by brute force among 213 matrices which has

zeros at places, which are to be occupied strictly by zeros in the corresponding BSI . They are :
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

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0



,



1 0 0

0 1 0

1 0 1

0 0 0

1 0 0

0 0 0

0 0 0



,



1 0 0

1 1 0

0 0 1

1 0 0

0 0 0

0 0 0

0 0 0



,



1 0 0

1 1 0

1 0 1

1 0 0

0 0 0

0 0 0

0 0 0




1 1 1

0 1 0

0 1 1

0 0 0

0 0 0

0 1 0

0 0 1



,



1 1 1

1 1 0

0 1 1

1 0 0

0 0 0

0 1 0

0 0 1



,



1 1 1

0 1 0

1 1 1

0 0 0

1 0 0

0 1 0

0 0 1



,



1 1 1

1 1 0

1 1 1

1 0 0

1 0 0

0 1 0

0 0 1




1 0 0

0 1 0

0 1 1

0 0 0

0 0 0

0 1 0

0 0 0



,



1 0 0

1 1 0

0 1 1

1 0 0

0 0 0

0 1 0

0 0 0



,



1 0 0

0 1 0

1 1 1

0 0 0

1 0 0

0 1 0

0 0 0



,



1 0 0

1 1 0

1 1 1

1 0 0

1 0 0

0 1 0

0 0 0




1 0 1

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 1



,



1 0 1

1 1 0

0 0 1

1 0 0

0 0 0

0 0 0

0 0 1



,



1 0 1

0 1 0

1 0 1

0 0 0

1 0 0

0 0 0

0 0 1



,



1 0 1

1 1 0

1 0 1

1 0 0

1 0 0

0 0 0

0 0 1


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As can be seen none of the Tk matrices satisfy the criterion of having dimension 1 for the sets of

columns of TB,k (the set {Tcoli,k, TcolN+i,k, . . . , Tcol(n−1)N+i,k}, ∀i). Hence N = 1 is not a feasible

length for this case. If N = 3 is taken, one would get a matrix T which belongs to the set

S(3), as in (3.31). For this matrix, λ 6= 0. Also dimension of every set of columns (i.e., the set

{Tcoli , TcolN+i
, . . . , Tcol(n−1)N+i

}, ∀i) is 1 or 0. Hence N = 3 is not optimal. Therefore, N = 2 should

be the optimal length.



1 0 1

0 0 0

0 0 0

1 0 1

0 1 1

0 0 0

0 0 0

0 1 1

0 0 0

1 0 0

0 1 0

0 0 0

0 0 1



(3.31)

3.3 Minimum Number of Codes Possible for an Optimal N

In this section, we find the lower bound on the number of linear codes which are optimal in terms

of bandwidth for a single unicast index coding problem. For the optimal N , the number of matrices

which are right inverses of AT and whose transpose is a product of some B and F gives the number

of codes possible with that length, which is also the size of the set S(N). But for any T ∈ S(N),

ATBT
T
B = I −ATSIT TSI (3.32)
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
βx1,l1 βx1,l2 . . . βx1,lN
βx2,l1 βx2,l2 . . . βx2,lN
.
.

βxn,l1 βxn,l2 . . . βxn,lN




εl1,R1 εl1,R2 . . . εl1,Rn
.
.

εlN ,R1 εlN ,R2 . . . εlN ,Rn

 (3.33)

where LHS will be of a form as in (3.33).

Theorem 3. The number of linear index coding solutions having optimal length N for a single

unicast IC problem is at-least
N−1∏
i=0

(2N − 2i)

N !
(3.34)

Proof. : Consider (3.32) and (3.33). Here if both RHS of (3.32) and first matrix in (3.33) are fixed,

solution which is the second matrix in (3.33) will exist only if the column space of RHS of (3.32) is

spanned by the columns of first matrix in (3.33). But the rank of the first matrix in (3.33) is atmost

N . Hence this is possible only if the rank of the RHS matrix in (3.32) is less than or equal to N . The

number of possible T TSI matrices is 2

n∑
i=1
|Ki|

. As we know N is the optimal length, there should be at

least one T TSI such that RHS of (3.32) is of rank N . For any such RHS of (3.32), we can take the first

matrix in (3.33) in (2N−1)
N−1∏
i=1

(2N−1−
(
i

i

)
−
(

i

i− 1

)
.......−

(
i

1

)
) ways such that the column spaces

of both the matrices are same. Each such matrix is an index code, which is feasible, and each column

of the matrix represents a transmission. As order of transmission does not matter, we need to neglect

those matrices which are column-permuted versions of one another. Hence, total number of distinct

transmission schemes possible is (2N−1)
N !

N−1∏
i=1

(2N −1−
(
i

i

)
−
(

i

i− 1

)
.......−

(
i

1

)
) =

N−1∏
i=0

(2N−2i)

N ! . But

there may be more than one T TSI matrices which are of rank N and whose column spaces are

different. Hence the total number of index codes possible can be more than (3.34) also as we take

into account all possible basis sets of each of the different column spaces. Example 11 is such a

case. Hence (3.34) is a lower bound on the number of index codes possible.

Note that all possible matrices occupying RHS of (3.32) are exactly the collection of matri-

ces which fits the index coding problem as per the definition of a fitting matrix in [2]. Hence

algebraically we have proved the already established result [2] that the optimal length of a linear
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L1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, L2 =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

, L3 =


1 0 0 1
1 1 0 0
0 0 1 0
0 0 0 1

, L4 =


1 0 0 1
1 1 0 0
0 1 1 0
0 0 0 1

,

L5 =


1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

, L6 =


1 0 0 1
0 1 0 0
0 1 1 0
0 0 0 1

, L7 =


1 0 0 1
0 1 0 0
0 1 1 0
0 0 1 1

, L8 =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 1 1

,

L9 =


1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1

, L10 =


1 0 0 0
1 1 0 0
0 1 1 0
0 0 0 1

, L11 =


1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1

, L12 =


1 0 0 0
1 1 0 0
0 0 1 0
0 0 1 1

,

L13 =


1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1

, L14 =


1 0 0 0
0 1 0 0
0 1 1 0
0 0 1 1

, L15 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1

, L16 =


1 0 0 1
1 1 0 0
0 0 1 0
0 0 1 1

,

L17 =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

, L18 =


1 0 1 1
0 1 0 0
0 0 1 0
0 0 0 1

, L19 =


1 0 1 1
1 1 0 0
0 0 1 0
0 0 0 1

, L20 =


1 0 1 1
1 1 0 0
0 1 1 0
0 0 0 1

,

L21 =


1 0 1 1
1 1 0 0
0 1 1 0
0 0 1 1

, L22 =


1 0 1 1
0 1 0 0
0 1 1 0
0 0 0 1

, L23 =


1 0 1 1
0 1 0 0
0 1 1 0
0 0 1 1

 L24 =


1 0 1 1
0 1 0 0
0 0 1 0
0 0 1 1

,

L25 =


1 0 1 0
1 1 0 0
0 0 1 0
0 0 0 1

, L26 =


1 0 1 0
1 1 0 0
0 1 1 0
0 0 0 1

, L27 =


1 0 1 0
1 1 0 0
0 1 1 0
0 0 1 1

, L28 =


1 0 1 0
1 1 0 0
0 0 1 0
0 0 1 1

,

L29 =


1 0 1 0
0 1 0 0
0 1 1 0
0 0 0 1

, L30 =


1 0 1 0
0 1 0 0
0 1 1 0
0 0 1 1

 , L31 =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 1 1

, L32 =


1 0 1 1
1 1 0 0
0 0 1 0
0 0 1 1



Table 3.1 Fitting matrices for Example 11

solution is the minimum among the ranks of all the matrices which fits the IC problem.

Corollary 1. The number of index codes possible with the optimal length N for a single unicast IC

problem is given by

µ
N−1∏
i=0

(2N − 2i)

N !
, (3.35)

where µ is the number of T TSI matrices out of the 2

n∑
i=1
|Ki|

possible ones which give a N -rank RHS

matrix of (3.32) with unique column space.

Proof. The Proof of this follows from the proof of Theorem 2.

Note that µ = 1 for Examples 9, 10 and 12.

Example 11. Let m = n = 4. Ri wants xi and knows xi+1 where + is modulo-4 operation. x3

knows x1 also.

The optimal length is N = 3. The RHS matrices of (3.32) possible for this case are as in Table

3.1. As can be seen L5, L20, L26 and L27 are of rank three. But column space of L5 and L20 are

same. Similarly column space of L26 and L27 are same. Hence µ = 2. The number of optimal

linear codes are 56 in number thus satisfying corollary 2. They are listed in Table 3.2.
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Code Encoding rmin
C1 x1 + x2, x2 + x3, x3 + x4 0
C2 x1 + x2, x2 + x3, x2 + x4 1
C3 x1 + x2, x2 + x3, x1 + x2 + x3 + x4 1
C4 x1 + x2, x2 + x3, x1 + x4 0
C5 x1 + x2, x3 + x4, x1 + x3 1
C6 x1 + x2, x3 + x4, x2 + x4 1
C7 x1 + x2, x3 + x4, x1 + x4 0
C8 x1 + x2, x1 + x3, x2 + x4 0
C9 x1 + x2, x1 + x3, x1 + x2 + x3 + x4 0
C10 x1 + x2, x1 + x3, x1 + x4 1
C11 x1 + x2, x2 + x4, x1 + x2 + x3 + x4 0
C12 x1 + x2, x1 + x2 + x3 + x4, x1 + x4 1
C13 x2 + x3, x3 + x4, x1 + x3 1
C14 x2 + x3, x3 + x4, x1 + x2 + x3 + x4 1
C15 x2 + x3, x3 + x4, x1 + x4 0
C16 x2 + x3, x1 + x3, x2 + x4 0
C17 x2 + x3, x1 + x3, x1 + x2 + x3 + x4 0
C18 x2 + x3, x1 + x3, x1 + x4 1
C19 x2 + x3, x2 + x4, x1 + x2 + x3 + x4 0
C20 x2 + x3, x2 + x4, x1 + x4 1
C21 x3 + x4, x1 + x3, x2 + x4 0
C22 x3 + x4, x1 + x3, x1 + x2 + x3 + x4 0
C23 x1 + x3, x2 + x4, x1 + x4 0
C24 x1 + x3, x1 + x2 + x3 + x4, x1 + x4 0
C25 x2 + x4, x1 + x2 + x3 + x4, x1 + x4 0
C26 x3 + x4, x2 + x4, x1 + x2 + x3 + x4 0
C27 x3 + x4, x2 + x4, x1 + x4 1
C28 x3 + x4, x1 + x2 + x3 + x4, x1 + x4 1
C29 x3 + x2, x2 + x1, x1 + x4 + x3 0
C30 x3 + x2, x2 + x1, x4 1
C31 x3 + x2, x2 + x1, x1 + x4 + x2 1
C32 x1 + x2, x2 + x3, x2 + x4 + x3 1
C33 x1 + x2, x4, x1 + x4 + x3 0
C34 x1 + x2, x1 + x3, x1 + x4 + x3 1
C35 x1 + x2, x2 + x4 + x1, x1 + x4 + x3 0
C36 x1 + x2, x1 + x3, x4 1
C37 x1 + x2, x4, x2 + x4 + x3 0
C38 x1 + x2, x1 + x3, x1 + x4 + x2 1
C39 x1 + x2, x1 + x3, x2 + x4 + x3 0
C40 x1 + x2, x2 + x3 + x4, x1 + x4 + x2 0
C41 x3 + x2, x4, x1 + x4 + x3 0
C42 x3 + x2, x1 + x3, x1 + x4 + x3 1
C43 x3 + x2, x2 + x3 + x4, x1 + x4 + x3 0
C44 x3 + x2, x1 + x3, x4 1
C45 x3 + x2, x4, x1 + x4 + x2 0
C46 x3 + x2, x1 + x3, x1 + x4 + x2 0
C47 x3 + x2, x1 + x3, x2 + x4 + x3 1
C48 x3 + x2, x2 + x4 + x1, x2 + x4 + x3 0
C49 x1 + x2 + x4, x4, x1 + x4 + x3 1
C50 x3 + x2 + x4, x4, x1 + x4 + x3 1
C51 x3 + x1, x2 + x4 + x1, x1 + x4 + x3 0
C52 x3 + x2 + x4, x2 + x1 + x4, x1 + x4 + x3 0
C53 x3 + x1, x4, x1 + x4 + x2 0
C54 x3 + x1, x4, x2 + x4 + x3 0
C55 x4, x1 + x2 + x4, x1 + x4 + x3 1
C56 x3 + x1, x2 + x3 + x4, x1 + x4 + x3 0

Table 3.2 Optimal linear solutions for Example 11.
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
1 0 0 . . . p1,{j:Kj=x1} 0 . . . 0

0 1 0 . . . p2,{j′:Kj′=x2} 0 . . . 0

.

.
0 0 0 . . . pn,{j′′:Kj′′=xn} 0 . . . 1

 (3.36)

L1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, L2 =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

, L3 =


1 0 0 1
1 1 0 0
0 0 1 0
0 0 0 1

, L4 =


1 0 0 1
1 1 0 0
0 1 1 0
0 0 0 1

,

L5 =


1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

, L6 =


1 0 0 1
0 1 0 0
0 1 1 0
0 0 0 1

, L7 =


1 0 0 1
0 1 0 0
0 1 1 0
0 0 1 1

, L8 =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 1 1

,

L9 =


1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1

, L10 =


1 0 0 0
1 1 0 0
0 1 1 0
0 0 0 1

, L11 =


1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1

, L12 =


1 0 0 0
1 1 0 0
0 0 1 0
0 0 1 1

,

L13 =


1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1

, L14 =


1 0 0 0
0 1 0 0
0 1 1 0
0 0 1 1

, L15 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1

, L16 =


1 0 0 1
1 1 0 0
0 0 1 0
0 0 1 1



Table 3.3 Fitting matrices for Example 12

Corollary 2. The bound in Theorem 2 is satisfied with equality by a single unicast single uniprior

problem.

Proof. : For a single unicast single uniprior problem the RHS of (3.32) will be of the form (3.36),

where all pi,{j:Kj=xi} for i = 1, . . . , n can be 1 or 0. Hence total number of matrices that can be

of the form (3.36) is 2n. As can be verified only one matrix among them has rank equal to n− 1,

which is the optimal transmission length for this single unicast problem and that one matrix is that

whose all pi,{j:Kj=xi} values are one. We will prove this by contradiction. Suppose any other matrix

exists with atleast one xi,j zero and is of rank n− 1, it means that receiver Rj does not use its side

information xi. This is equivalent to the case where Rj does not have any prior information. For

this case, the optimal length of transmission is n, which is a contradiction. Hence the number of

optimal index codes is exactly what is given by (3.34).

Example 9. was a single unicast single uniprior problem. The optimal length is N = 2 and

three solutions are possible with that length, satisfying Corollary 2.

Example 12. Let m = n = 4. Ri wants xi and knows xi+1, where + is modulo-4 addition.

Here all possible matrices of the form (3.36) denoted by Li, i = 1, . . . , 16 are as in Table 3.3.

Only L5 has dimension four. The set of all optimal index codes is given by the collection of all
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Code Encoding
C1 x1 + x2, x2 + x3, x3 + x4
C2 x1 + x2, x2 + x3, x2 + x4
C3 x1 + x2, x2 + x3, x1 + x2 + x3 + x4
C4 x1 + x2, x2 + x3, x1 + x4
C5 x1 + x2, x3 + x4, x1 + x3
C6 x1 + x2, x3 + x4, x2 + x4
C7 x1 + x2, x3 + x4, x1 + x4
C8 x1 + x2, x1 + x3, x2 + x4
C9 x1 + x2, x1 + x3, x1 + x2 + x3 + x4
C10 x1 + x2, x1 + x3, x1 + x4
C11 x1 + x2, x2 + x4, x1 + x2 + x3 + x4
C12 x1 + x2, x1 + x2 + x3 + x4, x1 + x4
C13 x2 + x3, x3 + x4, x1 + x3
C14 x2 + x3, x3 + x4, x1 + x2 + x3 + x4
C15 x2 + x3, x3 + x4, x1 + x4
C16 x2 + x3, x1 + x3, x2 + x4
C17 x2 + x3, x1 + x3, x1 + x2 + x3 + x4
C18 x2 + x3, x1 + x3, x1 + x4
C19 x2 + x3, x2 + x4, x1 + x2 + x3 + x4
C20 x2 + x3, x2 + x4, x1 + x4
C21 x3 + x4, x1 + x3, x2 + x4
C22 x3 + x4, x1 + x3, x1 + x2 + x3 + x4
C23 x1 + x3, x2 + x4, x1 + x4
C24 x1 + x3, x1 + x2 + x3 + x4, x1 + x4
C25 x2 + x4, x1 + x2 + x3 + x4, x1 + x4
C26 x3 + x4, x2 + x4, x1 + x2 + x3 + x4
C27 x3 + x4, x2 + x4, x1 + x4
C28 x3 + x4, x1 + x2 + x3 + x4, x1 + x4

Table 3.4 All possible optimal linear solutions for Example 12.

possible basis of the column space of this matrix. They are 28 in number. Hence Corollary 2 is

satisfied. We list out those codes in Table 3.4.

3.4 Optimal Codes with Minimum-Maximum Error Probability

As seen in the last section, there can be several linear optimal solutions in terms of least bandwidth

for an IC problem but among them we try to identify the index code which minimizes the maximum

number of transmissions that is required by any receiver in decoding its desired message. The

motivation for this is that each of the transmitted symbols is error prone and the lesser the number

of transmissions used for decoding the desired message, lesser will be its probability of error. Hence

among all the codes with the same length of transmission, the one for which the maximum number of

transmissions used by any receiver is the minimum, will have minimum-maximum error probability.

We give a method to find the best linear solution in terms of minimum-maximum error probability

among all codes with the optimal length N . For a T ∈ S(N), if we take a row say,[r1r2.....rnN ],

ri ∈ {1, 0}, of the corresponding sub-matrix TB (formed by taking the first nN columns of its



3.4 Optimal Codes with Minimum-Maximum Error Probability 53

transpose), we define rsum for the row as follows:

rsum =
N∑
i=1

(Iri=0IrN+i=0...Ir(n−1)N+i=0) (3.37)

where Iz is the indicator function which is one when event z occurs. Also, we define rmin for a

T ∈ S(N) as the minimum among the row-sums of all the rows of the sub-matrix TB (formed by

taking the first nN columns of its transpose).

Theorem 4. For the optimal length N , that matrix in S(N) whose rmin is the maximum, is the

one which gives the IC with the minimum-maximum error probability. Also,the matrix formed by

taking every n-th row of the corresponding FB matrix is the optimal linear solution in terms of

minimum-maximum error probability using N number of transmissions.

Proof. The number of transmissions used by i-th receiver is given by the number of non-zero entries

in i-th row of BB. When for example t-th ε element in the i-th row of BB is zero, the i-th element

of every (t+ (k−1)N)-th column for k = 1 to n, in TB turns 0. Hence the number of transmissions

unused by it is proportional to the rmin of the i-th row. Therefore, our claim is proved. Moreover

FB is the matrix which decides the message flowing in the broadcast channels. So the matrix

formed by taking every n-th row of FB is the corresponding Index code .

Now, consider there is a priority among different users indicated by weights, w1, w2...wn. Let

the number of transmissions used by receiver Ri to decode its wanted message be ti. We assume

the cost paid due to user Ri is tiwi. Our aim is to minimize the total cost paid due to all the users

for the optimal length c. Then we would take the T matrix in S(N) for which
∑n

i=1 rsum,iwi is the

maximum, where rsum,i is the row sum of i-th row of the corresponding TB matrix.

For Example 9, we found out the optimal IC’s : They are 1. C1 : x1 ⊕ x2, x2 ⊕ x3 2. C2 : x1 ⊕ x3,

x3 ⊕ x2 3. C3 : x1 ⊕ x3, x1 ⊕ x2. For all the three, the maximum number of transmissions used by

any receiver is 2. This is verified below. We find the TB matrices for each case as follows:

TB,1 =


1 0 1 0 0 0

0 0 0 1 0 1

1 0 1 1 0 1


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TB,2 =


1 0 0 1 1 1

0 0 0 1 0 1

1 0 0 0 1 0



TB,3 =


0 1 0 0 0 1

1 1 1 0 0 1

1 0 1 0 0 0



Minimum row sum for all the three is 0. Hence 2 transmissions at most are used by any receiver

to decode in all the three cases. The BEP (Bit Error Probability) versus SNR curves for each of

the three codes at various receivers are given in Fig.3.3, Fig. 3.4, Fig. 3.5. We considered BPSK

modulation in rayleigh faded channel. In Fig.3.6, the worst case BEP curves for each of the three

codes are plotted. We can see that the curves lie on top of each other which proves our claim that

all the three codes are equally good in terms of minimum-maximum error probability.
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Fig. 3.3 BER versus SNR (db) curve for C1 at all the receivers for Example 9.
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Fig. 3.4 BER versus SNR (db) curve for C2 at all the receivers for Example 9.
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Fig. 3.5 BER versus SNR (db) curve for C3 at all the receivers for Example 9.
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Fig. 3.6 Worst case BER versus SNR (db) curves for each of the three codes for Example 9.

For Example 11, Table 3.2 gives the rmin for each of the optimal linear codes. The maximum

rmin is 1. The BER versus SNR curve for C30 whose rmin = 1 is as in Fig .3.7. The BER versus

SNR curve for C29 whose rmin = 0 is as in Fig .3.8. The worst case Performance of both codes are

plotted in Fig. 3.9.

We can observe that the worst performance of C30 is better than worst performance of C29.

3.5 Results and Discussion

For an optimal N , the maximum number of index codes possible is bounded by 2nN . In this chapter

we have given a lower bound also. 3. This lower bound is satisfied with equality for a single unicast

problem in which | Ki |= 1 and Ki ∩ Kj=0, for i 6= j, i, j = 1 to n . We would like to extend

this work to find out least complexity algorithms which finds IC solutions by matrix completion.

Harvey et. all in [11] gives such algorithms for multicast network codes. However what we have is

a general problem and hence their results are not applicable. We have followed an approach which

is different and simpler than Koetter and medard’s [6] for this specific class of network coding

problem.

3A Part of this work appears in Proc. ISIT’2015, Wanchai, Hong Kong, June, 2015.
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Fig. 3.7 BER versus SNR (db) curve for C30 at all the receivers for Example 11
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Fig. 3.8 BER versus SNR (db) curve for C29 at all the receivers for Example 11
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Fig. 3.9 Worst case BER versus SNR (db) curves for codes C30 and C29 for Example 11



Chapter 4

Index Coding with Restricted

Information

A general index coding problem can be formulated as follows: There is a source with n messages,

X = {x1, x2, . . . , xn} and m receivers. Each receiver is specified by {Wi,Ki} where Wi is the set

of wanted messages and Ki is the set of known messages. For any positive integer n, dnc denotes

the set of integers 1 to n. An index coding scheme is a coding scheme which ensures that the

demands of all receivers are satisfied. The special case of index coding problem with restricted

side information i.e, each receiver {Wi,Ki} has a message set Ni out of which it is not supposed

to receive any, is considered. In this case, we need a coding scheme which not only satisfies the

demands of all receivers but also ensures that no receiver decodes any of the messages from the

restricted set assigned to it.

Definition 2. A linear (F, N,R) index coding scheme [17] achieving a rate R = (R1,R2, . . . ,Rn),

where Ri = Li
N , ∀i ∈ K over N channel uses, corresponds to a choice of

1. a finite field F as the alphabet

2. Vi ∈ FN×Li ,∀i ∈ dnc as pre-coding matrices.

3.Di,k ∈ FLi×N , ∀i ∈ dnc,∀k ∈ dmc such that xi ∈ Wk, as receiver combining matrices such that

the following properties are satisfied.

Property 1: Di,kVj = 0,∀i, j ∈ dnc, k ∈ dmc such that i 6= j, xi ∈ Wk, xj /∈ Ak

Property 2: det(Di,kVi) 6= 0, ∀i ∈ dnc, k ∈ dmc such that xi ∈ Wk.

59
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where all operation are over F.

The source transmits

Y =
n∑
i=1

ViXi (4.1)

where Xi = {xi,1, xi,2, . . . , xi,Li}T ∈ FLi×1 is an Li× 1 vector representing xi i.e, message xi is split

into Li independent scalar schemes, each of which carries one symbol from F and is transmitted

along the corresponding column vectors of the pre-coding matrix Vi. The decoding operation [17]

done at k-th receiver for message Xi ∈ Wk is

X̂i = (Di,kVi)
−1Di,k(Y −

∑
xj∈Kk

XjVj) (4.2)

Hence if there is a restricted information xi ∈ Nk for k-th receiver, a linear index coding scheme

satisfying Definition 1 is a feasible solution iff there exists no such Ui,k satisfying properties 1 and 2

for xi. It is because if it is not so, xi ∈ Nk can be resolved at k-th receiver. When Li = 1, ∀i ∈ dnc,

the solution is called a scalar linear index coding scheme. Now some relevant terms mentioned in

[17] is introduced.

Alignment relation [17]: A relation xi k←→xj is defined iff xi /∈ Kk, xi /∈ Wk, xj /∈ Kk and xj /∈ Wk for

k ∈ dmc and distinct indices i, j ∈ dnc. Occasionally notation xi ↔ xj is used when the identity of

the destination is not important.

Alignment Subsets [17]: The set of messages X is partitioned into alignment subsets , created as

follows. If xi ↔ xj , then both xi, xj belong to the same alignment subset. Further, if xi ↔ xj and

xj ↔ xk then xi, xj , xk all belong to the same alignment subset for i, j, k ∈ dnc.

4.1 Achievability of rate 1
L+1

Theorem 3 in [17] is extended as below.

Theorem 5. A Rate 1
L+1 is possible for | Wi |= L,∀i ∈ dmc if and only if the following conditions

are satisfied: 1. There does not exist distinct indices i, j ∈ dnc such that xi, xj belong to the same

alignment subset and xj ∈ Wk and xi /∈ Kk for k ∈ dmc [17]. 2.| (Kk ∪Wk)
c |> 1,∀k ∈ dmc such

that Nk 6= φ.
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Proof. Proof of if part : Assume that both the conditions are satisfied. PartitionX = {x1, x2, . . . , xn}

into alignment subsets P1,P2, . . . ,PT , and define the mapping P (m) : X → {1, 2, . . . , T} so that

xm ∈ PP (m),∀m ∈ dnc. Choose q sufficiently large such that there exist T vectors V1, V2, . . . VT , in

the L+ 1 dimensional vector space over Fq such that every L+ 1 of them is linearly independent.

These are the coding vectors along which the aligned messages from each partition will be sent.

Consider k-th receiver. Denote its want set by Kk = {xk1 , xk2 , . . . , xkL}. It receives

Y =

n∑
i=1

AiVp(i) (4.3)

=
L∑
i=1

AkiVP (ki) +
∑

i:xi∈Kk

AiVi + (
∑

i:xi /∈Kk∪Wk

Ai)VPt (4.4)

The last term follows since all those messages which are not in the demand set or prior set of the

receiver belongs to the same alignment subset denoted by Pt ( else condition 1 not satisfied). The

second term can be cancelled by the receiver since it knows the corresponding messages. Hence one

gets a linear combination of L + 1 vectors which are independent ( because of the way by which

they are chosen). Hence one can resolve xk1 , . . . , xkL . Also all xi ∈ Nk are along the vector VP(t),

which is of dimension one. But since | (Kk ∪Wk)
c |> 1, it cannot be resolved . Hence proof of if

part is complete.

Proof of only if part: The necessity of property 1 to hold for the rate to be achievable is already

proved as Theorem 3 in [17]. The necessity of property 2 can be argued as follows. Consider

N = L+ 1. Then for the messages in the want set to be resolvable, they should consume a fraction

L
L+1 of the total capacity. Hence the remaining interfering messages should consume only 1

L+1 of

the total capacity. But each such message has rate 1
L+1 . The restricted messages also falls in this

category. Hence it can be resolved if | (Kk ∪Wk)
c |= 1. Hence the proof is complete.

If all receivers have size of the restricted message set greater than 1, then only condition 1 in

Theorem 1 needs to be satisfied for the rate 1
L+1 to be achievable.
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Upper-bound on qmax, 1
2

Note that in the proof of the if-part of the Theorem 5, it was mentioned that for sufficiently large

field size there exist T vectors V1, V2, . . . VT , in the L + 1 dimensional vector space over Fq such

that every L+ 1 of them is linearly independent. Define qmax, 1
L+1

as the largest field size for which

solution with rate 1
L+1 does not exist for an index coding problem. Note that if condition 1 and 2

are not satisfied qmax, 1
L+1

is not defined. When both are satisfied, an upper bound on qmax, 1
L+1

is

found in this work. Before explaining that, some relevant definitions from matroid theory should

be mentioned.

A matroid M is an ordered pair (E , I) consisting of a finite set E and a collection I of subsets

of E satisfying the following three conditions:

(I1)∅ ∈ I

(I2) If I ∈ I and I ′ ⊆ I, then I ′ ∈ I.

(I3) If I1 and I2 are in I and |I1| < |I1, then there exists an element e of I2−I1 such that I1
⋃
e ∈ I.

Members of I are the independent sets of M and E is the ground set of M. The notations E(M)

and I(M) are used for E and I respectively. A subset of E that is not there in I is called dependent.

The rank function of a matroid ρ : 2dEc → Z≥0 is defined as ρ(m′) = max{|m′′| : m′′ ⊆ m′,m′′ ∈ I},

where m′ ⊆ dEc. The rank of the matroid M denoted by rank(M) is equal to ρ(dEc). Rank of a

matroid M is also equal to the size of largest independent set in I(M).

Proposition 1.1.1 [8] Let E be the set of column labels of an c×d matrix A over a field F and let

I be the set of subsets S of E for which the multiset of columns labelled by S is linearly independent

in the vector space V (c,F). Then (E , I) is a matroid. The matroid obtained as explained from a

matrix is called vector matroid.

Two matroids M1 and M2 are isomorphic, written M1
∼= M2, if there is a bijection ψ from

E(M1) to E(M2) such that, for all S ⊆ E(M1), ψ(S) is independent in M2 if and only if S is

independent inM1. If a matroidM is isomorphic to the vector matroid of a matrix A over a field

F, then M is said to be F-representable.

A matroid M is said to be multi-linearly representable of dimension c over F if there exists vector

subspaces V1, V2, . . . , Vr of a vector space V over F such that dim(
∑
i∈m′

Vi) = cρ(m′), ∀m′ ⊆ dEc.

Note that a matroid M is said to be F-representable if it is multi-linearly representable of dimen-

sion 1 over F.
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Let c and d be non-negative integers such that c ≤ d and E be a d-element set and I be the col-

lection of all subsets of E which are of cardinality less than or equal to c. Then (E , I) is a matroid

denoted by Uc,d and is called uniform matroid of rank c on an d-element set.

Theorem 6. Whenever rate 1
L+1 is feasible (i.e., Theorem 5 is satisfied), it is achieved over a finite

field F if uniform matroid UL+1,T is multi-linearly representable of some dimension c, c ∈ Z≥0 over

F.

Proof. In the achievablity scheme, there is a mapping from each alignment subset to an N
L+1 dimen-

sional subspace of a N dimensional space such that every set of L+1 subspaces are non-intersecting.

This is because the alignment subsets of L demanded messages and the alignment subset of inter-

fering messages of any receiver should be assigned non-intersecting subspaces. So, every receiver

might want a certain set of L+ 1 alignment subsets to be assigned non-intersecting subspaces. By

making sure that every set of L+1 subspaces are non-intersecting, we take into account all possible

receivers. So any set of L+ 1 or less alignment subsets should be independent as the subspaces as-

signed to them are non-intersecting. Hence the alignment subsets P1,P2, . . . ,PT , form the ground

set of the uniform matroid UL+1,T . Hence we can find mapping from each alignment subset to an

N
L+1 dimensional subspace of a N dimensional space over F such that every set of L+ 1 subspaces

are non-intersecting iff UL+1,T is multi-linearly representable of some dimension over F.

Note that there can be cases where no receiver might want some particular sets of L+1 alignments

subsets to be non-intersecting. Hence even if UL+1,T is not multi-linearly representable of some

dimension over F, a coding scheme with rate 1
L+1 can still exist over F.

We state Theorem 6.5.21 in [8] as below:

Theorem 7. [8] Let q be a power of prime p. When 2 ≤ c ≤ p, the matroid Uc,d is GF(q)-

representable if and only if d ≤ q + 1.

Corollary 3. From above theorem, qmax, 1
L+1
≤ min(|F| : (L+ 1) ≤ char(F) & (T − 1) ≤ |F|) where

char(F) denotes the characteristic of the field F.
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Hence for L = 1 rate 1
2 is achievable over any field F if |F| ≥ (T − 1).

Finding the optimal number of alignment subsets is a NP-hard problem. As stated in [17], two

alignment subsets can be combined if there does not exist a message in either subset that cannot

be aligned with a message in the other subset. Two messages cannot be aligned if one of them is

desired at any destination that does not have the other message as an prior message. Let Tmin

denotes the minimum number of alignment subsets possible without affecting the alignment con-

straints.

Theorem 8. When L = 1, rate= 1
2 is possible through a scalar linear coding scheme over finite field

F iff F ≥ Tmin − 1.

Proof. When the number of alignment subsets is optimal, ie, Tmin, there exists atleast one receiver

which wants any two alignment subsets to have non-intersecting subspaces as else they could have

been combined together and Tmin will not be optimal. Since we consider scalar index coding

schemes alone, this means we need Tmin vectors in 2-dimensional space over F such that any two

of them are orthogonal. This is possible iff U2,Tmin is F-representable. But U2,T is F-representable

iff F ≥ Tmin − 1 by Theorem 7.

4.2 Capacity of Special Classes of Index Coding Problem with

Restricted Information

The linear coding capacity of a index coding setting is defined as the maximum achievable rate

over all finite fields and over all linear coding schemes. We find the linear index coding capacity of

some special settings (which have been already examined in [17]) after adding an extra notion of

restricted information. We examine how the capacities change in the new scenario. Theorem 5 in

[17] is extended as given below.

Theorem 9. The linear capacity of an index coding problem with m = n < ∞ (all subscripts

modulo n), Wk = xk,Kk = {xk−u, xk−u+1, . . . , xk−1} ∪ {xk+1, xk+2, . . . , xk+t}and u, t are non-

negative integers, 0 ≤ u ≤ t, u+ t = a < n is
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C =


0, if u=0 or a=n-2

1, else if a=n-1

u+1
n−a+2u , else

(4.5)

Proof. The proof for cases when u 6= 0 and a 6= n− 2 will be explained first: Clearly the capacities

mentioned are a upper bound since these are the capacities for the case with no restricted informa-

tion. We consider finite field Fq having sufficiently large field size q. When a = n− 1, Ni = Φ, ∀i.

Hence the transmitted code is the sum of all the messages in the message set. Each receiver will

be able to retrieve its wanted message by subtracting all other messages. When a < n − 1, the

achievable scheme is as follows[17]: Each message is sent through u+ 1 scalar symbols over a u+ 1

dimensional space. Adjacent messages overlap in u dimensions. Hence, the total number of dimen-

sions occupied by the n − a − 1 interfering messages is n − a − 1 + u. Hence the total number of

channel uses is u + 1 + n − a − 1 + u = n − a + 2u. Also, all the other messages other than what

is in want set and prior set will be overlapping due to which the restricted information cannot be

received.

When u = 0, assume each message is sent through l scalars over a l-dimensional space for some

l ≥ 1. For a receiver there are n − a − 1 interfering messages. At the most they occupy a space

of dimension (n − a − 1)l. If they occupy a space of dimension (n − a − 1)l, each message in

the interfering set can also be retrieved by any receiver, which means every receiver decodes its

restricted message also. So they should never occupy a space of dimension (n − a − 1)l. But as

can be verified due to the cyclic nature of the prior set, for any dimension less than (n − a − 1)l,

another receiver who wants some message in the interfering set will not be able to decode it. Hence

solution does not exist. Hence capacity is 0. When a = n − 2, if the wanted message spans one

dimension, there is only one interfering message which should span another dimension. Hence the

restricted message can be recovered. Hence the capacity is 0.

Theorem 6 in [17] is extended as given below.

Theorem 10. The linear capacity of the index coding problem associated with n = m =∞, Wk =

xk, Kk = {xck−u,k−u+1,...,k−1,k+1,k+2,...,k+t}, Nk ⊆ {xk−u,k−u+1,...,k−1,k+1,k+2,...,k+t},∀k ∈ dmc and

u, t ∈ Z, 0 ≤ u ≤ t is C = 1
t+1 per message if Nk ⊆ {xk−u,k−u+1,...,k−1,k+t−(u−1),k+t−u+2,...,k+t}, ∀k ∈
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dmc and 0 else.

Proof. For Nk ⊆ {xk−u,k−u+1,...,k−1,k+t−(u−1),k+t−u+2,...,k+t}, ∀k ∈ dmc: This is an upper bound

on the capacity because this is the capacity when Nk = {φ}, ∀k ∈ dmc[17]. When Nk 6= {φ} for

some k ∈ dmc, the achievable scheme is same as that in [17]. How it is an achievable scheme in

this case also is explained as follows: Our operations are over finite field F2. We consider a scalar

index coding scheme where each message is sent through one scalar symbol over a t+1 dimensional

signal space . We align u messages before each desired message with the last u messages among

t messages after that desired message. Hence the total number of dimensions occupied by the

interfering messages is t. Also since Nk ⊆ {xk−u,k−u+1,...,k−1,k+t−(u−1),k+t−u+2,...,k+t},∀k ∈ dmc, it

is overlapping with one another message in the same set. Hence it cannot be retrieved.

For other cases: Consider {xk+1...,k+t−u} for some k ∈ dmc. Any message in this set falls as

an interference for all receivers indexed by the set {k − u, . . . , k − 1}. Also they interfere with

each other when any receiver which wants any of them tries to decode it. Hence the dimension

occupied by the messages in the set xk−u,k−u+1,...,k−1,k+1,k+2,...k+t−u should be T atleast. The

messages xk+t−(u−1),k+t−u+2,...,k+tshould not align with xk+1,k+2,...k+t−uas any other receiver who

wants messages in this set cannot retrieve them. Hence k-th receiver would be able to retrieve some

message in Nk if Nk
⋂
{xk+1...,k+t−u} 6= φ, which is undesirable. Hence no linear solution exists. So

capacity is 0.

Theorem 7 in [17] is extended as given below.

Theorem 11. The linear capacity of a symmetric index coding problem with n = ml and n,m −→

∞, where n,m, l ∈ Z and Wk = {xkl,kl+l−1,(k+1)l+l−2,...,(k+i)l+l−i−1,...,(k+l−2)l+1},

Kk = {xk−1)l+1:(k−1)l+l−1,...,(k+i)l+1:(k+i)l+l−i−2,(k+i)l+l−i:(k+i)l+l,...,(k+l−2)l+2:(k+l−2)l+l ∪ xk}c and

Nk ⊆ X \ {Wk ∪ Kk},∀k ∈ dnc is C = 2
l(l+1) per message.

Proof. The above rate is an outer bound because it is the capacity when there is no notion of

restricted information which is proved as Theorem 7 in [17]. The achievable scheme is same as

what is mentioned in [17]. This scheme works for the new case also because for k-th receiver, for

any message in its interfering set one can find another message in the set X \ {Wk ∪ Kk} which is

aligned in the same dimension. Hence the receiver cannot decode any of its interfering messages.
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4.3 Some special settings with Ni = φ,∀i ∈ dmc

Theorem 12. The capacity of the index coding problem associated with n = m = ∞, Wk = xk,

Kk = {xck−u,k−u+1,...,k−m′,k+m′,k+2,...,k+t}, is C = m′

t+m′ per message.

Proof. Achievability scheme: We give a vector linear encoding scheme where each message is sent

through m′ symbols. We consider the t+m′ dimensional space Ft+m
′

2 . We take t+m′ independent

vectors, denoted by V1, V2, . . . , Vt+m′ . Take an arbitrary message xi and assign V1, ...Vm′ as the

beam-forming vectors for the m′ symbols comprising that message. To the next message xi+1

assign V2, . . . ...Vm′+1. Like that align the vectors such that adjacent messages overlap over m′ − 1

dimensions. Also, the assignment is periodic with period t+m′. As can be seen xi can be recovered

by i-th receiver as the same vectors are assigned to other messages in the known set alone.

Proof of upper bound: We define αj as follows where SN denotes the N transmitted messages.

αj
4
=

n∑
i=1

H(SN |xci,i+1,...,i+j−1) (4.6)

Our first goal is to bound αt−m′+1. We proceed as follows.

Lemma 3. For the following d and j



d = b t−m′+1
m′ c, j = (t−m′ + 1) mod (m′)

if t−m′ + 1 mod (m′) 6= 0

d = t−m′+1
m′ − 1, j = m′

if t−m′ + 1 mod (m′) = 0

(4.7)

we have

αt−m′+1 ≥ dα1 + αj + o(N) (4.8)

Proof. Note that i− (m′) -th destination can decode xi−(m′) from (SN , xci,i+1,...,i+j−1,i−(m′)) with
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Pe → 0 as N →∞. Therefore, we can write

NRi−(m′) = H(xi−(m′)) (4.9)

= I(xi−(m′);S
N |xci,i+1,...,i+j−1,i−(m′))

+H(xi−(m′)|SN , xc,i+1,...,i+j−1,i−(m′))

= H(SN |xci,i+1,...,i+j−1,i−(m′))

−H(SN |xci,i+1,...,i+j−1) + o(N) (4.10)

which gives us

H(SN |xci,i+1,...,i+j−1,i−(m′)) =

NRi−(m′) +H(SN |xci,i+1,...,i+j−1) + o(N) (4.11)

Next, note that (i− 2(m′))-th destination does not have xi,...,i+j−1,i−(m′),i−2(m′) as prior messages.

So, given (SN , xci,...,i+j−1,i−(m′),i−2(m′)) it must be able to reliably decode xi−2(m′).

NRi−2(m′) = H(xi−2(m′))

= I(xi−2(m′);S
N , xci,...,i+j−1,i−(m′),i−2(m′))

+H(Wi−2(m′)|SN , xci,...,i+j−1,i−(m′),i−2(m′))

= I(xi−2(m′);S
N |xci,...,i+j−1,i−(m′),i−2(m′))

+o(N)

= H(SN |xci,...,i+j−1,i−(m′),i−2(m′))

−H(SN |xci,...,i+j−1,i−(m′)) + o(N) (4.12)

which along with (4.11) gives us

H(SN |xci,...,i+j−1,i−(m′),i−2(m′)) = NRi−2(m′) + nRi−(m′)

+H(SN |xci,i+1,...,i+j−1)

+o(N) (4.13)
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Similarly, we note that (i−lm′)-th destination, for 3 ≤ l ≤ d does not have xi,...,i+j−1,i−(m′),...,i−l(m′)

as prior messages, so it must be able to decode xi+j−1+l(m′) from (SN , xci,...,i+j−1,i−m′,...,i−lm′).

NRi−lm′ = H(xi−lm′) (4.14)

= I(xi−lm′ ;S
N , xci,...,i+j−1,i−m′,...,i−lm′) +

H(xi−lm′ |SN , xci,...,i+j−1,i−m′,...,i−lm′) (4.15)

= I(xi−lm′ ;S
N |xci,...,i+j−1,i−m′,...,i−lm′) + o(N) (4.16)

= H(SN |xci,...,i+j−1,i−m′,...,i−lm′)− H(SN |xci,...,i+j−1,i−m′,...,i−(l−1)m′) + o(N) (4.17)

which gives us

H(SN |xci,...,i+j−1,i−m′,...,i+j−dm′) = NRi−dm′ + . . .+NRi−2m′ +NRi−m′ +H(SN |xci,i+1,...,i+j−1)

+o(N) (4.18)

Our goal is to bound αt−m′+1. We have

αt−m+1 = αdm′+j (4.19)

=
n∑
i=1

H(SN |xci,i+1,...,i+t−m′) (4.20)

≥
n∑
i=1

H(SN |xci,...,i+j−1,i−m′,i−2m′,...,i−dm′) (4.21)

=
n∑
i=1

{NRi−m′ + . . .+NRi−dm′ +

H(SN |xci,i+1,...,i+j−1) + o(N)} (4.22)

= dα1 + αj + o(N) (4.23)

where (4.21) is true because conditioning reduces the entropy. (4.22) is derived by replacing (4.18)

into (4.21). This proves Lemma 3.

Lemma 4. For j = 2, 3, . . . ,m′, we have

αj ≥ αj−1 +
α1

m′
+ o(N) (4.24)

⇒ αj ≥
m′ − 1 + j

m′
α1 + o(N) (4.25)
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Proof. We use Lemma Lemma 5 from [17] at each step. So we have

n∑
i=1

H(SN , xci,i+1,...,i+j−2,i−m′) ≤
n∑
i=1

{H(SN , xci−1,i,i+1,...,i+j−2)

+H(SN , xci−1,i,i+1,i+2,...,i+j−3,i−m′)

−H(SN , xci−1,i+2,...,i+j−3)} (4.26)

≤
n∑
i=1

{H(SN , xci−1,i,i+1,...,i+j−2)

+H(SN , xci−2,i−1,i,i+1,i+2,...,i+j−3)

+H(SN , xci−2,i−1,i,i+1,i+2,i+3,...,i+j−4,i−m′)

−H(Sn, xci−2,i−1,i,i+1,...,i+j−4)

−H(SN , xci−1,i+2,...,i+j−3)} (4.27)

...

≤
n∑
i=1

{H(SN , xci−1,i,i+1,...,i+j−2)

+H(SN , xci−2,i−1,i,i+1,i+2,...,i+j−3)

+ . . .+H(SN , xci−m′+j−1,...,i−m′)

−H(SN , xci−m′+j−1,i−m′+j−2,...,i−m′+1)

− . . .−H(SN , xci−2,i−1,...,i+j−4)−

H(SN , xci−1,i,...,i+j−3)} (4.28)

We note that (i −m′)-th destination does not have xi,i+1,...,i+j−2,i−m′ as antidotes, so it must be

able to decode Wi−m′ from (SN , xci,i+1,...,i+j−2,i−m′).

NRi−m′ = H(xi−m′) (4.29)

= I(xi−m′ ;S
N , xci,i+1,...,i+j−2,i−m′) +

H(xi−m′ |SN , xci,i+1,...,i+j−2,i−m′) (4.30)

= I(xi−m′ ;S
N |xci,i+1,...,i+j−2,i−m′) + o(N) (4.31)

= H(SN |xci,i+1,...,i+j−2,i−m′)− (4.32)

H(SN |xci,i+1,...,i+j−2) + o(N) (4.33)
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which gives us

H(SN |xci,i+1,...,i+j−2,i−m′) = NRi−m′ +

H(SN |xci,i+1,...,i+j−2) + o(N) (4.34)

Replacing (4.34) into (4.28), we have

αj−1 + α1 + o(N) ≤ αj + . . .+ αj − αj−1 − . . .− αj−1 (4.35)

αj ≥
1

m′
{(m′)αj−1 + α1}+ o(N) (4.36)

Solving this recursive equation, we get

αj ≥
m′ − 1 + j

m′
α1 + o(N) (4.37)

This proves Lemma 4. Combining Lemma 3 and Lemma 4, we have the following

αt−m+1 ≥ dα1 +
m′ − 1 + j

m′
α1 + o(N)

=
d(m′) + j +m′ − 1

m′
α1 + o(N) =

t−m′ + 1 +m′ − 1

m′;
α1

+o(N)

Finally, we note that (i −m)-th destination does not have any of the messages xi,i+1,...,i+t−m′ as

prior messages. So it must be able to decode xi−m′ from (SN , xi−m′,i,i+1,...,i+t−m′).

n∑
i=1

NRi−m′ ≤
n∑
i=1

I
(
xi−m′ ;S

N |xci−m′,i,i+1,...,i+t−m′
)

+o(N)

=

n∑
i=1

H
(
SN |xci−m′,i,i+1,...,i+t−m′

)
−

n∑
i=1

H(SN |xci,i+1,...,i+t−m′) + o(N)
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≤
n∑
i=1

{N − t

m′
NRi}+ o(N) (4.38)

Rearranging terms and applying the limit N →∞ we have

n∑
i=1

Ri ≤
m′

t+m′
n (4.39)

so that we have the information theoretic capacity outer bound of m′

t+m′ per message.

We can see that Theorem 6 in [17] is a special case of the above theorem with m′ = 1 giving

capacity 1
t+1 . When t−m+ 1 is kept fixed, and t −→∞, then C = 1

2 .

Theorem 13. The capacity of the index coding problem associated with n = m, Wk = xk, Kk =

{xk−u, xk+u} is C = 2
n per message if n

u 6= 3. Else C = 3
n .

Proof. Achievability scheme when n
u 6= 3: We consider F2. The scheme is a vector linear coding

scheme, where each message is sent through 2 symbols over a n- dimensional space where any two

messages which are u distance apart overlap in one dimension. Hence every receiver can decode its

wanted message.

Achievability scheme in other cases: Each message xi can share a vector in a n/3 dimensional space

with xi−u and xi+u.

Proof of upper bound: Consider the initial message set. Pick the messages xi, xi+u, . . . ....xi−u for

some arbitrary i. We get a new set of messages which forms a new index coding setting identical

to that in Theorem 6 with u = t = 1. Continue doing the previous two steps without considering

messages already picked. Hence we get a series of identical index coding settings which are not

related to each other and having the same number of messages, say e. Let the number of the new

index coding settings be e′. No two settings involve the same message. Hence e e′ = n. If n
u = 3,

e = 3. From Theorem 6, rate of each message in each of the new index coding settings is 1 if e = 3

and 2/e else. Hence the effective rate is 1/e′, if e = 3 and 2/n else.
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4.4 Results and Discussions

Though index coding with restricted information was introduced by Dau et. al. in [18] and it was

proved that every code offers a certain level of security depending on certain parameters, the rate

regions were not studied. In this work, we extended the results in [17] for the special case of index

coding with restricted information. We identified that in this new scenario, capacities can either

remain the same or drop down to zero. Also, we were able to generalise one result from [17].



Chapter 5

Conclusion

In this thesis, the idea of optimal index coding with min-max probability of error was developed.

This is the first work to best of my knowledge which considers index coding in a fading environment.

This was used as a motivation for analysing the number of optimal codes possible. The concept of

interference alignment in index coding was studied and it was extended to the case of index coding

with restricted information. The summary of results is as below.

5.1 Summary of Results

• The criterion for identifying the best code in terms of min-max probability of error among all

optimal codes (over finite field F2) is proposed and an algorithm based on that is given.

• Towards identifying the best among the optimal codes, a lower bound on the number of optimal

codes is given.

• A simpler algebraic formulation of an index coding problem is given.

• Index coding with restricted side information is studied through an interference alignment ap-

proach and the feasible rates are calculated.

• An index coding setting in [17] was generalised and feasible rates are found.
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5.2 Scope for future work

While working on the problem of index coding, we came across many open problems one of which

is identifying the best modulation scheme for an index coding scenario. Moreover, the work done

in this thesis itself can be extended in several directions.

• Matrix completion algorithms to extend work done in Chapter 3 can be studied.

• In our work in Chapter 1, we consider only binary field. The criterion for minimum-maximum

probability of error over other fields is yet open.

•Work done in Chapter 4 can be extended or generalised by considering other index coding settings

similar to those in [17].
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