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Abstract
Design of Space-Time Block codes (STBCs) for Maxi-
mum Likelihood (ML) reception has been predominantly
the main focus of researchers. However the ML decod-
ing complexity of STBCs become prohibitive large as the
number of transmit and receive antennas increase. To
solve this problem, orthogonal designs, single symbol
ML decodable and double symbol ML decodable STBCs
have been proposed in the literature. But the rate of these
STBCs fall exponentially with increase in the number of
transmit antennas. Hence it is natural to resort to sub-
optimal reception techniques like linear Minimum Mean
Squared Error (MMSE) receiver. Barbarossa et al and
Liu et al have independently derived necessary and suffi-
cient conditions for a full rate linear STBC to be MMSE
optimal, i.e achieve least Symbol Error Rate (SER). Mo-
tivated by this problem, we construct a new class of full
rate MMSE optimal STBCs for any number of transmit
antennas using crossed product algebras. It is also shown
that codes from cyclic division algebras which are spe-
cial cases of crossed product algebras are also MMSE
optimal. Hence these STBCs achieve least SER when
MMSE reception is employed and are fully diverse when
ML reception is employed.

1. Introduction & Background

It is well known that employing multiple transmit and
receive antennas is an effective means to combat fad-
ing in a wireless channel. Also MIMO(Multiple input
Multiple Output) systems offer significant capacity gains
compared to single input single output systems. Coding
for such situations is called space-time coding. Space-
Time Block Codes(STBCs) were formally introduced in
[1], wherein a design criteria for achieving full diversity
(equal to product of number of transmit and receive an-
tennas) with a ML(Maximum Likelihood) receiver was
derived. But the ML decoding complexity of STBCs
become prohibitively large for large number of trans-
mit and receive antennas. The sphere decoder helps to
some extent in reducing the complexity but is still far
away from practicality for large number of transmit an-
tennas. In [2, 3, 4], orthogonal designs, single and dou-
ble symbol ML decodable STBCs have been proposed

to solve this problem. But unfortunately, the rate of
such codes fall exponentially with increase in the num-
ber of transmit antennas which leads to inefficient usage
of the capacity gains offered by MIMO systems. This led
to the study of suboptimal reception strategies such as
linear MMSE(Minimum Mean Square Error) and linear
ZF(Zero Forcing) receivers [5]-[9],[14]. It is then natural
to address the question of how to design STBCs which
are optimal for a linear MMSE receiver. This problem
was addressed in [5, 6, 7, 8, 9].

Definition 1 A N × N linear STBC S in variables
x1, . . . , xk given by

S =
k∑

i=1

xiAi (1)

is called a unitary trace-orthogonal STBC if the set of
matricesAi, i = 1, . . . k satisfy the following conditions

AiA
H
i =

N

k
IN (2)

Tr(AH
i Aj) = 0, ∀ i 6= j (3)

If k = N2 we refer to it as full rate transmission.

It was shown in [5, 6, 7, 8, 9] that if full rate transmission
is considered, unitary trace-orthogonality is the necessary
and sufficient condition for a linear STBC to achieve min-
imum bit error rate when the variables take values from
a QPSK(Quadrature Phase Shift Keying) constellation.
Further it was shown that full rate unitary trace orthog-
onal STBC achieve minimum mean squared error when
other 2-dimensional constellations are used. Also it was
shown that at high SNR, the predominant metric that de-
cides probability of symbol error is optimized only by
unitary trace orthogonal STBCs. Hence we refer to full
rate unitary trace orthogonal STBCs as MMSE optimal
STBCs. Few constructions of such codes are given in
[5, 6, 7, 8, 11]. However these constructions were based
on matrix manipulations and lacked an algebraic theory
behind them.

The contributions of this paper are as follows.

• Construct a new class of MMSE optimal STBCs
for arbitrary number of transmit antennas using
crossed product algebras.
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• Since the code constructions are algebraic, the de-
scription of the code is elegant and it also simplifies
the study of their properties.

• Few of the existing code constructions [5, 6, 8, 11]
are shown to be special cases of the constructions
in this paper.

• By restricting to cyclic division algebras, we obtain
STBCs which are simultaneously MMSE optimal
as well as fully diverse for ML reception.

The rest of the paper is organized as follows. In
Section 2, we briefly describe our main algebraic tool,
i.e crossed product algebras and also explicitly construct
STBCs from crossed product algebras. In Section 3, we
provide sufficient conditions as to when STBCs from
crossed product algebras are MMSE optimal. Then we
focus on a proper subclass of crossed product algebras
called cyclic algebras and show that they are MMSE op-
timal. Few illustrative examples of code constructions
are provided for better explanation. Discussions on fu-
ture work comprise Section 4.

Notation:
For a matrixA, the matrixAH denotes the conjugate
transpose ofA. EndK(A) denotes the set of allK-linear
maps fromA to A. The symbolsj andωn denote square
root of−1 andnth root of unity respectively.

2. STBCs from Crossed Product Algebras

In this section, we briefly introduce crossed product al-
gebras and obtain STBCs using matrix representations of
crossed product algebras. We refer the readers to [12] for
a detailed explanation of crossed product algebras.

Let F be a field. Then, an associative algebraF -
algebraA is called a central simple algebra if the cen-
ter of A is F and A is a simple algebra, i.e.,A does
not have nontrivial two-sided ideals. Simple examples
of central simple algebras are division algebras and ma-
trix algebras over fields. It is well known that the di-
mension[A : F ] of A over its center is always a perfect
square, sayn2 [12, 15]. The square root of[A : F ] is
called the degree ofA. Let K be a strictly maximal sub-
field of A, i.e., K ⊂ A andK is not contained in any
other subfield ofA and the centralizer ofK in A is K
itself. It is well known that[K : F ] = n, the degree of
the algebra. In addition, let the extensionK/F be a Ga-
lois extension and letG = {σ0 = 1, σ1, σ2, . . . σn−1} be
the Galois group ofK/F . Let φ be a map fromG × G
to K\{0} called the cocycle which satisfies the cocycle
condition( φ(σ, τγ)φ(τ, γ) = φ(στ, γ)γ(φ(σ, τ)) for all
σ, τ, γ ∈ G ). Then, the algebraA is called a Crossed
Product Algebra if

A =
⊕

σi∈G

uσiK

where, equality and addition are component-wise and
whereuσ are symbols such that i)σ(k) = u−1

σ kuσ and
ii) uσuτ = uστφ(σ, τ) for all k ∈ K,σ, τ ∈ G. It is clear
thatA can be seen as a rightK-space of dimensionn over
K. Also multiplication between two elements ofA, say
a =

∑n−1
i=0 uσikσi anda′ =

∑n−1
j=0 uσj k

′
σj

is given by

(
n−1∑

i=0

uσi
kσi

)


n−1∑

j=0

uσj
k
′
σj


 =

n−1∑

l=0

uσl
k
′′
σl

where, k
′′
σl

=
∑

σiσj=σl
φ(σi, σj)σj(kσi

)k
′
σj

We will
denote the crossed product algebraA by (K, G, φ). The
field K can be seen as ann-dimensionalF -vector space.
Let B = {t0, t1, . . . tn−1} be a basis ofK overF . Then,
the left regular representation [12] ofA in EndK(A) is
given by the mapL : A 7→ EndK(A) which is defined
as follows.

L (a) = λa where, λa (u) = au,∀u ∈ A

The matrix representationMa of the linear transfor-
mation λa with respect to the basis{uσi : σi ∈ G} is
given by (4) shown at the top of the next page where,
f

(i)
σj ∈ F,∀ 0 ≤ i, j ≤ n − 1, µi,j = σiσ

−1
j ,

β
(j)
i = φ(σiσ

−1
j , σj) andP is a scaling factor to nor-

malize the average total power of a codeword ton2. Thus
we have obtained a full rate linear STBCMa in variables
f

(
σj i), 0 ≤ i, j ≤ n− 1 from the crossed product algebra

A. Ma can expressed in a linear dispersion form [?] as
follows.

Ma =
n−1∑

j=0

n−1∑

i=0

f (i)
σj

Wi,j

where, the matricesWi,j are called the ’weight matrices’
of Ma. Then, we have

Wi,j =
1√
P

PjQi (5)

where,

Qi =




ti 0 · · · 0

0 σ1(ti)
. ..

...
...

. . .
. .. 0

0 · · · 0 σn−1(ti)




(6)

and the matrixPj can be described as follows. Let us
index the rows and columns ofPj with the elements of
G. Then the(σk, σl)th entry ofPj is equal toφ(σj , σl) if
σjσl = σk and0 otherwise.

The matricesPj andQi are nothing but the images of
uσj andti respectively under the mapL. Note that every
column ofPj has exactly one non-zero entry and any two
columns ofPj have their non-zero entries in completely
disjoint set of rows.



Ma =
1√
P




∑n−1
i=0 f

(i)
σ0 ti β

(1)
0

∑n−1
i=0 f

(i)
µ0,1σ1(ti) β

(2)
0

∑n−1
i=0 f

(i)
µ0,2σ2(ti) · · · β

(n−1)
0

∑n−1
i=0 f

(i)
µ0,n−1σn−1(ti)∑n−1

i=0 f
(i)
σ1 ti β

(1)
1

∑n−1
i=0 f

(i)
µ1,1σ1(ti) β

(2)
1

∑n−1
i=0 f

(i)
µ1,2σ2(ti) · · · β

(n−1)
1

∑n−1
i=0 f

(i)
µ1,n−1σn−1(ti)

...
...

...
. ..

...∑n−1
i=0 f

(i)
σn−1ti β

(1)
n−1

∑n−1
i=0 f

(i)
µ0,1σ1(ti) β

(2)
n−1

∑n−1
i=0 f

(i)
µ0,2σ2(ti) · · · β

(n−1)
n−1

∑n−1
i=0 f

(i)
µ0,n−1σn−1(ti)




(4)

3. MMSE optimal STBCs

In this section, we provide sufficient conditions as to
when STBCs from crossed product algebras are MMSE
optimal. Then, we focus on a proper subclass of crossed
product algebras called cyclic algebras and obtain a class
of STBCs meeting the required conditions for MMSE op-
timality. It turns out that the codes in [5, 6, 11] are special
cases of our construction. Few illustrative code construc-
tion examples are also provided. Finally, we discuss the
decoding procedure for the codes in this paper and also
highlight its simplicity as compared to ML decoding.

Theorem 1 The STBCMa constructed as in(4) using
the crossed product algebraA = (K, G, φ) is an MMSE
optimal code if

|σj(ti)| = |ti| = |φ(σi, σj)| = 1,∀ 0 ≤ i, j ≤ n−1 (7)
n−1∑

i=0

σj(ti)(σj′)(ti))∗ = 0, if j 6= j′. (8)

Proof: We need to show that the weight matrices ofMa

satisfy (2) and (3). (7) implies that the matricesPj and
Qi are scaled unitary matrices. The scaling factorP here
equalsN . ThereforeWi,jW

H
i,j = In

n which implies (2) is
satisfied.

It can be shown [7] that condition (3) is equivalent
to the condition that the matrixΦ which is shown in (9)
at the top of the next page satisfiesΦΦH = nI2

n. The
(k, l)th element ofΦΦH is given by

n−1∑
a=0

φ(σiσ
−1
j , σj)σj(ta)

(
φ

(
σi′σ

−1
j′ , σj′

)
σj′(ta)

)∗

which simplifies to

φ(σiσ
−1
j , σj)φ

(
σi′σ

−1
j′ , σj′

) n−1∑
a=0

σj(ta)(σj′(ta))∗

which is equal to zero from the statement of the theorem.
If k = l, then we have

(ΦΦH)k,k =
n−1∑
a=0

|σj(ta)|2 = n

Thus,ΦΦH = nI2
n which in turn implies (3) is satisfied.

Theorem 1 gives conditions on the basis of a Galois
extension and on the cocycle which result in MMSE op-
timal STBCs.

3.1. STBCs from Cyclic Algebras

In this subsection, we study a proper subclass of crossed
product algebras called cyclic algebras and give an ex-
plicit construction of MMSE optimal codes satisfying the
conditions of Theorem 1.

An F -central simple algebra is called a cyclic algebra,
if A has a strictly maximal subfieldK which is a cyclic
extension of the centerF . Clearly, a cyclic algebra is
a crossed product algebra. Letσ be a generator of the
Galois groupG. If uσi , i = 0, 1, . . . , n − 1 is a basis for
the algebraA overK, then we have

uσi = ui
σ

φ(σi, σj) =
{

1, if i + j < n
δ, if i + j ≥ n

}

where,un
σ = δ. Since the cocycle can now be described

by just one elementδ and similarlyG can be described by
σ, we denote the crossed product algebra(K, G, φ) with
(K, σ, δ). Thus, withz = uσ, we have

A = (K, σ, δ) =
n−1⊕

i=0

ziK

where,zn = δ andkz = zσ(k), ∀k ∈ K.
Note that if the smallest positive integert such that

δt is the norm of some element inK\ {0} is n, then the
cyclic algebraA = (K,σ, δ) is a cyclic division algebra
[13].

Construction 1 LetK/F be a cyclic extension of degree
n with K = F (tn = t1/n), t, ωn ∈ F , |t| = 1. Here
ωn denotes thenth root of unity andσ : tn 7→ ωntn is
the generator of the Galois group. Letδ be a transcen-
dental element overK. Then the STBC arising from the
cyclic division algebra(K(δ)/F (δ), σ, δ) is MMSE opti-
mal. MMSE optimality follows because of the following
identities and Theorem 1.

|t| = |δ| = |σi(tn)| = 1, i = 0, 1, . . . , n− 1∑n−1
i=0 (tn)i(σk(tin))∗ = 0, if k 6= 0

(10)

The MMSE optimal STBCMa is given by

Ma =
n−1∑

j=0

n−1∑

i=0

f
(i)
j Wi,j , f

(i)
j ∈ F (11)



Φ =
[

vec(W0,0) vec(W1,0) . . . vec(Wn−1,0) vec(W0,n−1) . . . vec(Wn−1,n−1)
]

(9)

where, the weight matricesWi,j = tinP jQi. The matri-
cesP andQ are as shown below.

P =




0 . . . . . . 0 δ
1 0 . . . 0 0

0 1
.. .

...
...

...
.. .

.. . 0
...

0 . . . 0 1 0




Q =




1 0 . . . 0 0

0 ωn
. .. 0

...
...

. .. ω2
n

. . .
...

... 0
. ..

. . . 0
0 . . . . . . 0 ωn−1

n




(12)

Choosing a numberδ which is transcendental over
K is always possible for any givenn by virtue of the
Lindemann-Weierstrass theorem [13, 16]. We would like
to emphasize here that the codes in [5, 6, 8, 11] can be
obtained as a special case of our construction by simply
choosingδ = 1. If δ = 1 then the algebraA will be a
cyclic algebra and is not guaranteed to be a division alge-
bra.

Some of the salient features of the codes in this paper
are listed below.

1. Full rate

2. Information lossless [12, 13]. The capacity of the
equivalent MIMO channel is same as that of the
MIMO channel.

3. Fully diverse when a ML receiver is employed
since they arise from matrix representation of di-
vision algebras [13].

4. MMSE optimal

Example 1 This example illustrates our construction
procedure forn = 2. Let F = Q(j, t), wheret is tran-
scendental overQ(j). ThenK = F (t2 =

√
t) is a cyclic

extension ofF of degree2. The generator of the Galois
group is given byσ : t2 7→ −t2. Let δ be any tran-
scendental overK. Then(K(δ)/F (δ), σ, δ) is a cyclic
division algebra. For example, we can chooset = ej and
δ = ej

√
5. Then, we have

Ma =
1√
2

[
f

(0)
0 + f

(1)
0 t2 δ(f (0)

1 − f
(1)
1 t2)

f
(0)
1 + f

(1)
1 t2 f

(0)
0 − f

(1)
0 t2

]
(13)

Example 2 This is an example of a MMSE optimal code
which is not obtained from a cyclic division algebra. Let

n = 4 andF = Q(j, x, y) wherex andy are two tran-
scendental numbers independent overQ(j). We choose
these transcendental numbers to lie on the unit circle (this
is possible because of the Lindemann-Weierstrass theo-
rem [13, 16]). ThenK = F (

√
x,
√

y) is a Galois ex-
tension ofF with the Galois groupG = 〈σx, σy〉, where
σx :

√
x 7→ −√x andσy :

√
y 7→ −√y. The cocyleφ is

defined as follows.

φ(σx, σx) = φ(σxσy, σx) = δ1

φ(σy, σy) = φ(σxσy, σy) = δ2

φ(σx, σy) = 1 and φ(σxσy, σxσy) = δ1δ2

Then, the algebra

(K(δ1, δ2), G, φ) = K(δ1, δ2)⊕ uσx
K(δ2, δ2)

⊕ uσyK(δ1, δ2)⊕ uσxuσyK(δ1, δ2)

is a crossed product algebra where,δ1, δ2 are indepen-
dent transcendental numbers overK. We choose to pick
δ1 andδ2 to also lie on the unit circle. The matrix repre-
sentation of this crossed product algebra will give rise to
an MMSE optimal STBC since the conditions of Theorem
1 are met. The codewords of this STBC have the form

1√
P




k0,0 δ2σy(k0,1) δ1σx(k1,0) δ1δ2σxσy(k1,1)
k0,1 σy(k0,0) δ1σx(k1,1) δ1σxσy(k1,0)
k1,0 δ2σy(k1,1) σx(k0,0) δ2σxσy(k0,1)
k1,1 σy(k1,0) σx(k0,1) σxσy(k0,0)




(14)
where,ki,j = f

(0)
i,j + f

(1)
i,j

√
(x) + f

(2)
i,j

√
(y) + f

(3)
i,j

√
xy

andf
(l)
i,j ∈ Q(j) ⊂ F .

3.2. Decoding procedure

In this subsection, we explain the decoding procedure for
the codes in this paper and highlight its receiver simplic-
ity. Let the encoded matrixX =

∑n−1
j=0

∑n−1
i=0 f

(i)
j Wi,j .

Let the number of receive antennas bem. We assume that
m ≥ n in the sequel since otherwise there will be an er-
ror floor [10] when linear MMSE reception is employed.
The received matrixY can be expressed as

Y = HX + N (15)

where,H is the channel matrix of sizem × n and N
is them× n matrix representing the additive noise at the
receiver whose entries are i.i.dCN (0, 1). Then, the linear
MMSE receiver can be implemented in its simplest form
as a symbol-by-symbol decoder [10], as described below.
Let

f̂
(i)
j = tr(WH

i,jJ
HY ). (16)

with J = (HHH + 1
ρIn)−1HH whereρ is the Signal to

Noise ratio (SNR). Computation of̂f (i)
j is then followed



by hard decision ,i.e., it is decoded to the nearest point
(in the sense of Euclidean distance) in the constellation.
Note that the decoding complexity is linear in the size of
the signal set as compared to exponential in the case of
ML reception.

4. Discussion

An algebraic construction of MMSE optimal STBCs has
been given for any number of antennas. Few construc-
tions from tensor products of division algebras and brauer
division algebras were omitted due to lack of space. On
similar lines, it will be interesting to study design of op-
timal STBCs for linear ZF receivers. Some initial work
in this direction has been reported in [14] wherein it has
been shown that Toeplitz STBCs achieve full transmit di-
versity even with a linear ZF receiver.
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