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Abstract. Cyclic codes with symbols from a residue class integer ring Z m are 
characterized in terms of the discrete Fourier transform (DFT) of codewords defined 
over an appropriate extension ring of Z m. It is shown that a cyclic code of length n 
over Zm,  n relatively prime to m, consists of n-tuples over Z m having a specified set 
of DFT coefficients from the elements of an ideal of a subring of the extension ring. 
When m is equal to a product of distinct primes every cyclic code over Z m has an 
idempotent generator and it is shown that the idempotent generators can be easily 
identified in the transform domain. The dual code pairs over Zm are characterized 
in the transform domain for cyclic codes. Necessary and sufficient conditions for 
the existence of self-dual codes over Z m are obtained and nonexistence of self-dual 
codes for certain values of m is proved. 
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1 Introduction 

Error correcting codes have been studied extensively under the assumption that the 
symbols to be transmitted constitute a finite field. In this paper it is assumed that 
the symbols constitute a residue class integer ring Z,,. Codes constructed over such 
rings have unique feature that make them appropriate for phase modulated channels 
[11]. Other applications are in multifrequency phase telegraphy [14], and in multi- 
level quantized pulse amplitude modulated channels [1]. The discrete memoryless 
Lee metric channels suitable for such codes have been derived by Chiang and Wolf 
I-6]. A subclass of these codes is useful in certain multiuser communication systems 
[13]. Specific classes of cyclic codes over Zm have been obtained from codes over 
finite fields I-3, 4] and using p-adic fields 1-17, 18]. Using polynomial theory over 
integer rings cyclic and BCH codes over Zm, for arbitrary value of m, have been 
studied by Prithi Shankar [15]. 
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Our  approach is a generalization of Blahut's transform approach for codes over 
prime fields to codes over integer residue class rings. Through this approach we 
obtain new results concerning idempotent generators for the case when m is a 
product of distinct primes and non-existence results concerning dual codes over Zm. 

The content of this paper is arranged as follows. In Sect. 2 spectral character- 
ization of cyclic codes over Z,, when m is a power of a prime is obtained and then 
generalized to arbitrary m. Section 3 deals with the special case of m being a product 
of distinct primes. Results concerning dual codes are given in Sect. 4. Section 5 
contains some concluding ramarks. A brief introduction to Galois rings is given in 
Appendix 1 and in Appendix 2 results concerning D F T  over rings are described. 
These two appendices contain the necessary mathematical  background for this 
paper. 

Throughout  the paper it is assumed that the length of the code is relatively prime 
to the size of the alphabet. 

2. Spectral Characterization of Cyclic Codes over Zp~ 

Let Z~, be the set of n-tuples o v e r  Z m. Znm is a module over Z,, and a linear code 
n H s _ k -  over Zm is defined as a submodule of Z m [4]. Let m =  i=lpi ~ be the prime 

power factorization of m. By the Chinese remainder theorem we have the iso- 
morphism Z m -  Zp~I|174 from which follows the isomorphism 

Znm-= Zn~0) Z np~0) ' "  O Zn~pS. Hence any linear code over Zm is isomorphic to a 
ki direct sum of linear codes over Zp,, i = l, 2 . . . .  , s. Throughout  this section, except 

the last subsection, it is assumed that m = pk. 
Zp~ is a local ring with the maximal ideal generated by p and every non-trivial 

ideal is generated by pJ for some j -- 1, 2 . . . . .  k - 1. The order of Zp~ is equal to pkn 
and the order of any submodule of Z~k divides pkn. Hence the number of codewords 
in a linear code is of the form p~ where 0 < # < kn. 

2.1 Cyclic Codes in the Transform Domain 

Definition 1. A cyclic code C over Zpk of length n is an ideal of the residue class 
polynomial ring Zpk[x]/(x n - 1). 

The required D F T  to describe these cyclic codes in the transform domain is 
constructed as follows. 

Definition 2. Let a = (ao, a 1 . . . .  , an_l) be an n-tuple over Zp~. The D F T  of a is 
defined as 

n- -1  

A j= ~ ct~ j=O, 1 , . . . , n - 1  
i = 0  

where ~ is an element of multiplicative order n in the Galois ring, GR(pk, r) 
[Appendix A], where r is the least integer such that n divides (p" - 1). The vector 
A_ = (Ao, A 1 . . . . .  An-l )  is called the transform vector or spectrum of a. The com- 
ponents Ai, i = 1, 2 . . . . .  n, are called the D F T  coefficients or spectral components 
of a. 
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Let GRn(p k, r) denote the set of n-tuples over GR(p k, r). The D F T  maps Z" to a pk 

subset of GR"(p k, r). Identifying the structure of this subset, given in the following 
theorem, is the key idea that leads to transform domain characterization. 

Theorem 1. Let R~ denote the subset of GR"(p k,r) which is the set of transform 
vectors of all n-tuples over Zp~. Then 

t 

R~ =- @ GR(p k, ri) 
i = 1  

where t is the number of conjugacy classes for the integer n and the prime p and ri, 
i = l, 2 , . . . ,  t, are the exponents of the conjugacy classes. 

Proof. For a fixed j, 0 < j < n, let the conjugacy class Cp,,(j) have exponent e. For 
any element (A o, A 1 . . . . .  A,_ 1) of R~ it is required that a(A;e ,j) = Apej, (conjugate 
symmetry property) i.e., cse(Ak) = Ak for all k in the conjugacy class Cp,,(j). In other 
words Ak is an element of degree e and hence belongs to the subring GR(p k, e). Let 
R~j denote the subset of R e consisting of only those elements of R~ which have all 
spectral components zero except the ones that belong to Cp,,(j). Since the value of 
one spectral component of a conjugacy class uniquely specifies the values at other 
components in the conjugacy class, it follows that 

t 

R~ -= @ GR(p k, e). 
i = 1  

Moreover, since the conjugacy classes are disjoint and operations in R~ are pointwise 
it follows that R ~ -  R~j, O R~ 2 | 1 7 4  R~j,, where Jl, J2 . . . . .  Jt belong to different 
conjugacy classes and t is the number of conjugacy classes. [] 

From the above theorem and the convolution property of the D F T  we get 
t 

Zp~[X]/(x"-- 1)--= @ GR(p k, ri). 
i = i  

Therefore there is a one-to-one correspondence between the ideals (cyclic codes) of 
Zv~[x]/(x" - 1) and ideals of G'i=iGR(pk, ri). For all i, i = 1,2 . . . . .  t, all the ideals of 
GR(p k, r~), are p2GR(p k, r~), j = O, 1 . . . . .  k. Hence cyclic codes over Z p~ can be charac- 
terized in terms of spectral components as follows: 

For an integer n and a prime p, let there be t conjugacy classes with exponents rl, 
i = 1, 2 . . . . .  t. Let r be the least integer such that n divides (p' - 1). A cyclic code of 
length n over Zp~ consists of the inverse DFT  coefficients of all vectors of the subring 
isomorphic to | = 1GR(p k, r~) of GR(p k, r) whose specified spectral components take 
values from an ideal pJGR(p k, rl), 0 <_ j <= k, for i = 1, 2 . . . . .  t. In other words any 
cyclic code L over Zp~ is of the form 

t 

L=@pJ'GR(pk ,  ri) O< j i<k .  
i = l  

Example 1. Let n = 3 and m = 22. The extension ring is GR(4, 2), every element of 
which is of the form a + bx where a, beZ~. We have Z4[x]/(x 3 - 1) = GR(4, 1)@ 
GR(4, 2) = Z 4 G GR(4, 2). Let us denote a + bx by the ordered 2-tuple ab. Ideals of 
GR(4, 2) are {00}, {00, 02, 20, 22} and GR(4, 2). Ideals of GR(4, 1) are {00}, {00, 20} 
and {00, 10, 20, 30}. We can choose e = 3 + 3x. The conjugacy classes are {0} and 
{1,2}. The conjugacy class {0} can take values from ideals of GR(4, 1) and the 
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Table 1. Codewords and spectrum of all cyclic codes of length 3 over Z 4. 

codeword spectrum codeword spectrum codeword spectrum codeword spectrum 

Code 1 000 000000 222 200000 
Code2 000 000000 220 002202 022 002020 202 000222 
Code 3 000 000000 11 1 300000 222 200000 333 100000 
Code4 000 000000 200 202020 020 200222 022 002020 

220 002202 002 202202 202 000222 222 200000 
Code5 000 000000 310 003123 220 002202 013 001232 

130 001321 301 002331 211 001010 103 002113 
121 000133 031 003212 202 000222 233 003030 
112 003301 022 002020 332 001103 323 000311 

Code6 000 000000 020 200222 111 300000 220 002202 
200 202020 311 102020 202 000222 313 300222 
131 100222 331 302202 002 202202 133 302020 
022 002020 222 200000 113 102202 333 100000 

Code7 000 000000 200 202020 110 201103 323 000311 
310 003123 020 200222 220 002202 123 202331 
130 001321 330 203301 101 200311 213 203212 
301 002331 011 203030 211 001010 013 001232 
121 000133 321 202113 031 003212 303 200133 
231 201232 233 003030 033 201010 103 002113 
002 202202 202 000222 112 003301 332 001103 
312 201321 022 002020 222 200000 132 203123 

conjugacy class {1, 2} can take values from the ideals of  GR(4, 2). The codewords 
of all cyclic codes that  their spectrum are listed in Table 1. 

In  the above example the au tomorph ism is given by a(x) = 3 + 3x. This means 
given A 1 = a + bx, A 2 is obtained by a polynomial  substitution of the form x --- f ( x ) .  
This can be done for all pk and n by choosing ~b(x) in Zpk[X]/gp(x) to be an irreducible 
factor of cyclotomic polynomial ,  an algori thm for which is given in 1-10]. 

N o w  we identify a set of cyclic codes over Zpk from which all other  cyclic codes 
over Zp~ can be obtained. 

Definition 3. Given Zpk and code length n, the cyclic codes Li, i = 1, 2 . . . .  , t, given 
by Li = GR(pk, rl) are called minimal codes and cyclic codes Li. ~ -  pJ'GR(pk, ri), 
0 < j~ < k, are called subminimal codes corresponding to L~. 

Every minimal cyclic code is isomorphic  is a Galois ring. (When k = 1, this 
reduces to the well known fact, that  every minimal cyclic code over GF(q) is 
isomorphic  to a finite field.) Minimal codes are cyclic codes with one conjugacy 
class (say ith conjugacy class) taking values from GR(p  k, rg) and zeros in all other 
conjugacy classes. Subminimal  cyclic codes are cyclic codes with one conjugacy 
class taking values from an ideal pJ 'GR(p  k, ri), 0 < Ji < k, of the Galois ring corre- 
sponding to the conjugacy class, and zeros in all other conjugacy classes. It  follows 
from the local ring structure of Galois ring that  every subminimal cyclic code is a 
subcode of the corresponding minimal code. Explicitly, there is the following Chain 
structure of subminimal codes corresponding to Lg, 

pk-  1 GR(pk, rl ) ~ pg-  2 GR(pk, ri ) ~ ... ~ p2 GR(pk, ri ) ~ pGR(pk,  ri ) 

i.e., 

Li,k-1 ~ Li,k-  2 ~ "" ~ Li, 2 ~ Li,1 ~ Li. 
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Also every cyclic code over Zp~ is a direct sum of some minimal and subminimal 
codes. (In finite field case, because of  the absence of nontrivial ideals, counterpar t  
of subminimal  cyclic codes over Zp~ do not  exist.) Hence there are (k + 1 ) ' - 2  
nontrivial cyclic codes of  length n over Zpk since each direct summand  GR(p k, r~) 
has (k + 1) ideals pJGR(p k, r~), j = 0, 1 . . . . .  k. 

2.2 Metrics and Decoding for  Codes over Zp~ 

The choice of metric depends on the criterion of decoding and channel [6]. We 
consider both  H a m m i n g  and Lee metric. As far as H a m m i n g  distance is concerned 
cyclic codes with elements f rom nonzero  ideals in some conjugacy classes have the 
same min imum distance as codes with full ring in those conjugacy classes, all other 
conjugacy classes having zeros in both  the codes. This is proved in Theorem 2. 

L e m m a  1. Let two cyclic codes M1 and M 2 over Zp~ of  same length with min imum 
H a m m i n g  distances dl and d 2 respectively be M 1 = pJ'GR(pk, ri) and  M 2 = 

p J2 GR(pk, ri ) for some i, where 0 < J l < k and 0 < J2 ~ k, i.e., M1 and M 2 a r e  minimal 
codes or subminimal codes corresponding to a minimal code. Then d 1 = d 2. 

Proof. If j l  = J2, then M 1 and M 2 are same and hence d 1 = d 2. If  j l  :~ J2,  let Jl > J2. 
Then M1 is a subcode of  M 2 and it follows that d 1 > d 2. Our  aim is to prove that  
dl = d2. It  is sufficient if we prove this for the case Jl = J2 d- 1. Suppose d 1 > d s. We 
have p M  s = ppJ2GR(p k, rl) =- p J1GR(pk, ri ) - M1. Since dl > dz, there is a codeword  
___ = (ao, a l , . . . ,  a ,_  1) in M s ,  with Hamming  distance d2, which is not in M1. Consider 
the vector b = p ( a ) =  (pa o, pa 1 . . . .  , pa,_ 1). If  b is not  a all zero vector, then since 
p M  s = Mx and _aGM2, we have b e M  1. Let the H a m m i n g  distance of _b = d 3. We 
have d 3 < d s. But d 2 < d 1. Hence d3 < dl. This contradicts the minimality of dl. 
Hence d l =  d2. It remains to prove that b = p(_a) is not  a all zero vector. Let j be 
the min imum of power of  p in the expression of all components  of a in the form uff 
where u is a unit. (Note that for a zero componen t  t = k.) Suppose b is all zero 
vector. Then we have j = k - 1. This means, since a s M  z, J2 ~ k - -  1. Since J2 < k, 

we have J2 = k - 1. Since Jl = J2 + 1, we have Jl = k. This is not  possible since 
Jl < k. Hence b is not  a all zero vector. [ ]  

Theorem 2. Let M 1 and M 2 be two cyclic codes over Zpk of same length with zeros 
in the identical set of conjugacy classes and nonzeros in other conjugacy classes. 
Irrespective of  the ideals from which nonzero  values are assumed, M 1 and Ms  have 
the same min imum distance. 

Proof. Let M 1 and ME be cyclic over Zp~, given by 
t" 

M x - @ p J ' G R ( p k ,  ri), O < j i < k ,  i = 1 , 2  . . . .  , t ' ,  
i = 1  

t '  

Ms =- @ PJ"GR(p k,rl), 0 < J'i < k, i = 1, 2 , . . . ,  t'. 
i = 1  

Let d 1 and d 2 be respectively the min imum H a m m i n g  distances of M1 and M s. We 
have to show that d l =  ds. Let M be the cyclic code given by 

t 

M =- @ pJiGR(p k, ri) �9 pJ~- 1GR(pk, r,) 
i = 1  
i r  
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for some uE{1,2 . . . . .  t'}. Let the minimum Hamming distance of M be d. It is 
sufficient if we prove d = d 1. Clearly M1 is contained in M. Hence d < dl. Suppose 
d < dl. Let a = (a o, a l , . . . ,  a n_ 1) be a codeword in M of Hamming  distance d, and 
a is not in M1. Define b = pa = (pao, pa l  . . . .  , p a , - 1 ) .  Clearly p(a) is a codeword in 
M1. Multiplication by p of a cannot increase the Hamming distance of a. Hence 
Hamming distance of b < d. We assume that _b is not a all zero vector. Since b is in 
Mx, minimality of d~ is contradicted. Hence d = da. It  remains to prove that b is 
not a all zero vector. Let j be the minimum of powers of p in the expression of all 
components of a in the form up ~ where u is a unit. Suppose b is a all zero vector. Then 
we have j = k - 1. This means, in the transform vector of a, say (Ao, A~,. . . ,  A,_ 1), 
the components corresponding to the u-th conjugacy class belong to p ~ - X G R ( p  k, r). 
Since a~M,  we have j ,  - 1 = k - 1, i.e., Ju = k. But by definition of M1, we have 
ju < k. Hence b is not a all zero vector. [] 

Regarding the minimum Lee distance it is observed that for the same number  
ofcodewords, in certain cases, codes over Zp,,, with D F T  coefficients from nontrivial 
ideals of extension ring have greater Lee distance compared to codes with D F T  
coefficients from only trivial ideals. No general result regarding this is reported. We 
list below the codewords and D F T  coefficients of two codes from Example 1, both 
having four codewords of length 3 over Z4. Code A has Lee distance 4, wereas code B 
has Lee distance 3. In codes of length 3 over Z 8 also similar case can be seen. The 
two codes with eight codewords, one with nontrivial ideal in both the conjugacy 
classes and the other one with trivial ideals in both conjugacy classes, are listed 
below. It is seen that code C has Lee distance four whereas code D has Lee distance 
three. 

Code A Code B Code C Code D 

codeword spectrum codeword spectrum 
000 000000 000 000000 
202 000222 111 300000 
220 002002 222 200000 
022 002020 333 100000 

codeword spectrum codeword spectrum 
000 000000 000 000000 
400 404040 111 300000 
404 000444 222 600000 
040 400444 333 100000 
044 004040 444 400000 
440 004404 555 700000 
004 404404 666 200000 
444 400000 777 400000 

As in the case of codes over finite fields one can define BCH codes over Zpk as 
one whose all codewords have a specified set of spectral components taking values 
from the same specified ideal of the extension ring. With this definition of BCH 
codes over Zpk the class of BCH codes studied by Prithi Shankar turns out to be a 
subclass where the code has a consecutive set of spectral components taking value 
zero. It can be shown 1-19] that the BCH codes of this subclass can be decoded by 
using a minimal shift register synthesis algorithm over appropriate Galois rings. 
Such an algorithm is obtained by minor adjustments of an algorithm available for 
minimal shift register synthesis over Z,, [16]. However, the problem of decoding 
general cyclic codes and decoding for Lee metric remains open. 
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2.3 Characterization for Arbitrary m 

_ nklnk2 ks Define rnl In this subsection we consider the general case where m - ,-1 ~2 . . . . .  P~ �9 
such that  mi -- 1 (mod p~') and mi = 0 (rood p~J) for i ~ j, j = 1, 2 , . . . ,  s. Let (ai(x) be a 
monic  irreducible po lynomia l  of  degree r over  Zp, and hence over  Z k' where r is pi '  

- - 1  r , . . ~  r the least integer such that  n lg.c.d. ((p] ), (P2 - 1), (p, 1)). Then ~b(x) given by 

~) (X)  = ( m  1 ~) 1 (X)  -[- m 2 t~2 ( x )  --~- . . .  + 1Tl s (Os(X) ) m o d  m 

is a monic  irreducible polynomia l  over  Z,,. We have [15] Q(m, r) - 0)~= 1GR(p k', r) 
$ * ki and the group  of units Q*(m,r)-  |  (Pl ,r). Q*(m,r) has order  N given by 

N=II~=lp~'tk'-l)(p~ - 1). Since we can choose r such that  n[g.c.d. ( (p~-  1), 
(p~ - l) . . . .  , ( p ~ -  1)), we can find an element ~ in Q*(m, r) of order  n and  hence 
construct  D F T  over  Q(m, r). Next,  we identify the subring R e of  Qn(m, r) which is the 
image of all n-tuples over  Zm under  DFT,  using the group of au tomorph i sms  of 
Q (m, r). 

The  group of au tomorph i sms  of Q(m,r) is an abelian group  which is direct 
p roduc t  of  s cyclic groups  each of order  r, Let a , , a 2  . . . .  ,a~ be the genera tor  
au tomorph i sms  of these cyclic groups.  Then a~, i = 1, 2 . . . . .  s, is the genera tor  of the 
group  of a u t o m o r p h i s m  of GR(p k', r) [5]. Clearly any m a p  a:Q(m, r) - -~ Q(m, r) of 
the form (a~~, (72j2,..., (Tjs) is an a u t o m o r p h i s m  and conversely. Each generat ing 
a u t o m o r p h i s m  relates different set of spectral  componen t s  of conjugacy classes 
corresponding to different p~. Let (Ao, A1, . . . ,  An_ ~) be a t ransform vector  where 
AieQ(m,r ) and Aij is the componen t  of  A i in GR(pkJ, r). Then from conjugacy 
symmet ry  p roper ty  we have %(A~j) = A~(pj). Let there be t~ conjugacy classes corre- 
sponding to p~ with exponents  e~j, j = 1,2 . . . . .  t~, for i =  1, 2 , . . . ,  s. The  following 
theorem, which can be proved  using Chinese Remainder  Theorem,  identifies the 
subring R e of Q"(m, r). 

Theorem 3. The subring R e of Q"(m, r) which contains all the t ransform vectors of  
kl k2 ks is i somorphic  to 0)i= " GR(p k',eij ) where n-tuples over  Z,,, m = p~ P2 . . . . .  Ps ' s 1 @j= 1 

t~ is the number  of conjugacy classes and e,-j, j = 1 ,2 , . . . ,  t~, are the exponents  
corresponding to p~. 

By choosing zero ideal f rom all GR(p~', e~j) except for a par t icular  i, leads to 

- -  r~kl.k2 ks is a direct sum of cyclic Theorem 4. Every clyclic code over  Zm, m - r~ ~z . . . . .  P , ,  
codes over  Z ~ ,  i = 1, 2 . . . . .  s. 

Theorem 5. The  min imum H a m m i n g  distance of a code L over  Z.,, where 
S ti 

L =_@@ph"GR(pk' ,ei j ) ,  O<h, j<ki ,  
i - l j = l  

is equal  to the min imum of the H a m m i n g  distances of the codes, L~, i = 1, 2 . . . .  , s, 
over  Z~ ,  given by 

tl 

L i =- ~ Ph~JGR(p~, ei j ) .  
j = l  

Proof. Let d be the min imum H a m m i n g  distance of L and di, i = 1, 2 . . . .  , s, be the 
min imum H a m m i n g  distances of Li, i = 1, 2 . . . .  , s. Let d~ = rain {d~, d E , . . . ,  ds} for 
some vE{1, 2 , . . . ,  s}. We have L - 0)7= ~Li. By choosing the zero vector  f rom all Lg, 
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except i = v, and a vector of Ha m m i ng  weight dv in Lv, we obtain a codeword  in L 
of Hamming  weight dv in L. Hence d < d v. We want  to show that d = dr, Suppose 
d < d~. Let F be a codeword in L of Ha m m i ng  weight d, i.e., there are only d nonzero 
components  in F which are elements of Z,,. In the isomorphism Z m -  | 1Zp~, 

the zero of Z,, has only zero components  in all Z~/,, and any nonzero element of 

Zm has nonzero component  in at least one Z ki Hence if F~, i =  1,2 . . . . .  s are 
pi"  

components  of F in L~, i = 1,2 . . . . .  s, then Hamming  weight of each L~ is a tmost  d. 
This means the min imum Ha m m i ng  weight of each L~ is equal to d < d~ for at least 
one i, which contradicts the minimality of d,~. Hence d = d~. [ ]  

3 Cyclic Codes Over Z . , ;  m = P I P 2  . . . . .  Ps 

When m is a product  of distinct primes, Z,, is a semisimple ring a n d  by Masche's  
theorem the ring Z , , [ x ] / ( x " -  1) is also semisimple. Hence every cyclic code over 
Z,, has an idempotent  generator. Proceeding as in the previous section and using 
the facts GR(p, r) - GF( f f )  and Q(m, r) =- �9 GF(p~), we have Q*(m, r) ==_ | 1GF*(p~). 
Putt ing k 1 = k z . . . . .  k S = 1 in Theorem 3, we obtain, 

Theorem 6. The subring R~ of Q"(m, r) which contains all the transform vectors of 
n-tuples over Z m, m = PlP2 . . . . .  Ps, is isomorphic to @~= 1 | 1GF(p~'J), where t~ is 
the number  of conjugacy classes corresponding to p~ and e~j, j = 1,2 . . . . .  tf, are their 
exponents. 

F r o m  Theorem 6, it follows that 
$ fi 

Z, , [x] / (x"  - l) = R~ - @ @ GF(p~i ~j) 
i = l j - 1  

i.e., Z, , [x] / (x"  - 1) is a direct of finite fields GF(pe'q, i = 1,2 . . . .  , s and j = 1, 2 . . . . .  t~. 
Hence every cyclic code over Zm, has an idempotent  generator. 

Lemma 2. If ao + al x + ... + a r_ 1 x r -  ~ ~ Q(m, r) is an idempotent  generator  of some 
ideal of Q(m, r) then ax = a2 . . . . .  a t -  ~ = 0 and a o is an idempotent  element of Z,,. 

Proof.  Let I be an ideal of  Q(m, r) with idempotent  generator  e. F rom Q(m, r) = 
| it follows that l = q)~=lli, where I i is an ideal in GF(p~) and e = 
(rnl el + m2e2 + "" + m3 es)(mod m), where ei is an idempotent  generator  of li. Since 
I~ is a finite field e~ = 0 or 1, which means e is an idemptonent  element of Zm. [] 

Theorem 7. Every cyclic code over Zm, m = PiP2 . . . . .  Ps, is uniquely determined by 
a subset of idempotent  elements of Z,,. 

Proof.  Every cyclic code over Z,,, m = PiP2 . . . . .  Ps, has an idempotent  generator. 
Let (fo, f l  . . . . .  f , - 1 )  be an idempotent  generator  of a cyclic code with spectrum 
(Fo, F 1 . . . . .  F ,_I ) .  Since the conjugacy constraints corresponding to a prime p j, 
j = 1,2 . . . . .  s is of the form Fz = F~pj, i = 0, 1,2 . . . . .  n - 1, from Lemma 2, it follows 
that F i e Z  m, for i -- 1, 2 . . . . .  n - 1. Moreover ,  the group of au tomorphisms  of Q(m, r) 
leave the subring Z,, invariant. This means if j - th componen t  of t ransform vector 
in F j e  Z,, then all the D F T  components  of the conjugacy class Cp,,(j) take the value 
Fj. Hence idempotent  generators can be identified in the t ransform domain  as those 
which have some idempotent  elements of Z,, in all the conjugacy classes. [ ]  
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Table 2. Listing of idempotent generators of all cyclic codes of length 5 over Z6 
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idempotent spectrum idempotent spectrum 
generator generator 

00000 
10000 
30000 
40000 
51111 
21111 
22222 
52222 

0000 0000 0000 0000 0000 0 3 3 3 3 
1000 1000 1000 1000 1000 1 3 3 3 3 
3000 3000 3000 3000 3000 3 3 3 3 3 
4000 4000 4000 4000 4000 4 3 3 3 3 
0000 1000 1000 1000 1000 24444 
3000 4000 4000 4000 4000 5 4 4 4 4 
4000 0000 0000 0000 0000 2 5 5 5 5 
1000 3000 3000 3000 3000 5 5 5 5 5 

0000 3000 3000 3000 3000 
1000 4000 4000 4000 4000 
3000 0000 0000 0000 0000 
4000 1000 1000 1000 1000 
0000 4000 4000 4000 4000 
3000 1000 1000 1000 1000 
4000 3000 3000 3000 3000 
1000 0000 0000 0000 0000 

Example 2. Let m = 6 and n = 5. Z 6 - GF(2)@ GF(3), q~l(x) = x 4 + x + 1 and q~z(X) = 
x 4 +  x + 2. are irreducible polynomials of degree 4 over GF(2) and GF(3). The 
corresponding irreducible polynomial of degree 4 over Z6 is x 4 + x + 5. We have 
Q(6,4) - Z6[x]/(x 4 + x + 5). In Q(6,4) an element of order 5 is 2x 2 + 3x 3, which is 
taken to be the transform factor. The conjugacy classes are C2,5(0)= 0, C2,5(1)= 
{1,2,3,4}, C3,s(0)={0} and C3,5(1)={1,2,3,4}.  We have Z 6 / ( x S - 1 )  = 
GF(2) @ GF(24) @ GF(3) @ GF(34). We take zero ideal for the conjugacy classes 
C2,s(0) and C 3 , 5 ( 1 )  and full ring for the conjugacy classes C3,s(0) and C2,s(1 ). The 
idempotent elements of Z 6 are 0, 1, 3 and 4. The idempotent generators of all cyclic 
codes and their spectrum are listed in Table 2. 

4 D u a l  C o d e s  over  Z m 

Dual codes are useful in the study of weight enumeration of linear codes. When the 
symbol alphabet has the structure of a finite field, it is well known that the weight 
enumerators of a linear code and its dual code are related by MacWilliams identities. 
Delsarte [7] has assumed the Abelian group structure for symbol alphabet, and 
obtained linear codes called additive codes. For additive codes, he has defined a 
duality relation which reduces to the classical concept of linear codes over a prime 
field and has shown that the MacWilliams identities on the weight distribution are 
still satisfied. Obviously Z,, is a subclass of additive codes and hence MacWilliams 
identities are satisfied for dual codes of linear codes over Z,,. 

4.1 Dual Codes of Linear Codes over Z,, 

First we show that for the case of codes over Zm, the duality relation of Delsarte 
for additive codes reduces to the familiar relation of dot product being equal to 
zero. Let G be an Abelian group of exponent q and G" denote the set of all n-tuples 
over G. Let q~ denote the group of characters of G. It is well known that �9 - G. 
Let q~o denote the character corresponding to g in G under this isomorphism. For 
a, be G", where a = (ao, at . . . . .  a,_ x) and b = (b o, b I . . . .  , b,_ 1), the inner product of 
a and _b, denoted by ( a , b ) ,  is defined [16] as 

n - 1  

(_qa, b> = l-I ~5,(a,}. 
i = 0  
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Let H be a subgroup of G ". H is called as additive code over G. The dual of H is 
defined as the subset H d of G" given by H d = { b e G": < a_, b > = 1 for V a ~ H}. H d is a 
subgroup of G" and H d =- G"/H. When q is prime, an additive code is merely a linear 
code over GF(q) and the dual is the classical one. 

For  the case of linear codes over Z~, we consider the Abelian group (Z,,, + ). It 
can be seen that  the group of characters of(Zm, + ) is q~ = { 4~0, qh . . . . .  q~,,- 1 }, where 
Oi, i = 0 , 1  . . . . .  m - 1 ,  is given by q~i(x) = ~ I~ for x e Z , ,  where a is an element of 
multiplicative order  m, and the group operat ion in q) is given by q)~ ~ j  = @~ + j(mod,,)- 
N o w  the inner product  of a and b is given by 

( a , _ b } =  I ]  CI)b,(al)= I-[ (~b')"~=aexp aibi �9 
i = 0  i = 0  \ i = 0  

Hence < ___, b > = 1 ffZ~=o a~b~ = 0. This leads to 

Definition 4. Let C be a linear code over Z m. Then its dual code, denoted by (~, is 
defined as 

{ } C =  (bo, b 1 . . . . .  b ,_ l ) :  ~ a i b i = O f o r a l l ( a o , a l , . . . , a , - 1 ) ~ C  . 
i = 0  

Note  that this definition is same as that  for codes over finite fields. 

4.2 Spectral Characterization of Dual Codes of Cyclic Codes 

P r o @  
have 

Let m = pk and let us call the conjugacy class Cv,.(n - j) the dual conjugacy class 
of Cv,.(j) and the ideal pk-JGR(pk, r) of GR(p k, r) the or thogonal  ideal of pJGR(p k, r). 
Note  that  product  of two elements, one each from pJGR(p k, r) and pk-JGR(pk, r), is 
zero. If I denotes an ideal of GR(p k, r) then ld is used to denote the or thogonal  ideal 
of I. Note  that  I. Id = O. 

Lemma 3. Let _a = ( a o , a  1 . . . . .  a , _ l )  and _b = (bo, b l , . . . , b , _ l )  be codewords and 
A_=(Ao, A 1 , . . . , A , _  I) and B_=(Bo, B I , . . . , B , _ I )  be their t ransform vectors. If 
bj = a ,_ j  for all j = 0, 1 . . . . .  n - 1, then Bj = A,_ j  for all j = 0, 1, 2 . . . . .  n - 1. In other 
words the permutat ion defined by i - ~ (n - i) is preserved under DFT.  

Let c~ be the transform factor of the DFT.  For  any j~{0,  1 ,2 , . . . ,  n - 1}, we 

Also 

n - 1  n - 1  n - 1  n - 1  

Bj ~ ~Ubi = ~ u = ~ a._i = ~. a("-k)Jak= ~. a-kJak . 
i = 0  i = 0  k = O  k = O  

n - I  n - I  n - I  

A(n-])= Z o~i(n-J)ai--~ 2 ~ = ~ o~ kJa k. 
i = 0  i = 0  k = 0  

Hence B j =  A,_j .  [ ]  

Theorem 8. If  C is a cyclic code of length n over Zpk whose transform vectors take 
values from the ideals I1,12 . . . . .  I, for the conjugacy classesCp,,(jl), Cp,,(j2 ) . . . . .  Cp.,(j,) 
respectively then the t ransform vectors of the dual code C take values from the ideals 
(I1)e, (I2)d . . . . .  (It) d respectively for the conjugacy classes C p,,(n - J l ) . . . . .  C p,,(n - Jr). 
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Pro@ Let a = (a o, a~ . . . . .  a ,_  1) be represented by ao + al x + "" + a,,_ i x" -  ~ = a(x) 
and let a(x) ~ C. Let C* denote the code with ideals (lOd, ( I 2 ) a  . . . .  , (It)d in the conjugacy 
classes C,,,,(jl), Cp,n(J2) . . . . .  Cp,n( j t  ) and let h(x) = ho + h lx  + ... + h,,_lx "-1EC*. 
F r o m  the convolu t ion  p roper ty  of D F T  it is clear that  a(x)h(x) = 0 for all a(x) E C 
and for all h(x)~ C*. In part icular ,  the constant  te rm in the p roduc t  a(x)h(x) is zero 
i.e. , - 1  Y.i=o aih,,_i = 0. For  a given h(x) in C* define b(x) = b o + bl x + ... + b,,_ l x"-  I 
b y b i  h , _ i , i - - - 0 , 1 , . ,  n - l .  W e h a v e  , - 1  = ., Z i=o  aibi = 0. Hence  b(x) belongs to the 

dual code C. F r o m  L e m m a  3, it follows that  the t ransform vector  of  b(x) have 
values f rom ideals (11)d, (I2)d,... ,(It) d for the conjugacy classes Cp, , , (n - j l  ), 
Cp,n(n --  J 2 )  . . . . .  Cp,n(n -- Jr)" So we have shown that  the set of all b(x) corresponding 
to all the elements of C*, denoted by C**, is contained in C. It  remains to show 
that  they are, in fact, all the codewords  of (~. We know that  C is conta ined in Z~,~/C, 

n which is the factor group, considering bo th  Zp,, and C as groups.  So, it is sufficient 
to show that  

ICI IC**l --(pk), = pk, 

where ]C] denotes  the number  of elements in C. Let  I ,  be the ideal ffuGR(p k, r) for 
some I , ,  0 < i. < k, for u = 1, 2 . . . .  , t. Also let el,  e2 . . . .  , e t be the exponents  of Cp,,.(jl), 
Cp,,(j2) . . . . .  Cp,,,(jt) respectively. Note  that  sum of the exponents  of all the conjugacy 
classes, el-I-e2 + " "  +er, is equal to n. Then ]C[ = (ffl)e,(p,2)e2...(p,,)~,=p~,p,~e~ . . . . .  p~,~. 
Similarly, ]C**I = (pk-i,)e,(pk-i2)~2,..., (pk-i,)~,. 

Hence,  ]C l] C**I = (pk)t~, +e~+... +~,) = pk,,. Q.E.D. 

4.3 Non-Existence Theorems for Cyclic Self-Dual Codes 

The following spectral  character izat ion of self-dual cyclic codes follows immediate ly  
f rom Theo rem 8. 

Theorem 9. A code C is a self-dual cyclic code iff whenever Cp,,,(j) has values f rom 
the ideal I then Cp,,(n - j) has values f rom the ideal i d. 

Example 3. Let n = 3 and m = 4. The appropr ia te  extension ring is GR(4, 2). The 
only ideal in it such that  I = Id is 2GR(4, 2). Both the conjugacy classes {0} and { 1, 2} 
are self-dual. So the only possible self-dual code in this case is the one with all the 
conjugacy classes taking values f rom the ideal 2GR(4, 2). All the codewords  and 
their t ransform vectors are shown below. 

Codewords: 0 0 0 2 0 0 0 2 0 2 2 0 2 0 2 0 0 2 0 2 2 2 2 2 

Spectrum: 00 00 00 20 20 20 20 02 22 00 22 02 00 02 22 20 22 02 00 20 20 20 00 00 

Example 4. Consider  length 5 cyclic codes over  Z 4. The conjugacy classes are {0} 
and { 1, 2, 3, 4}. Both  are self-dual conjugacy classes. The extension rings is GR(4, 4). 
The  only self-orthogonal  ideal is 2GR(4, 4). Hence there is only one self-dual code 
in this case. 

N o w  we identify a set of values o fm and n for which self-dual codes do not  exist. 
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Theorem 10. If  m = pk and (n, m) = 1 then self-dual cyclic codes of length n over Z,, 
do not exist for all odd integer values of k. 

Proof .  For all values of m and n, {0} is the conjugacy class Cp,.(0) and Cp,,(n - O) 
is also {0}. Considering the conjugacy class {0}, from Theorem 8, it is necessary that 
for a code C to be self-dual there must be at least one ideal I in GR(p k, r) such that 
I = Id, i.e., at least for one value of j, such that pJGR(p k, r) = pk-JGR(pk, r). This can 
happen only i f j = k - j o f k = 2 j .  [] 

The well known result that a binary self-dual cyclic code is always of even length 
follows from Theorem 10. 

--nk'"k2 n ks let a = ( a o ,  al ,  . a ,_ l )  and For  any arbitrary integer r e - e l  rE . . . . . . . . . . .  
_b = (b o, b 1 . . . . .  b,_ a) be in Z",.. Choose mz's such that mira i = 1 (mod m) if i = j and 
mimj = 0(mod m) if i ~ j. We have 

a i = (mlail + m2ai2 + ... + msais)modm 

b i = (mlbil + m2bi2 + ... + msbis)modm 

where al. and bi .~Z kj for i, j =  1,2 . . . .  , s. It can be verified that ~']ylalb  i = 0 iff J J p j  

~,~= ~ aijbij = 0 for j = 1, 2 . . . .  , s. Combining this result with Theorem 4, Theorem 9 
and Theorem l0 leads to 

Theorem 11. I fm kl k2 ks = Pl P2 . . . . .  Ps and (n, m) = 1 then self-dual codes of length n over 
Z m do not exist if any one of k~'s is an odd number. 

5 Conclusion 

Transform domain characterization of cyclic codes and dual-codes over residue 
class integer rings Zm have been obtained. For the special case of m being a product 
of distinct primes it is shown that the idempotent generators of the cyclic codes can 
be easily identified in the transform domain. Nonexistence of self-dual codes have 
been proved for certain values of m and n. Since the Galois rings GR(p k, r) include 
finite fields GR(p, r) and integer residue rings GR(p k, 1) as special cases a general 
theory of codes can be developed by studying codes for the alphabet which has the 
structure ofa  Galois ring. Decoding algorithm has been obtained only for a specific 
class of BCH codes, that too only for the Hamming metric. It would be of interest 
to devise decoding schemes for the general cyclic code both for Hamming  and Lee 
metrics. 

Appendix 1: Galois rings 

Let pk be a power of a prime number. Galois rings are residue class polynomial 
rings Zpk [x]/fa (x), denoted by GR(p k, r) where Zpk I-x] is the ring of polynomials over 
Zp~ and ~b(x) is a monic irreducible polynomial of degree r over Zp[x] and hence 
over Zp~[X] [12]. It is easy to see that GR(p k, 1) is isomorphic to Zpk and GR(p k, r) 
is isomorphic to GF(pr). Results concerning Galois rings that are of interest to us 
are listed below. Proofs can be seen in [12]. 
1. If ~bl(x ) and ~b2(x ) are monic irreducible polynomials of degree r in Zp[x] then 
Zp~[x]/f91(x) = Zpk[x]/f92(x). This justifies the notation GR(p k, r). 
2. Every ideal in GR(pk, r) is, of the form ( p i ) =  piGR(pk, r ) for 0_<iN k. The 
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maximal ideal is pGR(p k, r). i.e., GR(p k, r) is a principal ideal ring as well as a local 
ring. 
3. If GR*(pk, r) denotes the group of units of GR(pk, r) then GR*(pk, r)= GlXG 2 
(direct product of groups) where (a) G 1 is the cyclic group of order pr _ 1 and this 
is the only cyclic subgroup of GR*(p k, r) of order relatively prime to p. 

(b) G 2 is an Abelian group of order p(k- 1)~ _ 1. 
4. The group of automorphisms of GR(p k, r) is a cyclic group of order r. 
5. In general, factorization in rings with zero divisors is not unique. But when 
(n, p) = 1, the polynomial (x" - 1) factors uniquely in GR*(p k, r). 
6. Every subring of GR(p ~, r) is a Galois ring of the form GR(p k, d), where d divides 
r. Conversely if d divides r then GR(p k, r) contains a unique subring isomorphic to 
GR(p k, d). 

Example 5. Let m = 8 and r = 2, q~(x) -- x 2 + x + 1 is an irreducible polynomial 
of degree 2 in Z2[x]. GR(8,2) = Zs[x]/(x 2 + x + 1). Ideals of GR(8, 2) are {0}, 
{0,4,4x,4+4x}=22GR(8,2) ,  {0 ,2 ,6+2x ,6+6x ,  2 + 4 x , 4 + 4 x , 2 x , 4 , 6 x , 2 + 6 x ,  
6 + 4x, 2 + 2x, 6, 4 + 6x, 4x, 4 + 2x} = 2GR(8, 2) and GR(8, 2). Subrings of GR(8, 2) 
are {0}, {0, !, 2, 3, 4, 5, 6, 7} -- GR(8, 1) and GR(8, 2). The only cyclic subgroup of 
order relatively prime to 8 in GR*(8, 2), i.e., G1 is { 1, x, 7 + 7x}. The generator of the 
automorphism group is ~:x ~ 7 + 7x. 

In what follows we introduce the notion of degree of an element of a Galois ring. 
Consider the Galois ring GF(p k, s). If r divides s, then GR(p ~, s) contains a subring 
which is isomorphic to GR(p k, r). For  our purposes it is required to identify the 
elements of GR(p k, s), which constitute the subring GR(p k, r). We shall use the fact 
that there is a one-to-one correspondence between the subgroups of the auto- 
morphism group of a Galois ring and the set of subrings of the Galois ring [12]. 
The subgroup of the automorphism group that corresponds to a particular subring 
of the Galois ring consists of those automorphisms which leave the elements of the 
subring invariant. Let the generator of the automorphism group be a:a(c0 = eP. It 
follows that iffl in GR(p k, r) but not in any subring GR(p k, r l )  , where rl < r then the 
least integer t such that at(/?) = fl is equal to r. 

Definition 5. Let/? be an element of the Galois ring GR(p k, s). The degree of/? is 
defined as the least integer r such that a(fl) =/?, where a is a generator of the group 
of automorphisms of GR(p k, s). 

Since the set {0, 1, 2 . . . . .  pk _ 1 } is invariant under the group of automorphisms 
of GR(p k, s), it consists of elements of degree 1. Moreover the subring of GR(p k, s) 
which is isomorphic to GR(p k,r), where r divides s, consists of the elements of 
GR(p k, s) whose degree divides r. 

Example 6. Consider GR(4,4) = Z4[x]/(x 4 + x + 1). Every element is of the form 
ao + alx + a2 x2 + a3 x3. The mapping o-:o-(x) = 2 + 2x + 3x 2 is a generator of the 
automorphism group of GR(4, 4). Degree of an element can be 1, 2 or 4. 
(a) The elements of degree 1 are 0, 1, 2 and 3. 
(b) The elements of degree 2 are 

1 + 2x + 2x 2, 2x + 2x  2, 2 + 2x + 2x z, 3 + 2x + 2x  2, 3 + X 2 -}- 2X a, 1 + 3X + X 2 + 
2X 3, 2 + 3x + xZ + 2x 3, 3 + 3X + X2 + 2X 3, X + 3X2 + 2X 3, l + X + 3X2 + 2X a, 2 +  
X + 3X 2 q- 2x 3, and 3 + x + 3x 2 + 2x 3. 

(c) All other elements are of degree 4. 
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Appendix 2: DFT Over Finite Rings 

A finite commuta t ive  ring with identity, denoted by R, is said to suppor t  a discrete 
Four ier  t ransform of length n if there exists a t ransform of the form 

n - - 1  

Aj - -  ~ aiJa i, j = 0 , 1 , . . . , n - 1  
i=o 

where a i, A j a R ,  and ct is a unit of order  n in the g roup  of units of R and n is invertible 
in R. The  element a is called the t ransform factor  of the DFT.  This D F T  defines 
an i somorph ism between convolut ion  algebra R[x]/(x" - 1) and pointwise product  
algebra of  n-tuples of R, denoted by R n. 

The following theorems [8] give the necessary and sufficient condit ions for 
finite rings to suppor t  a D F T  of a given length. 

Theorem 12. I f R  is a direct sum of local rings R 1, R 2 . . . . .  R t then R suppor ts  a D F T  
of length n iff Ri, i = 0, I . . . .  , t, suppor ts  a D F T  of length n. 

Theorem 13. Let  R = R 1 �9 R2 @""  @ Rt where Ri, i = 1, 2 . . . .  , t, is a local ring. Then 
R suppor ts  a D F T  of length n iff 

(i) R i contains an element ~i of order  n. 
(ii) n is invertible in R i, i.e., n is a unit in R i. 
It  follows that  a Galois  ring GR(p k, r) to suppor t  a D F T  of length n it is required 

that  n and p must  be relatively prime, i.e., (n, p) = 1, and n should divide p '  - 1. Also 
0~= 1GR(pk9 can suppor t  a D F T  of length n iffthe following condit ions are satisfied. 

(i) (n, Pi) -- 1 for i = 1, 2 . . . . .  s. 
(ii) n]o.c.d. ((p] - 1), (p~ - 1), . . . ,  ( p ~ -  1)). 
Let (ao, al  . . . . .  an- 1) be an n-tuple over  Zp~ and (A o, A1 , . . . ,  A,  _ 1)~ GR"(p k, r) be 

its t ransform vector, where GR(p k, r) is the extension ring of Zp~ which suppor ts  the 
DFT.  The a u t o m o r p h i s m  group of GR(p k, r) is a cyclic group  of order  r and the 
genera tor  a u t o m o r p h i s m  is a(c 0 = ~P. The  following relation known as conjugate  
symmet ry  p roper ty  holds 

Apj  = a(Aj) for all j. 

All the n-tuples of GR(p k, r) which are D F T  vectors of  some n-tuple over  Zv~ satisfy 
this condition. 

Definition 6. Given  a positive integer n and a pr ime p relatively pr ime to n, the con- 
jugacy class containing j, (0 < i < k), denoted by Cp,n(j) is the set {j, pj, p2j  . . . . .  p(e-  1)j) 
where e is the least integer such that  pej = j ( m o d  n). The integer e is called the 
exponent  of  the conjugacy class Cp,,(j) and is denoted by exp (Cp,n(j)). 

The conjugacy class s tructure for a given n and pk, which is a par t i t ion of 
{0, 1, 2 . . . .  , n -- 1 } depends only on n and the pr ime p, and not  on k. 

Given  a pr ime p and an integer n the number  of  conjugacy classes, denoted by 
t, is given by, 

~b(d) 
t = L 

e(d) 

where e(d) is the least integer such that  d e =  l ( m o d  q), q~(d) is the Euler 's totient 
function and  q = n/d [9]. 
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