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INT. J. ELECTRONICS, 1993, VOL. 75, NO. 6 ,  1043-1054 

Transform decoding of BCH codes over Z,,, 

B. SUNDAR RAJANt  and M. U. SIDDIQIf 

For BCH codes with symbols from rings of residue class integers modulo m, 
denoted by Z,, we introduce the analogue of Blahut's frequency domain approach 
for codes over finite fields and show that the problem of decoding these codes is 
equivalent to the minimal shift register synthesis problem over Galois rings. A 
minimal shift register synthesis algorithm over Galois rings is obtained by 
straightforward extention of the Reeds-Sloane algorithm which is for shift register 
synthesis over 2,. 

1. Introduction 
The transform domain description of BCH codes over GF(q) using discrete 

Fourier transform (DFT) defined over an extension field GF(qm) is well known. 
Specifically, a BCH code over GF(q) that corrects t errors is defined as the cyclic 
code over GF(q) for which 2t  consecutive D F T  coefficients of all codewords are 
equal to zero (Blahut 1979, 1983). These codes have a simple decoding algorithm, 
the Berlekamp-Massey algorithm, which is equivalent to synthesizing minimal 
feedback shift register over the extension field GF(qm) (Massey 1969). 

The important class of BCH codes over finite fields has been generalized to cover 
symbols from an arbitrary residue class integer ring Zm (Prithi Shankar 1979). Prithi 
Shankar (1979) derived BCH codes over Z, in terms of their generator polynomials 
as follows. By the Chinese remainder theorem, it is sufficient to consider the case 
m=pk. For m=pk, a cyclic code of length n over Zpr is defined as  an ideal in the ring 
of polynomials with coefficients from Zpr modulo (xn- 1) that is generated by any 
monic polynomial g(x) that divides (xn- I). To characterize these cyclic codes in 
terms of roots of g(x), an extension ring of Zpk,  called the Galois ring (McDonald 
1974), is used. The polynomial (xn- I) factors uniquely in the Galois ring, and since 
g(x) is a factor of (xn- I) a subset of roots of (x"- I) uniquely specifies the cyclic 
code generated by g(x). If the roots that specify a cyclic code are consecutive powers 
of an  element (one of the roots of (x"- 1)) then the cyclic code is called a BCH code 
over Zpk. In this correspondence, it is shown that the decoding problem for these 
BCH codes is equivalent to the minimal shift register synthesis problem over Galois 
rings and an  algorithm for which is obtained by observing that the shift register 
synthesis algorithm of Reeds and Sloane (Reeds and Sloane 1985) for Z, is also 
valid for Galois rings. This result is the counterpart of the Berlekamp-Massey 
algorithm for decoding BCH codes over finite rings. 

2. ~ransform description of BCH codes over Zd 

A finite commutative ring with identity, denoted by R,  is said to support a D F T  
of length n if there exists a transform of the form 
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1044 B. Sundar Rajan and M. U. Siddiqi 

where a i ,AjeR,  and a is a unit of order n in the group of units of R and n is 
invertible in R (Dubios and Venetsanopoulos 1978a). The element a is called the 
transform factor of the DFT. 

This D F T  defines an isomorphism between convolution algebra R[x]/(xn- I) and 
pointwise product algebra of n-tuples of R, denoted by R". In other words, if 
( A ,  A , .  . A )  and ( B  B . .  . B )  are the transform vectors of 
( ao ,a , , .  . . ,a,- ,)  and (h,, h,, . . ., h,- ,) then the cyclic convolution 

has the transform vector (C,, C,,  . . ., C,-  ,) where Ck=AkBk,  k = 0 , 1 , .  . . , n -  1. This 
property is known as the convolution property of the DFT. 

Let pk be a power of a prime number. Galois rings are residue class polynomial 
rings Z,k[x]/@(x), denoted by GR(pk, r), where Zpk[x] is the ring of polynomials over 
Zpk and @(x) is a monic irreducible polynomial of degree rover  Zp[x] and hence over 
Z,~[.Y] (McDonald 1974). For a Galois ring GR(pk,r) to support a D F T  of length n, 
it is required that n a n d  p must be relatively prime, i.e., (n,p)= 1, and n should divide 
p'- I, for only then can an element a of order n exist in GR(pk,r) (Dubois and 
Venetsanopoulos 1978). Now it is clear that @;=, GR(p!', r) can support a D F T  of 
length n if and only if the following two conditions are satisfied. Firstly (n,pi)= I, 
where i=O, I , .  . . , s; and secondly, n divides gcd{(p; - I), (p; - I), . . ., (p:- I)}. 
Therefore throughout, it is assumed that the length of the code, denoted by n, is 
relatively prime to m. 

A property, known as the conjugate symmetry property (Dubois and Venetsano- 
poulos 1978 b), holds in the case of D F T  over Galois rings. Let ((a,, a , ,  . . .,a,- ,) be 
an n-tuple over Zpk and (A,, A, ,  . . .,A,,- ,) E GRn(pk, r) be its transform vector, where 
GR(pk, r) is the extension ring of Zpk which supports the DFT. We have 

where a is an element of order n in the group of units of GR(pk,r) denoted by 
GR*(pk, r). The automorphism group of GR(pk, r) is a cyclic group of order r a n d  the 
generator automorphism is u(a)=aP. The conjugacy constraint in this case is given 
by Apj=u(Aj) where j = O ,  1,. . . , n -  1. All the n-tuples of GR(pk,r) which are D F T  
vectors of some n-tuple over Zpk satisfy this condition. This property is called the 
conjugate symmetry property of D F T  over Galois rings. It is the counterpart of the 
conjugacy constraints (Blahut 1979, 1983) in the case of D F T  over finite fields. 

Given a positive integer n and a prime p relatively prime to n, the conjugacy class 
containing j ,  (OGjGn), denoted by Cp.,(j) is the set {j ,pj ,p2j, .  . . ,p"- '(i} where e is 
the least integer such that p"jj(modn). Such an integer exists because of the 
relative primality of n and p. The integer e is called the exponent of the conjugacy 
class Cp,,(j). 
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Transform decoding of BCH codes over Z, 1045 

Given pk and length n, the D F T  is constructed as follows. Choose the least 
integer r such that n divides (pr- I). The required extension ring is GR(pk,r). The 
group of units GR*(pk,r) contains a cyclic sub-group G, whose order is (p'- 1). 
Further, since n divides (pr- I) and element a exists in G I  whose order is n. Hence 
GR(pk, r) supports a D F T  of length n over ZPk. 

Definition 2 

Let a=(a , ,a , ,  . . .,a,-,) be an n-tuple over Z p  The D F T  of a is defined as 
A,= C::: aijai; j=  0, I , .  . . , n - 1, where a is an  element of multiplicative order n in 
GR(pk,r), where r is the least integer such that n divides (p'- I). The vector 
A=(A,,A ,,..., A,-,) is called the transform vector o r  spectrum of a 
=(a,, a , ,  . . . ,a,- ,). The components Ai, i= 1,2,. . . , n are called D F T  coefficients o r  
spectral components of a. 

Only those n-tuples over GRbk,r) ,  which satisfy the conjugacy constraints will 
be transform vectors of n-tuples over Zpk. Since D F T  defines an  isomorphism all 
such n-tuples will form a sub-ring, denoted by R,, of pointwise product algebra 
GR"(pk, r ) .  We have ZPt[x]/(xn- I) = R,. The following theorem, proved by Sundar 
Rajan and Siddiqi (1 994), characterizes R,. 

Theorem 1 (Sundar Rajan and Siddiqi 1994) 

The sub-ring R, of GRn(pk,r), which contains all the transform vectors of 
n-tuples over Zpk is isomorphic to @I,,GR(pk,ri) where t is the number of 
conjugacy classes and ri are the exponents of the conjugacy classes for the integer n 
and prime p. 

It can be shown (Madhusudhana 1987) that the number of conjugacy classes t is 
given by 

where e(d) is the least integer such that de= I(modq), where q = n / d  and dJ(d) is the 
Euler's totient function. 

For a given pk, a cyclic code of length n over ZPk is an ideal in the ring of 
polynomials with coefficients from Zph modulo the polynomial (x"- I) and is 
generated by any monic polynomial g(x) that divides (xn- I) (Prithi Shankar 1979). 
(The transform domain study of cyclic codes for the case g(x) being not monic leads 
to interesting situations which have been reported by Sundar Rajan and Siddiqi 
1994.) If the roots of g(x) in the group of units of the extension ring GR(pk,r) are 
consecutive powers of a ,  where a is a primitive nth root of unity, the cyclic code is 
called a BCH code over Zpk. Let g(x) be the generator polynomial of a BCH code 
with the 21 consecutive roots being ah, ah+ ' ,  . . . , . Let (G,, G,, . . . , G,- ,) be 
the transform vector of g(x). We have 

n - 1  

Gj= 1 uijqi=g(aj)=O for j = h , h + l ,  ..., h+2t - l  
i s 0  
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1046 B. Sundar Rajan and M. U. Siddiqi 

Hence a BCH code can be defined in transform domain as  follows. 

Definition 3 

A BCH code that corrects up  to t errors consists of the inverse D F T  of vectors of 
R, with 2, number of consecutive components equal to zero. 

Such a code has minimum Hamming distance 21+ 1 and hence corrects up to I 
errors (Prithi Shankar 1979). Without loss of generality we assume that the BCH 
code under consideration for decoding has first 21 D F T  components zero. 

Example I 

A double error correcting BCH code over d,  of length 8. The appropriate 
extension ring is GR(9,2). The conjugacy classes are {O}, { I ,  3). {2,6}, {4} and 
{5,7}. The transform matrix is 

where each entry ah represents a+  hx, an element of GR(9,2). The transform factor 
is 3 +.Y. The automorphism defining the conjugacy constraint is a(x)=8 + 8x. For 
double error correction, it is sufficient to have four consecutive zeros. However, we 
consider the code with the first five D F T  coefficients zeros. The conjugacy classes 
which take zeros are {0}, {1,3}, {2,6} and 14). A complete listing of all the 
codewords with their D F T  coefficients is given in Table 1. 

3. Equivalence of decoding BCH codes over 2, to shift register synthesis over 
Galois ring 

In this section we show that the problem of decoding BCH codes over Z,+ is 
equivalent to the minimal feedback shift register synthesis problem over Galois 
rings. The BCH codes under consideration for decoding are r-error correcting of 
length tr and without loss of generality, it is assumed that the first 21 consecutive 
DFT coefficients are zeros. 

Let us associate with an n-tuple a = ( a o , a , , .  . . ,a ,- ,)  over Z,. the polynomial 



D
ow

nl
oa

de
d 

B
y:

 [I
nd

ia
n 

In
st

itu
te

 o
f S

ci
en

ce
] A

t: 
20

:1
8 

2 
S

ep
te

m
be

r 2
00

7 

Transform decoding of BCH codes over Z, 

Codeword 

0 0 0 0 0 0 0 0  

0 1 5 8 0 8 4 1  

0 2 1 7 0 7 8 2  

0 3 6 6 0 6 3 3  

0 4 2 5 0 5 7 4  

0 5 7 4 0 4 2 5  

0 6 3 3 0 3 6 6  

0 7 8 2 0 2 1 7  

0 8 4 1 0 1 5 8  

1 0 1 5 8 0 8 4  

1 1 6 4 8 8 3 5  

1 2 2 3 8 7 7 6  

1 3 7 2 8 6 2 7  

1 4 3 1 8 5 6 8  

1 5 8 0 8 4 1 0  

1 6 4 8 8 3 5 1  

I 7 0 7 8 2 0 2  

1 8 5 6 8 1 4 3  

2 0 2 1 7 0 7 8  

2 1 7 0 7 8 2 0  

2 2 3 8 7 7 6 1  

2 3 8 7 7 6 1 2  

2 4 4 6 7 5 5 3  

2 5 0 5 7 4 0 4  

2 6 5 4 7 3 4 5  

2 7 1 3 7 2 8 6  

2 8 6 2 7 1 3 7  

3 0 3 6 6 0 6 3  

3 1 8 5 6 8 1 4  

3 2 4 4 6 7 5 5  

3 3 0 3 6 6 0 6  

3 4 5 2 6 5 4 7  

3 5 1  1 6 4 8 8  

3 6 6 0 6 3 3 0  

3 7 2 8 6 2 7 1  

3 8 7 7 6 1 2 2  

4 0 4 2 5 0 5 7  

4 1 0 1 5 8 0 8  

4 2 5 0 5 7 4 0  

4 3 1 8 5 6 8 1  

4 4 6 7 5 5 3 2  

Spectrum 

00 00 00 00 00 00 00 00 

00 00 00 00 00 51 00 48 

00 00 00 00 00 12 00 87 

00 00 00 00 00 63 00 36 

00 00 00 00 00 24 00 75 

00 00 00 00 00 75 00 24 

00 00 00 00 00 36 00 63 

00 00 00 00 00 87 00 I2 

00 00 00 00 00 48 00 51 

00 00 00 00 00 52 00 37 

00 00 00 00 00 13 00 76 

00 00 00 00 00 64 00 25 

00 00 00 00 00 25 00 64 

00 00 00 00 00 76 00 13 

00 00 00 00 00 37 00 52 

00 00 00 00 00 88 00 01 

00 00 00 00 00 40 00 40 

00 00 00 00 DO 01 00 88 

00 00 00 00 00 14 00 65 

00 00 00 00 00 65 00 14 

00 00 00 00 00 26 00 53 

00 00 00 00 00 77 00 02 

00 00 00 00 00 38 00 41 

00 00 00 00 00 80 00 80 

00 00 00 00 00 41 00 38 

00 00 00 00 00 02 00 77 

00 00 00 00 00 53 00 26 

00 00 00 00 00 66 00 03 

00 00 00 00 00 27 00 42 

00 00 00 00 00 78 00 81 

00 00 00 00 00 30 00 30 

00 00 00 00 00 81 00 78 

00 00 00 00 00 42 00 27 

00 00 00 00 00 03 00 66 

00 00 00 00 00 54 00 I5 

00 00 00 00 00 I5 00 54 

00 00 00 00 00 28 00 31 

00 00 00 00 00 70 00 70 

00 00 00 00 00 31 00 28 

00 00 00 00 00 82 00 67 

00 00 00 00 00 43 00 16 

Codeword Spectrum 

4 5 2 6 5 4 7 3  0 0 O O W O O W 0 4 0 0 5 5  

4 6 7 5 5 3 2 4  0 0 0 0 0 0 0 0 0 0 5 5 0 0 0 4  

4 7 3 4 5 2 6 5  0 0 0 0 0 0 0 0 0 0 1 6 0 0 4 3  

4 8 8 3 5 1  1 6  0 0 0 0 0 0 0 0 0 0 6 7 0 0 8 2  

5 0 5 7 4 0 4 2  0 0 0 0 0 0 0 0 0 0 7 1 0 0 6 8  

5 1  1 6 4 8 8 3  0 0 0 0 0 0 0 0 0 0 3 2 0 0 1 7  

5 2 6 5 4 7 3 4  0 0 0 0 0 0 0 0 0 0 8 3 0 0 5 6  

5 3 2 4 4 6 7 5  0 0 0 0 0 0 0 0 0 0 4 4 0 0 0 5  

5 4 7 3 4 5 2 6  0 0 0 0 0 0 0 0 0 0 0 5 0 0 4 4  

5 5 3 2 4 4 6 7  0 0 0 0 0 0 0 0 0 0 5 6 0 0 8 3  

5 6 8 1 4 3 1 8  0 0 0 0 0 0 0 0 0 0 1 7 0 0 3 2  

5 7 4 0 4 2 5 0  0 0 0 0 0 0 0 0 0 0 6 8 0 0 7 1  

5 8 0 8 4 1 O I  0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0  

6 0 6 3 3 0 3 6  W O O 0 0 0 0 0 0 3 3 0 0 0 6  

6 1 2 2 3 8 7 7  0 0 0 0 0 0 0 0 0 0 8 4 0 0 4 5  

6 1 7 1 3 7 2 8  0 0 0 0 0 0 0 O W 4 5 0 0 8 4  

6 3 3 0 3 6 6 0  W O O 0 0 0 0 0 0 0 6 0 0 3 3  

6 4 8 8 3 5 1  1 0 0 0 0 0 0 0 0 0 0 5 7 0 0 7 2  

6 5 4 7 3 4 5 2  0 0 0 0 0 0 O O W 1 8 0 0 2 1  

6 6 0 6 3 3 0 3  0 0 0 0 0 0 0 0 0 0 6 0 0 0 6 0  

6 7 5 5 3 2 4 4  0 0 0 0 0 0 O O W 2 1 0 0 1 8  

6 8 1 4 3 1 8 5  0 0 O O W O O W 7 2 0 0 5 7  

7 0 7 8 2 0 2 1  0 0 0 0 0 0 0 0 0 0 8 5 0 0 3 4  

7 1 3 7 2 8 6 2  0 0 0 0 0 0 0 0 0 0 4 6 0 0 7 3  

- - - 

Table 1. Codewords and their spectrum of  the BCH code of Example I .  
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1048 B. Strndar Rajan and M. U. Siddiqi 

Let c=(co ,  c, ,  . . . ,en-  ,) be the transmitted codeword and r = ( r o ,  r , ,  . . ., r,- ,) and 
e=(eo,  e l , .  . . ,en-  ,) be the received and error vectors, respectively. The associated 
polynomials are 

Assuming that only 6 ~ 1  errors have occurred, we have only 6 non-zero coefficients 
in e(s) .  Let 

i.e., i , ,  i,, . . . , i d  are the locations of the errors and ei , ,ei , ,  . . . ,c ia are the magnitudes 
of the errors. Both locations and magnitudes are unknown. The decoding problem is 
to find these. Instead of finding error locations and magnitudes which means finding 
e(x), we obtain the transform vector of e(x), the inverse D F T  of which gives e 
straightaway. 

Let a be the transform factor of the DFT. We define Sj  (the jth syndrome) as  
Si=r(uJ).  Note tha t ' s i  is nothing but the j th  D F T  coefficient of the received vector. 
Since r (x )=c(x)+e(x)  and c(x)=O for x = u 0 , a 1 , .  . ., u2' - I  , the syndromes contain 
information due to errors only, i.e., the first 21 DFT coefficients of the error vector 
are equal to the syndromes So,  S , ,  . . . ,S2,- ,. So our aim is to obtain e(x)  such that 6,  
the degree of e(x)  is at a minimum and also the first 2t  D F T  coefficients are equal to 
syndromes. 

Let us define the polynomial A(x),  called the error locater polynomial, by 

The degree of A(s )  is 6, which is utmost t ,  and A(x) is a polynomial with coefficients 
in GR(pk,  r). Let 

The inverse DFT of A(x)  is given by A(a-j ) ,  j=O, I , .  . ., n- 1, which is same as  A(x)  
evaluated at u- j .  We denote this inverse D F T  of A(x )  by T = ( T o ,  T,,. ..,I-,-,). 
Note that T is an n-tuple over GR(pk, r). Since A(x),  in general, does not satisfy the 
conjugacy constraints, inverse D F T  is not an n-tuple over Z,,. By the definition of 
A(s),  A(u- j )  is equal to zero if and only i f j  is an error location. Thus A(x )  has been 
defined in such a way that in T ,  T i=O for all those i for which ei#O. Hence Tiei=O 
for all i=O, I , .  . . . n- I. By the convolution property of the DFT, the convolution of 
transform vector of T and the transform vector of error vector, denoted by 
E = ( E o ,  E l , .  . ., E n - , )  is equal to the zero vector. That is 

Because A(s)  has a degree equal to 6 we have Aj=O for j > 6 .  Therefore 
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Transform decoding of BCH codes over Z, 

Since A, = I, we have 

The coefficients Ai, i =  1 ,2 , .  . . ,6 ,  are unknown and among the n components of E 
only 21 are known which are equal to syndromes. Thus 

involve only the known syndromes and the 6 unknown components of A. From the 
above equations it follows that the problem of obtaining A,, A,,  . . . , A ,  is nothing 
but synthesizing the minimal feedback shift register with tap coefficients 
A,, A,,  . . . ,Ad that generate the S,,S,,. . .,S,,-, . Note that So, S,, . . ., S2,- ,  and 
A,, A,, . . . ,A, belong to a Galois ring and the requirement of minimizing 6 is taken 
care of since the synthesis is for the minimal length shift register. The problem of 
decoding BCH codes over Z ,  is accordingly, equivalent to the minimal shift register 
synthesis problem over the Galois ring. By recursive extension, S2,,S,,+ ,, . . . ,S,-, 
can be obtained and the inverse Fourier transform of (So, S, ,  . . ., S,- ,) straight- 
away gives the error vector (e,, e l , .  . ., en- ,). 

4. A sample computation of BCH decoding algorithm 

In this section we display the computation of the algorithm for the BCH code 
given in Example 1. We assume that the transmitted codeword is 
(I 1 6 4 8 8 3 5)  and the error vector is (0 0 0 5 0 1 0 0) .  Then 
the received vector is (1 1 6 0 8 0 3 5). The transform vector of the 
received vector is (60, 73,  87, 46, 30, 30, 12, 30). Hence, we have the syndromes 

The computation of every step except the last of the algorithm for the above given 
S(x)  is shown in Table 3. 

In the final step we have 

hL5' = (60)  + (46)x and L(A&") = 2 

Hence the connection polynomial is 

and 

We have 
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1050 B. Sundar Rajan and M .  U. Siddiqi 

Table 2. Representation of non-zero elements of GR(9 ,2 )  

Putting j=  5, 6, 7 successively we obtain the unknown syndromes S, = (26), S, =(12) 
and S, = (53). The inverse transform of (So, S , ,  S,, S,, S,, S,, S,, S, )  gives the error 
vector to be (0 0 0 5 0 I 0 0). Hence the transmitted codeword is 
(I 1 6 4 8 8 3 5 ) .  

Appendix 

S h f /  register synthesis algorithm over Galois ring 

This algorithm is exactly same as that of Reeds and Sloane (1985) except that 
instead of the ring 2, it is discussed for Galois rings. This is given only for the 
purpose of completion. 

Now we proceed to describe the shift register synthesis algorithm over a Galois 
ring. For ZPe, the minimal shift register synthesis algorithm has been obtained by 
Reeds and Sloane. We now show that this algorithm is also valid for minimal shift 
register synthesis over Galois rings. Our presentation is very similar to that of Reeds 
and Sloane (1985) and familiarity with that paper will be useful in following the 
algorithm. 

The following property of the Galois rings is the only idea that is required to be 
known, apart From the Reeds-Sloane algorithm for shift register synthesis over Z,, 
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Transform decoding of BCH codes over Z, 1051 

Step 0 
k=O 

Step I 
k= l 

Step 2 
k=2 

Step 3 
k=3  

aX1'(x) =(I  0)  
bg'(x) = 3(20) = (60) 

L ( A ~ ) )  = I 
u01=(73) 

I,, =o  
q=f(O, I ) =  I 

a f ' ( x )  =(I 0 )  
bbf'(x) = (60) + (73)x 

L (A f ' )  = 2 
uo,=(87) 

lo2=0 
g =f(O, 2) = 1 

h=O;r=l 

ab31(x) =(I 0 )  + (72)x 
bC'(x) = (60) + (40)x 

L ( A t 1 )  = 2 
u03 =(53) 

lo,=O 
g =J(O, 3) = 1 

h=l;r=2 

Step 4 a ~ ' ( x ) = ( 1 0 ) + ( 1 2 ) x + ( 1 0 ) x 2  
k=4  bgl(x)  = (60) + (46)x 

L(Ar')  = 2 
uo,=(IO) 

104 = 2 

Table 3. Computation steps. 

to obtain an algorithm that works over the Galois ring. In the Galois ring GR(pk,r )  
any non-zero element p can be written as Bp' where 0 is a unit and O < t < k -  I .  In 
this representation the integer I is unique and B is unique modulo (pk- ' ) .  Note that 
this property holds for Z p k  since Zpk is nothing but the Galois ring GR(pk, I ) .  

Example 

Consider GR(9,2) = Z,[x]/(x2 + x +  2). Any non-zero element p of GR(9,2) is of 
the form a+bx where a, 6 6 2 ,  and it is denoted by ab. The representation of p in the 
form Bp' for the elements of GR(9,2) is given in Table 2. 

Let GR*(pe,r) denote the set of all units of the Galois ring GR(pe,r). The 
sequence So, S, ,  . . . , S,-,  where S i ~ G R ( p e ,  r), is said to be generated by a linear 
feedback shift register of length 6 if there are elements a,= ] , a ,  ,a, ,  . . . ,a ,  
E GR(pe, r )  such that 
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B. Sundar Rajan and M. U. Siddiqi 

Let a(x)=a,+alx+a,x2+ ...+ aaxa and S(x)=SO+Slx+S2x2+ . . .+ S,-,xn-l. 
Clearly a(s) and S(x) are in GR(pe, r)[x]. Then (A I) can be written as 

S(x)a(x) = b(x)(mod x") a(0) = 1 (A 2) 

for some polynomial h(s) G GR(pe, r)[x] of degree <6 - 1.  Thus the length of the shift 
register is 6 = max{dega(x), I + deg b(x)}. We write A = (a(x), b(x)) and define 

L(A) = maxldeg a(x), 1 + deg b(x)J 

By convention deg(0) = - co. 

The algorithm 

Let S,,Sl, .  . . ,S,-I eGR(pe,r) Our aim is to find A=(a(x), b(x)) of minimal 
length 6=L(A) satisfying (2). The following more general problem is considered. 
For all i=O, 1 ,  2, .  . ., e- I, find pairs Ai=(a,(x), bi(x)) such that 

and L(Ai)=ai is minimized. This algorithm is an iterative procedure that for all 
O <  k<n,  0 < i S e  calculates the pairs 

satisfying 

and minimizing L(Ai(k)). Let pl'*(O<tik<e) be the highest power of p dividing the 
coefficient of xk in 

S(x)ajk"(x) - hjk'(x) 

(tik=e if the coefficient of xk is zero). Then at the kth step in the iteration, the 
following property holds for all O<j<k. For all O<g<e  either 

L(Af4- I)) = L(Af') 

or else there exists h =f(g,j) with 

This property is analogous to the condition that Massey gives (Massey 1969, 
eqns. (1 1)-(13)) for the finite field case. Given this data our algorithm calculates 
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Transform decoding of BCH codes over Z, 1053 

Ajk+') and f(i ,k),O<i<e, such that property Pk holds. The quantities L(AjJ)) also 
obey the inequality 

Step 0: We start the algorithm with k=O and for each i=O, I , .  . . , e -  I, define 

~{O)(X)=~ ' ,  bjo)(x) =O; a{"(x) =pi, hll)(x) 

and 

AjO' = (ajo'(x), bjo)(x)), A!') = (aj "(x), bjl)(x)) 

Let So=Upt  for UeGR*(pe,r), O<t<e.  (if So=O set U = 1  and t=e). 
Then 

and 

L(Ajl))=I if i + t < e  

We also define 

Finally, we set f(i, 0) = 0 for all i. 
The following step is carried out for each k = 1,2,. . . , n - l 

Step k (This produces Aik+ I)) 

For each i=O, I , .  . ., e- I, we have the following calculations. Define uik 
E GR*(pe,r) and tik, O<tikde,  by 

( ~ , p " ~  is the current discrepancy in the notation by Massey 1969) 

Case I: If tik=e, set Ajk+"= Atk) t . 
Case 11: If tik<e, define g = e -  1-1, so that O < g < e  and putf(i, k)=g.  

There are now two subclasses. 

Case Il(a): If L(Af')=O, we set 

Case II(b); If L(ArJ) >0, then for some O < v <  k we have 

o is the time of the most recent length change in the sequence L(AFb), L(AP), 
L(Af'). . . . From (A 3), (A4) and (A 5) it follows that 
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1054 Transform decoding of BCH codes over Z, 

where h= f(g, v) and g + rh,<e. 
Using g = e - I - r i k  we have I,,,< ti,. Thus  the power o f  p from the past can be 

used t o  annihilate the power o f  p in the current discrepancy and  we define 

ajk+l ' (x)=a!k)Lu. ,,-I "*-I"" k - "  '"' 
8 tk  h" P X ah ( 4  

bjk+ l ) (X)=u;k) ) - -U,  U- 1 r ,k - rhvxk-u / , (u )  
nk h" P h ( 4  

and  

Then 

S ( x ) a ~ +  I ) (X )  = b!k+ l ) (x )  and  "(0)  =pi  

This concludes Step k. 

At the end of s tep ( n -  1) the algorithm terminates and  the desired pair A=(a (x ) ,  
h(x)) is given by A t )  = (o$)(x), bt l (x ) ) .  

T h e  proof for  the correctness o f  this algorithm is same as that  o f  Reeds-Sloane 
for  shift register synthesis over Z , .  O n e  obtains the proof for  Galois  rings by simply 
changing 2, t o  GR(pk, r )  in the Reeds-Sloane algorithm. 
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