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PAPER

On Asymptotic Elias Bound for Euclidean Space Codes

over Distance-Uniform Signal Sets

Balaji Sundar RAJAN†a), Regular Member and Ganapathy VISWANATH†, Student Member

SUMMARY The asymptotic Elias upper bound of codes de-
signed for Hamming distance is well known. Piret and Ericsson
have extended this bound for codes over symmetric PSK signal
sets with Euclidean distance and for codes over signal sets that
form a group, with general distance function respectively. The
tightness of these bounds depend on a choice of a probability
distribution, and finding the distribution (optimum distribution)
that leads to the tightest bound is difficult in general. In this
paper we point out that these bounds are valid for codes over the
wider class of distance-uniform signal sets (a signal set is referred
to be distance-uniform if the Euclidean distance distribution is
same from any point of the signal set). We show that optimum
distributions can be found for (i) simplex signal sets, (ii) Ham-
ming spaces and (iii) biorthogonal signal set. The classical Elias
bound for arbitrary alphabet size is shown to be obtainable by
specializing the extended bound to simplex signal sets with op-
timum distribution. We also verify Piret’s conjecture for codes
over 5-PSK signal set.
key words: Euclidean space codes, group codes, uniform signal
sets, signal sets matched to groups

1. Introduction

Hamming distance of a binary code is the appropri-
ate performance index when the code is used on a bi-
nary symmetric channel. For other channels Hamming
distance may not be an appropriate performance in-
dex. For instance, when used in Additive White Gaus-
sian noise (AWGN) channel the minimum squared Eu-
clidean distance (MSED) of the resulting signal space
code is the appropriate performance index [1]–[3]. For
codes designed for the Hamming distance, Elias bound
gives an asymptotic upper bound on the normalized
rate of the code for a specified normalized Hamming
distance. To be precise, let C be a length n code
over a q-ary alphabet with minimum Hamming distance
dH(C). The asymptotic Elias bound [4]–[6] is given by

R(δH) � 1 −Hq(θ −
√
θ(θ − δH)) if 0 � δ < θ

R(δH) = 0 if θ � δ < 1 (1)

where θ = (q − 1)/q, R = limn→∞
1
n logq | C | is the

normalized rate, δH = limn→∞
1
ndH(C) is the normal-

ized Hamming distance and Hq(x) is the generalized
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entropy function given by

Hq(x) = −x logq

[
x

q − 1

]
− (1− x) logq(1 − x)

if 0 � x �
[
q − 1
q

]
(2)

Piret [11] has extended this bound for codes over
symmetric PSK signal sets for Euclidean distance and
Ericsson [13] for codes over any signal set that forms a
group for the general distance function. These bounds
and their tightness depend on the choice of a prob-
ability distribution. In this paper we point out that
these bounds hold for the wider class of signal sets,
namely the distance-uniform signal sets. The existence
of distance-uniform signal sets that are not matched
to any group was shown in [14]. We show that the
tightest bound (optimum distribution) is obtainable for
simplex, Hamming spaces and biorthogonal signal sets.
Also, we verify the conjecture of Piret regarding the
optimum distribution for codes over symmetric 5-PSK
signal set.

A signal set is said to be distance-uniform if the
Euclidean distance distribution of all the points in the
signal set from a particular point in the signal set is
same from any point, i.e., if the signal set is S =
{s0, s1, . . . , sM−1} and Di = {dij , j = 0, 1, . . . ,M − 1}
is the Euclidean distance distribution from the signal
point si, then Di is the same for all i = 0, 1, ...,M − 1.
Examples of uniform signal sets are all binary signal
sets, symmetric PSK Signal sets, orthogonal signal
sets, simplex signal sets [1]–[3] and hypercubes in any
dimension. The class of signal sets matched to groups
[7], [9] form an important class of distance-uniform sig-
nal sets. A signal set S is said to be matched to a group
G, if there exists a mapping µ from G onto S such that
for all g and g′ in G,

dE(µ(g), µ(g′)) = dE(µ(g−1g′), µ(e)) (3)

where dE(x, y) denotes the squared Euclidean distance
between x, y ∈ S and e is the identity element of G.
Signal sets matched to groups constitute an important
ingredient in the construction of geometrically uniform
codes [8] which include important classes of codes as
special cases. Moreover, it has been shown that sig-
nal sets matched to non-commutative groups have the
capacity of exceeding the PSK limit [10], whereas the
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capacity of signal sets matched to commutative groups
are upper-bounded by the PSK limit [7], [9].

In this paper we discuss the asymptotic upper
bound on the normalized rate of Euclidean space codes
[7], [8] over distance-uniform signal sets, for given nor-
malized squared Euclidean distance. However, the ar-
guments are valid for any distance function. We show
that

• The Piret’s and Ericsson’s bound are valid for
codes over any uniform-signal set.

• The distribution that gives the tightest bound (op-
timum distribution) for codes over simplex signal
sets, Hamming spaces and biorthogonal signal sets
are easily obtained.

• The bound for codes over simplex signal sets with
optimum distribution is essentially the classical
Elias bound. We also verify Piret’s conjecture re-
garding the optimum distribution for codes over
5-PSK signal sets.

The content of this paper is organized as follows:
The validity of Piret’s and Ericsson’s bound for codes
over the wider class of distance-uniform signal sets is
given in Sect. 2. Also, the optimum distribution for
codes over simplex, Hamming spaces and biorthogonal
signal sets are obtained. The relation between classi-
cal asymptotic Elias bound and the extended bound is
established by specializing to the codes over simplex
signal sets. Further we verify Piret’s conjecture on the
optimum distribution for codes over 5-PSK signal sets.
Section 3 contains directions for further research and
concluding remarks.

2. Extended Upper Bound (EUB)

Following the arguments in the spirit of Elias bound
[4], Piret [11] has obtained an asymptotic upper bound
in the parametric form on the rate of Euclidean space
codes over symmetric PSK signal sets from which the
Elias bound for q = 2 is obtainable and not for q � 4.
Ericsson [13] has shown that this bound is valid for
codes over any signal set that forms a group and for any
general distance function. We point out in the following
that the validity of this bound extends to codes over the
wider class of distance-uniform signal sets. Theorem 1
gives the extended upper bound (EUB), the proof of
which is same as that of Piret [11].
Theorem 1: Let A be a distance-uniform signal set
with M signal points {a0, a1, . . . , aM−1} and S be a
M ×M matrix with (i, j)th entry sij equal to d2i,j , the
squared Euclidean distance between ai and aj . For C,
a length n code over A, let

δ(C) =
1
n
d2(C), R(C) =

1
n

ln | C | and

R(M, δ) = lim
n→∞

sup |C|�n

δ(C)�δ

R(C) (4)

d2(C) is the minimum squared Euclidean distance
(MSED) of the code. The asymptotic upper bound
RU (M, δ) on R(C) is given in terms of a probability
distribution β = (β0, β1, · · · , βM−1), by

RU (M, δ) = ln(M)−H(β) and δ = βSβT (5)

where H(β) = −ΣM−1
i=0 βi ln(βi).

Proof: The proof is essentially same as that of Piret
[11]. We give below the minor adjustments that are
needed in the initial part of Piret’s proof to make it
valid for codes over distance-uniform signal sets:
Let {s0, s1, ..., sM−1} be the signal set S, and let the
ordered vector d = (d(0), d(1), ..., d(M − 1)) denote
the Euclidean distance profile of S from s0. Let Φr,
r = 0, 1, ...,M − 1, be a permutation on S such that
Φr(sr) = s0 and Φr(su) = sv, u, v = 1, 2, ...,M − 1,
where the squared Euclidean distance between sr and
su is d2(v). Such a permutation exists since S is
distance-uniform. For any x = (x1, x2, ..., xn) and y =
(y1, ..., yn) ∈ Sn, define Φy(x) = (Φy1(x1), ...,Φyn

(xn))
and call b(x) = (b0(x), b1(x), ..., bM−1(x)), where br(x)
denotes the number of coordinates in x that are equal to
sr, as in [11], the composition of x. For an arbitrary u ∈
Sn and a specified composition b = (b0, b1, ..., bM−1)
denote by B − b(u) the set of all x ∈ Sn for which
composition of Φu(x) = b.

These points replace the arguments used in [11] for
PSK with cyclic group structure. Also, Lemmas (4.1)
and (4.2) in [11], which are specifically for PSK sig-
nal sets can be replaced by the following two lemmas
to make the proof valid for codes over any distance-
uniform signal set.
Lemma 1: βt

i = βi ∀i = 0, 1, 2, · · · ,M − 1, t =
1, 2, · · · , n, where βt

i is the normalized number of oc-
currences of the i-th symbol in the t-th co-ordinate as
n tends to ∞.
Proof: The normalized number of occurrences of i-th
symbol from among M possible symbols is

bi =
Ni∑M−1

j=0 Nj

(6)

where Ni indicates the number of times the i-th symbol
occurs. The normalized number of occurrences of the
i-th symbol in the t-th co-ordinate bti is obtained as

bti =

(
(
∑Q−1

j=0 Nj − 1)!
)/(∏Q−1

j=0,j �=iNj !
)

(∑Q−1
j=0 Nj

)
!
/(∏Q−1

k=0,k �=iNk!
) (7)

The above equation can be simplified to obtain the fol-
lowing result

bti =
Ni∑Q−1

j=0 Nj

= bi (8)

Therefore the number of occurrences of any symbol at
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any co-ordinate is same. As n → ∞, we have br tends
to βr and btr tends to βt

r. Hence we have βt
r = βr. ✷

Lemma 2: For n→ ∞ the Q-tuples βj satisfy
n∑

t=1

β(t)Sβ(t)T = n(βSβT ) (9)

Proof: Follows from Lemma 1. ✷

In the following three theorems we obtain the op-
timum distribution that gives the tightest bound for
simplex, Hamming spaces and biorthogonal signal sets
respectively.
Theorem 2 (Simplex signal sets): The distribution
β = (β0, β1, β2, · · · , βM−1) that gives the best bound
for codes over M -ary simplex signal set is given by

βr =
1
M

[
1−
√

1−M δ

K(M − 1)

]
, r=1, . . . ,M−1

(10)

where K is the squared Euclidean distance between
any two signal points. Moreover for all values of q
the asymptotic Elias bound given in Eq. (1), can be
obtained from this bound.
Proof: For simplex signal sets, the squared Euclidean
distance between any two signal points is the same. Let
K denote this squared Euclidean distance, i.e.,

d2(i, j) = 0 if i = j

= K (a constant), if i �= j, (11)
i, j = 0, 1, 2, · · · ,M − 1

then

S =




0 K K . . . K K
K 0 K . . . K K
...

...
. . .

...
...

...
K K K . . . 0 K
K K K . . . K 0


 (12)

Let β = (β0, β1, . . . , βM−1) be any probability distribu-
tion. We find the best distribution by using Lagrange
multipliers. Let

Φ(β, λ) = H(β)− λ
[
δ − βSβT

]

= H(β)− λ


δ −K

M−1∑
i=0

M−1∑
j=0,j �=i

βiβj


(13)

Using
∑M−1

i=0 βi = 1 in the inner summation, the above
becomes

Φ(β, λ) = H(β) − λ

[
δ −K

{
M−1∑
i=0

βi(1− βi)

}]

(14)

Now for r = 1, 2, . . . ,M − 1, we have

∂Φ(β, λ)
∂βr

= 1 − log(βr) − 1 + log(β0)

+Kλ [1 − 2βr − 1 + 2β0]
= log β0 − log βr + 2Kλ(β0 − βr).

(15)

Now the solution of the equation

∂Φ(β, λ)
∂βr

= 0 (16)

for βr will be the same for all r = 1, 2, . . . ,M − 1, since
the form of Eq. (15) is same for all r = 1, 2, . . . ,M − 1.
Let p be the solution of Eq. (16), i.e., βr = p, for all r =
1, 2, . . . ,M − 1. Now substituting βr = p in Eq. (15),
gives

δ = K


2β0(1− β0) +

M−1∑
i=1

M−1∑
j=1
j �=i

p2




= 2K [{1 − (M − 1)p} (M − 1)p]
+K(M − 1)(M − 2)p2 (17)

which is the same as the quadratic equation

KM(M − 1)p2 − 2K(M − 1)p+ δ = 0 (18)

The solutions of the quadratic equation after simplifi-
cation are

1
M

[
1 ±

√
1 − δ

Kθ

]
(19)

where θ = (M−1)
M . It can be checked that, H(β) is

minimum for

β=

{
1−
[
θ−
√
θ2− δθ

K

]
,

1
M

[
1−
√

1− δ

Kθ

]
,

. . . ,
1
M

[
1−
√

1− δ

Kθ

]}

(20)

For the above distribution

lnM −H(β) = lnM + β0 lnβ0 + (M − 1)βr lnβr

(21)

Changing the base of the logarithm to M , the above
expression becomes,

1 −HM

(
θ −

√
θ2 − θδ

K

)
(22)

Substituting δH = δ/K in Eq. (22) we get

1 −HM

(
θ −

√
θ(θ − δH)

)
(23)



RAJAN and VISWANATH: ON ASYMPTOTIC ELIAS BOUND FOR EUCLIDEAN SPACE CODES
483

which is the same as the classical asymptotic Elias
bound. It remains to show that the range for δH on
the Elias bound is 0 � δH < (M − 1)/M . With
the substitution δH = δ/K, the range for δ becomes
0 � δ < Kθ. Choosing K = 2/θ and hence the range
for δ is 0 � δ < 2 consistent with Theorem 1.

The substitution given by K = 2M/M−1 and δ =
δ/K, can be combined to obtain the relation between
normalized squared Euclidean distance in the extended
bound and the normalized Hamming distance in Elias
bound as

δ

[
(M − 1)

2M

]
= δH (24)

The term M−1
2M is the factor by which the plot of Elias

bound can be obtained from the plot of the bound of
Theorem 2.
Example 1: Figure 1 shows binary, ternary and qua-
ternary simplex signal set on a unit radius sphere. Fig-
ure 2 shows the classical Elias bound (with natural
logarithm) for simplex signal set of size 2, 3 and 4 and
the corresponding bounds for Euclidean distance.
Theorem 3 (Hamming spaces): Let A be a signal
set which is an m-th order q-ary Hamming space. Then

RU (qm, δ) = m

(
1 −Hq

(
θ −

√
θ2 − θδ

K

))
(25)

where θ = (q−1)
q and K is the squared Euclidean dis-

 

Fig. 1 Binary, ternary and quaternary simplex signal sets.

Fig. 2 The Elias and extended upper bounds for binary,
ternary and quaternary simplex signal sets.

tance between any two points differing in only one po-
sition in the label.
Proof: Since A is an m-th order q-ary Hamming space
A has qm points. Let A′ be a subset such that the
elements of A′ differ only in one fixed coordinate. A′ is
a simplex signal set consisting of q signal points. Codes
of length n over A can be considered as codes of length
mn over A′. Hence we have

RU (qm, δ) = mRU (q, δ) (26)

Note that A′ is a simplex signal set consisting of q
points. Hence RU (q, δ) is given by Theorem 10. ✷

Observe that a simplex signal set with M points
is a first order M -ary Hamming space. In this sense
Theorem 3 is a generalization of Theorem 2.
Corollary 1: For N -dimensional cube, the extended
Piret’s bound is given by

RU (2N , δ) = N

(
1 −H2

(
1
2
− 1

2

√
1− δ

2

))
(27)

Proof: Straightforward application of Theorem 3. ✷

Example 2: The 3-dimensional cube shown in Fig. 3
is a third order binary Hamming space with labeling as
shown. The bound for this cube is given by

RU (8, δ) = 3

(
1 −H2

(
1
2
− 1

2

√
1 − δ

2

))
(28)

Theorem 4 (Biorthogonal signal sets): The opti-
mum distribution β = (β0, β1, β2, · · · , βM−1) giving
the tightest bound for codes over biorthogonal signal
set is given in terms of a parameter µ > 0, as

βr(µ) =
e−µd2(r)∑M−1

s=0 e−µd2(s)
, r = 0, 1, 2, · · · ,M − 1

(29)

where d2(r) is the squared Euclidean distance between
0th point and the rth point of theM point biorthogonal
signal set.
Proof: The squared Euclidean distance profile of a M
point biorthogonal signal set is as follows

Fig. 3 3-dimensional cube.
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d2(r) = 0 if r = 0

= K (a constant), if r �= 0 and r �= M

2

= 2K if r =
M

2
(30)

S =



0 K K ... K 2K K ... K
K 0 K ... K K 2K ... K
...

...
...

. . .
...

...
...

. . .
...

2K K K ... K 0 K ... K
...

...
...

. . .
...

...
...

. . .
...

K K K ... 2K K K ... 0


 (31)

Here S is a circulant matrix. Therefore the second row
of the S matrix is obtained by circularly shifting the
first row to the right once. All the M rows of the S
matrix can be obtained similarly.

Let β = (β0, β1, . . . , βM−1) be any probability dis-
tribution. We find the best bound using Lagrange mul-
tipliers. Let

Φ(β, λ) =H(β)− λ
[
δ − βSβT

]

=H(β)−λ


δ−M−1∑

i=0

M−1∑
j=0,j �=i

βisijβj


 (32)

Here βr will be the same for {r = 1, 2, . . . , M
2 − 1, M

2 +
1, . . . ,M − 1}. Hence we have to find the optimum
values for β1 and βM

2
. These correspond to

∂Φ(β, λ)
∂β1

= log(β0) − log(β1) + 2Kλβ0 − 2KλβM
2

(33)

and

∂Φ(β, λ)
∂βM

2

=log(β0)− log(βM
2
) + 4Kλβ0 − 4KλβM

2

(34)

Equations (33) and (34) to zero and simplifying we get

β0βM
2

= β21 (35)

It is easily verified that

βr(µ) =
e−µd2(r)∑M−1

s=0 e−µd2(s)
, r = 0, 1, 2, · · · ,M − 1

(36)

constitute a solution of Eq. (35) with parameter µ. ✷

Example 3: Consider the biorthogonal signal set for
M = 4. Biorthogonal signal with M = 4 is same as
4 − PSK signal set (Fig. 4). The optimum distribu-
tion achieving the tightest bound is given by following
equations

β1(µ) =
e−2µ∑3

s=0 e
−µd2(s)

, β2(µ) =
e−4µ∑3

s=0 e
−µd2(s)

β3(µ) = β1(µ), β0(µ) = 1− 2β1(µ)− β2(µ) (37)

Fig. 4 Biorthogonal signal set with M = 4. This is same as
4-PSK with points uniformly distributed on the unit circle.

Fig. 5 The extended upper bounds for M -point biorthogonal
signal set.

The above distribution for 4-PSK signal set is same
as optimal distribution conjectured by Piret for PSK
signal sets. The EUB for 4-point biorthogonal signal
set is shown in Fig. 5. In Fig. 5 EUB for biorthogonal
signal sets is plotted for different values of M . First
curve from the bottom is for M = 4 and the top curve
is for M = 128. ✷

2.1 Piret’s Conjecture for Codes over 5-PSK Signal
Sets

Piret has obtained both asymptotic lower and upper
bounds for codes over symmetric PSK signal sets.
Both the bounds are obtained in terms of a probability
distribution. However, for lower bound the distribu-
tion giving the best lower bound is obtained whereas,
as mentioned in the previous section, the distribution
giving the best upper bound is not given but it is con-
jectured that the distribution which gives the optimum
lower bound also gives the best upper bound. For 5-
PSK we check the conjecture.
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2.1.1 Piret’s Lower Bound

Let A be a M point uniform signal set with Euclidean
distance distribution {d(r), r = 0, 1, . . . ,M − 1}. For
C, a length n code over S, let

δ(C) =
1
n
d2(C)

R(C) =
1
n

ln | C |

R(M, δ) = lim
n→∞

sup |C|�n

δ(C)�δ

R(C) (38)

where d2(C) is the MSED of C and R(C) is the rate
of the code. Then a lower bound RL(M, δ) on R(C) is
given in terms of a parameter µ by

RL(M, δ) = lnM −H(β(µ)) 0 � δ � 2 (39)

where β(µ) is the distribution {βr, r = 0, 1, . . . ,M − 1}
is given by

βr(µ) =
e−µd2(r)∑M−1

s=0 e−µd2(s)
(40)

δ =
M−1∑
s=0

βs(µ)d2(s) (41)

Note that bound is not given in terms of an arbitrary
distribution-instead the distribution given above is op-
timum for the lower bound. Equation (39) is coun-
terpart of the equation for the upper bound (Eq. (5)).
Piret conjectures that the distribution given in Eq. (40)
is the optimum distribution for the upper bound also.

If Piret’s conjecture was true then the distribution
given in Eq. (40) should satisfy the set of equations to
get the optimal distribution for 5 − PSK signal set
(Lagrange multiplier method is used to get optimum
distribution).

Φ(β, λ) = H(β)− λ
[
δ − βSβT

]
= H(β)− λ


δ − 4∑

i=0

4∑
j=0,j �=i

βisijβj


(42)

where sij is of the form 4 sin2 [(i− j)π/M ]. Now for
r = 1, 2 we obtain the partial derivatives,

∂Φ(β, λ)
∂βr

= log(β0)− log(βr)− 2λ
4∑

j=1

s0,jβj

+ 2λ
4∑

j=0,j �=r

sr,jβj (43)

Since the above expression is identical for r = 1, 4 and
r = 2, 3 we have β1 = β4 and β2 = β3. Taking r = 1
we solve for λ in terms of β1 and β2.

λ =
log β1 − log β0

2(a+ (b− 4a)β1 − (a+ b)β2)
(44)

where a = 4 sin2(π/5) and b = 4 sin2(2π/5). From
the optimal distribution for lower bound [11] we have
β1 = β0e

−µa and β2 = β0e
−µb. Substituting for β1 and

β2 in Eq. (44) we get

λ =
−µa

2(a+ (b− 4a)β0eµa − (a+ b)β0e−µb)
(45)

The partial derivative of the Lagrangian for r = 2 is

log β0 − log β2 + 2λ [b− (a+ b)β1 + (a− 4b)β2]
(46)

Substituting for λ, β1 and β2 in Eq. (46) we get the
following

b− a

[
b− (a+ b)β0e−(µa) + (a− 4b)β0e−(µb)

][
a+ (b− 4a)β0e−(µa) − (a+ b)β0e−(µb)

] = 0

(47)

Simplifying these equations we get

b

a
=

[
−(a+ b)β0e−(µa) + (a− 4b)β0e−(µb)

][
(b− 4a)β0e−(µa) − (a+ b)β0e−(µb)

] (48)

The right hand side of the above equation was com-
puted by varying µ (here µ is any non-negative real
number). The right hand side was equal to 2.6180 for
every value of µ. This is same as b

a . Therefore we
conclude that Piret’s conjecture for 5-PSK is correct.

3. Conclusion

The known upper bounds [11] and [13], respectively,
on the normalized rate of a code over symmetric PSK
signal set for a specified NSED and of a code over
any signal set constituting a group for a general dis-
tance function are shown to be valid for codes over any
distance-uniform signal set. In general, the tightness
of these bounds depends on a choice of a probability
distribution. The optimum distribution for the cases
(i) simplex (ii) Hamming spaces and (iii) biorthogonal
signal sets leading to tightest bounds are obtained. The
classical asymptotic Elias bound is shown to be same
as the bound of this paper for codes over simplex sig-
nal sets with the optimum distribution obtained. An
interesting direction for further research would be to
attempt to get best bounds for codes over signal sets
matched to specific groups, like dihedral, quaternion
and dicyclic groups.
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