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Abstract. We give simple algorithms for the construction of generator
matrices for minimal tail-biting trellises for a powerful and practical
subclass of the linear cyclic codes, from which the combinatorial repre-
sentation in the form of a graph can be obtained by standard procedures.
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1 Introduction

Trellis descriptions of block codes [1,15,8,10,3,6,9] are combinatorial descriptions,
as opposed to the traditional algebraic descriptions of block codes. A minimal
conventional trellis for a linear block code is just the transition graph for the
minimal finite state automaton which accepts the language consisting of the
set of all codewords. With such a description, the decoding problem reduces to
finding a cheapest accepting path in such an automaton (where transitions are
assigned costs based on a channel model.) However, trellises for many useful
block codes are often too large to be of practical value. Of immense interest
therefore, are tail-biting trellises for block codes, recently introduced in [2], which
have reduced state complexity. The strings accepted by a finite state machine
represented by a trellis are all of the same length, that is the block length of
the code. Coding theorists therefore attach to all states that can be reached by
strings of the same length l, a time index l. Conventional trellises use a linear
time index, whereas tail-biting trellises use a circular time index. It has been
observed [14] that the maximum state cardinality of a tail-biting trellis at any
time index can drop to the square root of the maximum state cardinality (over all
time indices) of a conventional trellis for the code, thus increasing the potential
practical applications of trellis representations for block codes. In this paper,
we show that finding a minimal tail-biting trellis corresponds to picking basis
vectors of the vector space defining the code in a particular way, and using the
selected vectors to build up the trellis. We then show that for various subclasses
of cyclic codes, obtaining vectors that span the space and that also yield minimal
tail-biting trellises is easy. Section 2 presents the background. Section 3 presents
our results on cyclic codes, and Section 4 gives results for Reed-Solomon codes.
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2 Background

We give a very brief background on subclasses of block codes called linear codes.
Readers are referred to the classic text [7].

Let GF (q) denote the field with q elements. It is customary to define linear
codes algebraically as follows:
Definition 1. A linear block code C of length n over a field GF (q) is a k-
dimensional subspace of an n-dimensional vector space over the field GF (q) (such
a code is called an (n, k) code.)
The most common algebraic representation of a linear block code is the generator
matrix G. A k × n matrix G where the rows of G are linearly independent and
which generate the subspace corresponding to C is called a generator matrix
for C. Figure 1 shows a generator matrix for a (4, 2) linear code over GF (2),
consisting of the four codewords in the set {0000,0110,1001,1111}. A cyclic linear

G =

[
0 1 1 0
1 0 0 1

]

Fig. 1. Generator matrix for a (4, 2) linear binary code

block code satisfies the additional property that any cyclic shift of a codeword is
also a codeword. (The code of the example above is linear but not cyclic.) Bose-
Chaudhari-Hocquengham(BCH) codes and Reed-Solomon codes are the best
known cyclic codes which have many practical applications. Cyclic (n, k) codes
are generated by k multiples modulo xn −1 of a polynomial g(x) of degree n−k,
that divides xn−1. A codeword corresponds to the coefficients of the polynomial.
The polynomial g(x) is chosen to be monic and has degree n−k. The codewords
corresponding to the multiples g(x), xg(x), . . . , xk−1g(x) form a basis for the
subspace that defines the code. The parity check polynomial h(x) (of degree k) is
defined as h(x) = (xn−1)/g(x). For BCH codes, g(x) has coefficients in a ground
field GF (q) and roots in an extension field GF (qm). For Reed-Solomon codes,
the coefficients and roots of g(x) are in the same field. An example of a BCH
code is a binary (7,4) Hamming code. This is generated by g(x) = x3 + x + 1
and has the generator matrix shown in Figure 2. The polynomial g(x) for the
(7,4) Hamming code above, has as roots, α, α2, α4 where α is a primitive element
of the field GF (23). The polynomial g(x) itself has coefficients in GF (2). The
parity check polynomial for this code is h(x) = x4 + x2 + x + 1 The polynomial
h(x) has as roots, all the remaining powers of α, namely, α3, α5, α6, and 1. Thus
g(x) and h(x) between them have as roots all the non zero elements of the cyclic
multiplicative group of the field GF (23). These are the seven roots of x7 − 1.

A general block code also has a combinatorial description in the form of a
trellis. We borrow from Kschischang et al. [6] the definition of a trellis for a block
code.
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G =




1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1




Fig. 2. Generator matrix for the (7, 4) binary Hamming code

Definition 2. A trellis for a block code C of length n, is an edge labeled directed
graph with edge labels drawn from a set A, with a distinguished root vertex s,
having in-degree 0 and a distinguished goal vertex f having out-degree 0, with
the following properties:

1. All vertices can be reached from the root.
2. The goal can be reached from all vertices.
3. The number of edges traversed in passing from the root to the goal along any

path is n.
4. The set of n-tuples obtained by “reading off” the edge labels encountered in

traversing all paths from the root to the goal is C.

The length of a path (in edges) from the root to any vertex is unique and
is sometimes called the time index of the vertex. It is well known that minimal
trellises for linear block codes are unique [10] and constructable from a generator
matrix for the code [6]. In contrast, minimal trellises for non-linear codes are,
in general, neither unique, nor deterministic [6]. Figure 3 shows a trellis for the
linear code in Figure 1. Figure 4 shows the minimal conventional trellis for the
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Fig. 3. A trellis for the linear block code of Figure 1 with S0 = s and S9 = f

Hamming code of Figure 2. Minimal trellises for linear codes are transition graphs
for bideterministic automata. The trellises are said to be biproper. Biproper
trellises minimize a wide variety of structural complexity measures. McEliece [9]
has defined a measure of Viterbi decoding complexity in terms of the number
of edges and vertices of a trellis, and has shown that the biproper trellis is
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Fig. 4. A conventional trellis for the Hamming code of Figure 2

the “best” trellis using this measure, as well as other measures based on the
maximum number of states at any time index, and the total number of states.

We briefly mention the algorithm given in [6] for constructing a minimal
trellis from a generator matrix(in a specified form) for the code. An important
component of the algorithm is the trellis product construction, whereby a trellis
for a “sum” code can be obtained as a product of component trellises. The set of
vertices of the product trellis at each time index, is just the Cartesian product
of the vertices of the component trellis. If we define the ith section as the set
of edges connecting the vertices at time index i to those at time index i + 1,
then the edge count in the ith section is the product of the edge counts in the
ith section of the individual trellises. Before the product is constructed we put
the matrix in trellis oriented form described now. Given a non zero codeword
C = (c1, c2, . . . cn), start(C) is the smallest integer i such that ci is non zero.
Also end(C) is the largest integer for which ci is nonzero. The linear span of
C is [start(C), end(C)]. By convention the span of the all 0 codeword 0 is the
empty span [ ]. The minimal trellis for the binary (n, 1) code generated by a
nonzero codeword with span [a, b] is constructed as follows. There is only one
path up to a − 1 from index 0, and from b to n. From a − 1 there are 2 outgoing
branches diverging(corresponding to the 2 multiples of the codeword), and from
b − 1 to b, there are 2 branches converging. For a code over GF (q) there will be
q outgoing branches and q converging branches. It is easy to see that this is the
minimal trellis for the 1-dimensional code, and is called the elementary trellis
corresponding to the codeword. To generate the minimal trellis for C we first
put the trellis into trellis oriented form, where for every pair of rows, with spans
[a1, b1], [a2, b2], a1 6= b1 and a2 6= b2. We then construct individual trellises for
the k 1-dimensional codes as described above, and then form the trellis product.
Conversion of a generator matrix into trellis oriented form requires a sequence of
operations similar to Gaussian elimination, applied twice. In the first phase, we
apply the method to ensure that each row in the matrix starts its first nonzero
entry at a time index one higher than the previous row. In the second phase we
ensure that no two rows have their last nonzero entry at the same time index.
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The complexity of the algorithm is O(k2n + s) for an (n, k) linear code whose
minimal trellis has s states. We see that the generator matrices displayed earlier
are already in trellis oriented form. The elementary trellises for the two rows of
the generator matrix in Figure 1 are shown in Figure 5 below. The product of
these two elementary trellises yields the trellis in Figure 3.
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Fig. 5. Elementary trellises for the rows of the generator matrix in Figure 1

A tail-biting trellis is defined on a circular time axis of length n which is usu-
ally identified with Zn = {0, 1, 2, . . . n−1}, the integers modulo n. All arithmetic
operations on indices are performed modulo n. For each time index j ∈ Zn there
is a finite state space Sj . All edges of the tail-biting trellis are between Sj and
Sj+1(modn), and as in the conventional case, are labeled with elements from A.
One can think of a tail-biting trellis as defined on a sequential time axis with
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Fig. 6. A tail-biting trellis for the Hamming code of Figure 2

S0 = Sn and by restricting valid paths to those that begin and end at the same
state. Figure 6 shows a tail-biting trellis for the Hamming code of Figure 2, with
|S0| = |Sn| = 2. One can also regard a conventional trellis as a tail-biting trellis
with |S0| = |Sn| = 1.

The state cardinality profile of a tail-biting trellis is the sequence (|S0|, |S1|, . . .
|Sn−1|). For example, the state cardinality profile for the tail-biting trellis for the
(7,4) Hamming code in Figure 6 is (2,4,4,4,4,4,2). The maximum state cardinality
of a trellis is defined as Smax = max{|S0|, |S1|, . . . |Sn−1|}. The minimum state
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cardinality, Smin can similarly be defined. It is well known that for conventional
trellises representing linear block codes, there is a unique minimal trellis for
a given linear block code. However this is not true in general for tail-biting
trellises. There are three notions of minimality that have been suggested for
tail-biting trellises. In [2] a trellis is called µ-minimal if Smax is minimized over
all possible permutations of the time index, and choices of generator matrices.
A second definition is π-minimality, also defined in [2] where the goal is to
minimize the product of all state space sizes over all permutations of the time
indices and choices of generator matrices. Kotter and Vardy [5] define weaker
notions of minimality. In their definitions a coordinate ordering is considered to
be fixed. One definition is that of Θ-minimality. A trellis T is said to be smaller
than or equal to another trellis T ′ denoted by T ≤Θ T ′ if |Si| ≤ |S′

i| for all
i ∈ {0, 1, . . . n − 1}. If at least one of the indices has a strict inequality in the
set of inequalities above, then T < T ′. A second ordering is on the basis of the
product of all state space sizes, as defined earlier, except that permutations of
the time index are not considered.

We end this section by stating a few bounds. All of these are found in the
excellent survey on trellises for block codes [13] and in [2]. Let C be an (n, k)
linear block code over the field GF (q).

1. For a conventional trellis, Smax ≤ min(qk, qn−k)
2. For a tail-biting trellis the product complexity, π ≥ q(d−1)k, where d is the

minimum of the Hamming distances between all pairs of codewords. This
will be referred to as the total span lower bound.

3. For a tail-biting trellis Smax ≥ qd(d−1)k/ne

4. If Smid is the minimum possible state-space size of a conventional trellis for
a code C at its midpoint under any permutation of its time index, then
Smax ≥ √

Smid. This is referred to as the square root lower bound.

3 An Algorithm for the Construction of Minimal
Tail-Biting Trellises for Cyclic Codes

We first give another definition of minimality. Our definition is for a fixed coor-
dinate ordering. We say that trellis T is Σ-minimal if

∑
i |Si| ≤ ∑

i |Si|′ for any
other trellis T ′. This is a natural definition from the point of view of automata
theory. However, we must recall that we are not dealing with conventional au-
tomata, but with automata having multiple start and multiple final states, and
with a restricted definition of acceptance. We have observed that subject to min-
imization of the product of all state space sizes, the minimization of this quantity
also minimizes Smax. Also this definition seems to favour “flat” trellises over oth-
ers with the same product space size. Flat minimal trellises, in fact achieve the
square root lower bound [2]. Another definition that favours flat trellises is ∆-
minimality. We say that a tail-biting trellis is ∆-minimal for a given product
size if log(Smax) − log(Smin) is minimal, where the logarithm is to the base q if
the code symbols are from GF (q). The decoding complexity in a conventional
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trellis is closely related to the number of edges and nodes of the trellis. This is
also true for tail-biting trellises [11]. It is thus of interest to minimize the Σ-size.
We show that in the cases considered here, ∆-minimality implies Σ-minimality.

We now define a circular span of a codeword. Let C = (c1, c2 . . . cn) be a
codeword such that ci and cj are non-zero, i < j and all components between i
and j are zero. Then [j, i] is said to be a circular span of the codeword. Note that
while the linear span of a codeword is unique, a circular span is not, as it depends
on the consecutive run of zeros chosen. Given a codeword and a circular span
[j, i], there is a unique elementary trellis corresponding to it. If the code symbols
are from GF (q), then the trellis has q states from index 0 to index i − 1, one
state from index i to index j and q states from index j+1 to index n. If the start
states are numbered from 1 to q and final states likewise, only i to i paths are
codewords. Shany and Beery[12] have shown that any linear tail-biting trellis can
be constructed from a generator matrix whose rows can be partitioned into two
sets, those which are taken to have linear span, and those taken to have circular
span. The tail-biting trellis is then formed as a product of the elementary trellises
corresponding to these rows. Thus the problem of constructing a minimal tail-
biting trellis is then reduced to finding a basis for the subspace constituting the
code, and a choice of spans, such that the corresponding elementary trellises
yield a product that corresponds to a minimal tail-biting trellis.

It is convenient to introduce some notation at this point. A state complexity
profile of the form (ql, ql, . . . i1 times, qj , qj , . . . i2 times, qm, qm, . . . i3 times) is
represented as ((ql)i1 , (qj)i2 , (qm)i3). Let c be a codeword with linear span [i, j].
Then the elementary conventional trellis for the codeword has a profile of the
form (1i+1qj−i1n−j−1).We abbreviate this as ([1, q, 1], [i + 1, j]), where indices
in the trellis begin at 0, as the state cardinality remains constant at q in the
interval [i + 1, j].

For a codeword with circular span [j, i] the elementary tail–biting trellis has
profile (qi+1, 1j−i, qn−j−1).This is abbreviated as ([q, 1, q], [j + 1, i]), as the state
cardinality remains constant at q over the circular interval [j+1, i]. It is clear that
the product construction will yield linear trellises where the state cardinality at
any time index is always a power of q, where the code is over GF (q).

We now describe an algorithm for the construction of minimal tail–biting
trellises, for a subclass of cyclic codes. We establish the basis for the construction
by a sequence of results. Firstly we recall, that the generator matrix formed by
the vector representation of g(x), xg(x), x2g(x), . . . xk−1g(x) gives us the minimal
conventional trellis for the code. We aim to get a minimal tail-biting trellis having
the same product space size as this one. Since each row has linear span of width
(n − k), and there are k rows, the product of the state cardinalities is qk(n−k).
Since this is a minimal trellis, we cannot do better. Consequently, a lower bound
for the maximum size of the state space at any time index is qdk(n−k)/ne. This
improves the total span lower bound on Smax for this class, as n − k ≥ d − 1.
We also note that any row with span (linear or circular) exceeding n − k will
increase the product state space size of the code. We can therefore restrict our
attention to rows having span of width n− k. We prove the main result through
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a sequence of lemmas. We assume that the codes under consideration are (n, k)
cyclic codes.

Lemma 1. Let gcd(n, k) = 1.Then the minimal tail-biting trellis for the cyclic
code cannot be flat.

Proof. Each row contributes a factor qn−k to the product of the state cardinality
and there are k rows. Thus the total product state cardinality is qk(n−k). For a
flat trellis this must be distributed evenly among the n columns. Thus n must
divide k(n − k) which implies n must divide k2. Since gcd(n, k) = 1 , this is not
possible, and hence a flat trellis cannot exist for this case.

Lemma 2. For a minimal non-flat trellis for a cyclic code, log(Smax) −
log(Smin)
≥ 1.

Proof. The proof follows from the fact that the state cardinality at each time
index is always a power of q.

A trellis which has r jumps in its state cardinality profile is called an r-jump trel-
lis. For a given trellis, if log(Smax)− log(Smin) = δ, the trellis is called a δ-trellis.
The tail-biting trellis for the Hamming code in Figure 6 is a 2-jump 1-trellis. We
will be dealing with very restricted kinds of tail-biting trellises.These will have
state cardinality profiles of the form ([ql, ql+1, ql], [i, j]) or ([ql+1, ql, ql+1], [j, i]).
The first trellis is of type LHL(L for Low , H for High) and the second of type
HLH. We will sometimes use the notation (LHL, i, j, δ) or (HLH, i, j, δ) to refer
to 2-jump δ-trellises where the state cardinality remains constant at Smax over
the linear interval [i, j] or circular interval [j, i] as the case may be. Note that
1-jump trellises do not exist and 0-jump trellises are flat.

We next present a technique to construct a minimal tail-biting trellis for a
(n, k) cyclic code when gcd(n, k) = 1.

Lemma 3. The trellis product of elementary trellises corresponding to the
code polynomials g(x), x(n−k)g(x), x2(n−k)g(x), . . . , x(k−1)(n−k)g(x) where all the
products are modulo xn − 1, yields a 2-jump 1-trellis with log(Smax) = d(k(n −
k)/n)e.
Proof. We construct the product trellis step-by-step, forming a trellis product
by including one elementary trellis at each step in the order above. At each step
the trellis is shown to be a 2-jump 1-trellis. We prove the following by induction.

Hypothesis The trellis generated by the first i codewords 1 ≤ i ≤ k is a
2-jump 1-trellis of type (LHL, 1, (i)(n − k) mod n, 1), with log(Smax) = d(i(n −
k)/n)e.

Basis i=1 The codeword corresponding to g(x) has linear span [0, n−k], and
generates a (LHL, 1, n−k, 1) trellis. Also log(Smax) = 1, proving the hypothesis
for this case.

Induction Assume the hypothesis is true for the product of the first i or
fewer trellises. Thus the trellis generated after i steps is a (LHL, 1, (i)(n − k)
mod n, 1) trellis, with log(Smax) = d(i(n − k)/n)e. The next codeword to be
added is x(i)(n−k)g(x) mod (xn − 1). If this has linear span, the trellis is of type
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(LHL, (i)(n−k)+1 mod n, (i+1)(n−k) mod n, 1). The product trellis is then of
the type (LHL, 1, (i+1)(n−k) mod n, 1) and there is no increase in Smax. If the
next codeword has a circular span, then its trellis is of type (HLH, (i)(n−k)+1
mod n, (i + 1)(n − k) mod n, 1). (Here i(n − k) mod n > (i + 1)(n − k) mod n.)
Thus the jumps in the product trellis will be at 1 and (i + 1)(n − k) + 1 mod n.
Also log(Smax) increases by 1 in this case, as the number of states from indices
i(n − k) mod n to n − 1, and 0 to (i + 1)(n − k) mod n increases by a factor
of q. We see that whenever the new elementary trellis to be added has circular
span, the value of Smax increases by a factor of q. This happens dk(n − k)/ne
times. After adding k elementary trellises, the tail-biting trellis construction is
complete. The trellis so constructed achieves the improved lower bound on Smax

for cyclic codes.

While we have proved that the k codewords selected by the lemma do indeed
give a trellis with a minimal value of Smax we need to show that they form
a basis for the subspace defining the code. Thus we need to prove that they
are linearly independent. For the next lemma we make the assumption that
gcd(q, n) = 1. This implies that the generator and parity check polynomials do
not have repeated roots. Most practical cyclic codes satisfy this property.
Lemma 4. If gcd(n, k) = 1 and gcd(q, n) = 1 then the vectors corresponding to
codewords g(x), x(n−k)g(x), x2(n−k)g(x), . . . , x(k−1)(n−k)g(x) where all the prod-
ucts are modulo xn − 1, are linearly independent.

Proof. Assume that the vectors are linearly dependent.Then there exist scalars
a0, a1, . . . , ak−1 in the field GF (q) such that

(a0 + a1x
n−k + . . . + ak−1x

(k−1)(n−k))(g(x)) ≡ 0 mod(xn − 1) (1)

Let A(x) = a0+a1x
n−k+. . .+ak−1x

(k−1)(n−k). From ( 1) and from the definition
of h(x), we conclude that A(x) has as roots all the k roots of h(x). Define
b(x) = a0 +a1x+ . . .+ak−1x

k−1. If β ∈ GF (qm) is a root of A(x) , then βn−k is
a root of b(x). Also if β1, β2 are distinct roots of h(x), βn−k

1 , βn−k
2 are distinct

roots of b(x). Else, if β1 = βi1 and β2 = βi2 where β generates the cyclic group
of order n, β(i1−i2)(n−k) = 1 implying that i1 − i2 ≡ 0(mod n), thereby giving a
contradiction. Hence the vectors are linearly independent.

We finally present the main theorem.
Theorem 1. For an (n, k) cyclic code over GF (q) with gcd(q, n) =
1, gcd(n, k) = 1, there exists a choice of spans, such that the
product of elementary trellises corresponding to the codewords
g(x), x(n−k)(g(x)), x2(n−k)(g(x)), . . . , x(k−1)(n−k)

(g(x)) gives a ∆-minimal trellis for the code which is also Σ-minimal.

Proof. The ∆-minimality follows from Lemmas 1, 2, 3 and 4. We next
show that the ∆-minimal trellises constructed using the procedure above are
also Σ−minimal. The trellis, say T1, constructed by the above method has
log(Smax) − log(Smin) = 1. Assume some other tail biting trellis(say T2) which
is π-minimal, also has log(Smax) − log(Smin) = 1. We show that such a trellis
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has a state cardinality profile that is a permutation of T1. Since a flat trellis does
not exist, this trellis is Σ − minimal. Since log(Smax) − log(Smin) = 1 in T1, it
has a state cardinality of qm1−1 at t1 time indices and qm1 at n− t1 time indices
for some m1. Similarly T2 has a state cardinality of qm2−1 at t2 time indices and
qm2 at n−t2 time indices for some m2,where m1, m2 ≥ 1 and t1, t2 ≥ 1. Without
loss of generality assume t1 ≥ t2. Since both of them are π-minimal,we have
(m1 − 1) ∗ (t1) + (m1) ∗ (n − t1) = (m2 − 1) ∗ (t2) + (m2) ∗ (n − t2)
(m1 ∗ n) − t1 = (m2 ∗ n) − t2
n ∗ (m1 − m2) = t1 − t2
Since t1 − t2 < n , this is only possible if t1 − t2 = 0 implying that m1 = m2.
This proves that for a given (n, k) cyclic code, with gcd(n, k) = 1, assuming
π-minimality, the Σ-minimal trellis is unique up to permutations of the state
cardinality profile and is the same as the ∆-minimal trellis.

Figure 6 is the minimal tail-biting trellis for the (7,4) cyclic Hamming
code using our technique. We next turn our attention to cyclic codes for which
gcd(n, k) = t = gcd(n, n−k) > 1. We use the property that if gcd(n, k) = t then
the smallest multiple of n − k which is a multiple of n is (n/t) × (n − k).

Lemma 5. Let g(x) be the generator polynomial of an (n, k) cyclic code with
gcd(n, k) = t > 1. Also assume that k < n/t. Then the codewords corresponding
to the polynomials g(x), x(n−k)g(x), x2(n−k) . . . x(k−1)(n−k) where all products are
modulo xn − 1, generate a minimal 2-jump 1-trellis for the code, provided the
following condition is satisfied: if βi and βj are roots of h(x) where β generates
the cyclic group of order n, then i − j 6= 0(mod n/t).

Proof. From Lemma 3, we know that the vectors generate a trellis which is a
2-jump 1-trellis that is Σ-minimal as well as ∆-minimal. To show that it is a
trellis for the code, we need to show that the k vectors are linearly independent.
Assume they are not. The proof proceeds along exactly the same lines as that
of Lemma 4, with A(x), b(x), βi, βj being defined as in that lemma. If βi and βj

map to the same root of b(x) then (i − j)(n − k) = 0( mod n). But the smallest
value of i − j for which this can happen is i − j = n/t. Since this is not possible,
the k roots of h(x) map into distinct roots of b(x) giving a contradiction, as the
degree of b(x) is k − 1. Hence the vectors are linearly independent and generate
a minimal trellis for the code.

4 Minimal Tail-Biting Trellises for Reed-Solomon Codes

We now present some results on mimimal trellises for Reed-Solomon codes. We
recall that for such codes the code symbols and the roots of g(x) are in the
same field. We look at cases when gcd(n, k) = t > 1, as the case when t is 1 is
covered by the results of the previous section. It is easy to prove that minimal
flat trellises exist for several subclasses of Reed-Solomon codes.

The lemma below has a simple proof available in [4]. For the sake of brevity
the proof is not reproduced here.
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Lemma 6. Let g(x) be the generator polynomial for an (n, k) Reed-Solomon
code.Then the codewords represented by polynomials g(x), xi1g(x), xi2g(x), . . . ,
xik−1g(x) where i1, i2, . . . , ik−1 are distinct positive integers between 1 and n-
1(inclusive),(and all products are modulo xn − 1), are linearly independent.

Lemma 7. Let t = gcd(n, k).Then the integers i(n−k) mod n,i = 0, 1, . . . n/t−1
are all distinct, and the vectors corresponding to g(x), xn−kg(x), x2(n−k)g(x), . . . ,
x(n/t−1)(n−k)g(x), where all the products are modulo xn−1, generate a flat trellis.

Proof. We can easily see that the integers are all distinct. The construction
procedure of Lemma 3 will after n/t − 1 products, generate a trellis with a
“jump” up at index 1 and a “jump” down at index n/t(n−k)+1 = 1 modulo n.
Thus after the n/t − 1st product, the trellis will be a 0-trellis and is hence flat.

Lemma 8. Assume that n/t = k. Then the vectors g(x), xn−kg(x), x2(n−k)g(x),
. . . , x(k−1)(n−k)g(x) where all products are modulo xn − 1, generate a minimal
flat trellis for the code. If n/t > k, then the vectors generate a minimal 2-jump
1-trellis for the code.

Proof. We can easily see that in the first case n divides k2. By Lemmas 6 and
7 we see that the k vectors are distinct, linearly independent and also generate
a minimal flat trellis for the code. The proof for the second case follows directly
from Lemmas 3 and 6.

Lemma 9. Let t = gcd(n, k). Then if n/t divides k, the vectors in the union of
the sets below:
{g(x), xn−kg(x) . . . x(n/t−1)(n−k)g(x)}
{xg(x), xn−k+1g(x) . . . x(n/t−1)(n−k)+1g(x)}
{x2g(x), xn−k+2g(x) . . . x(n/t−1)(n−k)+2g(x)}
...
{x(k/(n/t))−1g(x), xn−k+(k/(n/t))−1g(x) . . . x(n/t−1)(n−k)+(k/(n/t))−1g(x)}
generate a flat trellis for the code.

Proof. We outline the proof here. Firstly we see that n divides k2. Also, it is
easy to see that the vectors are all distinct. We note from Lemma 7, that the
vectors in each set produce a flat trellis of width q((n−k)×(n/t))/n. (Cyclic shifts
of a generator matrix that produces a flat trellis also produce flat trellises). The
product trellis is just a product of flat trellises, and is hence also flat. To see
that it is minimal, we see that the width is q1/n((n/t)×(n−k)×k/(n/t)) = qk(n−k)/n.
Thus the trellis is minimal.

The only case left is that when k > n/t but n/t does not divide k. It is easy to see
that in this case we will get d(k/(n/t)e sets, such that the last set contains less
than n/t vectors, and generates a 2-jump 1-trellis, while the others all generate
flat trellises. The result follows from these two observations. Thus we see that
all cases for Reed-Solomon codes are covered. We consolidate all the results of
this section into one theorem.
Theorem 2. Reed-Solomon (n, k) codes have minimal flat trellises if and only if
n divides k2. If n does not divide k2 the minimal trellises are 2-jump 1-trellises.
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Proof. The necessity of the condition for flat trellises is shown in Lemma 1. Let
gcd(n, k) = t, and assume n divides k2. We can write n1×n = k2 = k1×t×k, for
integers n1 and k1. Clearly n1/k1 = l, is an integer, as gcd(k1, n) = 1. Therefore
l × n/t = k which, together with lemmas 8 and 9 show the sufficiency of the
condition for a flat trellis. The case n does not divide k2 is covered by lemma
3, the second half of lemma 8 and the previous paragraph.

References

1. L.R.Bahl, J.Cocke, F.Jelinek, and J. Raviv, Optimal decoding of linear codes for
minimizing symbol error rate, IEEE Trans. Inform. Theory 20(2), March 1974, pp
284-287.

2. A.R.Calderbank, G.David Forney,Jr., and Alexander Vardy, Minimal Tail-Biting
Trellises: The Golay Code and More, IEEE Trans. Inform. Theory 45(5) July 1999,
pp 1435-1455.

3. G.D. Forney, Jr. and M.D. Trott, The dynamics of group codes:State spaces, trellis
diagrams and canonical encoders, IEEE Trans. Inform. Theory 39(5) Sept 1993,
pp 1491-1513.

4. Harmeet Singh, On Tail-Biting Trellises for Linear Block Codes, M.E. Thesis, De-
partment of Electrical Communication Engineering, Indian Institute of Science,
Bangalore, 2001.

5. Ralf Kotter and Vardy, A.,Construction of Minimal Tail-Biting Trellises, in Pro-
ceedings IEEE Information Theory Workshop (Killarney, Ireland, June 1998), 72-
74.

6. F.R.Kschischang and V.Sorokine, On the trellis structure of block codes, IEEE
Trans. Inform. Theory 41(6), Nov 1995, pp 1924-1937.

7. F.J. MacWilliams and N.J.A. Sloane,The Theory of Error Correcting Codes, North-
Holland, Amsterdam, 1981.

8. J.L.Massey, Foundations and methods of channel encoding, in Proc. Int. Conf. on
Information Theory and Systems 65(Berlin, Germany) Sept 1978.

9. R.J.McEliece, On the BCJR trellis for linear block codes, IEEE Trans. Inform.
Theory 42, November 1996, pp 1072-1092.

10. D.J. Muder, Minimal trellises for block codes, IEEE Trans. Inform. Theory 34(5),
Sept 1988, pp 1049-1053.

11. Priti Shankar, P.N.A. Kumar, K.Sasidharan and B.S.Rajan, ML decoding of block
codes on their tail-biting trellises, to appear in Proceedings of the 2001 IEEE In-
ternational Symposium on Information Theory.

12. Yaron Shany and Yair Be’ery, Linear Tail-Biting Trellises, the Square-Root Bound,
and Applications for Reed-Muller Codes, IEEE Trans. Inform. Theory 46 (4), July
2000, pp 1514-1523.

13. A.Vardy, Trellis structure of codes, in Handbook of Coding Theory,V.S. Pless and
W.C. Huffman, Eds., Elsevier Science, 1998.

14. N.Wiberg, H.-A. Loeliger and R.Kotter, Codes and iterative decoding on general
graphs, Eoro. Trans. Telecommun.,6, Sept 1995, pp 513-526.

15. J.K. Wolf, Efficient maximum-likelihood decoding of linear block codes using a
trellis, IEEE Trans. Inform. Theory 24, pp 76-80.


	Introduction
	Background
	An Algorithm for the Construction of Minimal
	Minimal Tail-Biting Trellises for Reed-Solomon Codes
	References

