
A Package for the Implementation of Block
Codes as Finite Automata

Priti Shankar1, K.Sasidharan1, Vikas Aggarwal1, and B.Sundar Rajan2

1 Department of Computer Science and Automation, Indian Institute of Science,
Bangalore 560012, India

2 Department of Electrical Communication Engineering, Indian Institute of Science,
Bangalore 560012, India

{priti,sasi,vikas}@csa.iisc.ernet.in, bsrajan@ece.iisc.ernet.in

Abstract. We have implemented a package that transforms concise
algebraic descriptions of linear block codes into finite automata repre-
sentations, and also generates decoders from such representations. The
transformation takes a description of the code in the form of a k × n
generator matrix over a field with q elements, representing a finite
language containing qk strings, and constructs a minimal automaton
for the language from it, employing a well known algorithm. Next,
from a decomposition of the minimal automaton into subautomata, it
generates an overlayed automaton, and an efficient decoder for the code
using a new algorithm. A simulator for the decoder on an additive white
Gaussian noise channel is also generated. This simulator can be used
to run test cases for specific codes for which an overlayed automaton
is available. Experiments on the well known Golay code indicate that
the new decoding algorithm is considerably more efficient than the
traditional Viterbi algorithm run on the original automaton.

Keywords: block codes, minimal trellis, decoder complexity, subtrellis
overlaying.

1 Introduction

The theory of finite state automata has many interesting connections to the field
of error correcting codes [13]. After the early work on trellis representations of
block codes[1,22,15,18,7], there has recently been a spate of research on minimal
trellis representations of block error correcting codes[8,12,17]. Trellis descriptions
are combinatorial descriptions, as opposed to the traditional algebraic descrip-
tions of block codes. A minimal trellis for a linear block code is just the transition
graph for the minimal finite state automaton which accepts the language con-
sisting of the set of all codewords. With such a description, the decoding problem
reduces to finding a cheapest accepting path in such an automaton(where tran-
sitions are assigned costs based on a channel model). However, trellises for many
useful block codes are often too large to be of practical value. Of immense inter-
est therefore, are tail-biting trellises for block codes, recently introduced in [3],

S. Yu and A. Păun (Eds.): CIAA 2000, LNCS 2088, pp. 279–291, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

280 P. Shankar et al.

which have reduced state complexity. The strings accepted by a finite state ma-
chine represented by a trellis are all of the same length, that is the block length
of the code. Coding theorists therefore attach to all states that can be reached
by strings of the same length l, a time index l. Conventional trellises use a linear
time index, whereas tail-biting trellises use a circular time index. It has been ob-
served[21] that the maximum state complexity of a tailbiting trellis at any time
index can drop to the square root of the maximum state complexity of a conven-
tional trellis for the code, thus increasing the potential practical applications of
trellis representations for block codes. It is shown in [6] that tailbiting trellises
can be viewed as overlayed automata, i.e. a superimposition of several identically
structured finite state automata, so that states at certain time indices are shared
by two or more automata. This view leads to a new decoding algorithm that is
seen to be more efficient than the traditional Viterbi algorithm. Some prelimi-
nary details[10] are available for the construction of minimal tailbiting trellises
from conventional trellises. The full theory is currently being worked out[11].

In this paper, we describe a software package that provides the following
facilities.

1. It constructs a minimal finite state automaton(conventional trellis) for a
linear block code from a concise algebraic description in terms of a generator
matrix using the algorithm of Kschischang-Sorokine[12]. This involves two
steps: First, the conversion of the generator matrix into trellis oriented form.
This is a sequence of operations similar to Gaussian elimination. Second, the
generation of the minimal trellis as the product trellis of smaller trellises. Note
that the algebraic description is concise, consisting of a k × n matrix with
entries from a field with q elements. The language consists of qk strings.

2. Given a set of identically structured automata(subtrellises), that can be su-
perimposed to produce an overlayed automaton(tailbiting trellis), it pro-
duces a decoder for the block code using a new algorithm described in [6].

3. Given the parameters of an additive white Gaussian noise(AWGN) channel
it simulates the decoder on the overlayed automaton and outputs the de-
coded vector and other statistics for the range of signal to noise ratios(SNR)
requested by the user.

Simulations on the hexacode[5], and on the practically important Golay code,
the tailbiting trellises of which are both available[3], indicate that there is a
significant gain in decoding rate using the new algorithm on the tailbiting trellis
over the Viterbi algorithm on the conventional trellis.

We hope to augment the package with a module to convert from a minimal
conventional trellis to a minimal tailbiting trellis when the technique(stated to
be polynomial time in [10]) becomes available.

Section 2 describes conventional trellises for block codes and the Kschischang-
Sorokine algorithm used to build the minimal trellis; section 3 defines tailbiting
trellises and overlayed automata; section 4 describes the decoding algorithm;
section 5 describes our implementation and presents some results obtained by
running our decoder on a tailbiting trellis for the Golay code. Finally section 6
concludes the paper.

A Package for the Implementation of Block Codes as Finite Automata 281

2 Minimal Trellises for Block Codes

In block coding, an information sequence of symbols over a finite alphabet is
divided into message blocks of fixed length; each message block consists of k
information symbols. If q is the size of the finite alphabet, there are a total of qk

distinct messages. Each message is encoded into a distinct codeword of n (n > k)
symbols. There are thus qk codewords each of length n and this set forms a block
code of length n. A block code is typically used to correct errors that occur in
transmission over a communication channel. A subclass of block codes, the lin-
ear block codes has been used extensively for error correction. Traditionally such
codes have been described algebraically, their algebraic properties playing a key
role in hard decision decoding algorithms. In hard decision algorithms, the sig-
nals received at the output of the channel are quantized into one of the q possible
transmitted values, and decoding is performed on a block of symbols of length
n representing the received codeword, possibly corrupted by some errors. By
contrast, soft decision decoding algorithms do not require quantization before
decoding and are known to provide significant coding gains [4] when compared
with hard decision decoding algorithms. That block codes have efficient combi-
natorial descriptions in the form of trellises was discovered in 1974 [1]. Other
early seminal work in the area appears in [22] [15] [7] [18]. For background on
the algebraic theory of block codes, readers are referred to the classic texts [14,
2,16]; for trellis structure of block codes, [19] is an excellent reference.
Let Fq be the field with q elements. It is customary to define linear codes alge-
braically as follows:

Definition 1. A linear block code C of length n over a field Fq is a k-
dimensional subspace of an n-dimensional vector space over the field Fq (such a
code is called an (n, k) code).

The most common algebraic representation of a linear block code is the generator
matrix G. A k × n matrix G where the rows of G are linearly independent and
which generate the subspace corresponding to C is called a generator matrix
for C. Figure 1 shows a generator matrix for a (4, 2) linear code over F2. A

G =

[
0 1 1 0
1 0 0 1

]

Fig. 1. Generator matrix for a (4, 2) linear binary code

general block code also has a combinatorial description in the form of a trellis.
We borrow from Kschischang and Sorokine [12] the definition of a trellis for a
block code.

282 P. Shankar et al.

Definition 2. A trellis for a block code C of length n, is an edge labeled directed
graph with a distinguished root vertex s, having in-degree 0 and a distinguished
goal vertex f having out-degree 0, with the following properties:

1. All vertices can be reached from the root.
2. The goal can be reached from all vertices.
3. The number of edges traversed in passing from the root to the goal along any

path is n.
4. The set of n-tuples obtained by “reading off” the edge labels encountered in

traversing all paths from the root to the goal is C.

The length of a path (in edges) from the root to any vertex is unique and is
sometimes called the time index of the vertex. One measure of the size of a trellis
is the total number of vertices in the trellis. It is well known that minimal trellises
for linear block codes are unique [18] and constructable from a generator matrix
for the code [12]. Such trellises are known to be biproper. Biproperness is the
terminology used by coding theorists to specify that the finite state automaton
whose transition graph is the trellis, is deterministic, and so is the automaton
obtained by reversing all the edges in the trellis. (Formal language theorists
call such languages bideterministic languages). In contrast, minimal trellises for
non-linear codes are, in general, neither unique, nor deterministic [12]. Figure 2
shows a trellis for the linear code in figure 1.

0

0 0

011

1

1

1
0 0

1

S

S

S

S

S

S

S

S
0

1

2

3

4

6

7

9
S5

S8

Fig. 2. A trellis for the linear block code of figure 1 with S0 = s and S9 = f

2.1 Constructing Minimal Trellises for Block Codes

We briefly describe the algorithm given in [12] for constructing a minimal
trellis,implemented in our package. An important component of the algo-
rithm is the trellis product construction, whereby a trellis for a “sum” code
can be obtained as a product of component trellises. Let T1 and T2 be the
component trellises. We wish to construct the trellis product T1.T2. The set
of vertices of the product trellis at each time index, is just the Cartesian
product of the vertices of the component trellis. Thus if i is a time index,
Vi(T1.T2)= Vi(T1) × Vi(T2). Consider Ei(T1) × Ei(T2), and interpret an element

A Package for the Implementation of Block Codes as Finite Automata 283

((v1, α1, v
′
1), (v2, α2, v

′
2)) in this product, where vi, v

′
i are vertices and α1, α2

edge labels, as the edge ((v1, v2), α1 + α2, (v′
1, v

′
2)) where + denotes addition in

the field. If we define the ith section as the set of edges connecting the vertices
at time index i to those at time index i + 1, then the edge count in the ith sec-
tion is the product of the edge counts in the ith section of the individual trellises.

Before the product is constructed we put the matrix in trellis oriented form
described now. Given a non zero codeword C = (c1, c2, . . . cn), start(C) is the
smallest integer i such that ci is non zero. Also end(C) is the largest integer
for which ci is nonzero. The span of C is [start(C), end(C)]. By convention the
span of the all 0 codeword 0 is []. The minimal trellis for the binary (n, 1) code
generated by a nonzero codeword with span [a, b] is constructed as follows. There
is only one path up to a−1 from index 0, and from b to n. From a−1 there are 2
outgoing branches diverging(corresponding to the 2 multiples of the codeword),
and from b − 1 to b, there are 2 branches converging. For a code over Fq there
will be q outgoing branches and q converging branches. It is easy to see that this
is the minimal trellis for the 1-dimensional code.
To generate the minimal trellis for C we first put the trellis into trellis ori-
ented form, where for every pair of rows, with spans [a1, b1], [a2, b2], a1 6= b1 and
a2 6= b2. We then construct individual trellises for the k 1-dimensional codes
as described above, and then form the trellis product. Conversion of a gener-
ator matrix into trellis oriented form requires a sequence of operations similar
to Gaussian elimination, applied twice. In the first phase, we apply the method
to ensure that each row in the matrix starts its first nonzero entry at a time
index one higher than the previous row. In the second phase we ensure that no
two rows have their last nonzero entry at the same time index. We see that the
generator matrix displayed earlier is already in trellis oriented form. The com-
plexity of the Kschischang-Sorokine algorithm is O(k.n + s) for an (n, k) linear
code whose minimal trellis has s states.

3 Tailbiting Trellises

We borrow the definition of a tailbiting trellis from [10].

Definition 3. A tailbiting trellis T = (V, E, Fq) of depth n is an edge labelled
directed graph with the following property. The vertex set can be partitioned as
follows: V = V0 ∪ V1 ∪ . . . Vn−1, such that every edge in T either begins at a
vertex of Vi and ends at a vertex of Vi+1 for some i = 1, 2, . . . n − 2 or begins at
a vertex of Vn−1 and ends at a vertex of V0.

The notion of a minimal tailbiting trellis is more complicated than that of
a conventional trellis. The ordered sequence, (|V0|, |V1|, . . . |Vn−1|) is called the
state complexity profile of the tailbiting trellis. For a given linear code C, the
state complexity profiles of all tailbiting trellises for C form a partially ordered
set under componentwise comparison. A trellis T is said to be smaller or equal to
another trellis T ′, denoted by T ≤S T ′ if |Vi| ≤ |V ′

i | for all i = 0, 1, . . . n−1. It is

284 P. Shankar et al.

smaller if equality does not hold for all i in the expression above. We say that a
tailbiting trellis is minimal under ≤S if a smaller trellis does not exist. For con-
ventional trellises the minimal trellis is unique. However, for tailbiting trellises,
there are, in general, several nonisomorphic minimal trellises that are incompa-
rable with one another. Yet another ordering on tailbiting trellises is given by the
product ordering ≤P . This is a total ordering. T <P T ′ iff

∏n−1
i=0 |Vi| <

∏n−1
i=0 |V ′

i |.
It is stated in [10] that T <S T ′ ⇐⇒ T <P T ′. An outline for constructing a
minimal tailbiting trellis for a linear block code is given in [10]. The complex-
ity is stated to be O(n2) for a code of length n. The detailed theory in under
preparation[11]. Figure 4 is a tailbiting trellis for the linear code of figure 1. Let
Smax(T) denote the maximum number of states of trellis T at any time index,
when the index is allowed to range from 0 to n.
It is shown in [6] that a tailbiting trellis can be viewed as an overlayed automa-
ton. This is a somewhat more natural view, we believe, and it also leads to an
efficient decoding algorithm on tailbiting trellises.

3.1 Tailbiting Trellises as Overlayed Automata

An overlayed trellis has been introduced in [6], and we give the definition
below. Let C be a linear code over a finite alphabet. Let C0, C1, . . . Cl be a
partition of the code C, such that C0 is a subgroup of C under the operation
of componentwise addition over the structure that defines the alphabet set of
the code(usually a field or a ring), and C1, . . . Cl are cosets of C0 in C. Let
Ci = C0 + hi where hi, 1 ≤ hi ≤ l are coset leaders, and let Ci have minimal
trellis Ti. The subcode C0 is chosen so that the maximum state complexity is
N (occurring at some time index, say, m), where N divides M the maximum
state complexity of the conventional trellis at that time index. The subcodes
C0, C1, . . . Cl are all disjoint subcodes whose union is C. Further, the minimal
trellises for C0, C1, . . . Cl are all structurally identical and two way proper.
(That they are structurally identical can be verified by relabeling a path labeled
g1g2 . . . gn in C0 with g1 +hi1 , g2 +hi2 . . . gn +hin

in the trellis corresponding to
C0 + hi where hi = hi1hi2 . . . hin .) We therefore refer to T1, T2, . . . Tl as copies
of T0.

Definition 4. An overlayed proper trellis is said to exist for C with respect to
the partition C0, C1, . . . Cl where Ci, 0 ≤ i ≤ l are subcodes as defined above,
corresponding to minimal trellises T0, T1, . . . Tl respectively,with Smax(T0) = N ,
iff it is possible to construct a proper trellis Tv satisfying the following properties:

1. The trellis Tv has l + 1 start states labeled [s0, ∅, ∅, . . . ∅], [∅, s1, ∅ . . . ∅] . . .
[∅, ∅, . . . ∅, sl] where si is the start state for subtrellis Ti, 1 ≤ i ≤ l.

2. The trellis Tv has l + 1 final states labeled [f0, ∅, ∅, . . . ∅], [∅, f1, ∅, . . . ∅], . . .
[∅, ∅, . . . ∅, fl], where fi is the final state for subtrellis Ti, 0 ≤ i ≤ l.

3. Each state of Tv has a label of the form [p0, p1, . . . pl] where pi is either ∅ or
a state of Ti, 0 ≤ i ≤ l. Each state of Ti appears in exactly one state of Tv.

A Package for the Implementation of Block Codes as Finite Automata 285

4. There is a transition on symbol a from state labeled [p0, p1, . . . pl] to
[q0, q1, . . . ql] in Tv if and only if there is a transition from pito qi on symbol
a in Ti, provided neither pi nor qi is ∅, for at least one value of i in the set
{0, 1, 2, . . . l}.

5. The maximum width of the trellis Tv at an arbitrary time index i, 1 ≤ i ≤
n − 1 is at most N .

6. The set of paths from [∅, ∅, . . . sj , . . . ∅] to [∅, ∅, . . . , fj , . . . ∅] is exactly Cj , 0 ≤
j ≤ l.

Let the state projection of state [p0, p1, . . . , pi, . . . , pl] into subcode index i be
pi if pi 6= ∅ and empty if pi = ∅. The subcode projection of Tv into subcode index
i is defined by the symbol |Tv|i and consists of the subtrellis of Tv obtained by
retaining all the non ∅ states in the state projection of the set of states into
subcode index i and the edges between them. An overlayed trellis satisfies the
property of projection consistency which stipulates that |Tv|i = Ti. Thus every
subtrellis Tj is embedded in Tv and can be obtained from it by a projection
into the appropriate subcode index. We note here that the conventional trellis
is equivalent to an overlayed trellis with M/N = 1.
Figure 3 shows the subtrellises for component codes C0 and C1 of the linear code
defined earlier, overlayed to obtain the tailbiting trellis in Figure 4.

S
0

S1

S2

S4 S5

3S

S1

S2

3S

S4 S5

(a) (b)

0
0

1 1

0
S

0
0 1

1 1

1
0 0

Fig. 3. Minimal trellises for (a) C0 = {0000, 0110} and (b) C1 = {1001, 1111}

S
0

S
0

S2S2 ,[]

3S3S ,][

S1 S1[,] S4 S4,[]

S5

S5

0 0 0 0

1 1
1 1

Fig. 4. Trellis obtained by overlaying trellis in figures 3(a) and 3(b)

It is shown that not all decompositions give overlayed trellises satisfying the
specified bound on the width. Necessary and sufficient conditions for a decom-
position to yield a tailbiting trellis with a specified bounded width are also given

286 P. Shankar et al.

in [6]. For purposes of decoding, we need the decomposition of the original con-
ventional trellis into subtrellises that can be overlayed to form a tailbiting trellis.
Each subtrellis has been shown to correspond to a coset of a group, and can be
generated from the appropriate coset leader.

4 Decoding

Decoding refers to the process of forming an estimate of the transmitted
codeword x from a possibly garbled version y. The received vector consists of a
sequence of n real numbers where n is the length of the code. The soft decision
decoding algorithm can be viewed as a shortest path algorithm on the trellis for
the code. Based on the received vector, a cost l(u, v) can be associated with an
edge from node u to node v. The well known Viterbi decoding algorithm [20]
is essentially a dynamic programming algorithm, used to compute a shortest
path from the source to the goal node. Define a winning path as a shortest path
from one of the start nodes to a final node. For a tailbiting trellis, decoding is
complicated by the fact that non-accepting paths in the overlayed automaton
share states with accepting paths. Thus a winning path at a goal node may
not be an accepting path. We have designed and implemented a two phase
algorithm which outputs a winning accepting path. The algorithm is outlined in
[6] and described in detail along with proofs of correctness in [5]. We describe
it informally here, along with a tiny example.

During the first phase, a Viterbi algorithm is run on the trellis and survivors
i.e. shortest paths from any source node to all nodes are computed. Each
node stores the cost of the survivor at itself at the end of the first phase.
The second phase is an adaptation of the A∗ algorithm[9], well known in the
artificial intelligence community, and may be viewed as an adaptation of the
Dijkstra algorithm with node to goal estimates added to source to node costs.
All survivors at goal nodes are gathered at the end of the first phase. We term
accepting paths as si − fi paths and non accepting paths as si − fj paths,
with i 6= j. The second phase only needs to look at subtrellises Tj such that
the winning path in Tj is an si − fj path and such that there are no sk − fk

paths with smaller cost,(we call such trellises, residual trellises) as the cost
of a winning si − fj path will be an underestimate of that of the winning
sj − fj path. Any si − fj path with estimated cost greater than an sk − fk

path can therefore never be a winner. All residual trellises are candidates for
the second phase. Decoding begins at the best candidate, i.e the one with the
least estimate. The current estimates of all other residual trellises are stored in
a heap. If at any instant the estimated cost of the current trellis exceeds the
minimum value on the heap, the search in the current trellis is terminated, its
estimate inserted into the heap, and the trellis corresponding to the minimum
value in the heap taken up for searching next. Thus the algorithm makes its
way towards the goal travelling on the best subtrellis seen so far at any given
instant. As soon as the goal node is reached, we are sure that we have the

A Package for the Implementation of Block Codes as Finite Automata 287

winning path. For high signal to noise ratios it is observed that the algorithm
either does not need the second phase at all, or that it usually stays on a single
subtrellis for the whole of the second phase. We illustrate with a tiny example.
Though this one has only one residual trellis, it serves to illustrate the idea.

Figure 5 gives an overlayed trellis with some hypothetical costs. The nodes
are labeled with survivors(within parentheses) after the first phase. Since the
four codewords have costs 11,9,10,12, the winning path is acefg with a cost of 9.
The first phase outputs winners with cost 6 at g and 10 at h, corresponding to
paths bcefg and bcefh. Subtrellis corresponding to si −fj pair b−g is a residual
trellis so we begin decoding at a with estimate 6. At c the estimate changes to
4+(6-1)=9; at d it is 8+(6-5)=9; at e it is 5-(6-2)=9; at f it is min(9+(6-4),
7+(6-4))=9; at g it is 9+0=9. Hence the winning path is acefg.

c

e

4

1

b
(0)

a
(0)

(1)

(5)
d g

(6)

f
(4)

(2)
h

(10)

2 6

21

1

4

Fig. 5. Tailbiting trellis with hypothetical edge costs and survivors after first phase

5 Implementation

The package has been implemented in C.The minimal trellis construction
algorithm of Kschischang-Sorokine that is implemented has been validated by
generating minimal trellises for several codes for which these structures have
been published, among them the (48,24) quadratic residue code, the (24,12)
Golay code and the (16,7) lexicode(for which the state complexity profiles are
available in [19].)

For the decomposition, subtrellises are generated from a tailbiting trellis by
carrying out a forward traversal from each start state and keeping track of
which nodes reachable from the start state also reach the appropriate final
state. Thus the complexity of subtrellis generation from a tailbiting trellis is
O(s) where s is the number of states. Additional storage is not required for
the subtrellises as each node of the tailbiting trellis has a vector of length l + 1
associated with it (where l + 1 is the number of subtrellises), which indicates
whether a node of the tailbiting trellis is present in a certain subtrellis or not.

288 P. Shankar et al.

For the decoding, the channel is modeled as an AWGN channel using a random
number generator that produces numbers that are normally distributed with
mean 0 and variance N0

2 , where N0 is the noise energy level. The tail-biting trellis
is implemented as a two dimensional array of states reprepresenting vertices.
Each state contains incoming and outgoing branches. Branches contain labels
that correspond to a codeword symbols. If there are l +1 subtrellises, each state
has storage for the l + 2 surivivor paths (one obtained in the first phase and the
remaining l + 1 for each individual subtrellis to be used in the second phase),
and for the corresponding metric. The metric along a branch is computed at
runtime depending on the generated random codeword. Each state contain a
membership array of length l + 1 to indicate the membership in subtrellises. If
vertex v belongs to subtrellis i, then the i ’th bit of the array is set to 1, otherwise
it is set to 0. The heap required in the second phase is implemented as an array.

0 1 2 3 4 5 6
0

200

400

600

800

1000

1200

SNR in dB

D
ec

od
in

g
R

at
e

Viterbi

Tail Biting Trellis Decoding

Fig. 6. Rates of decoding using the Viterbi algorithm and the two phase algorithm for
the Golay code

5.1 Simulation Results

We present the simulation results of the algorithm tested on the extended (24,12)
Golay Code. The rate of the code is 1

2 . The minimal tail-biting trellis of the 12-
section (24,12) Golay code has a uniform state complexity of 16 at all time indices
and is described in [3]. The conventional 12-section trellis of the (24,12) Golay
Code has the state complexity profile (1,4,16,64,256,256,256,256,256,64,16,4,1).
The conventional trellis has 1066 states and 2728 branches and the tail-biting
trellis has 208 states and 384 branches. Each branch of the 12-sectioned Golay
code represents 2 code bits.

A large number of random codewords is generated for various signal-to-noise
ratios and the average rate of decoding is calculated by running the algorithm on

A Package for the Implementation of Block Codes as Finite Automata 289

Fig. 7. Probability of a second pass in the two phase algorithm as a function of SNR

the tail-biting trellis. The results are compared with the Viterbi rate of decoding
on the conventional trellis. The result is presented in figure 6. The rate graph
shows that the two phase algorithm on the tailbiting trellis is significantly better
than Viterbi decoding on the conventional trellis even at a low SNR of 0dB. While
the Viterbi rate of decoding remains constant around 190 codewords/sec for SNR
values in the range [0,6], the rate of the proposed algorithm increases steadily
from 879 to 1181 codewords/sec. It is known[19] that the Viterbi algorithm on a
trellis with V nodes and E edges requires |E| multiplications and |E| − |V | + 1
additions. From the vertex and edge counts for the conventional and tailbiting
trellises for the Golay code given above, we conclude that the overheads in heap
operations and the number of switches are not significant.

It is also seen that for high SNR values, the decoding rarely needs a second
phase. From figure 7 we see that the probability that the algorithm requires
a second phase decreases from 0.652 to 0.012 as SNR increases from 0 to 6dB.
During the second phase the algorithm switches from one subtrellis to other if
there is a subtrellis on top of the heap with smaller metric than the subtrellis
that is currently being expanded. Figure 8 shows that the average number of
switches in the second pass decreases steadily to 1.53 showing that the search in
second phase is usually restricted to a single subtrellis for large SNR values.

The measure of the probabilty of decoding error of a maximum likelihood
decoder is given by the Bit Error Rate (BER). For a codeword C of an (n, k)
code with each codeword symbol requiring m bits, mn bits are transmitted. If
the decoder decodes to codeword C ′, whose mn bits differ from C in e locations,
the bit error rate is e

mn . Thus, BER is the decoding error per bit. The bit error
rate for the tail-biting trellis decoding is presented in figure 9. The probability
of decoding error is very small for large SNR values, and the curve is consistent
with others obtained in the literature for the Golay code .

290 P. Shankar et al.

Fig. 8. Average number of switches between trellises when there is a second pass

6 Conclusion

We have implemented a package for the implementation of block codes as trel-
lises and an efficient decoding algorithm and simulator for tailbiting trellises.
Inclusion of a module for the conversion from conventional to tailbiting trel-
lises when the full theory is available will make this, we hope, an useful general
purpose tool for the coding community.

References

1. L.R.Bahl, J.Cocke, F.Jelinek, and J. Raviv, Optimal decoding of linear codes for
minimizing symbol error rate, IEEE Trans. Inform. Theory 20(2), March 1974, pp
284-287.

2. R.E. Blahut, Theory and Practice of Error control Codes, Addison Wesley, 1984.
3. A.R.Calderbank, G.David Forney,Jr., and Alexander Vardy, Minimal Tail-Biting

Trellises: The Golay Code and More, IEEE Trans. Inform. Theory 45(5) July
1999,pp 1435-1455.

4. G.C.Clark, Jr. and J.B. Cain, Error-Correction Coding for Digital Communica-
tion., New York: Plenum, 1981.

5. Amitava Dasgupta, Priti Shankar, Kaustubh Deshmukh, and B.S,Rajan On View-
ing Block Codes as Finite Automata, Technical Report IISc-CSA-99-7, Depart-
ment of Computer Science and Automation, Indian Institute of Science, Bangalore-
560012,

6. K.Deshmukh, Shankar,P., Dasgupta,A.,Sundar Rajan,B., On the many faces of
block codes, in Proceedings of STACS 2000, LNCS 1770 , (Lille, France, February
2000), pp 53-64.

7. G.D. Forney, Jr.,Coset codes II: Binary lattices and related codes, IEEE Trans.
Inform. Theory 36(5), Sept. 1988,pp 1152-1187.

A Package for the Implementation of Block Codes as Finite Automata 291

Fig. 9. Variation of the bit error rate with SNR

8. G.D. Forney, Jr. and M.D. Trott, The dynamics of group codes:State spaces, trellis
diagrams and canonical encoders, IEEE Trans. Inform. Theory 39(5) Sept 1993,pp
1491-1513.

9. P.E. Hart, N.J. Nilsson, and B. Raphael, A formal basis for the heuristic determi-
nation of minimum cost paths, IEEE Trans. Solid-State Circuits SSC-4, 1968, pp
100-107.

10. Ralf Kotter and Vardy, A.,Construction of Minimal Tail-Biting Trellises,in Proceed-
ings IEEE Information Theory Workshop (Killarney, Ireland, June 1998), 72-74.

11. Ralf Kotter and Vardy, A., The theory of tailbiting trellises, (manuscript in prepa-
ration).

12. F.R.Kschischang and V.Sorokine, On the trellis structure of block codes, IEEE
Trans. Inform. Theory 41(6), Nov 1995,pp 1924-1937.

13. D.Lind and M.Marcus, An Introduction to Symbolic Dynamics and Coding, Cam-
bridge University Press, 1995.

14. F.J. MacWilliams and N.J.A. Sloane,The Theory of Error Correcting Codes, North-
Holland, Amsterdam, 1981.

15. J.L.Massey, Foundations and methods of channel encoding, in Proc. Int. Conf. on
Information Theory and Systems 65(Berlin, Germany) Sept 1978.

16. R.J.McEliece, The Theory of Information and Coding, Encyclopedia of Mathemat-
ics and its Applications, Addison Wesley, 1977.

17. R.J.McEliece, On the BCJR trellis for linear block codes, IEEE Trans. Inform.
Theory 42,November 1996, pp 1072-1092.

18. D.J. Muder, Minimal trellises for block codes, IEEE Trans. Inform. Theory 34(5),
Sept 1988,pp 1049-1053.

19. A.Vardy, Trellis structure of codes, in Handbook of Coding Theory,V.S. Pless and
W.C. Huffman, Eds.,Elsevier Science, 1998.

20. A.J. Viterbi, Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm, IEEE Trans. Inform. Theory 13, April 1967, pp 260-269.

21. N.Wiberg, H.-A. Loeliger and R.Kotter, Codes and iterative decoding on general
graphs, Eoro. Trans. Telecommun.,6 pp513-526, Sept 1995.

22. J.K. Wolf, Efficient maximum-likelihood decoding of linear block codes using a
trellis, IEEE Trans. Inform. Theory 24 pp 76-80.

	1 Introduction
	2 Minimal Trellises for Block Codes
	2.1 Constructing Minimal Trellises for Block Codes

	3 Tailbiting Trellises
	3.1 Tailbiting Trellises as Overlayed Automata

	4 Decoding
	5 Implementation
	5.1 Simulation Results

	6 Conclusion
	References

