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Abstract

A typical communication system consists of a channel codatsmit signals
reliably over a noisy channel. In general the channel codesst of code-
words which are used to carry information over the channbls Thesis deals
with Elias upper bound on the normalized rate for Euclidgaece codes and
on codes which are close to the generalized Singleton bdikedylaximum-
Distance Separable (MDS) codes, Almost-MDS codes, NeaSMades and
certain generalizations of these.

The Elias bound for codes designed for Hamming distance, avalphabet

of sizeq is well known. Piret has obtained a similar Elias upper botord

codes over symmetri€ S K signal sets with Euclidean distance under consid-

eration instead of Hamming distance. A signal set is refetoeas uniform if

the distance distribution is identical from any point of signal set. In this
thesis we obtain the Elias upper bound for codes over unitigmal sets. This
extension includes the PSK signal sets which Piret has deresi as a sub-
class. This extended Elias bound is used to study signabsetstwo, three

and four dimensions which are matched to groups. We showctEs which

are matched to dicyclic groups lead to tighter upper bouhds signal sets
matched to comparable PSK signal sets, signals matcheddoytietrahedral,
binary octahedral and binary icosahedral groups.

The maximum achievable minimum Hamming distance of a coée a¥inite
alphabet set of given length and cardinality is given by thegl&ton bound.
The codes which meet the Singleton bound are called maximstante sep-
arable codesM DS). The problem of constructing dff DS codes over given
length, cardinality and cardinality of the finite alphabetis an unsolved prob-
lem. There are results which show the non existenc&/@S codes for par-
ticular lengths of the code, the cardinality of the code dmeldlphabet size.
Therefore we look at codes which are close to Singleton boAhdost-M D S

codes and Neakd DS codes are a family of such codes. We obtain systematic

matrix characterization of these codes over finite fieldsrtHer we charac-



terize these code ovef,,, R-modules and finite abelian groups. Based on
the systematic matrix characterization of the codes ovelicgroups we ob-
tain non-existence results for Alimost-D.S codes and Nea#d DS codes over
cyclic groups.

The generalized Singleton bound of the code gives the uppendon the
generalized Hamming weights of the code. Generalized Haigmveights of
the code are defined based on the minimum cardinality of thpati of the
subcodes of the codel/ DS code achieves the generalized Singleton bound
with equality. We obtain systematic matrix character@anf codes over finite
fields with a given Hamming weight hierarchy. Further basethe systematic
matrix characterization we characterize codes which arsecto the general-
ized Singleton bound. We also characterize codes and theltbdsed on their
distance from the generalized Singleton bound. We studyptbperties of
codes whose duals are also at the same distance from thealipe@ISingle-
ton bound. The systematic matrix characterization of codesh meet the

generalized Greismer bound is also given.
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Chapter 1

Introduction

A typical communication system consists of a channel codeatasmit signals reliably
over a noisy channel. In general codewords are restricteddaences of fixed length over
finite alphabets. A code is by the following parameters: #rmgthn of the code, number
of information symbolg:, the minimum distance between any two code waidsd the
cardinality of the alphabet;, over which the code is constructed. Here théenotes the
minimum possible Hamming distance between two distinceeadds. The basic questions

in coding theory include the following:
e givenn, k, ¢ find a(n, k) codeC with d,,;,, > d that maximizes:
e givenn, k, ¢ find a(n, k) codeC' that maximizes the minimum distanég;,,

Here the first condition looks at maximizing the rate of thdeoClassical bounds on codes
gives the lower and upper bound on théor givend,,.;,,. The lower and upper bounds are
obtained in terms of the normalized rafgeand the normalized distanc%e The lower
bound has been studied using different approaches. Thekmlénthe classical Gilbert-
Varshamov bound. The upper bounds on the rate of the codees ¢y Plotkin bound,
Elias bound, linear programming bound etc. For(ank) code the maximum possible
minimum distance between any two code words is given by thgl&ion bound.

Hamming distance is the appropriate performance index fpven error correcting when
the code is used on a binary symmetric channel. For otherngietHamming distance
may not be an appropriate performance index. For instankenwsed in Additive White



Gaussian noiseAW G N ) channel the minimum squared Euclidean distafideS £ D) of
the resulting signal space code is the appropriate perfocsandex [3] [71] [75]. Piret,
[46], studied the Gilbert Varshamov lower bound and Eliaparpgbound for codes over
PSK signal sets with squared Euclidean distance as the metrif56l the Pirets’ lower
bound for Euclidean space codes o¥&$ K signal sets have been extended to codes over
distance uniform signal sets. In this thesis we obtain aasBlpe upper bound for codes
over distance uniform signal sets.

The Singleton bound gives the maximum possible minimum Hargulistance of afin, k)
code. Maximum distance separaljle/ D.S) codes are a class of codes which achieve
the Singleton bound with equality. A general solution fonstuction of maximal length
M DS codes over finite alphabet sets is still an open problem. eleists classes of codes
having minimum distance close to the Singleton bound. Thedade the Almost\/ DS
and NearM DS codes. In this thesis we study codes close to the Singletandover
finite fields and obtain a systematic matrix characterizetio

The study of codes over groups is motivated by the observatig37] [38] that when
more that two signals are used for transmission, a grouptsire, instead of the finite
field structure traditionally assumed, for the alphabet &ahed to the relevant distance
measure. The minimum squared Euclidean distance is theppgie distance measure for
signal sets matched to groups [37] [24]. The Hamming dig@nes a simple lower bound
on the minimum squared Euclidean distance for signal setshad to groups. Hence it is
interesting to study codes over signal sets which are mdtthgroups. It is well known
that binary linear codes are matched to binary signaling ameAdditive White Gaussian
Noise (AWGN) channel in the sense that the squared Euclidistance between two signal
points in the signal space corresponding to two codeworpsogortional to the Hamming
distance between codewords. Similarly, linear codes dyegrare matched ta//-PSK
modulation systems for an AWGN channel [40] [41]. The gehprablem of matching
signal sets to linear codes over general algebraic strei@figroups has been studied in
[37] [38]. Also, group codes constitute an important ingeed for the construction of
Geometrically Uniform codes [23]. This motivates the studycodes over groups both
abelian and nonabelian. In [6] construction of group codes abelian groups that mimics

the construction of algebraic codes over finite fields is mered and it is shown that
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the construction can be on the basis of a parity check matnixhwprovides the relevant
information about the minimum Hamming distance of the cadee parity check symbols
are seen as images of certain homomorphisms ffno G. The bound on the minimum
Hamming distance of codes over groups is given by Singletound. The codes over
groups which meet the Singleton bound are the clasy 6fS group codesM DS codes
over groups have been studied in [76] [78]. Here again weystodes, AM DS codes and
NM DS codes over groups, which are close to the Singleton boundlza@cterize them.
Generalized Hamming weight hierarchy of linear codes ovatefifields is discussed in
[72]. The generalized Hamming weight hierarchy of a lineade is defined in terms of
the minimum support of the subcodes of the code. The bounti@miaximum possible
minimum support of any subcode is given by the generalizadl&ion boundM DS code
achieves the generalized Singleton bound with equalityafothe subcodes. The codes
which are close to the generalized Singleton bound are farim@ortant class of codes.
We obtain matrix characterization of these codes over ffigtds in terms of the systematic

generator matrix.

1.1 Preliminaries and Background

In this section we introduce basic set of concepts and sysnkloich we use in this thesis.
Further in each chapter we will discuss results which arevesit to it. Consider an
dimensional space over a finite fiel(). Any subset of the all possibtetuples overF;, is a

code. If the subset forms a linear subspace it is a linear.code

Definition 1.1 The minimum Hamming distance ofidength code” is defined ag,,,;,, =
min{d(z,y) | Vz,y € C andz # y} whered(z,y) denotes minimum Hamming distance

between the codewordsandy

A codeC over aF, is defined in terms of., k andd,,;,. Codes can be defined over any
finite sets. In thesis we study codes over finite fields, finibelate over a commutative ring
and finite abelian group. We also study codes over finite megtainiform signal sets.

The normalized rate of ajm, k] code is defined a$. Similarly the normalized distance of

[n k d] code is defined a$. The normalized rate and normalized distance are important

parameters of the code.
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An [n, k| linear codeC' over F, is generated by independent code words, i.e, the code
is generated by rank matrix overF;,. This is called the generator matrix of the code (this
is a(k x n) matrix overF,). Every generator matrix of a linear code can be written as a
[ixie Prxn—k)] matrix (upto column permutations). Throughout this thegsrefer to this
matrix as the systematic generator matrix of the code wighuihderstanding that it is the
generator matrix of the equivalent code obtained by apjmtgcolumn permutations.

The dual of arjn k] codeC' denoted ag'* is the setof alfz € F' | (x,y) =0V y € C}.

The dual code(C+, is an[n (n — k)] code. The systematic generator matrix of the dual
code is called as the systematic parity check matrix of thiecoThe systematic parity

check matrix of the code is given by the matﬁxP(:Z_k)Xk T k) (n—k) -
1.1.1 Bounds on Codes

Consider a code over a finite alphabet set of cardinglityith lengthn and minimum
Hamming distancd. An important question which comes up here is what is the mari

value of M for which such a code exists.

Definition 1.2 [60] A(n,d) := max{M | an(n, M, d)code exists whered is the mini-
mum Hamming distance of the codé, the cardinality of the code and is the length of
the codeC'. A codeC such thaf C' |= A(n, d) is called optimal.

Obtaining lower and upper bounds of{n, d) is considered as an important problem in
coding theory. In this section we collect results on the lisuon A(n, d) based on Ham-
ming distance. In the case of long length code (asymptosie)dfie normalized distance is

denoted as and
Definition 1.3 [60] «(¢) := lim,,_, sup{n~tlog,A(n,d)}

The asymptotic lower and upper boundscgi) is given in terms of the generalized entropy

function. The generalized entropy function is defined a®va:

Hy(x) = —xlogq{ } (- a)log,(1—x), if 0<ux< {%} (L.1)

o
qg—1
The asymptotic Gilbert-Varshamov bound (a lower boundjusmby

Theorem 1.1 [39] [60] If 0 <4 < %= then a(d) > 1 — H,(9)
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The upper bounds on the rate of the code for a given distartgda the Singleton bound,

Hamming bound, Plotkin bound, Greismer bound, Elias boand the linear programming

bound. Among these the linear programing bound gives tigsg upper bound on the rate
of the code for any given distance. The Elias bound is tigtiten the Singleton bound,

Hamming bound, Plotkin bound and the Greismer bound. Maefmr small distances the

Elias bound and the linear programing bound are comparable.

The Singleton bound is given by the following theorem
Theorem 1.2 For ¢,n,d € N, ¢ > 2 we haveA(n, d) < ¢g" 4+

For an[n, k] linear codeC we haved < (n — k + 1). A code meeting this bound is called
the maximum distance separable code. The Greismer bourefirsed for linear codes.

The following theorem states the Greismer bound.
Theorem 1.3 For an [n, k, d] code overF, we haven > S [%}

The Elias bound for the finite case and the asymptotic casgiaes by the following

results.

Theorem 1.4 Letgn, d,r € N, g > 2,0 = 1 — ¢! and assume that < #n and
r?2 —20nr + 6nd > 0. Then

Ond q"

A(n,d) < ’
(n7 ) — r2 _920nr + Ond ‘/q(na T)

Theorem 1.5 We have

a(d) <1—Hy(0—+/0(0—-)9)) if 0<6 <theta,
a(0) =0, ifo <o <1. (1.2)

1.1.2 Generalized Hamming Weight Hierarchy

The minimum distance of the of the co@eover F, is defined ag/(C') & MiNn, sec{w(a —
a#b

b)}, wherew(a) denotes the number of non-zero locations.off C'is a linear code then

d(C) = mina;cb{w(a)}. Next possible generalization is to consider the distanteden

triples of codewords [61]. This is defined as

' mi w((a—c —c))} .
(C) " min,yccfu((o— ) v (- )} 139
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HereV denotes the logica R operation. For a linear code this reduces to

dy(C) ™ min, co{w(a v b)}. (1.4)

Further generalization to the distance betwéendewords leads to the generalized Ham-

ming weight hierarchy of the code.

Definition 1.4 Let C' be an| n k] linear code. Lety(C) be the support of”, namely,
x(C) ={i | z; # 0forsome(zy, xo, ..., z,) € C}. Ther-th generalized Hamming weight
of C'is then defined a8, (C') = min{| x(D) | : Dis anr—dimensional subcode o}C

The Hamming weight hierarchy af’ is then the set of generalized Hamming weights
{d.(C) | 1 < r < k}. There are several equivalent definitions of generalizechidang

weight. They include:

e d,(C) ofan|n k] codeC' is the minimum size of union of supports oflinearly

independent codewords (.

e [28] Consider[ n k| codeC. Let G be a generator matrix of the code. For any
x € GF(q)* the multiplicity of z will denote the number of of occurrences:ofs
column ofG. Then the support of the code(C') = n — m(0). Let GFy, denote the
set of! dimensional subspaces of thedimensional spac&F(¢)*. Thend,.(C) is
n—max{m(U) | U € GFy—(q)}

We also collect the following known results on Hamming weikierarchy for codes over

finite fields. The sequence of Hamming weight hierarchy istbgrincreasing, i.e.,
di(C) < do(C) < ... <dp(C)=n (1.5)

The following result [72] which relates the Hamming weigigrdarchy of a code to that of

its dual will be useful. IfC+ denotes the dual of the codé then
{d,(C)|r=12,..,k} U {n+1-d.(CH)|r=1,2..n—k}={1,2...,n}.
The generalized Singleton bound|of k | codeC states thatl,(C') < (n — k + 7).

Definition 1.5 MDS Codes:MDS codes are characterized in terms Hamming weight hi-

erarchy as codes with the property thatC') is (n — k + ) fori = 1,2,3,4, ... k.
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Definition 1.6 Almost MDS Codes:Almost)M DS codes are a class @fu k | codes such
thatd,(C) = (n—k)andd;(C) < (n—k+i)forall1 <i <k,

Definition 1.7 Near-MDS Codes: Near M DS (NMDS) codes are a class dfn k |
codes with the following generalized Hamming weight hiengd, (C) = (n — k) and
d;(C) = (n—k+i)fori=2,3,4,... k.

Definition 1.8 An equivalent definition aVM DS code is as follows: Afn k| code is
NMDS if and only if thed, (C') = n — k andd, (C*) = k.

Proposition 1.5.1 An[n k] code is aN M DS if and only ifd; + di = n, wered, is the
minimum Hamming distance of the code aftdis the minimum Hamming distance of the

dual code.

The above result is proved in [15]. If am & | is NM DS we know thaid, = (n — k). The
above proposition implies that thie = k. That is code as well as it dual are AlmagtD S
codes. NMDS codes can be characterized in terms of theirg@manatrices and parity
check matrices as follows [15]:

A linear [n, k] code is NMDS iff a parity check matril of it satisfies the following con-
ditions:

e everyn — k — 1 columns ofH are linear independent

e there exists a set of — k£ linearly dependent columns

e everyn — k + 1 columns ofH are of rankn — &

A linear [n, k| code is NMDS iff a generator matri® of it satisfies the following condi-

tions:

e everyk — 1 columns ofG are linear independent
e there exists a set df linearly dependent columns {&

e everyk + 1 columns ofG are of rankk
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N2MDS Codes: N*2M DS codes are a class 6f k | codes wherd, (C) = (n—k —1),
d2(C) = (n—k+1)andd;(C) = (n—k+i)fori =3,4,...,k. A*M DS Codes: A*M DS
codes are a class pfi k | codes wherd, (C) = (n—k+1—p)andd;(C) < (n—k+1)
fori=2,3,...,k.

1.2 Contribution in this Thesis

A typical communication system consists of a channel cotiatsmit signals reliably over
a noisy channel. In general the channel code is a set of cadewdhich are used to carry
information over the channel. This thesis deals with Elipgar bound on the normalized
rate for Euclidean space codes and on codes which are cldse generalized Singleton
bound, like Maximum-Distance Separable (MDS) codes, AlMBS codes, Near-MDS
codes and certain generalizations of these. The resuléempied in the second and third
chapters are not directly related to the results present#tki subsequent chapters.

The Elias bound for codes designed for Hamming distance, avalphabet of size is
well known. The Hamming distance is the appropriate peréoroe index for codes over bi-
nary symmetric channel. For other channels Hamming distamzy not be an appropriate
performance index. For instance, when used in Additive @/@iaussian noiseAIW G N)
channel the minimum squared Euclidean distapideS £ D) of the resulting signal space
code is the appropriate performance index[3; 71; 75]. Riest obtained a similar Elias
upper bound for codes over symmetitS K signal sets with Euclidean distance under
consideration instead of Hamming distance. A signal se¢fsrred to as uniform if the
distance distribution is identical from any point of thersagjset. In Chapter 2 we obtain
the Elias upper bound for codes over uniform signal seteddlly us as Extended Elias
Upper Bound £EU B). Moreover this extension includes the PSK signal sets lwRicet
has considered as a subclass. The Elias bound for all vafugssashown to be obtain-
able by specializing the extended Elias bound obtainedtei®ee class of simplex signal
sets.The extended Elias upper bound depends on the cha@geabability distribution. In
Chapter 2 we obtain the distribution that achieves the bashds for codes over Simplex
signal sets and biorthogonal signal sets. We also verifgt®iconjecture for codes over
PSK signal sets with cardinality five. (The results of Chaptea2 heen published in [58]



1.2 Contribution in this Thesis 9

and [57].)

In Chapter 3, [68], we use thE EU B to study signal sets over two, three and four di-
mensions which form distance uniform signal sets. We obaaprobability distribution
that achieves the tighte&tE'U B for codes over several signal sets in multidimensions and
compare the bounds based on the normalized rate per two diomsn A method to obtain
a probability distribution that achieves the tightest badbisndiscussed. We also show that
all distance uniform signal sets are equal energy signal 3é¢te codes which are matched
to dicyclic groups is shown to have tighter upper bounds #ignal sets matched to com-
parable PSK signal sets, signals matched to binary tetrahéthary octahedral and binary
icosahedral groups. Further the upper bound for codes avig finitary groups, Slepian
signal set in six dimensions and Slepian signal set in sixedsions is also discussed. (A
part of these results in Chapter 3 is available in [68].)

The maximum achievable minimum Hamming distance of a coée a¥inite alphabet set
of given length and cardinality is given by the Singleton ibdu The codes which meet
the Singleton bound are called maximum distance separalies¢)M DS). The problem
of construction ofM DS codes of given length, cardinality and cardinality of thatén
alphabet set is an unsolved problem. There are results vghiotv the non existence of
M DS codes for particular lengths of the code, the cardinalitthefcode and the alphabet
size. In Chapter 4 we study codes whose minimum Hammingrdistés close to the
Singleton bound. Almost-MDS codes and Near-MDS codes amdyf of such codes. We
obtain systematic matrix characterization of these codes finite fields. The systematic
matrix characterization aV M/ DS codes andd M DS codes is useful in erasure channels.
Using the systematic matrix characterization that for@ank| NAM DS code given any
(k + 1) locations of the: length codeword we can obtain the transmitted message. (The
results of Chapter 4 appear in [65] and [66].)

In Chapter 5 we characterize the classa¥/ DS and NM DS codes over finite abelian
groups and finitek modules. The class of group linear codes over finite abeliangs
are in general described in terms of the defining homomonph/e report conditions on
the defining homomorphism to characterizé/ DS and NM DS codes. Specializing to
cyclic groups we obtain characteristics of the defining horaphisms forAM DS codes
and NM DS codes. The defining homomorphisms fén/ DS and NM DS codes over



1.2 Contribution in this Thesis 10

cyclic groups lead to codes ovef,,. Based on the systematic matrix characterization
of these codes over cyclic groups we obtain non-existersdtsefor ANV DS codes and
NMDS codes over cyclic groups. (A part of these results apped9h)

The generalized Singleton bound of the code gives the uppendon the generalized
Hamming weights of the code. Generalized Hamming weighthefcode are defined
based on the minimum cardinality of the support of the subsaif the codeM DS code
achieves the generalized Singleton bound with equalit€Hapter 6 we obtain systematic
generator/check matrix characterization of codes ovetefiinelds with a given Hamming
weight hierarchy. Further based on the systematic matratadterization we character-
ize classes of codes which are close to the generalizedebamgbound. These include
NMDS, N°MDS, AMDS, A*MDS and N*M DS codes. The MDS-rank af' is the
smallest integen such thatl, ., = n — k + 7 + 1 and the defect vector &' with MDS-
rank n is defined as the ordered sgt;(C), pa2(C), u3(C), . .., 1y (C), pn+1(C)}, where
wi(C) =n—k+i—d;(C). We callC a dually defective code if the defect vector of its dual
is the same as that @f. The systematic matrix characterization of dually defectiodes
is also obtained. Codes meeting the generalized Greisnugidoare characterized in terms
of their generator matrices. The HWH of dually defective eé®dneeting the generalized
Greismer bound are also reported. We also characterizesamutktheir dual based on the
defect vector. A code is dually defective if the defect vecdsame for the code as well as
its dual. (Results of Chapter 6 has been partly reporteddhdéd [70].)

In Chapter 7 we conclude the thesis with a summary of resuiisaalisting of several
directions for further work.



Chapter 2

Asymptotic Elias Bound for Euclidean
Space Codes over Distance-Uniform

Signal Sets

2.1 Introduction

Hamming distance of a binary code is the appropriate peidioce index when the code is
used on a binary symmetric channel. For other channels Hagdistance may not be an
appropriate performance index. For instance, when usedldité&e White Gaussian noise
(AWGN) channel the minimum squared Euclidean distafegS E D) of the resulting
signal space code is the appropriate performance indef375]. For codes designed for
the Hamming distance, Elias bound gives an asymptotic upmerd on the normalized rate
of the code for a specified normalized Hamming distance. Tpreeise, leC' be a length
n code over g-ary alphabet with minimum Hamming distandg(C'). The asymptotic
Elias bound, [60; 39; 45], is given by

R(6g) <1— H (0 — /00— 5p)), if 0<8<6;
R(6y) =0 if #<6<1. (2.1)

1The results of this chapter are available also in [57] andl.[58

11
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whered = (¢ — 1)/q, R(6y) = lim,_o +log, | C | is the normalized ratej; =
lim,, . ~dy(C) is the normalized Hamming distance afifj(z) is the generalized en-

tropy function given by

Hy(z) = —xlog, L]%l} — (1 —=a)log,(1 —z), if 0< 2 < {%} . (2.2)
Piret [46] has extended this bound for codes over symmetsi&” signal sets for Euclidean
distance and Ericsson [20] for codes over any signal sefonais a group for the general
distance function. These bounds and their tightness depeide choice of a probability
distribution. In this chapter we point out that these boumald for the wider class of signal
sets, namely the distance-uniform signal sets. The existefhdistance-uniform signal sets
that are not matched to any group was shown in [53]. We alsw $ihat the tightest bound
(optimum distribution) is obtainable for simplex, Hammisygaces and biorthogonal signal
sets. Also, we verify the conjecture of Piret regarding tp&roum distribution for codes
over symmetrié-PSK signal set.

A signal set is said to be distance-uniform if the Euclideetashce distribution of all the
points in the signal set from a particular point in the sigeet is same from any point,
i.e, if the signal set isS = {s¢,s1,...,sy—1} andD; = {d;;,7=0,1,...,M — 1} is
the Euclidean distance distribution from the signal paintthen D; is the same for all
i=20,1,.... M — 1. Examples of uniform signal sets are all binary signal sgtsymetric
PSK Signal sets, orthogonal signal sets, simplex signal sgtg7[B], [75] and hypercubes
in any dimension. The class of signal sets matched to gr@gjs[37] form an important
class of distance-uniform signal sets. A signalSés$ said to be matched to a grody if

there exists a mappingfrom G onto S such that for ally andg’ in G,

de(u(g), 1(g") = de(plg™"g"), ple)) (2.3)

wheredz(x, y) denotes the squared Euclidean distance betwegrE S ande is the iden-
tity element ofG. Signal sets matched to groups constitute an importanedignt in the
construction of geometrically uniform codes [23] whichlunde important classes of codes
as special cases. Moreover, it has been shown that sigsahséthed to non-commutative
groups have the capacity of exceeding the K" limit [8], whereas the capacity of signal

sets matched to commutative groups are upper-bounded bySielimit [38], [37].
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In this chapter we discuss the asymptotic upper bound ondhwealized rate of Euclidean
space codes ([38], [23]) over distance-uniform signal,detsgiven normalized squared
Euclidean distance. However, the arguments are valid fpidatance function. We show
that

e The Piret’s and Ericsson’s bound are valid for codes ovenanfprm-signal set.

e The distribution that gives the tightest bound (optimuntribsition) for codes over

simplex signal sets, Hamming spaces and biorthogonallsgtsare easily obtained.

e The bound for codes over simplex signal sets with optimurtmidigion is essentially
the classical Elias bound. We also verify Piret's conjestiggarding the optimum
distribution for codes oves-PS K signal sets.

The content of this chapter is organized as follows: Thedvigliof Piret's and Ericsson’s
bound for codes over the wider class of distance-uniformaligets is given in Section(2.2).
Also, the optimum distribution for codes over simplex, Hamgispaces and biorthogonal
signal sets are obtained. The relation between classigat@stic Elias bound and the
extended bound is established by specializing to the cogassonplex signal sets. Further
we verify Piret’s conjecture on the optimum distributiom émdes oveb-PS K signal sets.

Section(2.3) contains directions concluding remarks.

2.2 Extended Elias Upper Bound £ EU B)

Following the arguments in the spirit of Elias bound [60]re®i [46], has obtained an
asymptotic upper bound in the parametric form on the rateuniilean space codes over
symmetricP S K signal sets from which the Elias bound fpe= 2 is obtainable and not for
g > 4. Ericsson [20] has shown that this bound is valid for codesr any signal set that
forms a group and for any general distance function. We pmibtn the following that the
validity of this bound extends to codes over the wider cldskstance-uniform signal sets.
theorem(2.1) gives the extended upper bound, the proof afhwises similar arguments
as that of Piret [46].
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Theorem 2.1 Let A be a distance-uniform signal set withi signal points{sg, s1, ..., sy—1}

and S be aM x M matrix with (i, 7)™ entry s;; equal todﬁj, the squared Euclidean dis-

tance between,; anda,. For C, a lengthn code overA4, let

5(C) = %CF(C), R(C) = %m O] and
R(M,0) = lim sup ¢;sn R(C) (2.4)

n—oo  §(C)>5
d*(C) is the minimum squared Euclidean distancd SED) of the code. The asymp-
totic upper boundiy; (M, 6) on R(C) is given in terms of a probability distributiofi =
(Bo, Brs -+, Bar-1), by

Ry(M,8) =In(M) — H(B) and & = 353" (2.5)

whereH (8) = =XM1 In(3;)

Proof: The proof is essentially same as that of Piret, [46]. We g®iew the minor ad-
justments that are needed in the initial part of Piret's ptoanake it valid for codes over
distance-uniform signal sets:

Let{so, s1, ..., spr—1 } be the signal sef, and let the ordered vectdr= (d(0),d(1), ..., d(M—
1)) denote the Euclidean distance profile®from sy. Let®,,r = 0,1,...., M — 1, be a
permutation ornS such thatd,.(s,) = so and®,.(s,) = s,, u,v = 1,2,.... M — 1, where
the squared Euclidean distance betweeands, is d*(v). Such a permutation exists since
S is distance-uniform. For any = (z1,2,...,2,) andy = (y1,...,yn) € S", define
Dy(2) = (Py, (21), .., Dy, (xn)) and callb(z) = (bo(x), b1(2), ..., bur—1(z)), Whereb, (z)
denotes the number of coordinatesrithat are equal te,., as in [46], the composition of
z. For an arbitraryu € S™ and a specified compositidn= (bo, b1, ..., by;_1) denote by
B — b(u) the set of alle € S™ for which composition ofb, (z) = b.

These points replace the arguments used in [46PBK with cyclic group structure. Also,
lemmas (4.1) and (4.2) in [46], which are specifically for PSgnal sets can be replaced
by the following two lemmas to make the proof valid for codesmany distance-uniform
signal set[]

Lemma21.156 = 3; Vi = 0,1,2,--- , M —1, ¢t=1,2,---,n, wheres! is the nor-
malized number of occurrences of théh symbol in thel-th co-ordinate as: tends to

.
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Proof: The normalized number of occurrencesiefth symbol from amongV/ possible
symbols is
b; = MNf’l (2.6)
ijo Nj
where N; indicates the number of times thiéh symbol occurs. The normalized number
of occurrences of theth symbol in thei-th co-ordinaté)! is obtained as

(05N =01/ (T )

bt = (2.7)
<Zjﬂi61 Nj>!/ (Hg/iz)lk;«éz Nk!)
The above equation can be simplified to obtain the followaguit
N
b= <o =0b (2.8)
Zj:(] N]

Therefore the number of occurrences of any symbol at anydimate is same. A8 — oo,
we haveb, tends tos, andb!. tends tos!. Hence we havg! = 3,.

Lemma 2.1.2 For n — oo the Q-tuples3’ satisfy
> BUSpIT = n(BSET) (2.9)
t=1

Proof: Follows from lemma(2.1.1).]
In the following three theorems we obtain the optimum disttion that gives the tightest

bound for simplex, Hamming spaces and biorthogonal sigetalrespectively.

Theorem 2.2 (Simplex signal sets)The distributions = (5o, 51, 5, - -+, Bu—1) that
gives the best bound for codes owdrary simplex signal set is given by

1 J
@ZM[1_\/1_Mm],r:1,...,M—1 (2.10)

where K is the squared Euclidean distance between any two signatoMoreover for
all values ofg the asymptotic Elias bound given in equation(2.1), can laiobd from this

bound.



2.2 Extended Elias Upper Bounfl £U B) 16

Proof: For simplex signal sets, the squared Euclidean distanaeeleet any two signal

points is the same. L&t denote this squared Euclidean distange,
(i) = 0if i=]
= K (a constant), if i# j, (2.11)
1,7=0,1,2,--- M —1

then _ -
0 K K K K
K 0 K K K
S=1: i b (2.12)
K K K ... 0 K
_K K K ... K 0 |

Let 3 = (8o, 1, - - -, Bu-1) be any probability distribution. We find the best distrilouti
by using Lagrange multipliers. Let

®(B,\) = H(B) —A[6—3S5"]

M-1 M-1
=K, Y, @@-] (2.13)

i=0 j=0,j#i

= H() -\

Here note that (/) is concave function. Also note that we can show that the qudr

form QSQT is also concave. Therefore the extremal point of the Lageangives the
optimal distribution, [4]. Usingﬁjﬁ‘igl 05; = 1in the inner summation, the above becomes

M-1
(I)(@, A) :H(@_A [5_-’({2@(1_@)}] (2.14)
=0
Now forr=1,2,..., M — 1, we have
o0d(5, A
a(gT ) =1~ 1Og(ﬁ7~) —1
+log(fo) + KA[L — 26, — 1+ 25 (2.15)
= log By — log B, + 2K A(B — ;).
Now the solution of the equation
0P(5,\)
= = (2.16)

95,
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for 5, will be the same for alk = 1,2,..., M — 1, since the form of the equation(2.15)
issame forall- = 1,2,..., M — 1. Letp be the solution of equation(2.16)e., 5, = p,
forallr =1,2,..., M — 1. Now substitutings, = p in equation(2.14) and taking partial
derivative w.r.tA we get
M—-1M-1
0 =K |260(1=fo) + > > 1’

i=1 =1

@ (2.17)
= 2K [{1 — (M — 1)p} (M — 1)p] +

+ K(M —1)(M —2)p?

which is the same as the quadratic equation
KM(M —1)p* —2K(M —1)p+6=0 (2.18)
The solutions of the quadratic equation after simplificatioe
1 + )
— |1 —4/1—— 2.19
v | 219)

wheref = (M—Af) It can be checked that/(3) is minimum for

g:{l_le_ @%?]M[/%]

(2.20)
% [1— 1—%]}
For the above distribution
InM—H(B)=InM+ Gyln B+ (M —1)53,In 3, (2.21)
Changing the base of the logarithmé, the above expression becomes,
1— Hy (9 — /62 — %) (2.22)

Substitutingdy = §/ K in equation(2.22) we get

1 — Hy (9 o= 5H)) (2.23)
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which is the same as the classical asymptotic Elias boumeimiains to show that the range
for 05 on the Elias bound i8 < 6y < (M — 1)/M. With the substitutiody = §/K,
the range fory becomed) < 6 < K6. Choosingk’ = 2/6 and hence the range faoris

0 <6 < 2 consistent with Theorem 2.1.

The substitution given by’ = 2M/M — 1 andd = §/K, can be combined to obtain
the relation between normalized squared Euclidean distamihe extended bound and the
normalized Hamming distance in Elias bound as

(M-1)7 _
5[ oY ]—61{ (2.24)

The term% is the factor by which the plot of Elias bound can be obtainethfthe plot
of the bound of Theorem 2.2

Example 2.1 Figure(2.1) shows binary, ternary and quaternary simpligmal sets on a
unit radius sphere. Figure(2.2) shows the classiEalas bound (with natural logarithm)
for simplex signal set of size 3 and 4 and the corresponding bounds for Euclidean dis-
tance.

N

4

BINARY (V=2) TERNARY (M=3) QUARTERNARY (M=4)

Figure 2.1: Binary, ternary and quaternary simplex sigets.s

Theorem 2.3 (Hamming spaces)Let A be a signal set which is am-th order g-ary

Hamming space. Then

Ry(q™,6) =m (1 —H, (9 —1/60? — 9—}?)) (2.25)
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wheref) = (q;ql) and K is the squared Euclidean distance between any two poirfesidi

in only one position in the label.

Proof: SinceA is anm-th order g-ary Hamming spacéhasq™ points. LetA’ be a subset
such that the elements df differ only in one fixed coordinated’ is a simplex signal set
consisting of; signal points. Codes of lengthover A can be considered as codes of length

mn over A’. Hence we have
Ry(q™,0) = mRy(q,0) (2.26)

Note thatA’ is a simplex signal set consisting g@fpoints. HenceRy (q,0) is given by
Theorem 2.2[]
Observe that a simplex signal set with points is a first ordef/-ary Hamming space. In

this sense Theorem 2.3 is a generalization of Theorem 2.2.

Corollary 2.3.1 For N-dimensional cube, the extended Piret’s bound is given by

Ry(2N,0) =N (1 — H, (% - % 1- g)) (2.27)

Proof: Straightforward application of Theorem 2(3.

Example 2.2 The 3-dimensional cube shown in Figure 2.3 is a third orderaby Ham-

ming space with labeling as shown. The bound for this cuba/engoy
1 1 )

Theorem 2.4 (Biorthogonal signal sets)The optimum distributio¥ = (5o, 81, B2, - , Ba-1)
giving the tightest bound for codes over biorthogonal slg® is given in terms of a pa-

rametery > 0, as
e_lu‘dQ(T)
By (1) = W

whered?(r) is the squared Euclidean distance betwéeh point and therth point of the

ro=0,1,2,---,M—1, (2.29)

M point biorthogonal signal set.
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Proof: The squared Euclidean distance profile af/apoint biorthogonal signal set is as

follows

d*(r) = 0if r=0
. M
= K (a constant), if T#Oandr#?

= 2K if r:% (2.30)
FOR R R TR

S=locii "k o i i (2.31)
Fik ek i ke

HereS is a circulant matrix.Therefore the second row of gheatrix is obtained by circu-
larly shifting the first row to the right once. All th&/ rows of theS matrix can be obtained
similarly.

Let 3 = (Bo, b1, - - ., Bu—1) be any probability distribution. We find the best bound using

Lagrange multipliers. Consider the Lagrangian

®(B,\) = H(B) —A[0—B3S5"]

= H(B) - \|d- > BisiiB (2.32)
1=0 j=0,j7#1
Hereg, will be the same fo{r = 1,2, ..., % -1, % +1,...,M —1}. Hence we have to

find the optimum values fap,; andﬂ%. These correspond to

O0(f, A)
o5 loalBe) —log(B) + 2KNG) — 2K Ay (2.33)
and
00(5, A)
06_ = log(5y) — log(ﬂ%) +4KAGy — 4K\ By (2.34)
Equating (2.33) and (2.34) to zero and simplifying we get
BoBu = B (2.35)
It is easily verified that
e—p,dQ(T')
Br(1) = =37 r=2012---,M-1 (2.36)

28:0 e—ﬂdQ (s)
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constitute a solution of the equation(2.35) with paramgter

Also note thatf (3) is a concave function ig. For biorthogonal signal sets tifematrix

is circulant as given above. We verify whether the quadrfatim 353 is concave. From
[4] we know that the quadratic form is concave if all the eipdnes except the largest
eigenvalues ofS are non-positive. This we verify as follows: Tlm-th eigenvalueym
of the circulant matrixS can be expressed as, [13}, = Zf”ol G ), where(sy =
0,81 = K,s9 = K,...,s% = 2K,...,sy—1 = K) forms the first row of the5 matrix.
Whenm = 0 we see thaty, is the sum of the first row of'.

1. In the first row ofS matrix there are equal number &f on either side of th%- th
location ands% =2K.

2. Consider the eigenvalug, whenm is odd. Obtain,,, using discrete Fourier trans-

27rmz )

form of the first row of S matrix, i.e,n,, = Y1 " s;elU% The expression

U5 2) can be simplified te:0™ = —1. Therefore thel-th term in the dis-
crete Fourier transform sum fay,, is —13% = —2K. The first term of the first row
of S, 1.e.,sq is zero. Therefore it does not contribute to the discretaieotransform
sum. The terms; ands, , M, where: < % sum to zero for every such This can be
seen as followss, , x is eV 25 (i+5)), Simplifying we gets;, u equals to—1eU*5).

ThereforesH% is equal to—1s;.

Hence in the discrete Fourier transform sum of all terms pkegcept the term as-
sociated withs% is equal to zero. Therefore for odd the sum is-2K and hence

the eigenvalues are non positive ferodd.

3. Consider the eigenvalug, for m even. The expressioefﬂ%’”%) simplifies to
el™) = 1. The ¥ -th term in the discrete Fourier transform sumsis which is
equal to2K. The terms, of the first row ofS is zero. Therefore it does not con-
tribute to the discrete Fourier transform sum. The tesmands, M fori < % can
be shown to sum to zero. For< & s; = s, Lo ands;,a = e(ﬂgm(” ) is equal

) — 2K + 2k. But

M 3 - -
2o eU*37") is the sum of terms of a geometric series whose common ratio is

27rmz

to eU*5). Thereforer,, for m even is equal tak .2 > 2,eVs

eU%™). The sum of thes%‘i terms is zero. Therefore fon even the discrete Fourier
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transform coefficients are zero. Hence the eigenvaluesaaoefar evenm.

Therefore all the secondary eigenvalues are non positidetanprimary eigenvalue equals
the sum of the elements of the first row. This shows that theliGtia form QSQT is a
concave function. Therefore the the Lagrangian is a confavetion and the extremal
point given by equation(2.36) gives an optimal distribatial

Example 2.3 Consider the biorthogonal signal set faf = 4. Biorthogonal signal with
M = 4is same ag — PSK signal set (Figure 2.4). The optimum distribution achigvin
the tightest bound is given by following equations

Bul) = g Byl = g
(W)= = Bolpt) = =———
Y ag e ) Sog e (2.37)

Bs(p) = Bi(p), Bop) =1 —281(p) — B2(p)

The above distribution fot-PSK signal set is same as optimal distribution conjectured
by Piret for PS K signal sets. Thé’ EU B for 4-point biorthogonal signal set is shown in
Figure 2.5. In Figure 2.5RU B for biorthogonal signal sets is plotted for different vasue
of M. First curve from the bottom is fa¥/ = 4 and the top curve is fod/ = 128

2.2.1 Piret’s Conjecture for codes oveb-PSK signal sets

Piret has obtained both asymptotic lower and upper boundofites over symmetrie S K
signal sets. Both the bounds are obtained in terms of a piidgatistribution. However,
for lower bound the distribution giving the best lower bous@btained whereas, as men-
tioned in the previous section, the distribution giving best upper bound is not given but
it is conjectured that the distribution which gives the optim lower bound also gives the
best upper bound. FérPS K we check the conjecture.

Piret’'s Lower Bound:

Let A be aM point uniform signal set with Euclidean distance distribnt
{d(r),r=0,1,..., M — 1}. ForC, a lengthn code overs, let

5(C) = ~d(C)
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R(O):%ln\c\

R(M, ) = lim sup ¢>. R(C) (2.38)
n—oo  §(C)>6

whered?(C') is the MSED of C and R(C) is the rate of the code. Then a lower bound
R (M,0) on R(C) is given in terms of a parametgrby

Rp(M,6) =In M — H(B(n)) 0<6<2 (2.39)

wherej(u) is the distribution{3,,» = 0,1,..., M — 1} is given by

e—Hd(r)
Br(p) = ST ) (2.40)
M-1
0 = > Bu(wd(s) (2.41)
s=0

Note that bound is not given in terms of an arbitrary disttidorinstead the distribution
given above is optimum for the lower bound. The Equation 2s36ounterpart of the
equation for the upper bound (Equation 2.5). Piret conjestthat the distribution given in
equation(2.40) is the optimum distribution for the uppeuhad also.

If Piret’'s conjecture was true then the distribution giverquation(2.40) should satisfy the
set of equations to get the optimal distributionfor PS K signal set (Lagrange multiplier

method is used to get optimum distribution). The distans&iution matrixs' is given by

0 b b a

a
0 b

S

(2.42)

n
Il
> o Q
IS
o 2
o

b 0
a bbb a 0

S

Here note thab matrix is circulant. Therefore using the same approach Beitekamp[4]
we can show that the quadraﬁcSQT is a function (we use the result in [13] to obtain the
eigenvalues)H (3) is a concave function. Therefore the extremal point of thgraagian

is an optimal solution.

O(B,\) = H(B)—X[o—pSp"]
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4 4
= HB) = A[0->_ Y Bisyh; (2.43)
=0 j=0,j7#1¢
wheres;; is of the formdsin? [(i — j)m/M]. Now forr = 1,2 we obtain the partial deriva-

tives,

00 (3, \)

4
95 log (o) —log(6,) — 21 50,3+
T P

4
2\ Z ST,jﬂj

=0,j#r

(2.44)

Since the above expression is identical foe= 1,4 andr = 2,3 we haves; = (3, and

(2 = (3. Takingr = 1 we solve for) in terms of3; and ..

)\ log 81 — log 3 (2.45)

2(a+ (b—4a)B; — (a+ b))

wherea = 4sin*(7/5) andb = 4sin?(27/5). From the optimal distribution for lower
bound ([46]) we haves, = [Bye " and 3, = [ye #’. Substituting for3, and 3, in the
equation(2.45) we get

_ —ua
A= 2(& —+ (b — 4@)506““ — (CL + b)ﬂoe_“b) (246)

The partial derivative of the Lagrangian for= 2 is
log By — log By + 2\ [b — (a +b)B1 + (a — 4b) 3] (2.47)

Substituting for\, 5, andj3, in equation(2.47) we get the following

[b— (a+b)Boe™ " + (a — 4b)Boe~ 1] B
b—a [a + (b — 4a)Goe—D — (a + b)Foe—00)] 0 (2.48)

Simplifying these equations we get

b [—(a+b)Boe™ ") + (a — 4b) foe~ ]
a [(b—4a)Boe ) — (a+ b)Boc D] (2:49)

The right hand side of the above equation was computed byngany(herey is any non-
negative real number). The right hand side was equalGts0 for every value ofu. This

is same aé;. Therefore we conclude that Piret's conjecture¥aP S K is correct.
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2.3 Discussions

The known upper bounds [46] and [20], respectively, on themadized rate of a code
over symmetricP S K signal set for a specified SED and of a code over any signal set
constituting a group for a general distance function arevshtm be valid for codes over
any distance-uniform signal set. In general, the tightredghese bounds depends on a
choice of a probability distribution. The optimum distrtlmn for the cases (i) simplex (ii)
Hamming spaces and (iii) biorthogonal signal sets leadirtgghtest bounds are obtained.
The classical asymptotic Elias bound is shown to be sameeabdhnd of this chapter
for codes over simplex signal sets with the optimum distrdouobtained. In chapter(3)
we attempt to get best bounds for codes over several sigtsagech include signal sets
matched to specific groups, like dihedral, quaternion, dicygroups etc.
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Elias Bound and Extended upper bound for Simplex Signals

14 T
N\
(W A: Extended Pirets M = 2
\
127\\ \ B: Elias M =2 i
' \\ AN C: Extended Pirets M = 3
\ AN D: EliasM = 3
. \ N N E: Extended Pirets M = 4
i N N F:EliasM=4 1

Rate

Figure 2.2: The Elias and extended upper bounds for binamyaty and quaternary simplex signal

sets.

000 100

Figure 2.3:3-dimensional cube.
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3

Figure 2.4: Biorthogonal Signal Set withf = 4. This is same a4-PSK with points uniformly

distributed on the unit circle

Extended Upper bound for Biorthogonal Signal sets
5 T T T T T T

451 b

3k ; : M =4,6,8,10,12,14,16,32,64,128 J

151 b

Delta

Figure 2.5: The extended upper bounds Adfpoint biorthogonal signal set.



Chapter 3

Extended Elias Upper Bound (EEUB)
for Euclidean Space Codes over Certain

2-, 3-, 4-Dimensional Signal Sets

3.1 Introduction

The extended Elias upper of distance uniform signal setioéd in theorem(2.1) depends
on a probability distribution function. For codes over slay(theorem(2.2)and biorthog-
onal signal sets (theorem(2.4) we found probability disttion function that achieves the
best EEUB. In this chapter we study the€ EU B of codes over signal sets in two di-
mensional spaces, three dimensional spaces, four dimmesipaces and-dimensional
spaces. We obtain a probability distribution that achiewestightestE? EU B for codes
over several signal sets in multidimensions and comparédtheds based on the normal-
ized rate per two dimensions.

We call a distribution that obtains the best bound as an @btdistribution. In the fol-
lowing section we obtain optimum distributions for Euckgtespace codes over signal sets
matched to the binary tetrahedral group, the binary octath@ploup, the binary icosahe-

dral group, n-dimensional cube and biorthogonal signal Alsio an optimum distribution

1A part of the results of this chapter is available in [68]

28
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was obtained for specific cardinalities of Euclidean spackes matched to dihedral group,
dicyclic group, double prism group and finite unitary groujd¢e also obtain an optimum
distribution for codes over Slepian signal sets, [53], ie fand six dimensions.

The remaining part of this chapter is organized as follows:

e In sectiong) we discuss the method to arrive at an optimum distributboiEiuclidean
space codes over distance uniform signal sets. We also $tathe quadratic form
QSQT is concave for all signal sets having elements of equal gnéxgther we also
prove that distance uniform signal sets are signal setsigall elements with equal
energy.

¢ In section) we compute an optimum distribution for Euclidean spaceesoover
several distance uniform signal sets. We also compare ¢malssets based on the
normalized spectral rate.

¢ In sectiond) we conclude the chapter.

3.2 Optimum Distribution for Euclidean Space Codes

over Distance Uniform Signal Sets

Let 3 = (B, B1, .., Bu—1) be any probability distribution. We find the best distrilouti
by using Lagrange multipliers. Let (using equation(2.1))

®(B,\) = H(B) —A[0—BS5"]

M-1 M-1

= H(B)—A|d— Z Z Bisi i B; (3.1)

1=0 j=0,j%#1
wheres; ; is the squared Euclidean distance between/{heelement ang-th element of
the signal set.
In the above equatioff (3) is a concave function ¢f i.e., an inverted cup shaped function

andﬁS@T is a quadratic form ir8. If @SQT is also a concave function gfthen
H(B) + A3S3" (3.2)

is a concave function fok > 0 [22]. Affine combinations of concave functions is also
concave if the coefficients are positive, i.e. in this casevant \ > 0.
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Now we have to look for conditions fQjSQT to be concave. The structure $fmatrix can
be used to obtain these conditions. In gendria a symmetric matrix with positive entries

and the rows of5 are obtained by some permutation of the first row.

e The S matrix is a symmetric matrix with positive entries such teath row ofS is
some permutation of the first row. In this case, we don't haulaed form expres-
sion for the eigenvalues &f in general. The eigenvectors Sfare orthonormal [49]
(sinceS is a symmetric matrix). Therefore we compute the eigensadunel eigenvec-
tor of the.S matrix. For the quadratic form to be concave we need all thereialues
except the largest to be non-positive and the sum of eacivaigtor except the one
associated with the largest eigenvalue be zero. Note thatig M x M) symmetric

matrix we can get a set df/ eigenvectors such that they orthonormal [49].

e For Euclidean space codes over certain signal setS thatrix will be circulant ma-
trix. Examples of such signal sets include simplex and bamybnal signal sets. The
S matrix is a symmetric circulant matrix with the first rowy, s1,...,sy-1). Then
the eigenvector matrix of' is the discrete Fourier transform matrix [13], [49]. Then
from [2], [4] (page numbeB20) QS@T is a concave function if all the eigenvalues
except the largest eigenvalue are non-positive. In the ehsgmmetric circulantS

matrix then the eigenvalues,,, of S are given by [13]7},, = 1M 5,05,

Taking partial derivatives of the Lagrange multiplier eioaw.r.t 5y, 51, G, . . . , Brvr—1 We

can obtain the extremal points.

90(8,)) o
o5, ~an A TA

0
9P,

M-1 M-1
(Z Z 6i3i,jﬂj> (3.3)

1=0 j=0,57#1¢
The extremal points correspond to the maximun®gf, \) if ®(3, A) is a concave func-
tion.
Simplifying the equation(3.3) and using the condition that 1 — Zfil‘l G; we get
0P(3, )
9B,

As these are a set of nonlinear equations they are not aneefaaldirect solution. There-

M-—1 M-1
=log(Bo) —1og(B,) =23 Y 50,85+ 2N > s.i; (3.4)

fore we assume a solution and verify whether it satisfieseéhefsequations represented by
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equation(3.3). In other words we check whether the assuwlatian is an extremal point
of the Lagrangian. Further based on the structurg ofatrix we can conclude whether the
Lagrangian is a concave function ih If the Lagrangian is a concave function thew a
which is an extremal point turns out to be an optimal solution
We verify whether the following distribution is an extrenmadint of the Lagrangian

e—hd*(r)

whered?(r) is the squared Euclidean distance betwetmpoint and the'th point of theM

B(p) = ro=0,1,2,--,M—1 (3.5)

point signal set. It turns out that the above is an optimadtithistion for several Euclidean
space codes over distance uniform signal sets. These s@udlidean space codes that
are matched to

e the binary tetrahedral group, the binary octahedral grdbp, binary icosahedral

group, n-dimensional cube and biorthogonal signal set.

e specific cardinalities of Euclidean space codes over fimitaty groups, cyclic group,
dihedral group and dicyclic group.

e Slepian signal sets in five and six dimensions[53].

Also optimum distribution depends only on the distanceritigtion of the signal set and
parametey..
In short to conclude whether equation(3.5) is an optimuntriligion we check for the

following:
e check WhetheESQT is a concave function ig.

e check whether equation(3.5) is an extremal point of the aagian, .i.e. a solution
of the equation(3.3).

In the next section we describe several distance uniformasigets and check whether
equation(3.5) gives an optimum distribution for Euclidegrace codes over these signal
sets. Further we compare their performance based on theatined rate per two dimen-
sions.

To illustrate we obtain an optimug# for codes over biorthogonal signal sets.
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3.2.1 Euclidean Space Codes over Biorthogonal Signal Sets

Consider codes over biorthogonal signal set The squarelitiéaa distance profile of &/
point biorthogonal signal set is as follows
() = 0if r=0
. M
= K (aconstant), if r#0andr # >

M
0 K K K 2K K K
K 0K K K 2K K
S=l|okii .k 6 k .k (3.7)

kik ok k ko

HereS is a positive symmetric circulant matrix. Therefore thea®atrow of theS matrix is
obtained by circularly shifting the first row to the right andll the M rows of theS matrix
can be obtained similarly. The eigenvector matrix is themie Fourier transform matrix.
The quadratic forr‘rﬁSﬁT represents a concave function if all the eigenvalues extept
largest eigenvalue is non-positive [4]. The largest eigam is given by sum of the first
row of theS matrix ([13]) and therefore positive. All we need to do nowdwverify whether
the other eigenvalues are non-positive. This can be seen as follows ([13]):

- 21Tma

Them-th eigenvaluey,, of the circulant matrixS can be expressed ag = Zf‘io_l s;eU~),

where(sp = 0,51 = K, 59 = K,...,s% =2K,...,sy1 = K) forms the first row of the

S matrix. Whenm = 0 we see thaty is the sum of the first row of.

1. In the first row ofS matrix there are equal number &f on either side of th%”- th

location ands% =2K.

2. Consider the eigenvalug, whenm is odd. Obtain,,, using discrete Fourier trans-

form of the first row of S matrix, i.e,n, = Y.V, 's;eU”5"). The expression
U5 2) can be simplified ta:0™ = —1. Therefore thel-th term in the dis-
crete Fourier transform sum fay,, is —13% = —2K. The first term of the first row

of S, i.e.,sq is zero. Therefore it does not contribute to the discreteaieotransform

sum. The terms; ands, , v, wherei < Y, sum to zero for every such This can be



3.2  Optimum Distribution for Euclidean Space Codes ovetddise Uniform Signal
Sets 33

. - 2mm (s M . . . - 2T
seen as followss,, x is eV 57 (+3)). Simplifying we gets;, . equals to-1el75).
2 2

Therefores, , i is equal to—1s;.
2

Hence in the discrete Fourier transform sum of all terms pie&cept the term as-
sociated withs% is equal to zero. Therefore for odd the sum is-2K and hence
the eigenvalues are non positive ferodd.

3. Consider the eigenvalug, for m even. The expressioefﬂ#’”%) simplifies to
eU™) = 1. The %-th term in the discrete Fourier transform sumsig which is
equal to2K. The terms, of the first row ofS is zero. Therefore it does not con-
tribute to the discrete Fourier transform sum. The tesmmdsH% fori < % can

2™m

. . MY .
be shown to sum to zero. For< & s; = s, u ands, . u = el "3 (F2)) is equal
2 2

2mtmi 2mtmsi
M

to eU=57). Thereforen,, for m even is equal t@K > 2, eVU=5 ) — 2K + 2k. But

2
i=0 €

i*5) is the sum of% terms of a geometric series whose common ratio is
eU*i"). The sum of thes&! terms is zero. Therefore fon even the discrete Fourier

transform coefficients are zero. Hence the eigenvalueseaoefar evenn.

Therefore all the secondary eigenvalues are non positigdeétaprimary eigenvalue equals
the sum of the elements of the first row. This shows that theliGtia form QSQT is a
concave function.

Nextis to find a3 = (5, 41, . . ., far—1) Which is an extremal point of the Lagrangian. We

find the extremal point by solving the first derivative of thegrangian. Let

O(B,\) = H(B)—A[6—BSp"]

M— M-1
= H({pP)—A|0- Y Bisil (3.8)
1=0 j=0,j7#1¢
Hereg, will be the same fo{r = 1,2,..., % — 1, % +1 ..., M — 1}. Hence we have to

find the optimum values fab,; andﬂ%. These correspond to

0P (8, \)
TEI = log(By) — log(B1) + 2K A5Gy — 2K)\5% (3.9)
and
0P (8, \)
=22 = log(fh) — log(Bar) + 4K Ao — 4K\ By (3.10)

86%
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Equating (3.9) and (3.10) to zero and simplifying we get
BoBu = Bt (3.11)

It can be easily verified that

e_ﬂdQ (T)

M-1 __,42(s

BT(M) = r=2012:.- 7M_ 1 (312)

constitute a solution of the equation(3.11) with parametehus we have obtained an

optimal distribution for Euclidean space codes over biogitnal signal set$.]
3.2.2 Signal Sets of Equal Energy

In section(3.2.1) we showed that if tifematrix is circulant we can obtain closed form
expressions for conditions under whigISQT is concave. When th& matrix is symmetric
with positive entries it is hard to obtain general condiian concavity of the quadratic
form gS@T. In generalS matrix is Therefore we study signal sets where all elemehts o
the signal set have equal energy. For signal sets with eaqugadye we verify whether the
guadratic form is concave. We also show that the class ddiniist uniform signal sets are

equal energy signal sets.

Proposition 3.0.1 The quadrattiSQT is concave ifS is the distance distribution matrix

of a signal set with all elements having equal energy.

Proof: Consider a signal set of cardinalifiy with equal energy. Let us assume that the
energy has been normalized and is equal to one. Here thexckskeetweern-th element
and thej-th element of the signal se(ti( j)-th entry of S matrix) is equal tq2 — 2(s;, s;)),
where(s;, s;) is the correlation between thig¢h element and thg-th element of the signal
set. Therefore the distance distribution matrix can betemitis

2 2 ... 2 1 pio ... piu

2 2 ... 2 1
e e ) I (3.13)

2 2 ... 2 _le PrM2 - - - 1
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Here the first matrix on the right side of the above equatiah @i entries ag is a circulant
matrix. It can be easily verified that the only non zero eigéme is positive. The eigen-
vectors of the matrix with all entries &sare orthonormal. The sum of components of the
eigenvector associated with the largest eigenvalue atomerizero. All the other secondary
eigenvalues are zero and the sum of the components of eaghvejor associated with
the secondary eigenvalues is zero. These follow the pregest circulant matrices [13].
The second matrix on the right side of the above equationeicthrelation matrix. The
correlation matrix is a symmetric positive semi definite][5SEherefore the eigenvalues are
greater than or equal to zero. Also, the eigenvectors oktation matrix are orthonormal
[49].

Let e be an eigenvector &f matrix. Then

2 2 ... 2 1 pi ... P
2 2 ... 2 1
Se=| T Tle—a| L (3.14)
_2 2 ... 2_ _le PmM2 - 1 ]
Se = nse = (N2 — Neorr )€ (3.15)

wheree is an eigenvector af, 15 is an eigenvalue of, 7, is an eigenvector of the matrix
with all entries a® andr,,. is an eigenvalue of the correlation matrix. All the secogdar
eigenvalues of the matrix with all entriesare zero. Therefore the secondary eigenvalues
of S are non positive as all the eigenvalues of correlation mate positive or zero.

Hence the quadratigS3” is concave for signal sets having all elements are at the same
distance from origin (signal sets with all elements of thehewing the same energy)l

This class where all the elements of signal set are at the datance from the origin in-
clude the signal sets matched to dihedral group (both synoraetd asymmetrid® S K),
Massey Signal set, dicyclic group, binary tetrahedral grcainary octahedral group, bi-
nary icosahedral group, thedimensional cube and the double prism. Slepian signal sets
also have signal points which are at the same distance fremrigin. We also consider
examples of signal sets matched to finite unitary groups @ely, Type(ll), Type(lll),
Type(lV), Type(V), Type(VI) and Type(VIl). In all these aas elements of the signal set
have same energy [79]. Therefore for all these signal$8t¥ is concave.
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Proposition 3.0.2 If the signal set is distance uniform then all elements ofdigeal set

have equal energy.

Proof: Consider a distance uniform signal set= {so, s1, S2, . . ., Sar—1}, With M points
in a finite p dimensional space. Consider the situation wheyg,’ " s, is equal to zero.
If the ZZ M=1 . is not equal to zero it is always possible to translate theaiget by
a x in the p dimensional space such that the sum of the elements of theldtad signal
set is zero. The translated signal set is also constitutéstande uniform signal set. Let
the squared Euclidean distance profile as seen farandn-th point of the signal set be
denoted ag?, andd?, respectively, wheré < i < M — 1.

Z_: Z <Z 57 i) — 2(8mj> 5ij>> (3.16)

=0 =0
M-1 -1 M-1
=) ( st +; )) - (2((2 Si),sm>> (3.17)
1=0 7=0 =0
Since(Zj‘io_1 s;) = 0 we can write the above equation as
p—1 M—1p-—1
Z A2, =M st + (s3) (3.18)
§=0 i=0 j=0
Similarly for d2,
M-1 p—1 M-—1p—1
Z 2. =M Z sij + s?j (3.19)
i=0 =0 i=0 ;=0

M—1 M-—1
dodh=>d, (3.20)
=0 =0

+ s, (3.21)

(3.22)
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Therefore then-th and m-th element of the signal set are at the same distance from the
origin. This is true for any element of the signal set. Herfomn the above equations

it follows that all the signal points are at the same distainosn the origin for distance
uniform signal sets. In other words distance uniform sigred$ have signal points of equal
energy.l]

3.3 FEEUB of Distance Uniform Signal sets

In this section we compute theEU B for a class of distance uniform signal sets based on

the optimum distribution which achieves the best bound &mhesignal set.
3.3.1 Two Dimensional Signal Sets Matched to Group

Two classes of signal sets in two dimensions matched to grargthose matched to cyclic
groups (symmetric PSK (SPSK)) and those matched to dihgdraps (asymmetric PSK
(APSK)). Several authors have studied codes over APSK Isggta [5], [12] and [25].
The dihedral group,,, with 2/ elements generated by two of its elementinds with
identity element is

Doy = {r's? | 1M = s> =e ris=sr7"0<i< M, j=0,1} (3.23)
and the group operation can be expressed as
(rilsjl)(rlé Sj2) — pirti2(1=241) gji+j2 (3.24)
In general, such signal sets are matche®ig, under the mapping

M(risj) — oV 1Un/M+0+2mi/M) (3.25)
whered is the angle of symmetry. Figure(3.1) shows the gengidl- APSK signal set
matched taD,,,. Figure(3.2) shows th& EU B bound for codes ove#-SPSK signal sets
for seven different angles of asymmetry.

In the case of both symmetric and asymmeRi€ K all points of the signal set are on the
unit circle and therefore have equal energy. Therefore fsection(3.2.2) we see that the

Lagrangian is a concave function. We check whether equ@idhsatisfies equation(3.3)
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for signal sets of differenfi/. Here we can only verify only the result computationally
for signal sets of different cardinality. For codes symneefPSK signal set with car-
dinality four we have shown in example(2.3)we have shown duaation(3.5) satisfies
equation(3.3).

Example 3.1 Consider a8 PSK signal set. Th& matrix of symmetri&@ PSK is

0 0.5858 2.0000 3.4142 4.0000 3.4142 2.0000 0.5858
0.5858 0 0.5858 2.0000 3.4142 4.0000 3.4142 2.0000
2.0000 0.5858 0 0.5858 2.0000 3.4142 4.0000 3.4142
3.4142 2.0000 0.5858 0 0.5858 2.0000 3.4142 4.0000
4.0000 3.4142 2.0000 0.5858 0 0.5858 2.0000 3.4142
3.4142 4.0000 3.4142 2.0000 0.5858 0 0.5858 2.0000
2.0000 3.4142 4.0000 3.4142 2.0000 0.5858 0 0.5858
| 0.5858 2.0000 3.4142 4.0000 3.4142 2.0000 0.5858 0

(3.26)

This is a real symmetric circulant matrix. Therefore theegigector matrix is a discrete
Fourier transform matrix. The largest eigenvalue is pagtiWWe have to check whether the
other eigenvalues are non-positive. The eigenvaluesete-8000016]. Moreover sum of
any eigenvector except the one associated with the eigexi@ls equal to zero. Therefore
the Lagrangian is a concave function@fWe need to check whether the distribution given
in equation(3.5) is an extremal point. Computationally we #hat it is an extremal point.

Thus we get an optimal distributiohl

The uppermost curve in the set of curves in figure(3.2) cpords to8-SPSK and the
bottom most t@-APSK with angle of asymmetri0°. The intermediate curves correspond
to values of angle of asymmetry as listed in the figure. We saedquation(3.5) satisfies
equation(3.3) fo8 PSK for all these angles of asymmetry. As the angle of asymmetry
is increased the curve moves up toward 888PSK curve. As the angle of asymmetry is
increased front)° degrees ta0° the curve tends fro8-SPSK to4-PSK. This is similar to
behavior seen in [56] foEGV bound. We conjecture that the behaviotrfok' U B must be

similar for M-PSK in general.
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Figure 3.1:2M -point Asymmetric PSK signal set matched to dihedral group.
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Figure 3.2: EEU B for codes oveB-APSK for different angles. The top most curve represénts

PSK. The bottommost curve represents the asymmétfidC with angle of asymmetry0 degrees.
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3.3.2 Three-Dimensional Signal Sets Matched to Groups

Loeliger [37] has discussed a class of three-dimensiogalasisets observed by Massey
with points on a unit sphere matched to cyclic groups witmawember of elements which
we refer as Massey signal sets. Figure(3.3) shows a Masgesl set, with parameter,
matched to a cyclic group with eight elements. In general addq signal set witR M/
points has its points on two circles parallel to the- y plane separated by a distarie
along thez—axis, with M points on each circle. The points on each circlestitute an\/-
SPSK signal set with on&/-SPSK signal set when projected onto the other circle fogmin
another)/-SPSK signal set which is a rotated version of the otheriy/. The points
on each circle are indexed loy2, ..., M — 2 and1, 3, ...,2M — 1 in the anticlockwise di-
rection. This signal set is matched to the cyclic group oégetrs modul@M under the
canonical map. All the elements of the Massey signal areeaséime distance from the
origin and hence have the same norm.

In the section(3.3.5) we compare the Massey signal set gt @oints with16 point
dicyclic signal set and three-dimensional cube.

Example 3.2 Consider ant point Massey signal set. Thiematrix is as follows

0 1.8149 1.2800 3.6251 2.5600 3.6251 1.2800 1.8149 |
1.8149 0 1.8149 1.2800 3.6251 2.5600 3.6251 1.2800
1.2800 1.8149 0 1.8149 1.2800 3.6251 2.5600 3.6251
3.6251 1.2800 1.8149 0 1.8149 1.2800 3.6251 2.5600
2.5600 3.6251 1.2800 1.8149 0 1.8149 1.2800 3.6251
3.6251 2.5600 3.6251 1.2800 1.8149 0 1.8149 1.2800
1.2800 3.6251 2.5600 3.6251 1.2800 1.8149 0 1.8149
| 1.8149 1.2800 3.6251 2.5600 3.6251 1.2800 1.8149 0

(3.27)

The eigenvalues ¢fare [—5.76 —5.12 —5.12000016]. Here all the secondary eigenvalues
are non-positive. Also the sum of the each eigenvectordsfaeall eigenvectors other than
the one associated with the largest eigenvalue. Theref@eytiadratic form is concave.
We check whether the distribution represented by equaibh{s an extremal point of the
Lagrangian (check whether it satisfies equation(3.3)).eHee see that it does satisfy the
equation(3.3)1
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Consider ForM = 64, Figure(3.4) shows th& EU B bound for several values of From
Figure(3.4), it is seen that the best bound depends on theatiaed distance. Curves
are plotted forr = 0.6,0.5,0.4,0.3,0.2,0.1. All these curves intersect showing that for
different values of normalized distances differemives the best bound on rate.

—————f———————————————

Figure 3.3:M-point Massey signal sef{ = 8).

3.3.3 Bounds for Four-Dimensional Signal Sets Matched to Gups

Modulation schemes with four-dimensional signal sets teen studied by several authors
[37], [79], [11], [50]. [26], [48], [64] and [73]. Gresho aridawrence, [26], describe the
basic theory and implementation for a particular latticeetyfour-dimensional signal set,
which readily lends itself to simple encoding with arouingd B gain in noise margin over
the conventional two-dimensionks pointQ AM signaling. Moreover, a four dimensional
signal set matched to a non-commutative group w200 signal points has been observed
to have higher capacity than t#&S K limit [37]. In this subsection, we apply theEU B
bound for four-dimensional signal sets matched to dicydlinary tetrahedral, binary oc-
tahedral and binary icosahedral groups. The class of sggtalmatched to dicyclic groups
include those matched to the quaternion group and genedatimaternion groups since
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these two are special cases of dicyclic groups. The growpsiaply described in terms of

the quaternions as follows. The elements of the set
H={o=ae+bj+ck+dl|abcdeRa+b++d =1} (3.28)

where R denotes the field of real numbers andj, j, k£ and/ are the vectors satisfying
==k =—ejk=—kj=ikl=—-lk=jlj=—jl=kVoecH

In the infinite commutative groufd, multiplication of two element§a, e +b1j + 1k +dil)
and(age + byj + cok + dol) results in(ase + bsj + csk + dsl) where

a2 by C2 dy

—b —d

[az bs c3 d3] = [a1 by ¢1 dy] S 2o (3.29)
—Ca dg —Q9 bg
—d2 —Ca —bg —as

We look at following finite subgroups af .

Dicyclic GroupsDCyys

The subgroup off with 4M elements, {/ arbitrary positive integer)

o, = (cos(mv/M), sin(nv/M), 0, 0), (3.30)
v=0,1,...,2M — 1 (3.31)
and
7, = (0, 0, cos(mv/M), sin(rv/M)), (3.32)
v=2M,2M +1,...,4M —1 (3.33)

The special cas&/ = 2 gives the quaternion groups = {+ e, + j, + k, + {} with eight
elements.

The signal points are all have the same energy. Thereforedhditions discussed in
section(3.2.2) are valid. Thus the quadratic fof$i3” is a concave function. For codes
over dicyclic signal sets of different cardinality we vgrikhether the distribution given by
equation(3.5) satisfies the Lagrangian (i.e. equatioh)3Edr dicyclic groups of different
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cardinality which we have considered equation(3.5) satdfie Lagrangian (for different
cardinalities of dicyclic groups we have considered we cotatonally verified whether

the distribution given by equation(3.3) satisfies the Lagran)

The Binary Tetrahedral Grouf's,
This group with24 elements consist @y and the two cosetsQg andw?Qy of Qs, where

1
w:§(§+i+ﬁ+£) (3.34)

Notew?® = (—e) € Qs. Explicitly, we haveGy, = Qg U w?Qg U w?Qs.

The signal points are in the binary tetrahedral group hagesdime energy. Therefore the
conditions discussed in section(3.2.2) are valid. Fomatetdral group we compute the
distance distribution matri¥ and check the eigenvalues and the associated eigenvectors.
S is a positive symmetric circulant matrix. We see that onlg @igenvalue is positive
and all other eigenvalues are non-positive. Moreover thereiectors are orthogonal and
the sum of each eigenvector is zero except for the eigenvastmciated with the largest
eigenvalue. The largest eigenvaluelésand all others are zero or negative. Therefore the
Lagrangian is concave for positive )\ is greater than or equal zero. The distribution given

in equation(3.5) is an optimal distribution.
The Binary Octahedral Grouf 45
This group withd8 elements is obtained by addigg, and its coset Gy, Where

w1 = —=(e+J) (3.35)

i.e.,Gug = Gag U w;iGay.

In the case of binary octahedral group also shatrix is positive symmetric matrix. The
analysis ofS matrix is carried out as in the case of the binary tetrahegh@lip. Therefore
as in the case of tetrahedral group the distribution givesguation(3.5) is optimal.

The Binary Icosahedral Grou@';s

This group consists af20 elements and is obtainable as elements generated by toefoll

ing three generatorst; = $(ye + v 'j +1), 02 = 5(e + v 'k + vk) andos = I, where
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v =311+ 5).

As in the case of binary tetrahedral group and octahedralgtioeS matrix for icosahedral
group is also positive, symmetric and circulant. Also exaée primary eigenvalue all
other eigenvalues are non-positive. The eigenvectors rdnegonal and the sum of each
eigenvector except the one associated with the largestagee is also zero. We verify
whether the distribution given in equation(3.5) is optimktis we do by checking whether

equation(3.5) is a solution of the equation(3.3).

Tetrahedral Octahedral Icosahedra
48 96 240
—12 —24 —60
—12 —24 —60
—12 —24 —60
—12 —24 —60

Table 3.1. The table shows the non-zero eigenvalues of squanclidean distance distribution

matrix S. Here we consider codes over tetrahedral, octahadd icosahedral groups.

Figure(3.5) shows four-dimensional signal sets matchéeltg,. Figures for four-dimensional
signal sets matched to binary tetrahedral group ®itkelements, binary octahedral group
with 48 elements, binary icosahedral group witt) elements, and other numerous groups
can be seen in [11]. Note that a signal point is specified by émordinates with the
first two co-ordinates in the; — x5 plane and the other two in theg — x, plane. The
mapping that matches these signal sets to the respectivpgie the natural mapping
p(ae +bj + ck +dl) = (a,b, c,d).

Based on the&Z EU B for signal sets matched to dicyclic groups of different oydtewas
obtained that for larger values of the normalized distaheeiumber of points in the signal
set does not matter and when a smaller normalized distartbe ilequirement, a larger
number of points in the signal set are desirable; an obsensathich is true for symmetric
PSK (SPSK) signal sets as pointed on in [46]. The existenc®af,,, DC\ys and D1
makes these directly comparable with,, G4 and G149, respectively, in terms of their
bounds in figure(3.6). The bounds for codes ok&r,s and DC' 5, appear indistinguish-
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able. As seen from this set of bounds, signal sets matchddytdlid groups with the same
number of signal points give better bounds than signal setsmed to binary tetrahedral

group, binary octahedral group and binary icosahedralgrou
3.3.4 Extended Upper Bounds for Codes over Finite Unitary Goups

In this section we look at codes over different classes difimnitary groups in four dimen-
sions. We construct specific examples of finite unitary gsdmpenumerating the generator
for each type of finite unitary group [11]. We look at specifi@mples of groups in each

class and compute thle EU B for codes over each class.

Type -1 finite unitary group
The elements of one such group with elements are generated by

1 (EqV’Jru —(qv'+dp) Eqv/+u€q1”+du)
20.5 1 2 » <1 2

wheree; = exp(jn/n) andes = exp(jm/r)andy =0,1,...,p— 1,/ =0,1,...,(s— 1)
andy =0,1,...,(¢ — 1). The integer9, s, ¢ satisfy the following relation2n = ¢p and
2r = ¢s. The integer must be relatively prime t9. Here we have freedom to choose the

phase values freely.

Type -I1 finite unitary group

The elements of one such Tygé-finite unitary group withdnr elements is generated as
follows
(e’w™,0)and 0, —e"w")

wheree = exp(jr/n)andw = exp(jr/r)andy =0,1,...,(n—1)andu =0,1,...,(2r—
1). These codes have the same structure as dicyclic groupléphtise can be chosen in-
dependently.

Type -111 finite unitary group

Consider the group witB4 elements in the unitary plane is generated by
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— r=0.1
- — r=0.2
41 r=0.3 H

Rate

Figure 3.4:EEU B for 64-point Massey signal set for different

i X4

P
P

Figure 3.5: Signal set matched to dicyclic group.
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T T
—— Dicyclic24
— — Dicyclic48
— - Dicyclic120
Tetrahedral(24)
41 N — — Octahedral(48) H
N — - _Icosahedral(120)

R(delta)

delta

Figure 3.6: EEU B for signal sets matched toCs4, DCys, DC159, Binary tetrahedral, octahedral

and icosahedral groups.

EPUB for Dicyclic and Typel codes

3.5 T T T T T
3 i
\\
25 N\ B
bR EUB Dicyclic M=32
AN — - EGV Dicyclic M=32
A — — EUB Typel M=32
2 NN — EGV Typel M=32 i
AN
Q
]
1.5F b
s i
05f E
o -
0 2

Figure 3.7: The figure shows thieEU B and EGV for codes over 32-point Type(1) signal set and

32 point Dicyclic signal set.
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3.5

25 N b
\ N
AN EUB Dicyclic M=32
\ N — - EGV Dicyclic M=32
2F N — — EUB Dicyclic M=32 i
N —— EGV Type 2 M=32

rate

0.5

Figure 3.8: The figure shows tHeEU B and EGV for codes over 32-point Type(2) signal set and

32 point Dicyclic signal set.

o (jcos(a)e?, sin(a)e?)

o (—cos(a)e?, —jsin(a)e?),

2v+1 2v+1 )

o (—sin(a)e™ jeos(a)e
e and(jsin(a)e? 1, —cos(a)e? 1)

wherea is any chosen angle,= ¢/(é) andv = 0,1, ..., 5.

Type -1V finite unitary group

An example of TypelV finite unitary group with16 elements is as follows. The eight
elements of the the group ar&~,, whereG, is the eight element quaternion group and
o = jeos(a) + ksin(a). The other eight elements of the group gwes,eV 7). This form

a 16 element Typef! finite unitary group.
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Type(l) | Type(ll) | Type(lll)
64 64 48
—16 —16 —12
—16 —16 —12
—16 —16 —12
—16 —16 —12

Table 3.2: The table shows the non-zero eigenvalues of eduauclidean distance distribution ma-
trix S for Type(l), Type(ll) and Type(lll) finite unitary grgps. Here we consider codes over Type(l)
group of cardinality32, Type(ll) code with cardinality32 and Type(lll) group with cardinalit4.

Figure 3.9: The figure shows an example of Type-(lll) finitétany group with24 points in four

dimensional space.
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EPUB for Tetrahedral and Type3 codes
3.5 T T T T T

EUB Type 3 M=24

— EGV Type 3 M=24
N — — EUB Tetrahedral
N —— EGV Tetrahedral

2.5

1.5

rate

0.5

-0.5 L L L L L L I I I

Figure 3.10: The figure shows tlleEU B and EGV for codes over 24-point Type(3) signal set and

tetrahedral signal set.

Type -V finite unitary group

Consider the binary octahedral group withelements. Chooseain the four dimensional
unit sphere. The corresponding elementsaye! andjox ! wherey is one of the first
24 elements of the binary octahedral group. The order of theIil” group is alsols.

Type -V [ finite unitary group

We consider an Typgé’I) group with24 elements. Let be an element of the unit sphere
in four dimensions. The elements arg !, ecA\~' ande?op ', wheree = ¢/(3), v is an
element of the quaternion group € wG, andy € w?G, Withw = (e + j + k +1).

Type -V I finite unitary group

Consider an example of finite unitary group with elements. Let be an element of
the unit sphere in four dimensions. The elementsaye! and jox !, wherey is an
arbitrary element of the binary octahedral group. Thusdthelement group is completely
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Figure 3.11: The figure shows an example of Type-(IV) finitéamy group with16 points in four

dimensional space.

Type(lV) | Type(V) | Type(V1) | Type(VII)
32 96 48 192
-8 —24 —12 —48
-8 —24 —12 —48
-8 —24 —12 —48
-8 —24 —12 —48

Table 3.3: The table shows the non-zero eigenvalues of equauclidean distance distribution

matrix S for Type(lV), Type(V), Type(VI) and Type(VII) fing unitary groups. Here we consider

codes over Type(lV) group of cardinality, Type(V) code with cardinalityl8, Type(VI) group

with cardinality24 and Type(VIl) group with cardinalit@6.
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EPUB and EGYV for Dicyclic and Type4 codes
3 T T T T

T T
EUB Type 4 M =16
—. EGVType4M=16
— — EUB Dicyclic M=16
N —— EGV Dicyclic M=16

Figure 3.12: The figure shows tlieF’U B and EGV for codes over 16-point Type(4) signal set and

16 point Dicyclic signal set.

EPUB and EGV for codes over Octahedral and Type5 Signal Sets

4 T T T T
EUB Type 5 M=48
\ —- EGV Type 5 M=48
\ — — EUB Octahedral
35\ —— EGV Octahedral B

rate

2 2.5

delta

Figure 3.13: The figure shows tlieF’'U B and EGV for codes over 48-point Type(5) signal set and

octahedral signal set.
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EUB and EGV of Tetrahedral and Type6 Signal Sets
3.5 T T T T T

T T
— — EUB Tetrahedral
—— EGV Tetrahedral
EUB Type6
3N — EGV Type6

Rate

-0.5

delta

Figure 3.14: The figure shows tlleEU B and EGV for codes over 24-point Type(6) signal set and

tetrahedral signal set.

characterized.
3.3.5 Comparison of the Bounds for codes over Finite Unitargsroups

The generators of finite unitary groups offer possibilities independently varying the
phase. Therefore it is interesting to compare B¥eU B and extended Gilbert Varshamov
bound EGV) of codes over finite unitary group with codes over mutlidime@nal signal
sets.

Codes over Typd) signal sets have tighter lower bound when compared to codes o
dicyclic signal set. The Upper bound of codes over dicyctoup is tighter than that of
codes over Typ@ ) signal sets. This is shown in figure(3.7).

We compare the bounds for codes over Tye signal sets and dicyclic signal sets in
figure(3.8). In double prism group, Ty@® and Typé&/I) groups we can see that there is
greater independence to choose the phase values when eahtpalicyclic groups. Here
again we get a tighter lower bound for codes over Type signal sets. The upper bound is

tighter for codes over dicyclic groups. In the figure(3.1@ eompare the bounds for codes
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EUB and EGV of codes over Dicyclic M=96 and Type 7 M=97 signal sets
T T T T T

T T
Ey® ByM=36M=96
— EGV Type 7 M=96
41 — — EUB Dicyclic M=96
—— EGV Dicyclic M=96

Rate

-0.5

Figure 3.15: The figure shows tlleEU B and EGV for codes over 96-point Type(7) signal set and
96 point Dicyclic signal set.

over Typé[11]) signal sets and codes over tetrahedral group. Here codesetrahedral
group have a tighter lower bound and looser upper bound.

In figure(3.12) a comparison of bounds of codes over T¥pe and dicyclic signal sets is
shown. Here codes over dicyclic signal sets have a tighteeupound and a looser lower
bound. Figure(3.13) shows the lower and upper bounds faesoder Typ€l/) groups and
octahedral groups. The codes over both the groups have aacabie bounds.
Figure(3.14) show the bounds for codes over TypE groups and tetrahedral group.
The codes over Tyg& /) groups have a tighter upper bound and a looser lower bound.
Figure(3.15) compares the bounds for codes over {liypé) signal sets and codes over
dicyclic signal sets.

We also see that the codes over double prism have tighter loaend when compared
with codes over dicyclic group. The upper bound of codes aveyclic group is tighter
than that of codes over double prism group. This is shown uré¢.24).
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3.3.6 Slepian Signal Sets

In [53] Slepian gives two signal sets. One of them has thegatgphat the distance distri-
bution remains same from all elements of the signal set aadttls not a group code. An
example of a signal set which is distance uniform but not hmeddo a group. We compute
the extended lower bound, [56] and thé U B for codes over this signal set. Figure(3.16)
gives the upper and lower bound.

Slepian also gives an example of a signal set with cardinalit but does not posses a
transitive symmetry group of orde¥/. In [37] it is shown that this signal set is matched
to a group. The signal points in the case of both Slepian siggiahave the same en-
ergy. Therefore the conditions discussed in section(B&e&valid. We check whether the
equation(3.5) satisfies equation(3.3).

Slepian ()| Slepian(ll)
—2.4493 —4
—2.721 —4
—1.463 —4
—0.323 —4
—0.144 —4
6.6520 20

Table 3.4. The table shows the non-zero eigenvalues of squauclidean distance distribution
matrix S for Slepian(l) - a signal set in six dimensions with @oints and Slepian(ll)- a signal set

in five dimensions with ten points.

From table(3.3.6) we see that all eigenvaluesSahatrix other than the primary eigen-
value are non-positive. Therefore maximizing the consedioptimization problem re-
duces to finding a solution of equation(3.3). We verify threg tistribution function given
in equation(3.5) satisfies the equation(3.3).

For these two signal sets we compute the extended lower [ad]tlae extended upper
bounds. Figure(3.17) shows the upper and lower bounds &% thimensional signal set
with cardinality10.
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Extended Lower and Upper Bounds for Slepian Signal Set
1.8 T T T T

16" i
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1.2 N b

0.8 \ o 4

0.6 D N i

0.4 N ~ b

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 3.16: Extended upper and lower bounds for Slepiamasiget in6 dimensions withV/ = 6

Extended Lower and Upper Bounds for Slepian Signal Set
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Figure 3.17: Extended upper and lower bounds for Slepiamasiget in5 dimensions with\/ = 10
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3.3.7 Codes overn Dimensional Cube

The set of points which constitute andimensional cube can be represented as the set of
n-tuplesz = (£1,+£1,...,£1). In 2 dimensions these are set of corners of a square. In
three dimensions the set of vertices of the cube. We ordevehees (represented as
tuples) in such a way that the Hamming distance of any twoessien-tuples is one(we

consider gray encoding).

Example 3.3 In the two dimensional case the vertic@stples) are ordered as follows
(gray encoding)

[(0,0),(0,1),(1,1), (1,0)]
The distance distribution matrix isl{; is the squared Euclidean distance betweenitte

element of the signal set aneth element of the signal set)

(3.36)

—_ N = O

1
0
1
2

2 1]
1 2
01
1 0]
Note that this is a circulant matrixJ

Example 3.4 In the case o8 dimensional cube the vertice3-{uples) are ordered as fol-

lows:
[(0,0,0),(0,0,1),(0,1,1),(0,1,0),(1,1,0),(1,1,1),(1,0,1),(1,0,0)]

The distance distribution matrix is

001 212 3 2 1]
10123212
21012123
12101232 3.37)
23210121
32121012
21232101
1232121 0
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The above matrix can be obtained from the following two roagi

01 2 1]
101 2

A= (3.38)
21 01
_1 2 1 0_

As noted in the earlier examplis a circulant matrix.

2 3 2 1]
3 2 1 2

B = (3.39)
21 2 3
1 2 3 2_

Note thatB is anti circulant matrix. Therefore the distance distritut matrix .S can be

written as a block circulant matrix with block$ and B.

A B

(3.40)
B A

The distance distribution matri% is a block circulant matrix with component circulant and
anti circulant matrices. Also note thdt;; = A;4—;j+1) + 1 wherel < j < 4. Therefore
the A matrix completely describes the distance distributionrmafThis follows from the
iterative construction of gray codes, i.e., construétlait code from & bit code and so on
construct the:-bit code.[

An n-bit gray encoding can be summarized as follows: Considefith- 1) bit gray code.
Letthe(n—1) bit gray code be the ordered sequencé®nf1) tuples(ag, ay, . . ., agm-1)_)-

Then then-bit gray code is the ordered sequencedtiples obtained as follows

(07 CL(]), (07 a1>7 ceey (07 a2(”—1)—1>7 (17 a2(n—1)—1>7 (17 a2(n—1)—2>7 B (]-7 al)a (17@)

The distance$dy 1, do 2, . . ., do9n-1_1] are common for thén — 1)-tuple gray code and

n-tuple gray code. The remaining distances in the cases oftaple gray code are

[do’gn—l — d072n—1_1 + 1, d072n—1+1 — d072n—1_2 + 1, ceey d072n_1 — d0,0 + 1]
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In general distance distribution matriof ann-dimensional cube can written as a block

circulant matrix as follows:

Al A2 Ag A4 oo A2n—2
A2n72 Al A2 Ag e A2n72_1
A2n72_1 A2n72 Al Ag .. A2n72_2 (341)
A2n73 A2n73+1 A2n73+2 A2n73+3 e Al

where eachd; is (4 x 4) block circulant matrix. Here we see that ti¢h column of
+ 1 where
+1
wherel < j < 4. Therefore in generall g4, = A(Qz_kﬂ)i(w“) + 1 wherel < j < 4.

each(4 x 4) matrix is related to the other blocks as followls,, = A;,

i(4—j+1)
1 <j < 4. Similarly Az, = AQi(4_].+l) +1wherel < j < 4andAy;, = A,

i(4—j+1)

EachA,; for i even is a anti circulant matrix and féoodd A; is a circulant matrix.
Example 3.5 Consider the the dimensional cube the distance distribution matrix is

A Ay Az Ay
A A Ay Ay
As Ay Ay Ay
Ay As Ay Ay

(3.42)

where eachd; is a (4 x 4) matrix.

A = (3.43)

— NN = O
N = O =
= O =N
S =N

(3.44)

NN W N
N = NN W
W NN
N W NN -
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2 34 3
323 4

Ay = (3.45)
43 2 3
343 2
2 3 2 1
321 2

Ay = (3.46)
2 1 2 3
1231

O

The distance achieving distribution for codes owedimensional cubes can be derived
starting from the equation(3.3). Ferdimensional cube the number of distinct distances

between the elements of the signal set.isThe number signal points at a Hamming dis-

(n) (3.47)
1

The squared Euclidean distance is a constant multiple oHt#maming distance between

tance ofi is given by

the elements of the signal set.

Lemma 3.0.1 For Euclidean space codes over three dimensional cube thigilaition

given by{fo(s). (). - a1 (1)}, wherefs, (u) = s (equation(3.5)) is op-
timal.

Proof: Consider the case of three dimensional cube. The strucfufedalistance distri-
bution matrix can be used for finding a solution to equatid)3~rom the distance distri-
bution matrix given in example(3.4) fardimensional cube it follows that = {5y, 1 =
Bs = (7, B2 = B4 = (6, Bs} . Therefore we need to solve equation(3.3) for anky 1,2, 5.
Forr = 1. Therefore equation(3.3) can be written as

0®(3,\)

25, = log(fo) — log(B1) + 2A(Bo + B — B2 — B5) (3.48)



3.3 EEUB of Distance Uniform Signal sets 61

a3, A

(%2 ) _ log(50) — 10g(32) + 4X(Bo + 1 — B2 — B5) (3.49)
8D(6, A

0(23 : = log (o) — log(Bs) + 3A(Bo + 1 — o — B5) (3.50)

Equating equation(3.48), equation(3.49) and equatiéfj3o zero and simplifying we get

the following relationships

3 = Bafo (3.51)
3 = B0 (3.52)
We can easily verify that
e 1T 0,1,2,---, M —1 3.53
ﬁr(ﬂ)—wr— y by ay ey M — (3.53)

satisfy the above relationship amofig (,, 5, andgs. Thus we have an optimal distribu-
tion for three dimensional cubél

Lemma 3.0.2 For Euclidean space codes over four dimensional cube thielalision given

e—nd?(r)

by {Bo(r), Bulk); - - Bra—1(p) }, wherel, (u) = 55—y (équation(3.5)) is optimal.

Proof: Consider the case four dimensional cube. The distancehdistm matrix is given
in example(3.5). Her® = {3,010 = Bs = Br = Bi5, 00 = ba = B6 = Bz = P2 =
B4, Bs = B9 = P11 = Pis}. Therefore we need to solve the equation(3.3) for only
r = 1,2,5,10. As in the case o8 dimensional cube the analysis leads to the following

relationships

3% = B2 (3.54)
3 = 650 (3.55)
ﬂf = 51053 (3-56)
We can easily verify that
e—hd*(r)
BT(M)ZW r=20,1,2---,M—1 (3.57)

satisfy the above relationship among, 31, 52, 05 and 3. Thus we have an optimal

distribution Euclidean space codes over four dimensionbaéd]
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In general for am dimensional cube we can carry out the analysis similar toah&iand4
dimensional cubes. Also the structure of the distanceidigton matrix remains same for
anyn-dimensional cube. In the caseofdimensional cube there aredistances between
the elements of the signal set. It can be easily verified thiévwing relation holds for
n-dimensional cube, for any chosen valuewof

do; do;

BT = g3 (3.58)
(3.59)

Therefore fom-dimensional cube an optimal distribution is given by eqrédB.5).
3.3.8 Comparison of Signal Sets Based on the Spectral Rate

For band-limited applications, the rate of the code per disien is the appropriate param-
eter based on which signal sets are to be compared. To #eitiis we measure the rate

of the code per two dimensions, i.e.

2 2

and call it the spectral rate (rate in bits per symbol per timeshsions) of the code. In this
subsection, we compare the signal sets based on the spattal

Figure(3.18) shows the normalizddEU B bound for the Massey signal set with eight
elements/V-dimensional cube, and the signal set matche®€§s. Notice that the com-
parison is made among signal sets of different sizes inréiffiedimensions but having the
same number of signal points per dimension. For the Masgeyakset, the parameteris
chosen to be 0.6. It is seen from the figure(3.18), that/igs gives a better normalized
bound compared to the other two.

In particular, 4-SPSK has a better bound than the Masselsggt with eight points.
However, this superiority of the SPSK signal set over theesponding Massey signal set
is not true in general. For instance, the Massey signal sit 64 points is superior in
comparison to the 16-SPSK signal set. This is demonstratégure(3.19). However, the
supremacy of dicyclic groups over the corresponding sigetd matched to the Massey
signal set and the SPSK signal set holds in this case as weté tNat the value of that
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Figure 3.18:F EU B for Massey signal set M=8, r=0.6, n-dimensional cube angaficsignal set

with 16 elements
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Figure 3.19: The figure showSEU B for 16-SPSK, 64 point Massey signal set for r = 0.6, 0.5, 0.4
and dicyclic signal set with 256 elements. In these two figuve have the rate per 2 dimensions

along y-axis and delta along x-axis.
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Figure 3.20: The figure showSEU B of 5 PSK, tetrahedral signal set and dicyclic signal set with
24 points.

2 T
SPSK M=7
Dicyclic M=48
1.8} — Octahedral H
1.6 -
1.4F -
E12fF B
T
N
g 1t i
£}
©
=3
x 0.8 4
0.6 -
0.4 -
0.2 B
0 L L L L L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

delta

Figure 3.21:EEU B for 7 PSK, octahedral signal set and dicyclic signal set Witlpoints. In these

two figures we have the rate per 2 dimensions along y-axis aftd dlong x-axis.
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gives the best bound for the 64-point Massey signal set isinigfue; depending on the
value of/ it varies. The 16-SPSK gives a larger value for spectralfaatall values ofs.
Figure(3.20) shows th& EU B bound for a spectral rate of signal sets matched4pand
DCs,. The bound corresponding 88SPSK is also shown. Note that the 5-SPSK signal set
has a slightly lower rate. It ha points in four dimensions compared to 24 for the other
two signal sets considered. The signal set match&d.fa@ives a looser bound than the
SPSK signal set. Clearlg,, gives larger values compared to signal sets matchéutg,.
Similar bounds for comparison between signal sets matahédgt DC,s, and the closest
SPSK signal seff-SPSK, are shown in figure(3.21), leading to a similar caosiol. The
closest SPSK signal set that can be compared with signainsgthed ta7,50 and DC o

is the 11-SPSK signal set. Figure(3.22) shows the bounds for thegmlssets with an

identical conclusion.

25

T T
— - Dicyclic M=120
SPSK M=11

— lcosahedral

R(delta) per 2—-dim

-0.5

delta

Figure 3.22: (a). The figure showsFEU B of 11 PSK, icosahedral signal set and dicyclic signal set
with 120 points.

3.4 Conclusion

In this chapter we have obtained an optimum distributionaf@et distance uniform sig-
nal sets. We have also shown that the quadratic fgﬂ‘gT is concave for all distance
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Figure 3.23: The figure showsEU B of 11 PSK, icosahedral signal set and dicyclic signal set with
120 points.

EUB and EGV of codes over Dicyclic M=16 and Double Prism signal sets
3 T T T T T T T
EUB DbPrism M=16
— - EGV DbPrism M=16
— — EUB Dicyclic M=16
N —— EGV Dieyelic M=%6

Figure 3.24: The figure shows tieEU B and EGV for codes over 32-point double prism signal

set and 16 point Dicyclic signal set.
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uniform signal sets. Optimum distribution remains simfiar all these signal sets. In the
casePSK, Massey, dicyclic and signal sets over finite unitary growpsverified that the
probability distribution given by equation(3.5) is optimuFurther, we conjecture that the
optimum distribution for all distance uniform signal sexsimilar to the optimum distribu-

tion obtained in this chapter.



Chapter 4

Matrix Characterization of Near- M DS

codes

4.1 Introduction

The class of Near-MDS (NMDS)codes [15], [16], [17], [10] ibtained by weakening
the restrictions in the definition of classical MDS codes.e Bupport of a cod€’ is the
set of coordinate positions, where not all codeword§’aire zero. The-th generalized
Hamming weight,.(C') of a codeC' is defined to be the cardinality of the minimal support
of an(n,r) subcode olC, 1 < r < k [28], [29], [72]. NearM/ DS (NM DS) codes are
a class of codes where for &n, k) code thei-th generalized Hamming weight(C) is
(n—Fk+1i) fori = 23,....,kandd,(C) is (n — k). This class contains remarkable
representatives as the ternary Golay code and the quatgitp6,5) and (12,6,6) codes
as well as a large class of Algebraic Geometric codes. Theitapce of NMDS codes
is that there exist NMDS codes which are considerably lotigan the longest possible
MDS codes for a given size of the code and the alphabet. Alsggtcodes have good error
detecting capabilities [17].

Itis well known that a linear MDS code can be described in teoits systematic generator

matrix as follows: If[/ | P] is the generator matrix then every square submatri¥ aé

1The results of this chapter also appear in [65] and [66]

68



4.2 Preliminaries 69

nonsingular. In this chapter, we obtain a similar charaza¢ion for the class of NMDS
codes. Also, using a general property of generalized Hammigights, we point out that
an algebraic geometric code over an elliptic curve, if not MiB necessarily NMDS.

4.2 Preliminaries

In this section we present the known results concerning NMbD&es and generalized
Hamming weight hierarchy that will be used in the followirertons.

A Near-MDS code can be characterized in terms of either aitranp generator matrix or
a parity check matrix of the code as follows [15]:

A linear [n, k] code is NMDS iff a parity check matril of it satisfies the following con-
ditions:

e anyn — k — 1 columns ofH are linearly independent

e there exists a set of — k£ linearly dependent columns

e anyn — k + 1 columns ofH are of rankn — &

A linear [n, k| code is NMDS iff a generator matri® of it satisfies the following condi-

tions:

e anyk — 1 columns ofG are linearly independent
e there exists a set df linearly dependent columns {&

e anyk + 1 columns ofG are of rankk

Several interesting properties of Hamming weight hiergiate discussed in [72] and [29].
A basic property is that the sequence of Hamming weight heagais strictly increasing,
i.e.,

The following result [72] relates the Hamming weight hietar of a code to that of its dual.
If C+ denotes the dual of the codg then
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{d(C) [ r =12k} Jn+1—d(CH) |r=1,2.,n—k}

={1,2,...,n}.

4.3 Systematic Generator Matrix Characterization of
NMDS Codes

Theorem Let G = [I|P] be the systematic generator matrix of a linear non-MDS a@de
over a finite field. Ther' is NMDS iff every(g,¢g + 1) and(g + 1, g) submatrix ofP has
at least on€g, g) nonsingular submatrix.

Proof: First we prove the 'if part’. We have to show thét(C) = n — k anddy(C) =
n—k+2. Consider any one dimensional subcode generated by a rmmw@ight codeword
cof C. In terms of linear combination of rows ¢, let

g
c=> ar, (4.2)
j=1

wherei; € {1,2,... k},j=1,2,..., g andr, is thei;-th row of G.

The weight ofc within the firstk positions isg. We need to show that the weight in the last
n — k positions is(n — k — g) or the number of zeros in the last— & positions isg. Let
the number of zeros in the last— £ positions ofc be A > ¢. Choose any + 1 of these\

positions and let these positions hejs, . . ., , jy+1. Then
Tiyji Tige -+ Titjgn
Tigji  Tizja -+ Tigj
[al Qg ag] ' = OO...O]
L Tigj1 Tigjg e Tigngrl ]
Since there is &g, g) nonsingular submatri®; = o, = ...a, = 0, which is a contradic-

tion. Hence\ < g andd; = n — k. Notice that this means there can be at most one zero in
each row ofP.

To prove thatd,(C') = n — k + 2 consider a two dimensional subcode generated by two
codewords: andd. If the size of the union of supports efandd is at leasth — k£ + 2

then we are through. So, we need to consider the case whesapbert of bothc andd is
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within an identical set of. — k£ + 1 locations. Lely of these locations be within the first

positions and let

g g
c= Z T andd = Z Bir;. - (4.3)
j=1 Jj=1

Consider an arbitrary linear combination©éndd, i.e.,

g
e=ac+bd=Y (an;+bB)r; (4.4)
j=1
There argy — 1 zeros in the last — k positions ofe. Let these bgy, js, ... j,—1. Then we
have
Tivji Tije -+ Tiijg
Tiod Tiog coe Tiog.
[aal—i-bﬁl ... aocg +bB, 2_]1 ?]2 2]_91 =10 0 ... O]
L Tigjl Tigj? Tigjg—l .

Since everyg, g — 1) submatrix of P has a(g — 1, ¢ — 1) nonsingular submatrix, without
loss of generality we assume the first- 1 rows to constitute this nonsingular submatrix
and choose andb such thatua, + b3, = 0. Then it follows thatzo, + b3, = 0 for all
t=1,2,...9—1.

Now, if botha, andj, are non zeros, thenandd are scalar multiple of one another which
means the code is one dimensional. Hedgg') = n — k + 2. (Note that from (4.1),
d2(C) = n — k is not possible sincé, (C') = n — k.) If one of them is zero, say, = 0,
thena = 0 andbs;, = Oforallt = 1,2,...¢9 — 1 which is not true. This completes the
proof for the if part.

To prove the ‘only if’ part: FOorNAM DS codes everyk — 1) columns of the generator
matrix are linearly independent. This follows from the fwat for anjn k| NM DS code
the dual code is als&y M DS and that the minimum distance of the dual code i€onsider

a set of(k — 1) columns of the generator matrix. If all the columns are fréva® part of
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the generator matrix, then since evéky— 1) columns are linearly independent we have a
(k — 1,k — 1) nonsingular submatrix.

If £ — g columns (say, jo, . . . jk—g) are fromI and the resy — 1 columns fromP, then let

A denote thék, £ — 1) submatrix consisting of these columns. By suitable row erges

and appropriate elementary column operatidnsan be brought to the form

OgX(k—g) A*gX(g—l)
Le—g)x(k-g) Otk—g)x(g-1)

Note that the column rank has not changed by these operatimhshe submatrixd* is
indeed a submatrix off. Moreover, since the above matrix has column rank 1 the
submatrix A* has column ranlky — 1 and hence contains @ — 1,¢g — 1) nonsingular
submatrix. Therefore everfy + 1, g) submatrix of P has atleast onéy, g) nonsingular
submatrix.

To show that everyg, g + 1) submatrix has atleast ore, g) submatrix we make use of
the fact that the minimum distance of thel\/ DS code is(n — k). Therefore forNM DS
codes everyn — k — 1) columns of the parity check matrix are linearly independdihie
parity check matrix of the code can be written[as”+ I]. Following the arguments for
the systematic generator matrix we can see that eygry 1, g) submatrix of— P+ has
atleast onég, g) submatrix which is nonsingular. Therefore evégyg + 1) submatrix of

P submatrix has atleast one nonsingularg) submatrix. This completes the proaf.

4.4 Discussion

In this chapter we have extended the well knoP] matrix characterization of MDS
codes to the class of Near-MDS codes. This characterizatiddMDS codes will be
helpful to obtain NMDS over finite fields. The matrix charatzation of M/ DS codes
finds application in constructing/ DS codes for erasure channels [35], [35]. Based on
the systematic matrix characterization 8f\/ DS codes we can see that if afy + 1)
locations of then length codeword are known we can obtain all thieansmitted symbols.

In a [n, k] code, to add redundancy, for everysymbols transmitted additionéh — k)
parity symbols are transmitted. Based on the systematimatdiaracterization we can see
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that an/VM DS erasure code can recover théransmitted packets from any of tie+ 1)

of then transmitted packets. This is useful in computer commuitnat



Chapter 5

Matrix Characterization of Near- M DS

codes over Finite Abelian Groups

5.1 Introduction

In this chapter we studyt M DS andN M DS codes ove¥,, and finite abelian groups. The
study of codes over groups is motivated by the observati¢®74n38] that when more that
two signals are used for transmission, a group structustead of the finite field structure
traditionally assumed, for the alphabet is matched to tlevamt distance measure. The
Hamming distance properties of codes over groups have liedied in [24] and in [6; 7]
construction of group codes over abelian groups is giveerims of a ‘parity check’ matrix.
Given the length of the code and the number of information symbals, the maximum
possible minimum distance {& — k£ + 1) for codes over any alphabetn, k) codes that
achieve a minimum distance= (n — k + 1) are called maximum distance separable codes
(MDS). In [24] M DS group codes is discussed and nonexistence results for goulgs
over nonabelian groups have been discusgddl).S codes ovelZ,, have been studied in
in [9; 62; 63]. In [63] several applications of codes over thg of integers modulon

is discussed. These codes find applications in peak-shittaon in magnetic recording

systemsM D.S group codes over cyclic groups are characterized in [76].\F® S group

LA part of the results of this chapter also appears in [69]
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codes over abelian groups a quasi determinant charadteriza obtained in [78]. In [18]
matrix characterization o/ D.S codes over modules is discussed.

It is well known that binary linear codes are matched to hireagnaling over an Additive
White Gaussian Noise (AWGN) channel, in the sense that tharsed Euclidean distance
between two signal points in the signal space correspondimgo codewords is propor-
tional to the Hamming distance between codewords. Simgjlarlear codes ovef,, are
matched to M—PSK modulation systems for an AWGN channel44; The general prob-
lem of matching signal sets to linear codes over generabadge structure of groups has
been studied in [37; 38]. Also, group codes constitute aromamt ingredient for the con-
struction of Geometrically Uniform codes [23]. This motiea the study of codes over
groups both abelian and nonabelian. In [6] constructiorrofig codes over abelian groups
that mimics the construction of algebraic codes over fingdd§ is considered and it is
shown that the construction can be on the basis of a paritgkamatrix which provides the
relevant information about the minimum Hamming distancthefcode. The parity check
symbols are seen as images of certain homomorphismsdoto G.

In this chapter we obtain systematic matrix characteratf AlmostA DS (AM DS)
and NearM DS (N M DS) codes overZ,, and finite abelian groups. In chapter(4) we have
obtained matrix characterization dfM DS and N M DS over finite fields. The rest of the
chapter is organized as follows:

¢ In section(5.2) we introduce the basic results which arel uséhe chapter

¢ In section(5.3) we characterizeM DS codes andV M DS codes ovelZ,, based on

the systematic generator matrix

e In section(5.4)AM DS and NM DS codes over abelian groups are characterized
based on the defining homomorphisms. Bdr DS codes andV M DS codes abelian
groups we also obtain an associated matrix charactenizbtised on the component
homomorphisms. In the case df\/ DS codes over cyclic groups we show that the
associated matrix characterization is same as the systematrix characterization
of AMDS codes ovelZ,,. Further also obtain the a set of results concerning the
length of[n k| AM DS codes over cyclic groups of cardinality.
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e We conclude the chapter in section(5.5).

5.2 Hamming Weight Hierarchy of Codes overz,,

Definition 5.1 (Support) Let”' be any code over,, and let B be any subset af’. Then
the support ofB denoted asupp(B) equals{: | 3a,b € B such that; # b;}. If the size
of B is one we define theipp(B) = 1

Definition 5.2 LetC be a code ovef,, of lengthn. Then we define the following function

Sc(p) = minpcc | pl=p>2Supp(B)

Definition 5.3 Let the sequencé,, ds, . . ., d; of generalized Hamming weights be defined
such thatd; < dy < ... < d;, anddy,ds, ..., d; are distinct values of-(p) for p =
2,3,...,#C. Further M; = max{p € {2,3,...,#C} | Sc(p) = d;} fori = 1,2,...1,
where#C denotes the cardinality of the codé

Definition 5.4 The generalized Hamming Weight hierarchy of a codever Z,, is the set
{(dy, My), (d2, M3), ..., (d;, #C)}, where#C denotes the cardinality of the code.

Definition 5.5 ConsiderZ,, (whose cardinality isn). We denote the cardinality of a the
codeC over Z,, as#C. If an codeln, k = log,,(#C)] codeC over Z,, is an M DS
code then the Hamming weight hierarchy@fis {(dy = n — k + 1,M; = m),(ds =
n—k+2 My,=m?),.... (dy =n, M, =#C)}

Definition 5.6 Consider a cod&”' over Z,,,. An|[n, k = log,,(#C)] codeC over Z,, is
defined as am M DS code if thed,,;,, = d; of C'is (n — k).

Definition 5.7 An [n , k| codeC over Z,, is defined to beVM DS code if the cod€’ as
well as its dual cod€'+ are AM DS.

5.3 Almost MDS codes over/,,

We consider linead M DS codes over/,,, wherem = pi'py? ... pts and eactp; is a prime
number. An[n k | code is defined as adM DS if d; = n — k. First we consideAM DS

codes overZ,, wherem = pi'.
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5.3.1 Almost MDS codes of size:? over Z,,-,

AMDS codes over, with k=2

This the simplest non-trivial situation, with= 2 andd = n — 2. In what follows, we will
concentrate on linead M DS codes only, thus exploiting the additive structureZ%fl,
wherep; is a prime number. Consider the following generator matfia oodeC'

1 0 ag a4 a5 ag ... «p
- 3 4 Qs Qg (5.1)
0 1 53 54 55 56 s ﬂn
whereas, ay, as . . ., a,, are elements ilszl . Similarly 33, 64, 35, . . ., 3, are also elements

in szl. Some of they;’s and3;’s can be units or zero divisors iﬁpgl.

All the codewords of the code are of the folf) , = a - (1,0, as,0, as, ag, . .., ap) — b -
(0,1,0, B, B5, B, - - -, Bn) With a, b € Z .. If the codeC' generated by is AM DS then
dpin = di = n — 2. Also note that ifC' is an AM DS code then there are maximum two
zeros on any code word. Therefore the linear combinatiorhefrows of the generator
matrix also should have code words with maximum two zeross THads to the following
condition

o Leta,, o , ax, B, B, B be units ianzl. There exists utmost two locatiois;j such

that
CLOéi—i‘bﬁi =0
aaj—i-bﬁj =0
(5.2)
for4 <i,7 <mnandi # j. Therefore; = —5—:‘_ = _(%’ i.e., the ratios belong to the

same coset module . Hereb has to be a unit fof to be well defined. There do not

exist three columng j andk such that

aq; —|—bﬁz = 0
at; +bﬁ] =0
acy +bﬁk =0

(5.3)
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i.e.the ratios} = —2% — —% — —2 do not belong to the same coset moduidif
notwe will haved; = (n—3) and not(n—2)). This ensures that,,;, = n—k = n—2.

In matrix language, everyy, g + 1) submatrix of P (where P is the sub matrix of
the systematic generator matrix of the fof P]) has a(g, g) submatrix whose

determinant is a unit iz, .

e Consider any2, 3) submatrix of theP submatrix, where the generator matrix is of
the form[I P]. Consider the case whete, o}, oy, 3;, 55, B can be units or zero
divisors inZ,~ . The linear combination of the two row of the generator nxatan
have utmost two zeros. Consider tf#22) submatrices of thé2, 3) submatrix and
their determinants. If one of the, 2) submatrix has determinant which is a unit
then there are utmost two zeros in these three locationseofdde word. Suppose
all the (2,2) submatrices have determinants which are zero divisorsZ,in the
zero divisors are multiples gf,. Then the rows of th€2, 3) submatrix are linearly
dependent and hendg < (n — 3). Therefore we can have only utmost of2e2)
submatrix of thg(2, 3) submatrix whose determinant is a zero diviso&i . If not
all these three locations in the codeword will be identicatro and code will not be
AMDS.

¢ In general consider evefy, g+ 1) submatrix of theP submatrix. There exists atleast
one(yg, g) submatrix whose determinant is an unitfy. .

If the AM DS codeC is generated by minimum weight vectors the generator ma#ix
be written as

10101 v % --- Y

o1ro011 1 1 ... 1

G = (5.4)

where eachy; for ¢ > 5 is a unit. Here we can see that evéty2) submatrix of P has a
(1,1) submatrix which is an unit i, . Also every(2, 3) should have atleast or{e, 2)

submatrix which is an unit inzpvl-l.

Example 5.1 The generator matrix of &, 2] NM DS code overZ, is (here we take
P11 = 2 andTl = 1)
101011

G = (5.5)
010111
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Here the length of the code s It is easy to see that; = 4

Example 5.2 The generator matrix of &, 2| AM DS code overZ, is

1 01 11
G = (5.6)
01011

Here the length of the codefisandd; = 3. The code word generated by a minimum weight
code word and a code word of weigfat,,;,, + 1).

AMDS codes ovef,-, with k=3

Consider the following generator matrix foffia 3] code overz, .

1 00 a4 a5 ag ay ag ... a,
G=1010 5 B 0Bs Bz Bs ... [n (5.7)
001 % % % 7 7% - T

whereq;, 8;,7; 4 <1i <n be elements &, .

Codewords are of the form,, . = [a b ¢ |G, with a, b, c € Z,,,. If G generates allM DS
code thenl; = n—3, i.e., any codeword can have utmost three zero co-ordinategefore
each row of the of” sub matrix ofG = [I P] can have utmost one element which is a zero
divisorin Z,, .

Supposé = 0. Then the codeword, ; . can have utmost two zeros in the codeword from
the fourth location to the-th location. This leads to the condition that if we considey

(2, 3) submatrix ofP submatrix there exists atleast of222) submatrix whose determinant
is an unitinZ,. If the determinants of all the2, 2) submatrices of th¢2, 3) submatrix

of P are zero divisors both the rows of thi2 3) submatrix are linearly dependent. Then
dmin < (n — 4). Therefore atleast one ¢2, 2) submatrices of2, 3) must have a determi-
nant which is an unit it .

Suppose alk, b, c are not equal to zero. In the codewatg, . utmost three locations,
1,j,k are zero. All other co-ordinates must be non-zero. In other for every any
(3,4) submatrix of P, whereG = [I P], there is atleast on@, 3) submatrix such that the
determinant is an unit ilngl. In Z,n the zero divisors are all multiples @f. Therefore
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atleast one ofg, g) submatrices must have a determinant which is an uniin. This

condition ensures that there are utmost three zeros in atgwoard, i.e.d; = n — 3.
5.3.2 AMDS Codes ovel7,,

Here we consider the case where = pi'py*ps®...pls wherep; 1 < i < s are prime

numbers. Lep; be the smallest prime number which divides

AMDS codes over,,, with k=2

Consider the simplest non-trivial situation, with= 2 andd = n — 2. In what follows, we
will concentrate on linead M DS codes only, thus exploiting the additive structureZgf,
wherem = pi'py*ps® ... pts, pi 1 < i < s are prime numbers ang is the smallest prime
number. Consider the following generator matrix of a cétle

1 0 ag a4 a5 ag ... a,

G = (5.8)
01 85 Bs Bs B6 --- Dn

wherea, 3, g1y, ..., q, are units inz,,. Similarly 5,.3, G514, ..., 3, are units inz,,.
a3, 0y, ..., 09 are zero divisors it¥,, such that they are pairwise relatively prime. Simi-
larly 55, B4, . . ., Bs1o are zero divisors ir¥Z,, such that they are pairwise relatively prime.
All the codewords of the code are of the forth, = a - (1,0, as, ay, a5, 0, . .., ) — b -
(0,1, B3, B4, Bs, B, - - -, Bn) With a, b € Z,,. If the codeC' generated by is AM DS then
dpmin = di = n — 2. Therefore ifC is AM DS there are maximum two zeros on any code
word. Therefore the linear combination of the rows of theeagator matrix also should

have code words with maximum two zeros. This leads to thevielig condition

e There exists utmost two locations,4+ 3 < i,5 < n such that (note that in these

locationsa; and; are units)

ao; -+ bﬁl = O
ao; + bﬂj =0
(5.9)
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fors+3 <i,j <nandi # j. If oy, o, ay, B, B;and3, are units therf = —% =
—%, i.e., the ratios belong to the same coset moguloThere do not exist three
J

columnsi, j andk such that

ac; +b6; =0
ao; +b3; =0
acyg +bB, =0
(5.10)
i.e.the ratiosy = —% — —% = —g—z do not belong to the same coset modpidif

not thend; = (n — 3) and not(n — 2)). This ensures that,,;, = n — k = n — 2.
In matrix language, everyy, g + 1) submatrix of P (where P is the sub matrix of
the systematic generator matrix of the fofl P]) has a(g, g) submatrix whose

determinant is a unit.

e In general if choose any three locationg, £ of any codeword. All these three loca-
tions cannot be zero identically. This implies that in theaesated 2, 3) submatrix
the rows are dependent. This leads to the condition thasittme of th€2, 2) sub-
matrix has to be a unit itr,,, or the greatest common divisor of the determinants of
(2,2) submatrices has to be an unitif,. In Z,, it is possible to havé2, 3) ma-
trix whose (2, 2) submatrices have zero divisors as determinants such teatest

common divisor of these determinants is an unifij.

e Consider anyg, g + 1) submatrix ofP. If the determinants of allg, g) submatrices
are zero divisors then the greatest common divisor of therd@hants must be an
unit. Otherwise we will have a code word hwhosed; < n — 3. In both the rows
of the generator matrix zero divisors are chosen such tlegt éine relatively prime
, i.e., the greatest common divisor of &ll, 1) submatrices of any1, 2) submatrix
is an unit. Now considef2, 2) submatrices of any2, 3) submatrix. Here the great-
est common divisor of the determinants of @l 2) submatrices has to be an unit.
Therefore in each row we have maximuneero divisors corresponding different

prime powers in the prime factorization of.



5.3 Almost MDS codes oveér, 82

The generator matri& can be rewritten as (if the code is not generated by minimuighte
code words)
10 Qg i3 e
- Qg Oy Qst2 Vs+3 g (5.11)
01 By B ... Beo 1 .01

Let o, 8; fori > (s+ 2) be units inZ,,. Theny,; = g— fori > s+ 2 are unitsinz,,. oy, 5;
for 3 < i < s+ 2 are zero divisors. The zero divisors are chosen such thewigai they

relatively prime on each row.

Example 5.3 The generator matrix of &, 2] NM DS code overZg is (Here we have
p1 = 2andr; = 1. Alsop, = 3 andr, = 1).
102 311

G = (5.12)
013 211

Here the length of the code s It is easy to see that; = 4

We can similarly analyze the generator matrix fok/ D .S codes withk = 3 overZ,,. Now
we obtain the general systematic generator matrix charaaten of AM DS codes over
D

Theorem 5.1 An [ n k| linear code overZ,,, wherem = p\'py’ps® ... pts (wherep; 1 <
1 < s are prime numberg); the smallest prime number) with systematic generator matri
G = [l Prm-nr)isanAMDS code if and only if everyg, g + 1) submatrix hagg, g)

submatrices with the following properties:
e there exists atleast ong, g) submatrix whose determinant is a unitik), or

e ifthe determinants of all thg, g) submatrices are zero divisors the greatest common

divisor of these determinants is an unit4f),. equal to one.

Proof: Let us assume that thje: k | code iSAM DS. Therefored; = n — k. Consider
any code word which is a the linear combinationgofows of the the generator matrix.
From thel part of systemati¢; matrix the codeword hag non-zero elements. Therefore
in any codeword: = (cy,co,...,c,) there are utmosy locations such that; = 0 for
k+1 < i < n. Consider any(g, g + 1) submatrix of P matrix. The linear combination
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of g rows of a(g, g + 1) submatrix ofP there can be utmogtzeros. This implies that the
greatest common divisor of the determinants of tfigy) submatrices is an unit or one of
the (g, g) submatrix has a determinant which is an unit. This proveshkerem in one
direction. To prove that code i8M DS if the condition stated in the theorem we proceed
as follows: From the condition of theorem we know that theee @mostg zeros in the

linear combination ofy rows of the generator matrix. Therefafe =n — k. O
5.3.3 Dual Code of an n k] Code overZ,,

Consider an[ n k | codeC over Z,,, m = pi'py*ps*...pls, p; 1 < i < s are prime
numbers and lep; be the smallest prime number. Létbe generated by a systematic
generator matrix WittG = [l Py n—r)] Wherel; ; is the identity matrix and () is

a matrix overZ,,. The dual of the codé’ with parameter$n (n — k)] is generated by the
[—P,;-’:(n_k) I,k k) Matrix.

From theorem(5.1) it can be seen that the dual codénNsD S if and only if the every
(9,9 + 1) matrix of —P,f(n_k) has either atleast dfw, ¢) submatrix whose determinant is a
unit or has(g, g) submatrices such that the greatest common divisor of trermétants is

an unit (if the determinants of allj, g) submatrices are zero divisorsif,).

Corollary 5.1.1 The[n (n — k)] dual codeC* of codeC' generated by the matrix
[—Pg:(n_k)[(n_k),(n_k) is AM DS if and only if for every(g, g + 1) submatrix of-P

satisfies the following condition
¢ the determinant of one of thg, g) submatrices is an unit i&r,,, or

e if the determinants of evefy, g) submatrix of(g, g + 1) submatrix is a zero divisor
then the greatest common divisor of the determinants oetheg) matrices must

be an unitinz,,.

Proof: The proof follows along the same lines as in the case of tie¢rd). ]
If the a code” and its dual arel M DS we know thatitisVM DS. In the following section
we characterizeVM DS codes over,,.
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5.3.4 Near MDS codes ovef,,

Consider arj n k | code overZ,,. Let the code be generated by a generator métrix=
[Zteky Pion—iy]. The dual code is generated by = [—Pg,;n_k) Tn—tm—ry|. If an
(4,7) submatrix of P ,,_x is nonsingular we can easily see that the correspon@ding
submatrix in—P(:Zm_k) is also nonsingular. Also note thay; is an unitinz,, then—\;; is
also an unit inz,,.

An [nk] codeC is defined asv M DS if codeC as well as its dualy*, are AM DS codes.

In terms of the generalized Hamming weight hierarchyah | codeC overZ,, is defined
asNMDSifdy=n—Fkandd;, = (n—k+i)for2 <i <k.

In the following theorem we characterizé M DS based on the systematic generator ma-

trix.

Theorem 5.2 LetG = [l Pr.—i| be the systematic generator matrix of a linear Near-
MDS codeC over Z,,,. ThenC' is NMDS iff every(g, g + 1) and(g + 1, g) submatrix ofP
satisfies the following condition:

¢ the determinant of atleast orte, g) submatrix is an unit ir¢Z,,, or

o if the determinants of eve(y, g) submatrix of(g, g + 1) submatrix be a zero divisor
in Z,,, then the greatest common divisor of the determinants oétfieg) matrices
must be an unit ir¥,,,. Similarly for (g + 1, g) submatrix if the determinants of every
(g,9) submatrix is a zero divisor itr,, then the greatest common divisor of these
determinant must be an unit irj,,.

We prove this result in two different ways.

First Proof: Here we characteriz&/ M DS code using the definition which states for a
NMDS code the code as well as its dual ar&/ DS.

Initially assuming that the code I8 M D.S we arrive the characterization of the systematic
generator matrix. The generator matrix of the cadever Z,, is given by [l ;. Pyn—k)-
Here the code istM DS if and only if satisfies the condition given in theorem(5.The
dual code generated t{yLP,;-’:n_k In_k,n_k} is alsoAM DS if and only if it satisfies the
condition of theorem(5.1). Combining these results we petfollowing condition on

every(g,g + 1) and(g + 1, g) submatrices of thé& matrix:
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e the greatest common divisor of the determinants of eyegry) submatrix of every
(9,9 + 1) matrix of P is one or atleast ongy, g) submatrix has a determinant which

is an unitz,,

e the greatest common divisor of the determinants of eyegry) submatrix of every
(g + 1, ¢g) matrix of P is one or atleast ongy, g) submatrix has a determinant which

is an unitinz,,.

Now assuming the conditions of the theorem we can easily shatthe code and its dual
are AMDS. Therefore the code i M DS. This completes the first proof.]

Second Proof: The proof is along the same lines as in the cas&/éf DS codes over
finite fields. Here we explicitly prove that = n — k and the minimum support of any two
dimensional subcode @f isdy =n — k + 2.

First we prove the 'if part’. We have to show that(C) = n — k anddy(C) =n — k + 2.
Consider any one dimensional subcode generated by a minweight codeword of”'.

In terms of linear combination of rows &%, let
g
c= (o) = Yoy, (5.13)
j=1

wherei; € {1,2,...,k},j=1,2,....¢ andfi], is thei;-th row of G.

The weight ofc within the firstk positions isg. We need to show that the weight in the last
n — k positions is(n — k — g) or the number of zeros in the last— & positions isg. Let
the number of zeros in the last— £ positions ofc be A > ¢g. Choose any + 1 of these\

positions and let these positions hejs, . . ., , jg+1. Then

Tivji Tiga -+ Titjgm

Tisjr  Tizga -+« Tigjgta
a0 oy ... 0

L rigjl ’l“ing e rigjg+l ]

Since the greatest common divisor of determindptg) submatrices is an unit i#,,, or

one of the(g, g) submatrix has a determinant which is an unitdp only a; = as =
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..ay = 0 is the solution of the above set of equation, which is a caitteon. Hence
A < gandd; = n — k. Also it follows that if there are more than one zero divisoraorow
of the P submatrix then they are pairwise relatively prime.
To prove thatd,(C) = n — k + 2 consider a two dimensional subcode generated by two
codewords: andd. If the size of the union of supports efandd is at leasth — k£ + 2
then we are through. So, we need to consider the case whesapbert of bothc andd is
within an identical set ofi — k + 1 locations. Lely of these locations be within the first
positions and let

g
c=(c1,¢ay...,0p) = Zajfij
j=1
g
d=(di,dy,....dn) =) Bjr, (5.14)
j=1

Consider an arbitrary linear combination©éndd, i.e.,

g
e=ac+bd =" (aa; +bf;)r, (5.15)
j=1
There argy — 1 zeros in the last — k positions ofe. Let these bgy, js, ... j,—1. Then we
have
Tivji Tije -+ Tiijg
Tioi Tioi oo Tigd.
CLOél—'—bﬁl CLOéQ"‘bﬁQ CLOég—Fbﬁg] 2.j1 2.j2 2j.gl :[0 0 ... 0
L Tigjl rigj? e rigjg—l .

Since evenyg, g — 1) submatrix of P has ond g — 1, g — 1) submatrices whose determinant
is an unit or the greatest common divisor of the determinairdl (¢—1, g—1) submatrices
is an unitinz,,.

There are two cases to consider
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¢ In the first case the determinants of gll— 1,g — 1) submatrices are not units and
the greatest common divisor of the determinants is an uhierdfore we can choose
a paira andb such that the linear combination of the fifgt— 1) rows is zero. For
this paira andb the linear combination cannot be an all zero vector. Theeefois
not equal tan — k + 1). Itis therefore equal ton — k + 2).

e The second case is when the determinants of one ofithe1, g — 1) sub matrix
is a unit. Without loss of generality we assume the fjrst 1 rows to constitute the
submatrix whose determinant is unit and choessndb such thatuo, + b3, = 0.
Then it follows thatua, + b3, = 0forallt =1,2,...g — 1. Now, if botha, andj3,
are non zeros, themandd are scalar multiple of one another which means the code
is one dimensional. Hene&(C) = n — k + 2. (Note that from (1)d2(C) =n — k
is not possible sincé, (C') = n — k.) If one of them is zero, say, = 0, thena = 0

andbg, = 0forallt =1,2,...9 — 1 which is not true.

This completes the proof for the if part.

To prove the only if part: FON M DS codesi, = n— k. Consider a the linear combination
of any g rows of the generator matrix. The firgicolumns of the generator matrix will have
g non zero locations. For the code to haye= n—k, the lasth — k& columns ofP submatrix
must havén —k — g) non zero locations. Consider afyy, g+ 1) submatrix of these rows
from P submatrix. The linear combination of thegeows cannot lead to a all zero vector
in these(g + 1) locations. If sad; will be (n — k — 1) or less. Therefore the determinants
of the (g, g) submatrices must be relatively prime or one of theg) submatrices has a
determinant which is an unit iff,,,. This leads to the conditiofy, ¢ + 1) submatrices of
matrix.

Also for NM DS codesd, = n — k + 2. This we can easily prove by contradiction. If the
all the determinants dfy, g) submatrices ofg + 1, g) submatrices o’ are not relatively
prime we can see thdt < n — k+ 2. This leads to condition on evefy + 1, g) submatrix
of P. This completes the proof.

Example 5.4 The generator matrix of gz, 2] NM DS code ovelZ,, is (let the the smallest
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prime divisor ofm be2.

G = (5.16)

101011
010111

Here the length of the code 6s The maximum length possible by the previous theorem. It
is easy to see that; = 4 andd, = 6. Also note that the code is generated by minimum

weight vectors.
Example 5.5 The generator matrix of g, 2] NM DS code ovelZ,, is (let the the smallest
prime divisor ofm be?2)

G:
01011

1011 1]
(5.17)

Here the length of the code s The code word generated by a minimum weight code word
and a code word of weighitl,,.;,, + 1). We see that the code achieves the maximum length

possible if and only if it is generated by minimum weight @ext

5.4 AMDS Codes over Abelian Groups
5.4.1 Preliminaries

Let G be a finite group with a multiplicative operation and identit Codes over groups
are discussed in [6] and [31)/ DS codes over cyclic groups are discussed in [78]D.S

codes over abelian groups are characterized in [78].

Definition 5.8 Let G and H be any groups. The functioh : G — H is said to be a
homomorphism off into H if ¢p(zy) = ¢(z)p(y) forall z, yin G.

Definition 5.9 Two groups~ and H are said to be isomorphic if there is a bijectignof
G onto H such that if¢(zy) = ¢(x)é(y) for all z, y in G.

Definition 5.10 An endomorphism of a grou@ is a homomorphism af into itself, and
an automorphism aoff is an isomorphism afr onto itself.
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Proposition 5.2.1 ([31]) Let G be any group. Then every homomorphism G x G x
... x G — G of G* into G admits canonical decomposition

k

o(z1,. .., ) :Hqﬁj(e,...,e,ajj,e,...,e)

j=1
The direct product of forms a group. Note thag;(e, ..., e, z;,e, ..., e) is essentially an
endomorphism ofi. ¢;(e, ... e,z ,¢e,....e) = ¢1(e)pe;(e) ... 05:(x;) ... Prj(e), where
¢i; forj =1,2,3,..., k arek endomorphisms of/. We say that), decomposes as theke
endomorphisms.

A block code of lengt overG is any non-empty subset of thefold direct produciG™,
i.e., of the set of all the-tuples of group elements. We assume that the group ¢rdefr
to be finite. The dimension of a codgis k = log| | C' | symbols per block, whergC' |

is the code size, bounded above|ldy |*. The code rate is = § The Hamming distance
between two code words is the number of positions in whicl thffer. Let I denote the
index set ofn-tuples ofC'. An information set ofC is any index subsef C [ of size

| J |= k such that every:-tuple of elements ofs occurs inJ precisely once as the code
words run throughC'. Every C has an information set. A linear block code overis a

subset of G | that forms a group, i.e., is a subgroup|a¥ |".

Definition 5.11 An|[n k] codeC over a groupG™ is defined to be generalized linear code
if (21,29, 23,...2,)and(yy, s, - - ., yn) are in the code thetw; Gy, ro Dy, . . ., T, DYn)
is also an element of the code. Heredenotes the binary group operation.

Definition 5.12 An [ n k | systematic block cod€ with block lengthn and dimensiori

over a groupG is a subgroup of;™ with order| G |* formed byn-tuples

(5171,332, ey Ty Y1y - >yn—k’)

with y; = ¢; (21, 22, . . ., 2) Whereg; are (n — k) homomorphisms fro@* into G.

In generalp; is a map fromG* into G. For linearity these maps must be homomorphisms
[31].

The notion of support and Hamming weight hierarchy follows be generalized to codes
over group( as follows.
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Definition 5.13 (Support) LeC' be any code over a groug and letB be any subset @f.
The the support B is supp(B) = {i | Ja,b € Bsuch that; # b;}. If the size ofB is one
we define theupp(B) =1

Definition 5.14 Let C be a code over a group of length The we define the following

functionSc(m) = mingce |Bj=m>25upp(B)

Definition 5.15 Letthe sequencé, d,, . . ., d; of generalized Hamming weights be defined
such thatd, < dy < ... < d;, anddy, ds, ..., d; are distinct values obx(m) for m =
2,3,...,#C #C denotes the cardinality af'. Further M; = maz{m € {2,3,...,#C} |
Sc(m) =d;} fori=1,2,...1.

Definition 5.16 The generalized Hamming Weight hierarchy of a cétlever a groupG
iS the SEt{(dla Ml)a (d27 M?)? ey (dl? #O)}

Definition 5.17 Consider a finite groug: with cardinalitym. If an cod€n, k = log,,(#C)]
codeC over a groupG is an M DS code then the Hamming weight hierarchy @fis
{(dl =n—k+1,M :m)7(d2:n_k+2>M2:m2)7"'7(dk:n>#c>}

Definition 5.18 Consider a finite groug: with cardinalitym. If an coden, k = log,,(#C)]
codeC' over a groupGG isan AM DS code thenl; =n — k

The group of characters of an abelian grasican be used to define the dual code of a
group code ovet:. The group of characters is isomorphic to the graupand hence the

characters can be indexed by the elements of accordance with the isomorphism.

Definition 5.19 Let C be an(n, k) group code ovey. The dual code denoted ky* is
defined as

Ct ={(y1,¥2,- - yn) € G"| anl(yz) = 1,¥(xy,x9,...2,) € C} (5.18)

=1
wheren, denotes the character gfcorresponding tg € G, and1 is the identity element
of the group ofnth roots of unity in the complex field. The dual codes of groages over

abelian groups have been characterized in [76], [77].
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Definition 5.20 Consider a finite groug> with cardinality m. An[n, k = log,(#C)]
codeC over a group’ defines anV M DS code if the cod€” and its dualC+ are AM DS
codes.

We use this definition to characteri2éM/ DS over groups fromAM DS code and its dual

code over groups.
5.4.2 Matrix Characterization of AM DS Codes over Abelian Groups

Definition 5.21 A systemati¢:k] linear group code over an abelian grodpis a subgroup
of G™ with order| G | described byn — k) homomorphismg,; for/ = 1,2,..., (n — k),
of G* ontoG. Its codewords are of the fora,, . .., x4, 2441, . . ., 2,,) Where

Ty = O(xy, ..., 1p) = @?Zlqbl(e, e xie . .,e), =12 ... (n—k) (519)
wheree is the identity element of the grodp & denotes binary operation of the group.
Every codeword of &k + s, k) group code is of the form

(X1, T2y« ooy Ty Tha 1, Tha2y -+ > Thas) = (T1, Tay oo oy Ty G1(T1, - -, Tp),
¢2(x17x27 LR Jxk)J .. .,Qbs(xl,l’g, e ,.Tk))
= (21,22, ..., T, Y11 (1) B ... D Vg (),

oo is(x) B LB Yps())

(5.20)
wherex; € G, i = 1,2,...,k, ¢;; € End(G),j = 1,2,...,k, 1 <1 < s. The homo-
morphism¢, is said to decompose in terms of the element&'af/(G) and is written as
¢ =Yuta ... Y forl <1 <s.

Definition 5.22 For a (k + s, k) group codeC over G, defined by the homomorphisms
{b1, P2, ..., 05}, thek x s matrix overEnd(G), denoted by?,

T
T — ?ﬂlzl ¢.22 ¢.28 (5.21)
| Uk ke o ks |

whereg; = Yyibq .. .Yy, forl =1,2,..., s, is called the associated matrix of the code
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Every matrix of the form (5.21) defines(& + s, k) group code ovet;. Moreover, when

this matrix operates on an element;, z», ..., z;) € G* (information vector) gives the
check vecto(zy 1, Tp1o, .. ., Trys &S given below:
[Tra1 Thao - Tpys| = [T1 22 . 2|0
or
[ka L4+ - .Tk_,_s]tr = \I/tr[.itl To ... xk]tr

wherezy; = Yu(z1) ® Yy(xe) ® ... (zy) for i = 1,2,...s. The generator matrix

which operates on an information vector gives the corredpancodeword is given by

¢I ¢e ¢e ‘ d]ll ¢12 d]ls

wle wl w.e ‘ ¢21 ¢22 ¢2s (522)

| e Y o U | Ul Yk .. Uk |
The associated matri in (5.21) is over End(G) which is in general a non-commutative
ring. In the case of linear codes o\@F'(p™) the associative matrix i is overG F(p™).

In the case of codes over cyclic group of cardinatity C,,,, the associated matrix is over
Zm, @ commutative ring. For codes ow@rthe associated matrix in general is over a non-
commutative ring and the conventional notions of determtimand singularity of matrices

do not carry over directly.

Theorem 5.3 A (k+ s, k) group code over, defined by homomorphisfig,, ¢o, . . ., ¢s}

is AM DS if and only if every(g, g + 1) submatrix of the associated matrix of the form

Visji Yija oo Yirjgs

Vigjr Yinja -+ WVinjgrs (5.23)

\Ilg,ngl =

L %gh djigh wigjgﬂ i

for1 <ip<g, 1< <(g+1),9=1,2,...,min{s, k}, has

e atleast ondg, g) submatrix which represents an automorphisni-éfor
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e if every(g, g) submatrix represents an endomorphisnt:éfthen the intersection of

the kernels of the endomorphisms is only the identity eleofe".

Proof: Consider the associated matrix given by equation(5.21pp8se all theg, g + 1)
submatrices satisfy the conditions given in this theoremhasxe to show that the code is
AMDS. Consider a codeword = (c1,¢a, .. ., Chy Chi1, Chr2, - - -, Chrs). We haveey,; =
1i(c1) B oi(e2) B ... B Uni(cy) for 1 < i < s. Suppose only irffcy, co, ..., ) only g
elements are non identity elements. Then we have the fallgvélationc,.; = v;,:(¢c;,) ®
Viyi(cjy) © ... @ Yy,(c;,) for 1 < i < (g +1). Since everyg, g + 1) submatrix has atleast
on (g, g) submatrix which is an automorphism or the kernel of endorhisrps represented
by the (g, g) submatrices are non intersecting atleast one of the eleamgntis an non
identity element. Since this is true for evefy, g + 1) submatrix of the associated matrix
the code iIsAM DS.

Now assuming that the code igV/ D.S show that the condition of the theorem is satisfied.
Choose a codeword of minimum weight. Let;,,c;,,...,c;, be nonzero elements in
Consider a set of homomorphismsg , ¢, . . ., ¥;,. If these homomorphisms are such that
they do not satisfy the conditions given in the theorem weshecodeword of weight
g+s—(g+1) = (s—1). Thenthe code is notathM DS. This is contrary to the assumption
that the code isAM DS. Thus the defining homomorphisms satisfy the conditionsmgiv
above .l

5.4.3 AMDS Codes over Cyclic Group’,,

We specialize to the case where the graugs a cyclic groupC,,, i.e., a cyclic group of
orderm. The set of homomorphisms which describd &/ DS code are described in the

following paragraphs.

Definition 5.23 An homomorphism : C* — (,, is called a distance non decreasing
homomorphisMiDN DH) if either K, = {€} or d,;,(K,) = 1, wheree'is the identity el-
ement of’%,, K; denotes the kernel gfandd,,;,, stands for minimum Hamming distance.

Lemma 5.3.1 An homomorphism, fromC* to C,,, whereg, = ¢11¢s; ... ¢ IS DNDH

iff atleast one ofp;; for 1 < i < k is an endomorphism df,,.
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Proof: Assume thatis aDNDH. Therefore we know that,,;,(/;) = 1. This implies
that atleast one of;;(z;) is an endomorphism sineg;(x;) = e for z; # e. Similarly

assuming that one af;; is an endomorphism we can conclude thats anDNDH . [J

Lemma5.3.2 A (k+1, k) group code isAM DS if and only if the defining homomorphism
isDNDH

Proof: Assuming that the defining homomorphism/isV D H we can prove that the: +
1,k) code is anAM DS as follows. Essentially have to show that = 1. This follows
from the definition of DNDH, i.e.,d,,in (K, ) = 1.

Assuming that the code M DS, we havel,,;, = 1. Therefore there existsiatuple xin
G* with weight one such that(z) = e. Therefore it follows thatl,,;,, (K,,) = 1. O

The definition of DN D H can be extended to a set of homomorphisms frontCtheo C,,,,
whereC,, is a cyclic group(* is a direct product of the cyclic group, as follows:

Definition 5.24 Let {¢}i=; denoted asb, be a set of homomorphisms fratf, — C,,
denoted asb(,). Let K, 4, ,, denotek, N K, N ... K4 whereK,, is the kernel of
¢;. ¥, is said to be a distance non decreasing set of homomorphidm€$DSH), if the

following conditions are satisfied:
e the homomorphisms do not constitute a seDét H
o forall 1 <r <sdnin(Kg, ¢,..00,) > 7 OF
b K¢i1¢i2---¢i7- = {5}

Lemma 5.3.3 A (k+ 2, k) group code is ami M DS code if and only if the defining homo-
morphism® = ¢;¢,, constitute aDNDSH.

Proof: We can prove this lemma along the lines of the characteorat (k+1, k) AM DS
codes. Initially assuming that homomorphisms &#& DS H we prove that the code is
AMDS, i.e., we show thad,,,;,, = 2.

e To prove thatd, = 2. Since thed is set of DNDSH. Eitherd,,;,(K,,) = 1 or
Amin(Ky;) = 2 fori € {1,2}. If dpn(Ky,) = 1fori = 1 ori = 2 then the
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corresponding; is an endomorphism. Without loss of generality we can takel.
For anz € G which in the kernel ofy; the weight of the codeword & Therefore
dmin = 2. Hence the code idM DS.

o If dypin(Ky,) = 2fori = 1 andi = 2 then bothg; and ¢, are automorphisms.
In this case ifd,,;,(K4,4,) IS also3 the code isM DS. Then it follows that the
homomorphisms are nd@ N DSH. Therefored,,;,,(K,,4,) = 2. Hence there exists
x € G* such thatt € K. Therefore thel,,;,, i.e,d; = 2. The code isAM DS.

To prove in the reverse direction we assume that the codeVighS and show that the
defining homomorphisms constitutelaV DS H. The (k + 2, k) code over the group’,
is AM DS implies thatd; = 2. We will show that the defining homomorphisin= ¢, ¢,
isaDNDSH.

o d;, = 2 this implies that eithed,,;,, (K4, 4,) iS 2 Or d,,in (Ky,) = 1 fori € {1,2}.
dmin(Ky,), for i = 1 or2 equals tal implies that atleast one of the component homo-
morphisms ofp; is an endomorphism. In general we can say that (/,,,) > 2.
or d,,in(Ky;) > 1. Moreover also note that inequality fdf,;,(Ks) is not a strict
inequality as in the of DISH [76]. Therefore the defining hanophisms constitute
asetof DNDSH.

O

Theorem 5.4 A (k+s, k) group code isAM DS if and only if the defining homomorphisms
d, constitute aset adb NDSH.

Proof: The proof is along the lines of the proof fok + 2, k) AM DS group code.
Assuming that the set of homomorphisfs,, ¢o, ..., ¢s} constitute a set oONDSH
we will show that thelk + s, k) code iISAMDS. Since® = ¢1¢, ... ¢ constitute a set
of DNDSH there exitsg;, ¢, ...¢;, wherel < r < s such thatdmm(K%gbiQ,,%) =
r. Therefore there exists € G* such thatr € Koy, 61t with Hamming weightr.
Therefore the Hamming weight of the associated code wordHgs — r) = s. Therefore
dmin Of the (k + s, k) code iss. Hence the code idM DS.
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Now assuming that the code &M DS to show that the set of defining homomorphisms
constitute aDNDSH. Since the code islM DS we know that thei,,;,, of the (k + s, k)
code iss. Choose a code word with minimum weight. Let the number of it@mtity
elements in the chosen minimum weight codeword in the lonaftik + 1,k +2,..., k +

s) ber (i.e. the number locations where identity element occurs is r)). Therefore
there exist a set of homomorphismgg;, ... ¢:, , such thatd,.i,(Ky, 4,6, ) = (s —
r). In generaldminK¢ll¢i2,,,¢ir > r for everyr, wherel < r < s. Hence the set of
homomorphisms constitutelaN DS H. This completes the proof.]

Let C' be an(n, k) systematic group code ovél, defined by homomorphisms for 1 <

i < (n — k). Then itis shown in [77] that the dual of the codedenoted ag"* is an
(n,n — k) code defined by, ¢, .. ., ¢ whereg, ; = ¢¢.. In terms of generator matrices
if [/ | ®] generates the code then it dual has the generator matii®?)™" | I], where[®9]

is the matrix obtained by replacing each entnj®f by its dual.

Proposition 5.4.1 An (k + s, k) code over a cyclic group i& M DS if and only if

¢ the defining set of homomorphisnis,constitute a set db NDSH
e the dual of the defining set of homomorphistihsalso constitute )N DSH.

Proof: The proof follows from the fact that if the code as well as itsdareAN DS then
the code iSVM DS. From the characterization of M DS code we know that the code is
AMDS if and only if the defining homomorphism is DNDSH. Therefor¢hie defining
homomorphism and its dual afeN DS H the code iSVM DS. (J

5.4.4 Matrix Characterization of AM DS Codes over Cyclic Groups

Every endomorphism af’,, is uniquely defined by the image of the generatof’gfunder
the endomorphism. Moreover, the ring of endomorphisms,gfis isomorphic toZ,,, the
ring of integers modulen. An endomorphisna(g) = ¢g*, whereg is the generator of’,,, is
an automorphism if is relatively prime ton, or equivalently\ is a multiplicative unit in
theringZ,,.

Definition 5.25 For a (k + s, k) group codeL overC,,, given by

L=A{(xy,...,¢k,01(x1, ... xk), ..o, s, ..oy xp)) /2 € Cppyi = 1,2, k) (5.24)
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the k x s matrix overZ,,, denoted by\, A = [\;;]ixs Whereg; = 1495 ...y, for

j=1,2,...,sandv;;(g) = g™ wherei = 1,2,...,k, is called the associated matrix of
the code L.
The generator matrixs of L can then be written a& = [I«x | A], wherel,,, denote

the (k x k) identity matrix, and the codeword corresponding to the rimfation vector
(x;, 29, ..., xx) IS given by[zz5 ... 2x] G. The dual codes of group codes over abelian
groups have been characterized in [76], [77]. Specializigcharacterization to codes
over cyclic groups leads to the following.

Theorem 5.5 [77] If the generator matrix of group code over a cyclic groigg/ | A],

whereA is the associated matrix. Then the generator matrix of the dode is|—A” | I].

It is easy to see that the for evefy + 1, g) submatrix of—A” has atleast ongy, g) sub-
matrix whose determinant is a unit &fy, if the associatedg, g + 1) submatrix ofA has
atleast on€g, g) submatrix whose determinant is a unitf; .

The parity check equations arg,, = X z;\;,, v = 1,2..., s which when put in the

matrix form, become
[_AT | - [SXSHxl7 Loy axk’-i-s]T == [Osxl] (525)

The parity check matrix, denoted W, is given byH = [—-AT|I,,,].This parity check
matrix H can be obtained from the parity check matrix given in [6], @il group codes
over abelian groups by specializing to cyclic groups. Theamted matrix of a group code
uniquely defines the code. Therefore follows that a necgssardition for a group code
overC,, to be AM DS is that all the entries of its associated matrix repredemDS H.

The complete characterization is given in the followingattesn.

Theorem 5.6 A (k+s, k) group codel, = (1, ..., Tk, P(ay,...zp)s - - - > Ps(T1, - - -, Tp)) OVEr
Cnis AMDS iff

e Considereveryh, h+1) submatrixh = 1,2,..., min{s, k}, of the associated matrix.
Then the determinants 0k, h) sub matrices of eacth, h + 1) submatrix satisfy the
following condition: atleast one of them has a determinahiciv is a unit inZ,,, or

the greatest common divisor of the determinants is a unit,in
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Proof: This is same as the characterization of thef D.S code overZ,, (theorem(5.1))0]
Give the associated matrix of &h + s, k) code over the cyclic group we know the associ-
ated matrix of the dual code. If the code is generateffljyA| the dual code is generated
by [-AT | I]. Also if the sub matrices of-A” | I] satisfy the conditions needed for the
code to beAM DS then the(k + s, k) code isSNMDS. This is stated as the following

theorem.

Theorem 5.7 A (k+s, k) group codel = (21, ..., %k, Oy, ..ap)s - - - » Ps(T1, ..., T)) OVEr
C,,iIsNMDS iff

e Considereveryh, h+1) submatrixa = 1,2,..., min{s, k}, of the associated matrix.
Then the determinants 0k, h) sub matrices of eacth, h + 1) submatrix satisfy the
following condition: atleast one of th&, i) submatrix has a determinant which is an
unit in Z,, or the greatest common divisor of the determinant§of) submatrices

isaunitinZz,,. are pairwise relatively prime.

e Consider everyh + 1, h) submatrix,h = 1,2, ..., min{s, k}, of the associated ma-
trix. Then the determinants 6k, #) sub matrices of eacth + 1, ) submatrix satisfy
the following condition: atleast one of them has a determinehich is an unitinz,
or the greatest common divisor of the determinant&:of.) submatrices is a unit in
Zm.

Proof: Follows is same as characterization/ofi/ DS codes overZ,, (theorem(5.1))]
5.4.5 Nonexistence Results of M DS codes over Cyclic GroupC,,

m is a Power of a Prime

In this section we restrict our discussion to the case wheie a power of a prime say
m = p?.

First we consider the casés + 1, k) and(k + 1, 1) codes over,..

For (k + 1, k) codes the associated matrix is of the forki Aoy ... A ]T where each
entry is an element of .. If atleast one\;; is a zero divisor then the code is an\/ DS
code. Each entry can occur any number of times.
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Lemma 5.7.1 OverC,q, (k + 1,k) AM DS groups codes exist for all values kfp andd

if all there exits at least one entry in the associated matitixch is a zero divisor.

For (k + 1,1) codes, dual of a thék = 1, k) code, the associated matrix is of the form
[—=A11 — Aa1 ... — A1) where each entry is an element Bf.. If the greatest common
divisor of every pair(—\;;, —A;1) is is an unit inZ,. then the code is arlM DS code.
Therefore form = p? any multiple ofp occurs once and all the other\;;’s are unitinZ,,.

This can be stated as an lemma as follows:

Lemma 5.7.2 OverCpq, (1 4+ k,1) NM DS groups codes exist for all values pandd if
the following conditions are met Lét \;; — o1 ... — A1) be the associated matrix.

e greatest common divisor of every pdir\;;, —\;1) is an unit in Z,« or one of the
elements of the pair is an unit i«

e one of the—\;;) is a zero divisor.

Proof: Follows from the condition on everyl, 2) submatrix of the associated matrix
(theorem(5.1))

Consider(k + 2, k) codes over’,.. The associated matrix is of the form

A A |
)\21 )\22 (5 26)

N e |
where);; € Z,4,Vi = 1,2;5 = 1,2,..., k. Taking all the entries to be units, for the code
to be AM DS, we require that for anyl x 2) sub matrix the greatest common divisor of

the elements be an unit if,, or one of the(1, 1) submatrices is an unit i,,,.
Lemma 5.7.3 OverC,q, (k+2, k) AM DS groups codes exists for all valueskofp andd
Consider the dual oft + 2, k) code, i.e. thék + 2,2) code. The associated matrix is

A1 A .. =l

(5.27)
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For the dual code to bd M DS every(2, 3) sub matrix of the associated matrix h@s2)
submatrices whose determinants are pair wise relativétpepor has atleast ongy, g)
submatrix which is an unit. Therefore the maximum possiefeth is2 + 2 + 2(p — 1).

Since there arép — 1) units, two information symbols and one zero divisor.

Lemma 5.7.4 OverC,q, (k+2,2) AM DS groups codes exists for valuesiok 2+2(p —
1).
We can generalize the above result as follows:

Theorem 5.8 OverC,q, for all values ofd and fors > 2,k > 2, (k+s,s) AM DS groups
codes exist fok <2 +2(p — 1).

Generalm

Let the prime factorization of the integet be p{' p@2p® . .. p, wherepy, ps, . .., p, are

distinct primes.

Lemma 5.8.1 Over C,,, wherem = p{'p22ps® ... pd, with all primes distinct(k + s, s)
AMDS group codes, for alls, k& > 2, do not exist ift > r + 2(p — 1), wherep =
min{p, ps, ..., p.} andr is the number of distinct primes in the prime factorizatiémo

Proof: Let the associated matrix of @& + s, k) group code over,, be A. Consider
every (1,2) sub matrix ofA. Either one of the entries is an unit i, or the greatest
common of divisor is one. This holds for evefy, 2) submatrix. Therefore each row can
have utmost zero divisors corresponding to some power of the distinobes. Also every

(2, 3) submatrix has &2, 2) submatrix whose determinant is an unit or the greatest cammo
divisor of the determinant di, 2) submatrices is one. Therefore each row can have utmost
two units which lie in the same coset modulo the smallest @dmisor ofm. Putting both

the conditions together we get the resuit.

For the dual code the result can be stated as follows:

Lemma 5.8.2 Over C,,, wherem = ppf2pds ... pdr, with all primes distinct, Consider

the dual of(k + s,s) AM DS group codes, for alk, k > 2. Such codes do not exist if
s>r+2(p—1), wherep = min{py, pa, ..., p.} andr is the number of distinct primes in
the prime factorization ofn
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Combining the two lemmas we can state the following resulifd@/ DS codes as follows:

Lemma 5.8.3 Over C,,, wherem = p' pPpls .. pd, with all primes distinct(k + s, s)
NMDS group codes, for alk, & > 2, do not exist if mags, k} > r + 2(p — 1), where
p = min{py, pa, ..., p,} andr is the number of distinct primes in the prime factorization

ofm

Note that for the code to b®¥ M DS the code as well as its dual must B8/ D S.

5.5 Conclusion

In this chapter we have obtained the systematic generatwixuharacterization oM DS
and NM DS codes overZ,,. Further we have characterized/DS and NM DS codes
over abelian groups. Specializing to cyclic groups we hav&ioed systematic gener-
ator matrix characterization fod M DS and NM DS codes. We have also obtained non-
existence results for these codes over cyclic groups. fitésésting to see if it is possible to
obtain a quasi-determinant type of characterization4af DS codes over abelian groups.
This is a interesting direction for further work.



Chapter 6

Matrix Characterization of Linear
Codes with Arbitrary Hamming Weight
Hierarchy

6.1 Introduction and Preliminaries

Let C be an[n, k| linear code over,. Let x(C') be the support of’, defined by, (C) =

{i | z; # 0forsome(xy, zs,...,x,) € C}. Ther-th generalized Hamming weight 6f is
then defined ag, (C') = min{| x(D) |: D is anr — dimensional subcode of }428], [29],
[72]. The sequencéd,(C),dx(C), - ,di(C)) is called the Hamming Weight Hierarchy
(HWH) of C'. The notion of HWH has been found to be useful in several apptins.
The HWH characterizes the performance’bbn the Type-Il wire-tap channels [44]. The
HWH also finds application in the following areas: state ctaxipy of trellis diagrams of
codes [32], t-resilient functions [72] and designing coftethe switching multiple access
channel [61].

Alinearn, k, d| code satisfying the Singleton boudd< »n — k + 1 with equality is called a
Maximum Distance Separable (MDS) code [51]. All Reed-Saar{RS) codes are MDS.

IpPart of the results of this chapter has appeared in [67] anel beaen communicated as [70]

102
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The lengths of RS codes are at most the size of the alphabéteswe are short. Moreover,
all known MDS codes are such that there is an RS code (withtstigpdifications) with
identical parameters [74]. The problem of obtaining the imek length of MDS codes,
in general, is still open. Algebraic Geometric (AG) coded][are a generalization of
RS codes with minimum distances deviating from the Singlémund by a small quantity
known as the genus of the curve over which the code is defindthaiength of the code is
determined by the number of rational points on the curveakk shown in [59] that the class
of AG codes contains codes that exceed the Varshamov-@&llband [39]. Hence, to find
long codes, codes with minimum distance not reaching thgl&ion bound, but deviating
from it only slightly need to be studied in general. An exjlapproach to this problem
was developed by Dodunekov and Landgev [15; 16] by consigé¥iear-MDS (NMDS)
codes. The class of NMDS codes contains remarkable repgeds®s as the ternary Golay
code and the quaternary [11,6,5] and [12,6,6] codes as weilllarge class of Algebraic
Geometric codes [19]. The importance of NMDS codes is thatetlexist NMDS codes
which are considerably longer than the longest possible Mb&s for a given size of
the code and the alphabet. Also, these codes have good etemtidg capabilities [17].
Generalizations of NMDS codes like AlImost-MDS codes [10] apveral classes classes
of codes with distances close to Singleton bound have beelest[43]. One such class
of codes is the Near-Near-MDS codes, which we denoté&/ByMDS codes [42]. Other
classes of codes with generalized Hamming weights closeaaéneralized Singleton
bound includeA#-MDS codes, duallyA*-MDS codes [43]. The generalized Singleton
bound for ann, k] codeC' is given by

d.(C)<(n—k+r); 1<r<k (6.1)

and it is well known fact that the sequence of generalized iHang weights is strictly
increasing [72], i.e.,

and the HWH of a code is related to that of its dual cateas follows:
{d.(C)|r=1,2,.,k} U{n+1-d.(CH)|r=1,2..,n—k} ={1,2,...,n}. (6.3)

AMDS (Almost-MDS), NMDS (Near-MDS), N2-MDS (Near-Near-MDS) and A#-MDS
Codes : Linear[n, k, d] codes meeting the generalized Singleton bound 6.1 withliéggua
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foreveryr; 1 < r < k are MDS codes. Almost-MDS (AMDS) codes are the class of
codes withd; (C') = n—k andd;(C) < (n—k +1) forall 2 < i < k. Near-MDS (NMDS)
codes are those with the following HWH; (C') = (n — k) andd;(C') = (n — k + 1) for

i =2,3,4,..., k. Equivalently a code is NMDS iff thé,(C') = n — k andd,(C*) = k.
Near-Near-MDS Codes\(>-MDS) are codes with the property that(C) = (n —k — 1),
d2(C) = (n—k+1)andd;(C) = (n —k+1)fori = 3,4,...,k[43], [42]. A*-MDS
codes are those with the property thatC') = (n —k+ 1 — u) andd;(C) < (n — k + 1)
fori =2,3,...,k[43].

An [n, k] code is a NMDS iffl; (C) +d; (C*) = n, whered, (C) is the minimum Hamming
distance of the code ant] (C*) is that of the dual code [15]. This implies that pn &]
NMDS as well as its dual code are AMDS. NMDS codes can be ctearaed in terms of
their check matrices and generator matrices as follows [ASinear [n, k] code is NMDS

iff its check matrix satisfies (i) any — £ — 1 columns of the parity check matrix are linear
independent, (ii) there exists a setrof- £ linearly dependent columns in the parity check
matrix and (iii) anyn — k£ + 1 columns of the parity check matrix are of rank- k. A linear

[n, k] code is NMDS iff its generator matrix satisfies (i) aly- 1 columns of the generator
matrix are linear independent (ii) there exists a set hearly dependent columns in the

generator matrix and (iii) ank + 1 columns of the generator matrix are of rahk

Definition 6.1 (Defect, MDS-rank and Dually A*-MDS codesYhe defecy,;(C) of the
i-th generalized Hamming weight of a codeis defined as.;(C) = n — k +i — d;(C)
(1;(C) is zero for MDS codes for evefyl < ¢ < k) and the MDS-rank of am, k] code
C'is defined as the smallegtsuch thatd, ., = n — k +n + 1. A*-MDS codes are a class
of codes wherg, (C) = p, i.e.,d;(C) = n—k+1— p. Dually A*-MDS codes are a class
of codes consisting codéssuch thatu; (C) = u, (C*) = p.

Itis well known that a linear MDS code can be described in teoints systematic generator
matrix as follows: a linear code with systematic generatatrir [ | P| is MDS iff every
square submatrix of is nonsingular. Since MDS codes are characterized by the HWH
d.(C) =n—k+rforl <r <k, the systematic generator matrix characterization of MDS
codes can be viewed as the systematic generator matrixatbazation of linear codes with

specific generalized HWHL. = n—k+r; 1 <r < k. Inthis chapter, we generalize this
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characterization to all linear codes in terms of their HWHe &¥50 generalize the classes of
NMDS andN2-MDS codes to what we calV#-MDS codes and characterize these codes
in terms of their systematic generator matrices using tiesipective HWH. Codes meeting
the generalized Greismer bound are also characterizedhns t&f their systematic generator
matrices and the systematic check matrix characterizamorthe HWH of dually defective
codes meeting the generalized Greismer bound are alsaeepor

The contents of this chapter is organized as follows: IniSeds.2 we discuss the sys-
tematic check matrix characterization of an arbitrary ineode with a specified HWH.
We apply this systematic matrix characterizationitt MDS codes, NMDS codes and?-
MDS codes. Section 6.3 describes a class of codes which @se th Singleton bound
called theN#-MDS codes and presents their systematic matrix charaetesn. This class
of codes include4#-MDS codes, NMDS codes amdi>-MDS codes. In Section 6.4 we
define a class of codes which we call dually defective codé® matrix characterization
of dually defective codes as well as of codes meeting thes@rei bound are obtained. We
also arrive at the conditions for dually defective codes &etthe generalized Greismer
bound.

6.2 Systematic check matrix characterization in terms
of HWH

The following result from [21] gives a check matrix charatation of the HWH for a
linear code which we will make use of to prove our main restaspnted in Theorem 6.1.

Proposition 6.0.1 An [n, k| codeC' with MDS-ranku, and a check matri¥/ has the HWH
{di(C) | 1 <i<k}iff

1. For everyi, every(d;(C') — 1) columns ofH has rank greater than or equal to
(di(C) — 1)

2. There existd;(C') columns ofH for everyi, with rank equal tqd;(C) — 7).

3. Every(n — k + u) columns ofH are of full rank.
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Forn, k] linear MDS codes or equivalently for linear codes with the HW/(C') = n—k+i
foralli = 1,2, -, k the systematic check matrix characterization assumeshteatheck
matrix is in the form I | P] wherel is the(n—k) x (n— k) identity matrix. Since for MDS
codes any: coordinate positions can be taken as information symbalgt@remaining as
check symbols there always exists such a systematic cheirikmdowever, this need not
be possible for arbitrary linear codes in general. But witliadble column permutations on
the check matrix one can obtain a check matrix in the systerfwatn [/ | P] which in the
strict sense is a check matrix for an equivalent code obddiyehe coordinate permutation
corresponding to the column permutations that led to theesyatic form. In the sequel, we
will always assume that the code under consideration hasekahatrix in the systematic
form [I | P] with the understanding that we are dealing with the corredp@ equivalent
code. Then the conditions o should be taken as conditions on the submatrix of the
original code that correspond to check positions. With thiderstanding we present our

main result in the following theorem.

Theorem 6.1 An [n, k] code with parity check matril = [I | P] and MDS-rank) has
the HWH,{d;(C) =n — k + i — 11;(C)} wherey;(C) > 0 for 1 < i < k iff the following

conditions are satisfied:

1. Fori < g <min{d;(C') — 1, k}, every(g + 1;(C) + 1 — i) x g submatrix ofP has
rank> (g — i+ 1).

2. There exists g, < g < min{d;(C), k}, such that the rank of & + 11;(C') —i) x g

submatrix ofP is (g — 7).

3. For1 < g <min{(n — k), (k —n)} everyg x (g + n) submatrix ofP has rankg.

Proof: We establish equivalence between the conditions of Propn$.0.1 and Theorem
6.1. In the Part (i) of the proof we prove that the conditioh$?mposition 6.0.1 imply
those of Theorem 6.1 and in Part (ii) we prove the converse.

Part (i): Letd;(C) = n — k + ¢ — p;(C). From the condition 1 of Proposition 6.0.1, we
know that every(n — k + ¢ — 1 — u;(C')) columns of H has rank greater than or equal to
(n —k — u;(C)). Choose asetdfin —k+i—1— u;(C)) columns ofH. If all these
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columns are from thé submatrix then thén — k) x (n — k +i — 1 — u;(C)) submatrix
of P has rank greater than or equal (e — & — 1;(C)) which indeed is the condition 1
of Theorem 6.1. Consider the case whereolumns are from the® submatrix. Then
(n—k+i—1—1,;(C)— g) columns are from thé submatrix of . The rank of these
(n—k+i—1—pu,(C)—g)columnsisn —k+i—1—pu;(C)— g). Hence thgy columns
from the P submatrix ofH have rank greater than or equal(tp— i + 1). Therefore every
(9 + 1:(C) — i+ 1) x g submatrix has rank greater than or equaldo- i + 1), where
i < g <min{d;(C)—1,k}. The range of follows fromg < k, (¢+u;(C)—i+1) < (n—k)
and(g —i+1) > 0.

Using the second condition of Proposition 6.0.1 we provegheond condition of our
theorem as follows: Choose a set(of— k + i — u;(C')) columns ofH with rank (n — k —
w1 (C)). If all these columns are fron®, then we have & — k) x (n — k + i — u;(C))
submatrix ofP with rankn—k—p;(C). Letg’ of the(n—k—+i—p;(C)) columns be from the
P submatrix. Therin—k+i—u;(C')—g’') columns are frond. Thesen—k+i—p;(C)—¢g’)
columns of thel submatrix have rank equal t@ — k& + i — u;(C') — ¢’). Therefore in the
set of g’ columns from theP submatrix we have &' — i + p;(C')) x ¢’ submatrix of P
with rank (¢’ — 7).

Now from the third condition Proposition 6.0.1 we establtkle third condition of our
theorem as follows: Consider a set(af— k£ +7) columns ofH. Let g of these columns be
from the P submatrix and the remainini@ — & +n — g) columns be from thé submatrix.
The rank of the columns from thesubmatrix is(n — k + 1 — g). Theg columns of theP
submatrix has @ x (g + 1) submatrix of ranky. If all the n — k£ 4+ n columns ofH matrix
are fromP we have anin — k) x (n — k + n) submatrix of rankKn — k). This completes
Part (i) of the proof.

Part (ii): To prove the first condition of Proposition 6.0plck any (g + p;(C) —i+1) x g
submatrix fromP. Take a set ofn — k +i— 1 — 1;(C) — g) columns from the submatrix
such that these columns have zeros in (the- 1;(C) — 7 + 1) rows associated with the
(9+ pi(C) —i+ 1) x g submatrix ofP. The(g+ u;(C) —i+ 1) x g submatrix has rank
(n—k—pu;(C)). Since we have chosen an appropriate set of columns frothgbbmatrix
of H, the(n — k + ¢ — 1;(C)) columns ofH has rank> (n — k — p;(C')) = sum of the
ranks of the columns from thesubmatrix and thé” submatrix ofH.
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The second condition of Proposition 6.0.1 is obtained frbm $econd condition of our
theorem as follows: From our second condition, it followattthere exists &' + ;,(C) —

i) x ¢’ submatrix of P with rank equal t ¢’ — i + 1). Choosgn — k +i — 11;(C) — ¢')
columns from the submatrix ofH such that these columns have zeros intfe ;(C)—i)
rows associated with thg' + u;(C) — i) x ¢’ submatrix ofP. These columns have rank
(n—k+1i—w(C)—g¢). Thus we havén — k + i — 11;(C)) columns of H with rank
(n — k — p;(C)) which is equal to the sum of the ranks of columns from freibmatrix
and theP submatrix.

The third condition of Proposition 6.0.1 follows from ourirth condition i.e., every x

(g + n) submatrix of P has rankg as follows: Considefn — k — g) columns from the/
submatrix. Choose these columns frdrsubmatrix such that they have zeros in all the
rows associated with the x (g 4+ 1) submatrix ofP. Then we havén — k + n) columns
with rank (n — k). This completes the proof

The well known systematic check or generator matrix charaation of MDS codes is
obtained from Theorem 6.1 by putting (C) = 0. From the second condition of the
theorem we see that evegyx g submatrix of theP” submatrix has rank. This systematic
generator matrix characterization is used for constrgdiitiDS codes in [47].

Now we apply our systematic parity matrix characterizawwdmheorem 6.1 to other well
known codes which are close to meeting the generalized &mgbound in the following
sections.

6.3 N#-MDS Codes

We generalize the classes of NMDS aNd-MDS codes tq:-Near MDS codes as follows:

Definition 6.2 An [n, k] linear codeC is a u-Near-MDS code §¥#-MDS), wherel < i <
(n — k + 1), if it has the following HWH:

d(C) = m—k+r)—(u—r+1) if 1<r<(u+1)
= (n—k+r) if (p+1)<r<k. (6.4)

Clearly, » = 1 andu = 2 give the classes of Near-MDS and Near-Near-MDS codes
respectively. Note that the MDS-rank of &%'-MDS code is(x. + 1) and it follows from
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(6.3) that the dual of atv#-MDS is alsoN*-MDS.

Lemma 6.1.1[29] Let C be an[n, k] code with weight hierarchy;(C) : 1 < i < k.
Then(q" — 1)d;(C) < (¢" — ¢"Hd,.(C), 1<1<r <k. Specializing this té = 1 and
r =2gives(q + 1)d; < qds.

Lemma 6.1.2 For an [n, k| N#-MDS code ove¥;, we haven < 2¢ + k + (. — 1).
Proof: From Lemma 6.1.1 we have
(¢" = Ddr1(C) < (¢" = 9)dn(C)
and forr = 2
(@ =Dn—k—p+1) < (@ —q)(n—Fk—pn+3)
The above inequality leads to
n<2q+k+p—1. 0O

The following result from [14] is useful in proving Theoren?6 For any linear-ary code
C of lengthn = 1 + g,(k, d), we can select a generator matrix with codewords of weights

not exceeding + d, where

9q(k,d) = S [q (6.5)

)
=0 q

with [2] denoting the smallest integer not less than

Theorem 6.2 For ;4 > 1, an [n, k| N*-MDS code over-, is generated by codewords of
weights(n —k—pu+1),(n—k—p)and(n —k —pu—1). Ifn > g+ k+ p — 1 then the
code is generated by codewords of weight- £ — .+ 1) and(n — k — p).

Proof: From the Greismer bound we have

N

! [n—k—/le“

n>gkn—k—p+1)= -
q

3

(6.6)

Il
=)

The above equation leads to
n—k—-p+1

nzgq(kan_k—ﬂ+1)Z(n—k—u+1)+’V -

—‘+(k5—2)
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(6.7)
which gives
R 68)
Where(%} can take any value from, 2,..., (x — 1). But from Lemma 6.1.21 <
2+ k+ (n—1). Therefore(%} can take the valué or 2 which leads to
14+gkn—k—p+1)<n<2+g,k,n—k—p+1). (6.9)

Now using the result of [14] stated before the theorem statdgmn the structure of the gen-
erator matrices of linear codes, th&-MDS code is generated by code words of weights
n—k—pu+1l,n—k—porn—k—pu+1.1fn > qg+k—p+1thenn = 1+g(k,n—k—p+1).
Therefore the code is generated by codewords of weightsk — .+ 1) and(n — k — p).

O

Corollary 6.2.1 An|[n, k] code with parity check matri{ | P]is N#-MDS iff the following
conditions are satisfied:

1. Fori=1,2,... 1

(@) Fori < g <min{d;(C)—1,k}, every(g—2i+ 1+ u) x g submatrix ofP has
rank> (g — i+ 1).

(b) There exist g, i < g < min{d;(C), k}, such thatg — 2i + p) x g submatrix
of P has rank equal tdg — 7).

2. Forl < g <min{(n — k), (k — u)} everyg x (g + u) submatrix ofP has rankg.
Proof: This is a special case of Theorem 6.1. We know that the HWHN/6MDS codes
is

d.(C) = (n—k+r)—(p—r+1) if 1<r<(up+1)
= (n—k+r)if (u+1)<r<k (6.10)

Now 1;(C') = u — i+ 1 and substituting,;(C) = (u—i+ 1) for 1 < i < pin Theorem
6.1 the result follows]
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Example 6.1 The binary code with the following generator matrix i§la, 4, 4] N3-MDS

code:

[ 1
0
0

0

0
1
0

0

0
0
1
0

0
0
0
1

e N S S

1
0
0
1

—_ = = =

—_ = = O

1
1
0

0

1
0
0
0

and the binary code with the following generator matrix i8a4, 4] N3-MDS code:

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

1
1
0
0

e J S

e =)

.
0
e
0_

It is easy to check that all the conditions of systematic inatraracterization are satisfied

for the two codes of the above example.

Corollary 6.2.2 : An [n, k] codeC with parity check matri/ | P] is N*-MDS iff the

following conditions are satisfied:

1. Forl < g <min{(n —k — 2),k} every(g + 2) x g submatrix ofP has rank> g.

2. For2 < g <min{(n — k), k} everyg x g submatrix ofP has rank> (g — 1).

3. Forl < g <min{(n—Fk—

(g—1).

1), k} there exits g g + 1) x g submatrix ofP with rank

4. For2 < g <min{(n—k+1),k} there exits g — 1) x g submatrix ofP with rank

(g —2).

5. Forl < g <min{(n — k), (k —2)} everyg x (g + 2) submatrix ofP has rankg.

Corollary 6.2.3 An [n, k] code with parity check matri} | P] is NMDS iff the following

conditions are satisfied:

o Forl < g <min{(n—k—1),k}every(g+ 1) x g submatrix ofP has rank> g.
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e Forl < g <min{(n—k), k} there exists g x g submatrix ofP with rank equal to
(g—1).

o Forl < g <min{(n—k),(k—1)}everyg x (g + 1) submatrix ofP has rankg.
Corollary 6.2.3 has been reported in [65] as an indepenasudtrwith different proof.

Lemma 6.2.1[42]If k > ¢ > 3andn < 2¢q — 1 + k then everyn, k, (n — k — 1)] codeC'
is an N2-MDS code.

Corollary 6.2.4 For k > ¢ > 3 andn > 2q — 1 + k, a code with the systematic parity
check matriXI | P]is N*-MDS iff every(g + 2) x g submatrix ofP has rank> g.

Proof: This corollary is obtained by combining following two retuil (i) for the given
range ofn and &k any code withd,(C') = n — k — 1 is a N2-MDS code (follows from
Lemma 6.2.1 and (ii) the systematic matrix characteriragjoren in Theorem 6.1. We

substitute); = 2 in Theorem 6.1 to get this characterization\6f-MDS code.[]

Corollary 6.2.5 If n > (k + ¢) the [n, k] code with systematic parity check matfik =
[I'| P]is NMDS iff everyg + 1) x g submatrix ofP has rankg.

Proof: This corollary is obtained by using the fact for the givengarof £ andn any
(n — k) code is a NMDS code. Therefore all we need to show isdh@f) = n — k. We
know thatd, (C) = (n— k) iff every (n—k—1) columns ofH are linearly independent and
there exis{n — k) linearly dependent columns. Therefore if follows that gugr+ 1) x g
submatrix of theP” submatrix has rank. Therefore the result follows.].

The above result is useful in decoding codes for the erahaerel [39], [35], [36].

Example 6.2 The binary code with the following generator matrix i$3a3, 4] N2-MDS

code
1 001 1100

010100171
00100111
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and the code with the following generator matrix i&vd-MDS code oveFy

1 00 a alad
01 0 a% 01
001 0 01 at

Proposition 6.2.1 A codeC' is dually A#-MDS iff it's MDS-rank is.

Proof: The MDS-rank isu implies thatd,, ., (C) = n — k + ¢+ 1 andp + 1 is the first:
such that;(C) =n —k+ifor1 < i < k. Therefored,,(C) — d,(C) > 2. It follows
thatd,(C*+) = k + 1 — u. Therefore the code is duall§*-MDS. [J

Proposition 6.2.2 For an A#-MDS codeC' with parity check matrixd the following con-
ditions hold

1. Every(n — k — ) columns offf are linearly independent.

2. There existén — k + 1 — ) linearly dependent columns &f.

Proof: We haved;(C') = n — k + 1 — p. Therefore there exiteér — k + 1 — p) linearly
dependent columnd and every(n — k — u) columns ofH are linearly independeni]

The following corollary characterizes duall/-MDS codes.

Corollary 6.2.6 A systematic generator matrjx | P] is of a duallyA*-MDS codgC) iff
every(g + u,g) andg x (g + ) submatrix of theP submatrix has rank greater than or
equal tog.

Proof: For A#-MDS code to be dually defective we know that the MDS-ranktodse /.
The proof follows from Theorem 6.1 by taking = u. For A#-MDS codes we specify
only d;(C) and other Hamming weights are arbitrary. Therefore we neezhsure only
d;(C). Hence the result essentially follows from Theorem 611.

Example 6.3 Consider an4%-MDS code. For the code to be duallf-MDS the MDS-
rank of the code must bé Therefored;, = n —k+1—6andd;, = n —k+ 7 (7 is the
smallest value for which the code meets the generalizedeSimgbound). Therefore the

difference betweeng and ., of the code is at leadt Applying the relation 6.3 we see that
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(n+1)—(n—k+T7)whichis(k—6) and(n+1) — (n—k+5) = (k—4) are not elements
of the weight hierarchy of the dual. TherefeigC') of the dual code i$k — 5), i.e., iy of
the dual code is alsé.

Example 6.4 Consider arn, k| code of MDS-rank 2 and letits HWH Bén— k), (n—k+
1), (n—k+3),...,n}. Forthis code the HWH of the dual (s — 1), (k + 2), (kK + 3), ..., n.
Then, ifH = [I | P]is a parity check matrix of the code then the following capndg char-

acterize the code
e Every(g + 1) x g submatrix has rank.
e Everyg x g submatrix has rank- (g — 1).
e Everyg x (g + 1) submatrix has rank (g — 1).
e Everyg x (g + 2) submatrix has rank.

If G = [I | P]is a generator matrix of the code then the following condisicharacterize
the code

e Every(g + 2) x g submatrix has rank.
e Every(g+ 1) x g submatrix has rank (g — 1).

e Everyg x (g + 1) submatrix has rank.

6.4 Matrix Characterization of Dually Defective Codes

and Codes meeting Generalized Greismer Bound

We define

Definition 6.3 The defect vector of ajn, k] codeC with MDS-rank(n + 1) is defined as
ordered the sef;;(C), 12(C), ..., 1y (C), py41(C) }, wherep,(C) = n — k + i — d;(C).
(Note thatu,,(C) is equal to zero.) A code is called dually defective if theedebfector
is same for the code and its dual. The difference set of thectheéctor of arn, k| codeC'

with MDS-ranks is the ordered sef(y; (C) — pa2(C)), (u2(C) — ps(C)), - . ., (y-1(C) —
1q(C))s (1 (C) = py1(C)) }



6.4 Matrix Characterization of Dually Defective Codes amtl€s meeting Generalized
Greismer Bound 115

Example 6.5 Consider anN2?-MDS code. The defect vector{ig, 1,0} and the difference
setisthe ordered sg{2—1) = 1, (1—-0) = 1}. Therefore between the first three Hamming
weights of the code there is a gap. From Theorem 6.3 we seththBiWH of the dual code
is{di(C*) =k —1,do(CH) = n—k+1,d3(C*+) =n—k+3,...,d,(C+) = n}.
Therefore the defect vector of the dual cdtteis {2, 1, 0} and hence is dually defective.

This is shown in figure(6.1).

Example 6.6 Consider a code” with p;(C) = 8. For C to be dually defective it’s
MDS-rank should b® and (us(C) — ue(C')) > 1. Let the code have a defect vector as
{8,7,7,7,6,5,4,1,0}. The difference set i§l,0,0,1,1, 1,3, 1}. Sinceuy(C) = u3(C) =
wus(C) = 7 and ps(C) = 6 for the code to be dually defectiies(C) — uo(C)) =

1 and (u7(C) — ps(C)) = 3. Similarly sinceus(C) = 6 and ug(C) = 5 we have
(6(C) — ps(C)) = 1.

In figure(6.2) we have shown the defect vector of the codeedlettand that of the dual on
the right. The defect vector of the code is read from the taptha defect vector of the dual
it is read from bottom. The code is dually defective if thera symmetry in the difference
vector of the code read from the top and the defect vectoreotittal code read from the
bottom. In terms of the symmetry of the figure we can see thi ihan axis of symmetry.
About the axis of symmetry for every line with arrow aboveatkis there is a dotted line
below the axis at the same relative distance. Thereforedalydefective code we can see

an axis of symmetry.

Now we proceed to study the properties of the defect vector.

Lemma 6.2.2 For an|[n, k| codeC with MDS-ranky, we have:; (C') > u(C) > ... p, (C) >
tn+1(C).

Proof:  This result can be proved from the monotonicity of the HWH Wew that
di1(C) > di(O), e, (n—k+i+1—p1(C)) > (n—k+i— w(C)). Simplify-
ing the inequality we get the result(C') + 1 > p;1(C). O
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mu Values of mu Values of
Code Dual

Figure 6.1: The figure shows the defect vector for the Near NHAS code on the left side. The
defect vector for the dual is shown on the right hand side. Adld dotted line shows the axis of
symmetry. For every line with arrow above the symmetry alkex¢ is a dashed line without arrow

below the axis at the same relative position
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Figure 6.2: The figure shows the defect vector for the codéheridft side. The defect vector for
the dual is shown on the right hand side. The dotted line shiogvaxis of symmetry. For every line
with arrow above the symmetry axis there is a dashed lineowithrrow below the axis at the same

relative position
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Lemma 6.2.3 Consider arjn, k] codeC with MDS-ranky. ThenY ", (u:(C)—pi+1(C)) =
11(C).

Proof Since the MDS-rank of’ is  we havey,,.,(C) = 0. In the sum all terms except
p1(C) andp,1(C) cancel out. Therefore the sum is equalsfo O

The class of dually defective codes include the well knovassbés of MDS codesy*-
MDS codes and self dual codes. The following lemma gives tmalitions for a dually
A#-MDS code to be dually defective the proof of which followsrfr that of Theorem 5.27
of [43] in a straight forward manner,

Lemma 6.2.4 Let C' be an|[n, k, d] dually A*-MDS code overF;, with s > 2. If n <
s(g+1)—1+kand2 < s < ¢q. ThenC'is a dually defective code with (C') = n—k+1—s
andd;(C)=n—k+i—1for2 <i<s.

The following proposition gives the matrix characteripatiof dually defective codes.

Theorem 6.3 An [n, k] codeC with MDS-rankn and systematic generator matik | P]
is dually defective iff the following conditions are sagsfi

1. Fori < g < min{d;(C)—1,k}, every(g+pu;(C)+1—i)xgandgx (g+u;(C)+1—1i)
submatrix ofP has rank> (g — i + 1).

2. Thereexists a,i < g < min{d;(C), k}, such that the rank of evety —i+;(C)) x
gandg x (g — i + p;(C)) submatrix ofP is (g — 7).

3. Forl < g <min{(n—k),(k—n)} every(g,g +n) and(g +n) x g submatrix of
P has rankg.

Proof: Let us assume that is dually defective. Thew,;(C) = n — k + i — 11;(C) and
d;(C*t) = k + i — pu;(C). Therefore from Theorem 6.1 every submatrix-ef”, where
PT denotes the transpose Bf of the type(g + 1;(C) — i) x g have rank> (g — i + 1)

sinced;(C) = n — k +i — u;(C) [65]. For dually defective codé;(C) = k + i — u;(C).

Therefore everyg+ p;(C) —1i) x g submatrix of P matrix has rank> (g —i+1). Therefore
if follows that for every(g + u;(C) +1 —14) x g andg x (g + p;(C') + 1 — i) submatrix of
Phasrank> (g —i+1).
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The fact thatl;(C) = n — k +i— p;(C) andd;(C+) = k+1i— u;(C) leads to the condition
that there existg — i + 11;(C)) x g andg x (g — i + ;(C)) submatrices of such that the
rank is(g — 7). The third condition of the theorem follows similarly. Eslizhing that the
code is dually defective assuming the three conditiongagitt forward.[]

The following theorem which states the generalized Greidsoand is discussed in detalil
in [28].

Proposition 6.3.1 (The generalized Greismer bound)For an [n, k, d| code overF; we
haved,(C) > 312, [ 4] for1 <r <.
Theorem 6.4 If an [n, k, d] codeC over F, meets the Greismer bound then the code will

have a generator matrix whose structure is as follows:

di(C) dy(C) —di(C) d3(C) —da(C) ... dip(C) —dp1(C)

A~ = ~~ ~~
* 0 0 0
* * 0 0
(6.11)
* * * 0
* * * *

wherex denotes an element 6§, = denotes a non-zero elementigfand(d;; (C)—d;(C))

denotes the number of columns with the structure as shower iind

Proof: As the code meets the Greismer bound for all the values. afe can construct
the matrix in the proposition as follows. Since the minimuist@hce is/ we can choose
a generator matrix with the first row havinfjconsecutive non zeros followed by— d
zeros. Next we know that,(C') = d + (%‘1. Therefore we can choose a second row such
that firstd elements can be any element from the field foIIowedg)}/non zero elements
of the field. Thus we have constructed a two dimensional subeath supporid,(C)
meeting the Greismer bound. It is possible to construct neiils a sequence of zeros and
non-zeros as we can permute the columns of the generatoixmatinout affecting the
weight distribution of the code. We can repeat the abovetoactton for all d;(C') where

3 <1 < k. Thus we can construct the generator matrix for a code ngpétie Greismer
bound as given in the propositionl



6.4 Matrix Characterization of Dually Defective Codes amtl€s meeting Generalized
Greismer Bound 120

From this matrix characterization we can obtain the systenmaatrix characterization of
codes meeting the (generalized) Greismer bound by elemyeotia operations and permu-

tations of the columns.

Theorem 6.5 Consider ann, k] codeC' of MDS rankn meeting the generalized Greis-
mer bound with defect vectdny, o, .. ., o, fy41} @nd p, 1 = 0.Consider the differ-

ence set between successive elements of the defect #ggter 1), (10 — p3), - - ., (i —

Hit1)s - - (g — Bg) b

1. If (u1 — p2) > 1then the code is not dually defective.

2. Ifthe difference set between successive elements affénet dector i40, 1,1, .. ., 1, 2},

then the codé€’ is not dually defective.

3. Ifthe difference set between successive elements affénet dectorig1, 1,1, ..., 1},

then the codé€’ is dually defective.

Proof:

1. Consider the case whefg,(C) — u2(C)) > 1. For the proof we make use of the
equation(6.3) and the fact code meets the generalizedr@eisound.

Assume that a dually defective code meeting the generaltzedsmer bound exists
with (11 (C) — p2(C)) > 1. Letdy(C) = n—k+1— 11 (C) anddy(C) = n —
k+2— us(C). Letuy (C) — pua2(C) = 6 > 1. For the code to be dually defective
dy1(C)=n—k+n+1,d,(C)=n—k+n—1landd, ;(C)=n—k+n—i—1

for1 <i < (§ — 1). Since the code also meets the generalized Greismer bound we
haved,.,(C) — d,(C) = (%}. Since the code is assumed to be dually defective
we have(%} = 2. We also havel,(C) — d,_1(C) = (Zfﬂ. This difference
must be equal ta for the code to be dually defective. But this is not possiinee
47 — 2. Therefore the code does not meet the generalized Greissnadb This

q’7

is a contradiction.

2. Assume that a dually defective code meeting the genethal&reismer bound exists
with the given defect vector. Let,(C) = n —k+ 1 — 11y(C) anddy(C) = n —
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O

k + 2 — us(C). Note that hergi; (C') = us(C). For the code to be dually defective
dy1(C)=n—k+n+1,d,(C)=n—k+n—2andd, 1(C)=n—k+n—4.

Since the code meets the generalized Greismer bound wedhave€’) — d,,(C) =

(7 From that fact that the code is dually defective we hbq%é = 3. Moreover

q’7
d,(C) —d,_1(C) = (%1. This difference is equal to one for the ca@e But this
di(C

is not possible sincéq—n)} = 3. Therefore the code does not meet the generalized

Greismer bound. This is a contradiction.

. Assuming that the difference set between successiveselsmf the defect vector is

an all one set we will prove that the codgis dually defective. Sincg,,1(C) =0

we havep,(C) = 1. This follows from the fact that the difference between the
elements of the defect vector is one. Therefore from equéi8) it follows that
w1(C) of the dual code is also same as that of the code. Sin@g) of the code and
the dual is same and the difference between all the elemétihe aefect vector is
one all the successive elements of the defect vector of takahde also differ by
one (this follows from equation(6.3)). Therefore the codeall as its dual have the

same defect vector.

6.5 Conclusion

The systematic generator matrix of a linear code is unigdelacharacterization @f/ D.S

codes based on systematic generator matrix is well knowre We have given the system-

atic generator matrix characterization of a general lirezate with a specified Hamming

weight hierarchy along with several sub classes of codesNiKA/DS. We have also

discussed matrix characterization of dually defectivessogind codes meeting generalized

Greismer bound.



Chapter 7

Conclusions

In this thesis we have obtained results in the broad areapdripounds on codes. Explic-
itly we have obtained an Elias type upper bound for codes @ig¢ance uniform signal sets
and characterized codes close to the generalized Singtetamd.

We have obtained the asymptotic Elias type upper bound fargelclass of Euclidean
space codes over distance uniform signal sets. We also stabs over two, three, four
andn-dimensional signal sets and compare them based on theaiat@@dimensions.
Further we study codes which are close to the generalizegleédom bound and obtain
characterization based on the systematic generator matdx /N M/ DS codes we obtain
systematic generator matrix characterization. This tdsulseful to obtain nonexistence
results ofANM DS andN M DS codes over finite fields. Further the systematic matrix char-
acterization is useful when we consid€i\/ DS or AM DS codes over erasure channels.
FurtherAM DS and NM DS are characterized ovef,,, finite abelian groups and finite
modules over commutative rings. We obtain nonexistencelteefor these codes over
cyclic groups. A similar approach can be taken for non eristeresults for these codes
over finite R-modules.

Matrix characterization of codes with a given Hamming weiglerarchy is also obtained.
Based on the matrix characterization we study codes whielclase to the generalized
Singleton bound. These codes incluéte)/ DS codes andV# M DS codes. We also study
codes meeting the generalized Greismer bound in terms afytematic matrix character-

ization. We also define dually defective codes and obtaimtagix characterization.

122
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7.1

Directions for Further Work

In Chapter 2, Section 2.2 we obtain Elias type upper boondddes over distance
uniform signal sets. In general there exists several siggial which are not distance
uniform. These include the well known class of rectanguignal sets likeQ) AM.

In [27], [55] Gilbert Varshamov type lower bound is obtained codes over non-

uniform signal sets. It will be interesting to obtain an Eliigpe upper bound for

codes over signal sets which are not distance uniform.

For codes over finite sets with hamming distance as thaenké linear programing
bound gives the tightest upper bound [60]. The Elias uppeantas also discussed
[60]. In Chapter 2 and Chapter 3 we obtain an Elias type uppend for Euclidean
space codes over distance uniform signal sets. We also certipabound for Eu-
clidean space codes over several signal sets based on ¢hgeratwo dimensions.
But an upper bound based on an approach similar to lineargmugg bound is
not known for Euclidean space codes. This is another irtiagesrea for further

research.

In Chapter 4 we obtain a systematic matrix charactedmdtr N A DS codes. The
systematic matrix characterization &f D.S codes is used to construbtf DS codes
[47]. Itis known that every square submatrix of Cauchy neasiover finite fields
will be non-singular [39]. In the case of Vandermonde masiover finite fields
every square sub matrix need not be non singular [39]. Cocistn of M/ DS codes
using Vandermonde matrices is discussed in [35], [36]. Tdmstuction ofNAM DS
codes based on the systematic generator matrix charaattenzliscussed in Chapter

4 needs to be explored.

. In Chapter 5 we discuss the characterizatiomddf DS and NM DS codes over

finite abelian groups. Here we characterize only infornraget supporting codes.
The characterization of these codes over cyclic groupslaathe characterization of
systematicAM DS and N M DS codes overZ,,. Characterization of non systematic
AMDS and NM DS codes ovelZ,, is another possible area for further work. In

[78] a quasi-determinant characterization is given¥6pD S codes over non-abelian
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groups. Obtaining a quasi determinant characterizatioh/dfD.S codes is non triv-
ial since there exists component homomorphisms in the cterzation ofAM DS
codes which are not automorphisms. Therefore obtainingagigieterminant type
characterization fodM DS and N M DS codes is a challenging problem.

5. In Chapter 6 we consider matrix characterization of cooles finite fields with
arbitrary generalized Hamming weight hierarchy. The galwed Hamming weight
hierarchy of codes over finite chain rings is discussed if} §8@ codes over Galois
rings in [1]. Matrix characterization of codes over finiteagi rings with a given

Hamming weight hierarchy is an open problem.
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