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Abstract. For systematic codes over finite fields the following result is well known: If
[I|P] is the generator matrix then the generator matrix of its dual code is [ — P71 7.
The main result is a generalization of this for systematic group codes over finite
abelian groups. It is shown that given the endomorphisms which characterize a
group code over an abelian group, the endomorphisms which characterize its dual
code are identified easily. The self-dual codes are also characterized. Itis shown that
there are self-dual and MDS group codes over elementary abelian groups which can
not be obtained as linear codes over finite fields.
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I. Introduction

Study of codes over groups is motivated by the observation [7-97 that when more
than two signals are used for transmission, a group structure, instead of the finite
field structure traditionally assumed, for the alphabet is matched to the relevant
distance measure. The Hamming distance properties of codes over groups have been
studied in [5] and in [ 1] construction of group codes over abelian groups is given in
terms of a ‘parity check’ matrix. :

Itis well known that binary linear codes are matched to binary signalling over an
Additive White Gaussian Noise (AWGN) channel, in the sense that the squared
Euclidean distance between two signal points in the signal space corresponding to

two codewords is proportional to the Hamming distance between codewords,
Similatly, linear codes over Z,, are matched to M-PSK modulation systems for an
AWGN channel [11, 12]. The general problem of matching signal sets to linear
codes over general algebraic structure of groups has been studied in [7-9].
Also, group codes constitute an important ingredient for the construction of
Geometrically Uniform codes [4]. This motivates the study of codes over groups

Part of this correspondence was presented in 1994 International Symposium on Information
- Theory, Trondheim, Norway, June 1994




72 A. A. Zain, B. Sundar Rajan

both abelian and nonabelian. In [1] construction of group codes over abelian
groups that mimics the construction of algebraic codes over finite fields is consider-
ed and it 1s shown that the construction can be on the basis of a parity check matrix
which provides the relevant information about the minimum Hamming distance of
the code. The parity check symbols are seen as images of certain homomorphisms
from G*to G.

In this correspondence the dual code of a group code over an abelian group is
characterized in terms of the endomorphisms of the abelian group. The study of dual
codes is motivated by the fact that the weight distributions of the code and its dual
are related for group codes over abelian groups [3]. It is shown that the endomor-
phisms of the dual code for a given code is related to the defining endomorphisms of
the code, and in terms of appropriate matrix representations for the endomorphisms
the relation is relatively simple. For the special case of codes over cyclic groups the
characterization turns out to be straight forward, i.e., the endomorphisms defining
the code and its dual are inverses in the group of endomorphisms. This special case
actually corresponds to linear codes over residue class rings of integers. The
necessary and sufficient conditions on the deﬁning endomorphisms are obtained for
the code to be self-dual.

In Sect. IT the description of group codes in terms of endomorphisms is given.
The characterization of dual codes is obtained in Sect. II1. The special cases of group
codes over cyclic groups and elementary abelian groups are discussed in Sect. IV.
Section V deals with self-dual codes. Some concluding remarks and suggestions for
further work are given in Section VI.

II. Group codes over abelian groups

Let G be a finite abelian group. The subgroups of G” are called length n group codes.
A group code isomorphic to G* for some k <n, is called an information sect
supporting group code [ 1]. Information set supporting group codes are equivalent
to systematic group codes. An instance of group codes that do not support an
information set is where in none of the components all the elements of G appear. In
this paper only information set supporting group codes are under consideration,

Definition 1. [1] A (n,k) systematic group code over an abelian group G is
a subgroup of G" with order |G|* described by n—k homomorph1sms @,
=1,2,...,n—k, of G* onto G. Its codewords are (x,,...,X;, X4 4 1,.--, X,), Where

xk+j:¢ xl: xk)_@d) L6 Xpe,...,e) (1)

with e and P denoting the identity element and the group operation of G,
respectively.

In(1), theterm ¢ fe,..., e, x;,e,..., e) can be replaced by an endomorphism of G,
say, ¥, ;- With this notation the code is defined by the set of endomorphisms {¥, ;,
[=1,2,...,kand j=1,2,...,n —k} and (1) can be rewritten as

xk+j:¢ Xise- xk)"—®¢ €, X, €. (—Dlﬁ” (2).
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The set of endomorphisms {, ;, [=1,2,...,k; j=1,2,...,n—k} will be referred to
as the defining endomorphisms of the code. The generator matrix A of the code can
be written as A = [I| ¥], where

-Rb1,1 '701,2 D Wl,n—k-
Wz,l '1!’2,2 T wZ,nﬁk
_1//1c,1 ez © 0 Vea—s _

and [x, x, X, ] =[x, %, - x, ]A. ¥ will be referred to as the associated matrix of
the group code.

From the Normal Basis Theorem [6], any finite abelian group G can be written
as the direct product of m cyclic groups givenby 6 =C, ® C;, ® - ® C, , where C,
denotes a cyclic group of order d and d |d, |- |d,,. Let g; denote the generator of C, .
Then an arbitrary element x,€G can be written as

xﬁ = X'B!IQH ®x6!2g2® e @Xﬁ,mgm= @ x'ﬁ’hgh, XB’EEZdI, i: 1,2,.. .,m.
h=1

Any endomorphism of G can be uniquely specified by the images of the generators of
the group under the endomorphism. Let i/, an endomorphism of G, be defined by

W(g) =P o ;95 1=1,2,...,m. Then  can be specified by the mxm matrix
j=1 |

ro‘l,l Uy2 0‘1,m~
Goy Uy 0 Hoy
[V]= ) ) ’ B ai,jezdj> (3)
L %m1 Emz 0 O

and

m

Y(xg)= xﬁ,;',b(g1)@xﬁ,zl/f(gz)@ “'@x,s,mlb(gm) = @ [ Z {xﬁ,io‘f,h mod dh}:lgh (4)

=1

The above expression gives the image of any element of G under any endomorphism
of G. The matrix representation (3) can be rewriiten as

a 4 a ﬁa dma
1,1 dl 1,2 dl 1,3 dl 1.m
d d
3 m
a1 Ay T a3 Ay m
d, d,
(5)
nam,i am,?. am,?) am,m =
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where

j v . .
oci!jzgai,jlf]>z,

4

= a; ; otherwise,

It can be seen that o, J€ Zmina,a)» the ring of integers modulo min {d:d,;}. The matrix
representation in eq. (5) is called the canonical matrix representation of y [1].
The following definition of dua] endomorphism will be used to characterize the

dual code pairs in the next section.

Definition 2. Given an endomorphism i whose canonica] matrix representation is
(5), the endomorphism with the canonical matrix representation

i d d d 7
b 2y, =2p np,
1.1 dl 1,2 dl 1.3 dl 1
d d,
bz 1 bz,z ibz,s gz‘bz m
’ bi,je‘zmin{di,dj}’
_bm,l bm,z bm,S bm,m -

is called the dual of ¥, denoted by, where b, . = —g 0 Z ioiaay X0 =, then it
is called a self-dual endomorphism. '

Example 1. Let G = C,®C,. There are 32 endomorphisms of G. Let these en-
domorphisms be denoted by Y, i=1,2,...,32. The matrix representations of all
these endomorphisms are listed in Table I. It is seen from Table I that the eight
endomorphisms 1, ; = 25,26,...,32 are self-dual endomorphisms. The rest have
been listed as pairs is, Y, it g 1,3,...,23, where each pair is a dual pair
corresponding to dual endomorphisms.

IH1. Dual Codes

The group of characters of G can be used to define the dual code of a group code over

_ ___....__..an...abel-i-a-n--g-mﬂp—as—-g-iven"in“ﬁ"eﬁnition 3. The group of canonical characters [157is

isomorphic to the group G, and hence the characters can be indexed by the elements
of G in accordance with the isomorphism. '

Definition 3. [3] Let Cbea (n, k) group code over G. The dual code denoted by C%is
defined as

Cd:{Xz(y]:yza'":yn)EGn/<}_)’“E>: H nxf(yi):e*: VJ_CI(xl,...,xn)GC}
i=1

where #_ denotes the character of G corres onding to ge G, and e* is the identit
g p y
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element of the group of nth roots of unity (range for the characters)in an appropriate
field.

dm

Letd, =4, & . Where 4, is any primitive d,-throot of unity, h = 1,2, , 1, 1n an
appropriate ﬁeld and the characters be deﬁned by #.(g,) = A% for h= 1,2, ce,m
Then,

1 (xg) = [] /l}’f;-hxﬁvh, for x, = @) x;,9,€G. (6)
k=1 h=1

For later use, we need the following;

pol
m 2 {xg g0 pmod(dy)x, ,

1 ((x,)) = H Ay @)

"
X {xﬁ,lﬁi,h}xi,h
=1

Lemma 1. For x, yeG" where _
k k k
X = (xpxz» ees Xps @ Ui s 1 x5), @ YigsalXh. ., @ l//i,n(xi)>
i=1 i=1 i=1
and
n—k n—k
l"._"(@ l/ffl(ykﬂ): @Eb z(J’H; @‘l’;k(ykﬂ) Vvt Vera-- syn)s
i=1 i=1 i=1

the inner product {y, x> is given by

o> ~{ {1 Surona) i1 nfErin)}

E{H fvxf(yi)}{lﬁl e } since 77, (y;) =1, (x,)

= {ﬁxl ": lbﬁ (Ykﬂ))?’fx,(@ 'ﬁj,z(J’kﬂ ) ka(@ wjk Y+ )}
{nyw(@ '/’; k+1 x))’?yH (G_‘) %,Hz(xj)) ”]y,(@ ',b]n )} ,
k k n k
:{IJ ’f"xi(@ Wﬁi()’k +j))}{_ Wyf(@ wj,i(xj))}- Q.E.D.
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Theorem 1. Let C be an (n, k) systematic gfoup code over G, defined by the
endomorphisms Wi i=1,2,. .k, J=12,...,n—k, with codewords (Xy,..0x,)
k

givenbyx,, ;=P Wik %) j=1,2,...,n— k. Then the dual code Ctisan(n,n —k)
i=1

z
a—k

systematic group code over G with codewords (Yis--» Vo) given by y, = -, W (s ;)
i=1

i=1,2,..., k where

Wi = (8)

In terms of generator matrices, if[1] ¥ 7is the generator matrix of C,thenitsdual has
the generator matrix [(¥" 1], where [ ¥“] is the matrix obtained by replacing
each entry of [ ¥] by its dual. ' '

Proof. The proof consists of verifying Definition 3 for the pair of codes given in the
statement of the theorem by using Definition 2 of matrix representations of dual
endomorphisms. This is carried out as follows: :

Let the matrices representing the endomorphisms Y, ; and Wi, respectively be

a; ;= Lo (I, h)], Lh=1,2....m and ocfsz[a?fj(l,h)], Lh=1,2,....m for i=
152,...,n—kandj=1,2,...,k.Let :

k k k
X = (xla X5 ooy Xy @ wi,k-.h 1 (), @ Wﬁ,k# (%), @ ‘.bf,n(xt))e G,
. i=1 i=1 i=1

and

y= (él//?fl(ykﬂ),gwfz(ykﬂ)r--,:@cwfk(ym), yk+1,yk+z,---,yn>-
Then, |

(px)= H 1) = {H i, (@ w(y))}{n 1 n( @ wj,i(xj))} o

(using symmetry of characters w.r.t. both the arguments and lemma 1). Using (7),

=k m m
-k 'Z ) (j‘:)[ 2 {yk+j,l“;?ji(l’h)}xi,h] .
My, @ 'vb;'lji(ykﬂ) = Ajrth=t = (10)
i=1
‘Using (10), the first term in (9) becomes
k n—k m d n o k =k m m q .
-~ i Y, il AR () P
l%ljih& (dh)[z; Uses ’kJ___ /’t;'ngljzlhgllgl{(h)yk n ’h} (11)
Similarly, the second term in (9) becomes
" k moom d
5 iy,
ﬁs=§+1f§1£u§1 {(dh) S y’h} (12)

Substituting (11) and (12), with suitable substitutioﬁs for summation variables, in (9)
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gives

B on—k m m d

DI DS {(d—’")yH oy (D D
(pxy =g —e*,
since the term inside the square bracket is always zero, which follows from (8) and
the definition of dual endomorphisms.

We have shown that there are | G|* "* codewordsin C¥. It remains to show that C? has
only these |G|" ¥ codewords. It is shown in [3, Theorem 1] that C¢ has |G|" %
codewords. Q.E.D.

Theorem 1 generalizes the result available for linear codes over finite fields: If
[{|P]1s the generator matrix then the generator matrix of its dual code is [ — P¥|I7.
Note that the minus sign appearing in the generator matrix of the dual code in the
finite field casc is due to the codes being a special case. A similar statement is possible
for the special case of group codes over cyclic groups. ‘A similar statement in not
possible for elementary abelian group codes in general though this class includes
linear codes over finite fields as a proper subclass. We discuss these special cases in
the next section.

Example 2. Let G=C,®C,, and L, be the (3, 1) code defined by ¥, = > and
W, =P (refer to Table I) and given by :

1 2 0 2
w11=w(23’=~[1 1} and ',021:'11’(22)=[1 3}.
Then,
. 1 2 0 2

The generator matrix of L, is

Lo tl (2103

and the generator matrix of L is

— —

1 27 [1 0] [0 0
1 3] [0 1] {0 0]
0 27 fo o] |1 0
1 1] [0 of [0 1]

The code L{ is the (3, 2) code given by (¥, (y, W, (y,), ¥4, ¥,) ¥ ¥4, ¥, €6, and the
codewords of L; are given by (x,/,,(x), ¥, ,(x)), ¥ xe G. The complete listing of all
the codewords of L, and L{ is given in Table II. The following notation has been
used in the listing. C, = {0,1}; C, = {0,1,2,3} and G = {00, 10,01, 11,02, 12,03, 13},
Each element, say ab, is represented by a + 2b.
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Table II. Codewords of L, over C,® C, and its dual code

Codewords of L, Codewords of L

000 000 401 302 703 404 005 706 307
154 510 111 612 213 114 515 216 617
237 720 321 022 423 324 725 426 027
363 230 63t 532 133 634 235 136 337
444 440 041 742 343 044 445 346 747
510 150 551 252 653 554 155 656 257
673 360 761 462 063 764 365 066 467
727 670 271 172 573 274 675 576 177

IV. Special cases
1. Codes over cyclic groups

When G is cyclic of order M, say, 1=9%g.4%...,g™ '}, the set of endomorphisms
of G form a cyclic group isomorphic to G. Explicitly, the endomorphisms are given
by

l/,(i)(g)zgi, i=0,1,...,M—-1.

The matrix (1 x 1) representations of these endomorphisms are nothing but el-
ements of Z,, = {0, 1,..., M — 1}. Therefore the dual endomorphism of an endomor-
phism is its additive inverse in Z,,. So, in this case, [ ¥'] is the generator matrix of
a group code then the generator matrix of its dual code is [— ¥ I]: a straight
forward generalization of the finite field case. This is illustrated in Example 3 for
codes over C,.

Example 3. Let G=C;={0,1,2,3,4,5} with addition modulo 6 as the group

operation. There are six endomorphisms of G, described by their images of the

generator as 0,1,2,3,4, and 5. The (4, 2) codes are described by four endomor-

phisms. There are 6* = 1296 codes each described by four endomorphisms. The code

defined by the endomorphisms which map the generatorto 1,2, 3 and 4 respectively,
Le.,

= ‘f/(l)S Yy, = Eb(z); Way = ¢(3); and y,, = l//m

referred as L,, has dual code defined by the endomorphisms which map the
generator respectively to 5,3,4 and 2, i.e., :

{5}
=

YiT=EW; W'fz =Pt vo, =w, and l//'zkg =y,

The generator matrices of L, and L? arce res ectivel
2 2 b y

10 1 2 L5310
013 4] ™ 14201/

Since every group code over a cyclic group with M elements can be seen as
a linear code over Z,,, the residue class ring of integers modulo M, this special case
actually deals with linear codes over Z,,. For the class of linear cyclic codes over Z M
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Table ITI. Codewordsofa (4,2, 3) MDS group code over C i corresponding to
Example 4

(0000 0000) (100011 11) (010001 01) (11001010)

(00101101} (10100010 {01 101000} (11100111}
(000101 10) (1001 1001) (01010011) (110111 00)

(00111011 (101101 00) (01111110 (11110001)

the dual code pairs and self-dual codes have been discussed in [14] using the discrete
Fourier transform over Galois rings.

2. Codes over elementary abelian groups

An important special case is the class of group codes over elementary abelian groups
G=C)= CRCE,P-® C, (direct product of m cyclic groups of order p-each).
These being the additive groups of finite fields include as 4 proper subclass the linear
codes over finite fields GF(p™). The endomorphism ring of C7 is a matrix ring
consisting mxm matrices over GF (p). The structure of this matrix ring is well studied
[13]. Moreover, it is easily seen that the matrices in (3) and (5) are identical, since in
this case d; =d, = --.d_=p. Group codes over C? play an important role when
Maximum Distance Separable (MDS) codes are considered [5]). There are MDS
group codes over €7 which cannot be obtained as conventional linear codes over
GF(p™). This is exemplified by Example 4 discussed below.

Example 4. Consider the (4, 2) code over -C3 = {00, 10, 01, 11}, defined by the
generator matrix
[Tt 07 [o o] [t 17 11 1
[o 1:’ 0 0f jo 1] |o J
0 0] [1 0
o o) [0

The codewords of this code are given in Table II1, from which it is eas.y to check that
it is a MDS code. The generator matrix of the dual code of this code is, by

—

111 17 7o 1
Jlo 1) 1 of

Theorem 1,
T1 07 1 0771 o] [0 o
1l 1] o 1] 1o o
.-
1_4

107 [o 17 [o o7 1
Lt 10 [0 of [0 1]]

V. Self-Dual Codes

Self-dual codes and certain types of lattice sphere packings are closely related [2].
A new construction of the Nordstrom-Robinson code as the union of the binary
images of two isomorphic linear (4,2, 3) codes over GF(4) has been reported recently
[16]. The (4, 2, 3) code used in this construction is both self-dual and MDS which is
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2 unique code over GF(4). We show that for the same parameters several self-dual
group codes over C3 exist which are also MDS.

As given in Definition 1, an (n,k} group code over G is defined by n—k
homomorphisms ¢pl=1,2,...,n—k from G* onto G. For seli-dualcodesn —k =k
and it is convenient to define the homomorphism @ from G* to G* corresponding to

s l=1,2,... k, as follows:

Hxy,%,5,..0,x,) = (@1(x1, X550, X)), Ga(X1, X050, %,), ..., Grlxy. X550, X))

where x;€G,i=1,2,... k In terms of @ the codewords of an (2k, k) code can be
written as

(x, @(x)) where x = (%15 %5500, ), Hx) = (Xps 1, Xt 25000, X5 )€ GR.

It is easy to see that the homomorphism @ is represented by the associated matrix
. '

Theorem 2. Let C be a (2k k) group code over G defined by @:G*— G* or the
associated matrix ¥. Then C is self-dual iff (Y =1, the identity map.

Proof. Let a=(x, ®(x))eC, xeG* and C* denote its dual code, F rom Theorem 1,
any codeword in C?is of the form b = (@% ) y) where ye G*,

Suppose C is self-dual. Then, the set of first k symbols of all the codewords and the
set of last k symbols of all the codewords both form information sets. In other words
@ 1s an automorphism of G*, Any codeword g = (x, & x}))eC can also be written as
a= (P P(x)), #x)). Thercfore D'P(x) = x and similarly starting from b one gets

‘) =x.

Conversely, let @ @Y(x) = ¢*D(x) = x,V xe G For a = (x, ®(x))eC, any 2k tuple
which is orthogonal to ¢ is of the form (@4(z), z), where ze G*, from Theorem 1. Since
DPOUx)= D*D(x) = x,Y xeG*, D is a invertible mapping and let z = @(x). Then

(@92, 2 = (Y AW), x)) = (x, Bx)).

~Therefore (x, @(x))isin C? also. By similar argument it follows that any vectorin C?
is also in C. So, in terms of @, the condition for self-duality is @9 =], which, in
terms of the associated matrix is same as P(Pair=1. Q.E.D.

Example 5. Consider the case of (4,2) codes over G = C3=1{00, 01, 10, 11}, Each

- ----Gode—i-s-—deﬁned—by--fo-ur-en'do'm‘orphisms of G. bach endomorphism is represented by
a 2x2 matrix over Z,. Consider the code defined by the following matrices.

L1 Jo 1] [t 1o
wllz[o -1:15 'ﬁlz—[l 1:’: ‘//21“"1:1 0:': '1”22“‘[1 1}

| We have
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Table IV. Associated matrices of (4, 2) self-dual, MDS codes over C;

r1 17 [0 17 ] o 17 11 1 0 17 71 1
[ b )
0 1 11 1 1] o 1! 11 0 1
1 -4 L @ L L 3) _
¥ 1 17 71 0 z 107 11 # 11][10]
_[10__11J L1 o1] [t oo 1 0] (1 1
“[0 71 1]" [ r1 0] 1 1] [1 1] [0 1}
11 10 1t o1 1 0] |1 1
C 4 L (5 L L (6 _
? 1 17 710 t L4 11710 L [01 [11
Lo {11 ] Lo 1] |11 11 1 0

It is easy to check that ¥(P?" = I. The codewords of this self-dual code are

{(00000000), (001001 11), (0001 1101), (00111010), (10001011), (101011 00),
(10010110), (10110001), (01001110), (01101001), (01010011), (01110100),
(110001 01), (111000 10, (1101 1000), (1111 11 11)}

Note that the code of Example §is MDS also. Moreover, the binary image of the
code of Example 5 is equivalent to the extended (8,4,4) Hamming code.

Using the well known result [10] on the number of linear self-dual codes over
finite fields, there are only five (4, 2) self-dual linear codes over GF (4), and among
them there is only one which is MDS. By computer search it was seen that there are
34 self-dual (4, 2) codes over C3, among which 6 are MDS. The associated matrices of
the self-dual codes which are MDS also are listed in Table IV. Note that ™ and @
are permutation equivalent, ie., by permuting the last two columns of codewords
onechanges to other. Similarly, the pair * and ® are permutation equivalent. So,
upto permutation equivalence there are 4 MDS self-dual (4, 2, 3) codes over C3. The
code given by ¥, in this table corresponds to the unique self-dual MDS code over
GF(4). '

VI. Discussion

The class of self-dual codes and dual code pairs of group codes over finite abelian
groups have been characterized. This characterization subsumes as special cases the

._......_.class.-.o.f_.l.inear...codes-ever—-re—:—s-id—ue—-e—la—s—s—-—iﬂ--teger—---r—i—n—gS----and-—the-'C'on"venti‘onerl""l'inear
codes over finite fields. It is hoped that the techniques of this correspondence will
suggest ways for algebraic characterization of dual codes over nonabelian groups. It
will be of greater interest to explore whether the duality of codes over groups gives
rise to a relation between Euclidean distance properties of dual code pairs when
appropriately matched signal sets are considered.
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pointing out a crucial omission in the proof of Theorem 1.
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