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Abstract. A group code defined over a grois a subset of5" which forms a group under componentwise
group operation. The well known matrix characterization of MDS (Maximum Distance Separable) linear codes
over finite fields is generalized to MDS group codes over abelian groups, using the notion of quasideterminants
defined for matrices over non-commutative rings.
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I.  Introduction

An (n, k) linear code over the finite fiel F(q) is a k-dimensional subspace of time
dimensional vector spad8 F(q)". The minimum Hamming distancé,,, of a linear

code satisfies the inequality,in < n — k + 1, known as the Singleton bound [9]. A code

that satisfies the Singleton bound with equality is called a Maximum Distance Separable
(MDS) code. Itis well known [7, Chapter 11, Theorem 8] that linear MDS codes over finite
fields can be characterized in terms of the square submatrices of its generator matrix. To be
precise “An(n, k) codeC overG F(q) with generator matrixI[| A] where Ais ak x (n —k)

matrix overG F(q) is MDS if and only if every square submatrix formed from ampws

and anyi columns, forany = 1, 2, ..., min{k, n —k} of Ais nonsingular.” We generalize

this result to the general case of group codes over abelian groups. A group code over a
groupG is a subgroup of the-fold direct sum ofG, under componentwise operation. The
Singleton bound holds for nonlinear codes and hence for group codes.

The motivation for the study of group codes arises because of their importance as a basic
ingredient for Geometrically Uniform codes which include several important known classes
of signal space codes [2]. Moreover, the additive groups of finite fields and integer residue
rings are groups, respectively elementary abelian groups and cyclic groups. So, every linear
code over a finite field is a group code over its additive group and similarly for linear codes

* Part of this correspondence appears in Proceedings of Fourth International Workshop on Algebraic and Com-

binatorial Coding Theory (ACCT-1V), Novgorod, Russia, September, 11-17, 1994, pp. 194-197.
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Table I.Codewords of a (4,2,3) MDS group code o@&ré C; =
{e.x} @ {ey}

(eees (x e Xy xy yeyy (xy e x 3
(e xxyy (x xex (yx xe (Xy Xy xy
eyyx xyxy (yyexy (xyyxys
(exyxxy (Xxyye (Yyxyxyx ((Xyxyey

over integer residue rings. But, not every group code over an elementary abelian group
can be made a linear code over a finite field by imposing a multiplicative structure on the
elementary abelian group. This is illustrated by the code given in Table |, which is a MDS
group code over the direct sum group of two cyclic groups each of order 2. This motivates
the study of group codes, especially MDS group codes.

The Hamming distance properties of group codes, in particular, MDS group codes have
been dealt with and several nonexistence results have been obtained [3].

Throughout the paper, we restrict our consideration to systematic group codes since the
logic of the Singleton bound [9] leads to the simple characterization “A group codé&over
of size|G|¥ is MDS only if the restriction of the code to amycoordinates is3¥.” This
means group codes which are not equivalent to a systematic group code can not be MDS.

The content of this paper has been organized as follows: The matrix description of group
codes ovefs is given in Section 2. Definitions and basic relations concerning determinants
of matrices over non-commutative rings are discussed in Section 3. Section 4 contains the
main result, i.e., quasideterminant characterization of MDS group code§&ovgction 5
contains a detailed discussion of an example. Some concluding remarks are given in
Section 5.

The following notations/conventions are used throughout the paper.

G afinite abelian group
@ group operation i
e identity element of5
End(G) the ring of endomorphisms &
v, Identity mapping fronG to G
WY, Mapping fromG to G that maps all the elements ¢o
G" then-fold direct product ofG
Cwm the cyclic group withM elements
CT anelementary abelian group of tygk 1, ..., 1) (mtimes)
R anon-commutative ring with identity
Zy theresidue class integer ring modNb
GF(p™ the finite field withp™ elements
[Alij i, j-th quasideterminant of the matrix (Definition 3 in Section 3)
Al the matrix obtained fronA by deleting thé-th row and thej-th column
= isisomorphic to
I\ The set of elements df excluding those that are ih
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[I.  Matrix Description of Group Codes

DerINITION 1: [1] A systematia(n, k) group code over an abelian group G is a subgroup
of G" with order|G|¥ described by n-k homomorphisgis! = 1,2, ..., n—k, of G onto

G. Its codewords are of the fortwg, .. ., Xk, Xk+1, - - -, Xn) Where
k
xk+|=¢|(x1,...,xk):@@(e,...,e,x,-,e,...,e), I=12,....,n—-k (1)
j=1

and e is the identity element of G.

Every codeword of &k + s, k) group code ove6 is of the form

(X1, X2, + + o s Xis Xkt 1y Xkt 2 + -+ Xkks) = (X1, X2, + ooy Xk, P1(X15 -+ X),
Ga(X1, ooy X))y e ey Ds(X1, . ety Xk)) @)
= (X1, X2, ..., Xk, Y11(X) ® --- D
Y1 (X), - -+, Y1s(X1) @ - - - D Yis(Xk))

wherex; € G,i = 1,2,...,k, Yi € End(G),j =1,2,...,k, 1 < <s. The
homomorphisng, is said to decompose in terms of element&ofd(G) and is written as

d=vuva---Y, 1=<I<s

DEerINITION 2: For a (k + s, k) group code L over G, defined by the homomorphisms
{d1, P2, ..., Ps}, the kx s matrix over EndG), denoted by,

Y11 Y12 - Vs
Yo1 Yoo oo Pos
- : : : 3)

Yia Ve - Yks

wheregy = Yy g --- Y, forl =1, 2, ..., s, is called the associated matrix of the code L.
Every matrix of the form (3) defines @& + s, k) group code ovefs. Moreover, this

matrix when operates on an elemert, x,, . .., X)) € GX (information vector) gives the
check vectoXks 1, Xk+2, - - -, Xkas) @S given below:

[Xk1Xkq2 - - Xegs] = [XaXz - - - X ] ¥
or

[Xes1Xkr2 - Xaps]™ = W [xaxa -+ x]"
where,

Xkl = Y (X) & Ya(X) @ - va(Xk) 1=1,2,...,s.
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The generator matrix denoted by, which when operates on an information vector gives
the corresponding codeword, is given by

Vi Ye - Ve | Y11 Y12 oo Yis

Ve Vi -+ Ve | Y21 Y22 -+ Yo
A=| . S : (4)

I/fe we WI | 1ﬂkl 1pkz lﬁks
The associated matrik in (3) is overEnd(G) which is a nhon-commutative ring. In the

case of linear codes ove&rF (p™) the associated matrik is also ovelG F(p™). Inthe case
of codes ove€), the associated matrix is ov&g,, a commutative ring. In general for group
codes ovelG the associated matrix is over a hon-commutative ring and the conventional
notions like determinant and singularity of the matrices do not carry over directly. The
counterpart of these notions for matrices over a non-commutative ring is discussed in detail
in [4,5] and the notions and properties required for our purposes are discussed in the next
section.

lll.  Determinants of Matrices Over Non-Commutative Rings

Let R be a non-commutative ring with identity and
A=(g),i,jel ={1,2...,n},
be an x n matrix overR.

DEFINITION 3: [4] [5] For any n x n matrix A over R, the hquasideterminants, denoted
by |Alij, are defined by induction as follows: For & 1, |Al11 = ai;1. Suppose that
quasideterminants for all matrices of order less than n are already defined “f &stthe
(n — 1) x (n — 1) matrix obtained from A by deleting theth row and thes-th column.
The quasideterminant with index pq is defined as follows

— APl
|Alpg = @pq — Z apj| AT aiq
i#p,j#q

ap; app

For example, for a % 2 matrix A =
a1 a2

} the four quasideterminants are

|Al11 = aq1 — a8y, ap1;
|Al12 = &2 — an1dy; a;
|Al21 = 81— axaj ans;
|Al22 = 8 — anajians;

For P and Q subsets of with |P| = |Q], let AP be the submatrix of the matriA
obtained by deleting the rows with indicgse P, and the columns with indices € Q,
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and also letAp o = A"\P'\Q andR, = P U {i} andQ; = QU {j}. Construct the matrix
B = (by), ke I\P,l € 1\Q, wherely = [Ap,q lki-

The following Theorem, known as the Sylvester identity is proved in [4]:

THEOREM1 [4]: Fork € I\P,l € 1\Q,
|Ali = |Blk (5)

From the Sylvester identity it follows that a quasideterminant of anmmatrix A is ex-
pressed either via a quasideterminant &2 matrix consisting of four quasideterminants
of (n — 1) x (n — 1) submatrices of A or via a quasideterminant of@n— 1) x (n — 1)
matrix consisting ofn — 1)2 quasideterminants & x 2 submatrices of A.

DEFINITION 4: [5] For AYM where|L| = [M| =k, p¢ L, q ¢ M, the quasideterminant
|AL-M |, is said to be a k-quasiminor of A.

The following relations, obtained in [5, corollary 1.3.3],
(AL IATSE = — A AT for |+ j, p#i (6)
|AHAL = —|AT gl Al for i sk, g # | (7)

and the following two lemmas will be used to prove the main result of this paper, Theorem 2
in the next section.

LEMMA 1: Let A= (&;) be an nxn matrix over R such that all square smaller submatrices
ofordersl, 2, ..., (n— 1), are invertible. If one of the quasideterminants of A is invertible
then its all other quasideterminants are also invertible.

Proof. Given as Appendix 1. ]
LEMMA 2: Let A= (&j) be an invertible nx n matrix over R such that all smaller square
submatrices are invertible. Then all it guasideterminants are invertible.

Proof. Given as Appendix 2. ]

IV.  Quasideterminant Characterization

The mainresult, i.e., Theorem 2, which characterizes MDS group codes over abelian groups
in terms of quasideterminants of the square submatrices of the associated matrix of the code,
is obtained in this section.
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LEmMA 3: A(k+s, k) group code L over G, defined by the homomorphiginsp,, . . ., ¢s},
is MDS iff every square submatrix of its associated matrix of the form

Visip Yinje -+ Vg
Vigiy Visiz = Viajy
W = : : : 8)
Vinis Vinjz = Vinin
forl<ix, k<h,k=1212...,h,andh=1,2 ..., min{s, k}, represents an automor-
phism of &.

Proof. Letthe associated matrix &fbe W as given in (3). Suppose d&llx h submatrices,
h=1,2, ..., min{s, k}, of ¥ are automorphisms @". Let

E = (H‘l? 25 ooy Uk, ,lLk+1, ceey Mk+5)

be a codeword ih.. We have

Mkt = Yt (y) @ Yo (u2) @ -+ DY) t=1,2,...,s

Suppose ifus, 1o, ..., uk}, onlyh elements are nonzero, those with indi¢ggs,, . . ., jh.
Then the following equations hold:

Mk+t = wilt (Mjl) @ szt (H’]z) G- b 1)Z/Jht(/*’(’]h) t= 17 2a ..., S

Supposéh of the i, with indicesk + i1, k + i, ...,k + iy are zeros. Then, we have

kst = €= Yjt(ij) ® Yit (i) ® - - @ Yje(pjy)  t=lg, iz, ..., 0n.

But since every x h of the form (8) represents an automorphisn®f the set of equations
above implyuj, = uj, = --- = uj, = €, which is not true. Hence the weight pfis at
leasth +s — h + 1 = s+ 1. Thereforel is MDS. N

To prove the converse, letbe MDS and_ be the group code consisting of the codewords
(X1, ..., Xkys) in L satisfyingx, = 0 fori € {1,2,...,k}\{j1, j2,---, jn}- Then let
L* denote the group code obtained frdmby dropping all the components except the
components with indice§jq, jo, ..., jn, K+ i, K +io, ...,k +ip} i.e., L* is a(2h, h)
group code. Let the associated matrixdfbe denoted by,.L* is also MDS and hence
the minimum distance df* is h 4+ 1. Consider the following matrix equation

Anlyr v2 - ml" =[e e - €,

where 1 > --- ] € GN. If anon-allevector iy y2 --- yn] exists satisfying the
above matrix equation, then the vecioe= [y1, 2, ..., ¥n, 6,6, ..., €], of length 2h, is a
codeword ofL*. But the weight ofy is < h. SinceL* is MDS it follows thaty is an alle
vector which meand, represents an automorphism@®#. ]

The following corollary is an immediate consequence of Lemma 3.
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COROLLARY 1: In an MDS group code over G, symbols of any k locations can be taken as
information symbols and the rest as check symbols.

From lemma 3 it follows that a necessary condition for the associated matrix to represent
a MDS group code is that all smaller square submatricels afe invertible.

THEOREM2: A (k + s, k) group code L over G, defined by (3), is MDS iff for every square
submatrix of its associated matrix of the form

Yivih Yisje * Yisin
= | Vo Ve ©
I/finh wihjz wihjh
forl<i,jy<h,r=212....,h,andh=1,2,..., min{s, k}, one of its quasidetermi-

nants is an automorphism of G.

Proof. From Lemma 3, itis sufficient to prove the following: Evdry h submatrix of the
associated matrix of the code represents an automorphi@h,é¢f = 1, 2, ..., min{s, k},
if and only if one of itsh? quasideterminants is an automorphisnGof

The proof is by induction oh.

Forh = 1 this is clear, since the quasideterminantigfis its one entry.

Forh = 2, consider a Z 2 submatrix of* of the formWy,» = 1/}?“:1 %“:2 ] whose

12)a 12]2

entries are invertible, i.e., automorphism&f For this matrix the four quasideterminants
exist and are given by:

Wiy, = iy —lﬂiljzl/fi;jlzllfizjl;
Wlij, = Yij, —wiljllﬁi;jlllﬁizjz;
Wiy, = Yiyj —lﬂizjzllfi:jlzllfiljl;
Wlij, = Vi, —¢izjllﬁizjlllﬁi1j2;

Let|W|;,j, be an automorphism @. We shall show thab,,, represents an automorphism
of G2. Let

[ 0] (2] - )
1ﬂizil 1/fizjz Xi, e
By applying the following elementary row operations
Ri — ¥, R Re > ¥, Rt Re > Rp — Ry; Ry — ¥, Res
onW,,,, whereR;,i = 1, 2, denotes thé-th row, we obtain

[1 wilj];wilizi|
0 |Woy2l22
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which is row equivalent tav,,,. Hence we have

i) (2] 2
0 |Wox2l22 X, | Le]’

which meangWa,|22(Xi,) = €, i.e., X, = €, and using this in;, & wi:jllwiljz(xiz) =e
givesx;, = e. Hence the invertibility of Wy, 2|22 implies the invertibility ofws, .

Conversely, letl,, » be invertible and all its entries are also invertible. Then by Lemma
(2) all the four quasideterminants @k, , are invertible.

Now assuming that for all square submatrices of ordefs 1 ., (h — 1), of Wy, every
one of them is invertible iff one of its quasideterminants is invertible, we shall show that
Wh,.h IS invertible iff one of its quasideterminants is invertible.

Let theh x h matrix under consideration be

Y11 Y12 - Y
Vo1 Y22 -+ Yo
\IIhXh - : : .« .. :
Yn1 VYh2 -+ Yhn

(To avoid clumsiness in the notation this matrix is assumed without loss of generality,
instead of the matrix in the statement of the theorem.)

Let |Wh«hlnn be invertible.

By successive applications of the same elementary row operations given in the proof of
Lemma 2, on¥y,,.,, we will obtain the matrix given below which is row equivalentitg, :

(1 Y'Y Wﬂiiﬂls
0 1 Wp,Q, 125 1Wr,qsl23
1

0 0
0 0 0
L O 0 0
-1 -1 —
1#111 llfl(h—l) wlll 1a”lh
I‘I’PzQzlizll‘l’onh_1|2<h—ll> I‘I’PzQzEzll‘l’Pth |2n
N’Pél) QY l33 NJP;”Q(hljl |37(h—1) |‘~IJP3(1) Q¥ l33 NJP;DQLD |3n
-1 ’
! [Wporo g2 in1yn-1) | Ve =2l
0 |\I»’Péh—2)Q}(1h—2) |hh i

where the sete®, P@ . P2 Q® Q@ .. . QM2 aresame as givenin the proof
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of Lemma 2. In view of this row equivalence the solution of the system of equations

X1 e
X2 e

Whah | .| = | . (11)
Xh e

is also the solution of the system of equations given by

_ -1 -1 o
1 Yy Iplllw13 wlll Vi
0 1 |¥pQlynl¥eqsls - |‘I’P2Q2|2_21|%2Q“’1|2(h_11)
0 0 1 e W s |V 3
Wew oo las IWewaw, lan-
0 0 0 L
L0 0 0 0
1 ]
1//1111plh
|WP,Q. 122 WP,Qnl2n X e
- !
|\PP§1> Q(sl) |33 |\I/P3<1>Q(h1) 3h X2 e
. = | (12)
1 ' :
Wet-agr-aln-pymn-1 | Yre2 g2 lh-h . ©
|Wpa-2 -2 [nh i

Since the(h, h)-th entry of the matrix given in (12) i8V.n|hn, We have

[Whxhlhh(Xh) =€

which means, = e, since|Whyn|nn is invertible.

Next by back substitution one can obtain= x, = - - - = xy_1 = X, = €, which means
Wh.h is invertible or equivalently it represents an automorphisrg bf

Conversely, given thady,, and all its square submatrices are invertible, from Lemma 2
it follows that all itsh? quasideterminants are invertible.

This completes the proof. [ |

V.  Example

For the purpose of illustration let us consider the length 6 MDS group codé€aC, =
{0,1} ® {0, 1} = {00, 10,01, 11} = {e, X, V, xy}. consisting of 64 codewords listed in
Table Il. There are only 6 automorphisms@f® C, listed below along with their inverses
for quick reference.
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Automorphism | £ 9 01 11 01 11 10
p lo1] [10] [10] |2112] [o1] [11]
Inverse [10] [o1] [o1] [11] [11] [10]
_0 1_ _10_ _l l_ _10_ _O l_ _1 1_

The associated matrix of this code is

Y21 Yoo VYo3

Y11 Y12 Vi3 011 TF101710]
Agyz =
Y31 Y32 Va3

Using the Sylvester Identity a quasideterminanfgf s will be written as
guasideterminant of 2 2 matrix of the following submatrices:

Any = Apzs =

01 11
by = [Apzuzle = [1 1] b2z = |ALzngls = [1 0}
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11 11
by = [Apguzls = [1 0] b3z = |Aggles = [1 0}

We have
boo b3
B —
|:b32 P33
and
1o
[Al22 = |Bl2 = 01
1o
[Al2z = [Bloaz = 01
"1 01
[Alzz = |Bls2 = 01
0 1T
|Alss = [Blsz = 11

VI. Discussion

When specialized to group codes over elementary abelian group€ sdiie associated
matrix becomes a matrix over a matrix ring over the finite fiél&(p). The structure of
these matrix rings is well studied [8]. The associated matrix still remains a matrix over a
non-commutative ring. Imposing a multiplicative structureQjyand making it the field
GF(p™), the associated matrix becomes a matrix @&t p™), and Theorem 2 reduces to
the well known characterization of MDS codes over finite fields [7, Chapter 11, Theorem
8].

When specialized to group codes over cyclic groQgs the associated matrix becomes a
matrix over a commutative ringy, and Theorem 2 reduces to a simple form, i.e., a group
code ovelCy is MDS iff all square submatrices of its associated matrices have determinant
aunitinZy.
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Table 2.Listing of codewords of Example in Section 5.

ZAIN AND RAJAN

(e,e.eeee) (x,e,e,x,y,X) (y,e,e,xy,x,xy) (xy,e,ey,xy,y)
(e,e,x,%,x,y) (x,e,X,e,Xy,xy) (y,e,x,y,e,Xx) (xy,e,x,xy,y,e)
(e.eyyy.xy) (x.e.y.xy,e,y) (v.e,y.x.xy.e) (xy.e.y,e,x,x)
(e.e,xy.Xy,Xy,x)  (X,&,Xy,y,X,€) (,e,xy,e,y.y) (xy,e,xy,x,e,xy)
(e,x,8,y,X,X) (X,X,e,Xy,Xy,e) (y,x,e,x,e,y) (xy,x,e,e,y,xy)
(e,x,x,xy,e,xy) (XXX,Y,YLY) (y.x,x,e,x,e) (XY, X, X,X,XY,X)
(e.xy.e,xyy) (X,X.Y,X,X,Xy) (Y, X,Y Xy, Y, X) (xy:x,y.y.e.e)
(e,x,xy,x,y,e) (X,X,xy,e,e,x) VXXV XY XY) (XY X XY XY, X,Y)
(e.y.exyy.y) (x.y.e,y.e.xy) (v.y.e.exy.x) (xy,y,e,x,x,€)
(e.y.xy.xy,e) (X,Y,X,XY,X,X) (VY. X, %,Y,xy) (xy.y.x,e.ey)
(e.yy.x,ex) (xyyeye) (.Y.y.y.x,Y) (XYY, Xy, xy,xy)
(e,y,xy.e,x,xy) (XY, XY, X,Xy,y) (Y.y.xy.xy,e,e) (XYY, XY,Y,Y,X)
(e,xy,e,x,xy,xy)  (X,xy,e,e,x.y) (Y. xy,e,y.y.e) (xy,xy,e,xy,e,x)
(e,xy,x,e,y,X) (X,Xy,X,X,e,e) (VXY X XY XYY) (XYL XY XY, X,XY)
(e.Xy,y,Xy,X,€) (X,XY,Y,Y,Xy,X) (y.xy,y.e.e,xy) (XY, XY,y.X,,y)
(exyxy,y.ey)  (XXyXyXy.y,Xy)  (YXY.XY.XXX)  (XY,Xy,Xy,e,XY,e)

Theorem 2 does not extend to group codes over nonabelian groups since the set of en-
domorphisms of a nonabelian group form a near-ring [6] which is more general than a
non-commutative ring. It would be interesting to develop the counterpart of the notion of
guasideterminant, to matrices over near-rings and extend Theorem 2 to group codes over
nonabelian groups.

Appendix 1

Proof of Lemma 1: The proofis by induction onthe order of the matriA. Forn = 1, the
ai1 ap2
dx1 ax
Without loss of generality letAs, 2|22 be invertible. In eq. (6), putting = j = 2 and
p =1 =1, we obtain the following relation

lemma 1 is true. Fon = 2, we haveA,,, = where the entries are invertible.

-1
[Azx2l22 = —|Aox2l21877 @12

from which we conclude thdtA,,»|2; is invertible. In eq. (7) if we put = j = 2 and
k =g =1, we obtain

-1
[Azx2l22 = —a21877 | Azxal12

from which we conclude tha#\,, |12 is invertible. By putting =1, j =2, p=2,1 =1,
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in eq. (6) we obtain
|Azcal12 = —| Asxal11857 822

from which it follows that| A|1; is invertible.

Induction Hypothesis: The lemma is true for— 1).

Without loss of generality let the quasidetermingfi,, of A be invertible. By putting
i=j=np=211=12...,(n—1),ineq. (6), we obtain the following (n-1) relations:

-1

|A|nn = —|A|n1|Ann|11 |An1|ln
-1

|A|nn = _|A|n2|Ann|12 |An2|1n

—1 _
|A|nn = —|A|n(n—l)|Ann|1(n_1)|An(n l)|1n

From the above set of equations it follows that,, forl = 1,2,..., (n—1) are invertible.
By puttingi = j =n,g=1,k=12,...,(n—1), in eq. (7), we obtain the following
(n — 1) relations:

-1
|A|nn = _|Aln|n1|Ann|11 |A|1n

-1
|A|nn = _|A2n|n1|Ann|21 |A|2n

— -1
|A|nn = _|A(n 1)n|n1|Ann|(n_1)1|A|(n—1)n

From these relations it follows théf|xn is invertible fork = 1,2, ..., (n —1).

In the same manner, using eq. (6), one can check that
[Aln—pi, 1 =1,2,...,(n— 1) are invertible by putting =n, i =(n—-1), p=1 1| =
1,2,...,(n=-1),
[Aln—2i, 1 =1,2,...,(n—1) areinvertible by putting =n, i=(n—-2), p=1, | =
1,2,...,(n—-1),

[Aly,l = 1,2,...,(n — 1) are invertible by puttingf = n, i =1, p=11 =

1,2,....,(n=1),

So, we conclude that all the quasideterminanté afre invertible.

This completes the proof. ]
Appendix 2

Proof of Lemma2: By Lemma 1itis sufficientto show that one of thquasideterminants
of Ais invertible. Without loss of generality we will show thia|,,, is invertible.
The proof is by induction on n the order of the matéix Forn = 1, the lemma 2 is true.
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Forn =2, let

g = aj1 ap
* a1 Az
where all the entries are invertible. SinBe, is invertible, there exists

_ | b1z br2
Bax2 = |: byt boo ] ,

such thatAB = BA = l,.», Wherel,,; is the 2x 2 identity matrix, i.e.,
1 a2

b1y bio| [10
[b21 bzz] - [0 1} or
ajbyr + aphy =1
apibir + axhp =0

b1z + apbyp =0
abiy + apbyp=1

a1 a2 i|

The last two equations in two unknowhg andby, can be written in matrix form

[all a-12] |:b12] _ [0]
a1 a2 b2z 1
Now we apply elementary row operations

Ri — a;;Ri; Ro — a5 Ro; R — R — Ry; R — anRy,

whereR;, i = 1, 2, denote thé-th row, on Ay, (which is valid since all the entries of
Ay, are invertible), to obtain

[1 a;;an }
0 |Ax2l22

which is row equivalent té\,.» [10]. Hence, we have

1 al‘llalz b1 _ 0
0 Aol b2y 1

i.e.|Aax2|22b22 = 1. Similarly, by usingB A = I,,2, one can obtain,
b2o| Aoxolo = 1. Henceby, = |A2X2|2’21, i.e., | Aax2|22 is invertible. Then by Lemma 1,
| Azx2l11, | Aox2l12, | Aox2l21 are also invertible.

Induction hypothesis: Let all square submatrices of ord&; 1., (n — 1) of A have
invertible quasideterminants.

Now we will show that the induction hypothesis is true gy, .

Let A,«n be invertible, whose all smaller submatrices are also invertible, i.e., all the
guasideterminants of the smaller submatrices are invertible. Bipgeis invertible there
exist Bn><n such thatAnxn Bn><n = annAnxn = In><n-
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From AnxnBnxn = lhkn We have,

aj; app -+ A b1n 0
a Ay -+ an ban .
‘ _ | (A2.1)
: Do : 0
An1 @n2 -+ Gpn bnn 1

By applying the following elementary operations
Rj _>a|11R| i :1,2,...,”; R| — RI — Rl i :2’.._,[']; R| _)allRl i :2’“"n’

on An«n, We obtain

-1 -1 -1

1 8y; &2 e 1 An-1) &1 &1n

0  JApQl22 -+ [APQuyl2n-1 [Ap,Q, |2n
o : 22
0 [Ar, 1Qlin-12 - [APw_yyl—D-1) [APL_1Qnl(n—Dn

0 |APnQ2|n2 e |APan_1) |n(n—1) |AP.1Qn |nn

In matrix (A2.2), fori, j > 2, the(i, j)-th entry can be written as

[Ap Qj lij

which is the quasideterminant of indéjx of a 2 x 2 submatrix of A having rows with
indices{1,i} = P U {i} whereP = {1} and columns with indicefl, j} = QU {j} where
Q= {1}

Fromthe induction hypothesis, the quasideterminants ofadl@ubmatrices are invertible
and hence for, j > 2, all the entries in matrix (A2.2) are invertible. So, we can apply the
same elementary row operations on the- 1) x (n — 1) submatrix of the matrix (A2.2)
and obtain the matrix given below:

M1 al‘llalz al‘llalg

0 1 |AP2Q2|£21|AP2Q3|231

0 O [Ap,q;133 — | AR, 32| AR, |25 | AP,05123

0 0 [Ap, yQsln-13— |AP(nfl)Qz|(n—1)2|A|izQ2|521 |Ap,Q; 23
L0 O [Ap,0;1n3 — | AR,Q,In2l Ar,Q, 125 | Ar,05123

1
a1 &(n-1
1
|AF’2Q2 |22 |AP2Q(,,,1, |2(n11)
| AP, Qi 1 30n-1) — | ARy, 132l AR,Q, 122 | AR Q-4 l2(n-1)

' -1
AP, 1, Qun -1 — AP, 4@, (-12l APlez 122 |Ap, Q-1 l2n-1)
AP, Q-1 Inn-1) — AR, Q. In2l AP, Q. 125 | AP, Q1 I201—1)
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-1
a11 ain
-1
|AP2Q2|22 |AP2QH|2n

| AR, Q. 130 — |AR,Q, 321 AR, 0, |25 | A0, |2
3Qn 13n 3Q2. »Q2122 »Qn 12n (A2.3)

) -1
[AP._1Quln—n — AR, 1@l (n-1)2l AF1>2Q2 122 1Ar,Q, l2n
[Ap, 0, Inn — AR, Q, In2l Ar,Q, 125 | AR, Q. l2n |

In matrix (A2.3), fori, j > 3, the(i, j)-thentryis

[Apq lij — |ARQ2|i2|AP2Qz|2_21|APZQj|2j
which is the quasideterminant of indgxof the following 2x 2 matrix
[ |AP,Q, 122 [ARQ |2 }
[Arq.liz AR lij

Hencefoii, j > 3, the(i, j)-th entry can be recogized as the quasideterminant of iijdmx

a 3x 3 submatrix ofA having rows with indice$l, 2, i } and columns with indicefl, 2, j}
written in terms of a quasideterminant of thex2 matrix consisting of quasideterminants
of 2 x 2 submatrice of the % 3 submatrix, i. e., for, j > 3, the(i, j)-th entry can be
written as

|Api(1> Q¥ lij

whereP® = QW = {1,2}; PP = PO U (i} andQ™ = QD U (j}.
Hence matrix (A2.3) can be written as

- -1 -1
1 a{ a2 alllalg
0 1 |Ap,lxnlArQgsl2s
0 0 |AP3(1> Q(al) |33
0 0 | Ap((nlll) Q<31> |(n—l)3
L 0 0 |AP§1’Q(3D In3
1 -1 A
a%-l al(n—l) alllaln
[AP,Q. 125 1 AP, Q-1 l20-1) AR, Q. 125 AR, Q,l2n
[ Apqw | lam-1) |Apw g lan
: . (A2.4)
| AP((:L)QE?A) |(n—1)(nfl) | AP((nlle("l) |(nfl)n
Arq, Ino-n Appoplnn |

Since all the quasideterminants of all smaller submatricésark invertible (by the induc-
tion hypothesis), we can apply the elementary operations in sequence and obtain the upper
triangular matrix given below:



QUASIDETERMINANT CHARACTERIZATION OF MDS GROUP CODES 329

(1 ajtarn a;; a3
|
0 1 |ArQl2lARQsl23
0 0 1
A= .
0 0 0
(0 o0 0
—1 —1 -
3111 a1n-1 a111 ain
|Ap,Q, |221| Ar,Q-1 l2-1) |Ap,Q, |zzl | Ap,Q,l2n
|Apw g las A o | lan-1) |Apw qw 33 1Ap® qw lan
71 ’
! Aepparslo-nn-ul A pop2lo-un
0 | Apn(”’Z)Qg”’z) Inn _
(A2.5)
where the set®, P@ ... P2 QM Q@ .. . Q"2 gre defined as follows:
PO = QP = {12

P@® = Q@ = (1,23

pn-3 — Q-3 {1,2,...,n—=3,n—-2}
PM-2 — Q"2 = (1,2,...,.n—-2,n—1}
(The matrix (A2.5) has been obtained frofnby elementary row operations. So matrix

(A2.5) andA are row equivalent [10].)
We haveP("=2 = P2 y(n} = I; Q"2 = P™2 y(n} = I, and

|AP'§H—2)QI(1n—2) |nn = |A|nn.
So, the syatem of equations (A2.1) can be written as

b]_n O

, | ban :

A R T

: 0

bnn 1
which implies that
|A|nnbnn =1

Similarly, starting fromBn.n Anxn = Inxn, We can obtain

bnn|A|nn =1

Hencebp, = |A|;nl, i.e., |Alnn is invertible. From Lemma 1, it follows that all other
guasideterminants are also invertible.
This completes the proof. ]
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