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Abstract

For a communication system operating in a fading environment, receive antenna diversity
is a widely applied technique to reduce the detrimental effects of multi path fading. But
as this makes the receiver complex and costly, is generally used exclusively at the base
station. Recently a combination of transmit and receive diversity has been suggested as a
more effective solution to the above problem resulting in a MIMO (Multiple Input Multiple
Output) fading channel which has been shown to have the potential of supporting large
data rates as compared to SISO (Single Input Single Output) channels. Signal design for
such a MIMO channel is known as Space-Time Codes (STC), which take advantage of
both space and time diversity available with time varying fading by coding both in space
and time.

Space-Time Block Codes (STBC) are promising in this regard as there exist fast
decoding algorithms like sphere decoding, etc. Further there exist classes of codes among
STBCs that have very simple decoding properties like STBCs from orthogonal designs
(ODs) and quasi-orthogonal designs (QODs). This simplicity of decoding for ODs and
QODs is due to the fact that the Maximum Likelihood (ML) decoding metric can be
written as sum of squares of terms each depending on only one variable in the case of
OD and two variables in the case of QODs; as a result each variable can be decoded
separately for ODs and pairs of variables for QODs. However the rates of ODs and QODs
are restrictive; resulting in search of other codes. It is in this context that STBCs are
investigated in this thesis where we classify and characterize all STBCs that have decoding
properties similar to ODs and QODs; calling them “single-symbol decodable (SD)” and
“double-symbol decodable (DSD)” respectively, for quasi-static and fast-fading channels
when channel state information (CSI) is known at the receiver.

The characterization of single-symbol decodable STBCs shows that full-rank single-

symbol decodable designs can exist outside the well-known Generalized Linear Processing



Complex Orthogonal Designs. In particular, we present single-symbol decodable, full-
rank, rate 1, space-time block codes (STBCs) for 2 and 4 antennas that are not-obtainable
from GLCODs.

The characterization of single-symbol decodable STBCs proceeds in two steps: first, we
characterize all linear STBCs, that allow single-symbol ML decoding (not necessarily full-
diversity) over quasi-static fading channels-calling them single-symbol decodable designs
(SDD). The class SDD includes GLCOD as a proper subclass. Among the SDD those
that offer full-diversity, called Full-rank SDD (FSDD), are characterized. For square
FSDD, complete classification and construction of maximal rate designs are presented.
As a consequence, we show that full-rank, rate-one, square SDD exist only for 2 and 4
transmit antennas and GLCODs are not maximal rate FSDD except for N = 2.

For non-square FSDD we present a class of non-GLCOD, STBCs called Generalized
Co-ordinate Interleaved Orthogonal Designs (GCIODs). Construction of various high rate
(>1/2) designs within this class of codes is presented and the coding gain and maximum
mutual information (MMI) of these codes is evaluated and compared with known STBCs.
We then show that the class of GLCODs and GCIODs arise naturally when all maximal
SNR STBCs are characterized.

A characterization of all double-symbol decodable STBCs is then presented, in par-
ticular we present a double-symbol decodable, full-rank, rate 1, STBCs for 8 antennas.
Next, we propose designs for fast-fading channels and derive maximal rates of single,
double symbol decodable designs for fast-fading channels. Of particular interest is the
uniqueness of CIOD for 2 Tx. which has single-symbol decodability for both quasi-static
and fast-fading channels.

It turns out that co-ordinate interleaving of complex constellations is an effective tool
to improve the diversity performance of MIMO fading channels without accruing any

complexity penalty at the receiver.
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Chapter 1
Introduction

Wireless mobile communications is characterized by a very lossy and dispersive transmis-
sion medium, the fading channel, that suffers from extreme random fades. In designing
communication systems for the fading channel, the emphasis is on minimizing the effect
of channel fluctuations. Diversity as a technique for minimizing the detrimental effects of
channel fluctuations, has been known to the wireless community since decades. A funda-
mental requirement of the diversity method is that a number of independent transmission
paths be available to carry the message. Independent paths can be obtained by coding in
time-like repeatedly sending the same signal; resulting in time diversity. Time-diversity
results in transmission delay and bandwidth loss. Significantly, time-diversity depends on
the mobility of the antennas to provide independent paths and as such is useless when both
the receiver and transmitter are stationary [1, chap. 5]. Alternately coding/repetition can
be in frequency, wherein the same message is transmitted over different frequencies. This
results in frequency diversity. But again, frequency diversity results in loss of bandwidth.
Polarization and angle diversity have also been proposed but in both the cases the number
of diversity paths are limited to two and three respectively.

Antenna or space diversity was and is favored for mobile radio for a variety of reasons;
in particular, it does not require additional bandwidth. Figure 1.1 presents a graphical
presentation of space diversity, with both the transmitter and receiver being equipped
with multiple antennas.

Till a decade ago, antenna diversity was synonymous with receive diversity, wherein
multiple antennas were used for reception. The problem with receive diversity for mobile
communications is that the receive antennas had to be sufficiently apart so that the signals

received at each antenna undergoes independent fade. While this is easily implemented
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Figure 1.1: Diagram of a MIMO wireless transmission system.

at the base-station, since the mobile unit needs to be small in size it becomes costly to
implement this in the mobile unit[2]. In order to reap the benefits of antenna diversity in
the down-link (base-station to mobile) transmit diversity and/or a combination of trans-
mit and receive diversity, termed otherwise as a multiple-input multiple-output (MIMO)
link, was recently considered, wherein both the receiver and transmitter are equipped
with multiple antennas (TX and RX respectively). A key concept in space diversity is the
diversity order which is defined as the number of decorrelated spatial branches available
at the receiver.

In a very short period of about five years MIMO has emerged as one of the most
significant technical breakthroughs of modern communication and is poised to penetrate
commercial wireless products and networks. In fact the Alamouti scheme is currently a
part of W-CDMA and CDMA-2000 standards [2]. The reasons due to which MIMO has
and is generating so much interest is many-fold. A properly designed MIMO system not
only leads to improved quality of service (Bit Error Rate or BER) but also improved data
rate (bits/sec) and therefore revenues of the operator (as is clear from the absolute gains
in terms of capacity, reviewed in Section 1.1) . This prospect of performance improvement
at no cost of extra spectrum is largely responsible for success of MIMO as a new topic of
research. This thesis deals with one of the many open-problems in the area of signal design
for MIMO channels; that of achieving simple decodability while retaining the diversity

benefits, that have come to fore in these five years of active research.
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1.1 The MIMO System

Consider the MIMO system shown in Fig.1.1. A compressed digital source in the form of
a binary data stream is fed to a transmitting block encompassing error control coding and
mapping to a complex signal constellation (M-QAM, M-PSK). The coding produces sev-
eral separate symbol streams (not necessarily independent) each of which is mapped onto
one of the multiple TX antennas. Mapping may involve linear spatial weighing of anten-
nas (as in the case of channel feedback) or space-time coding [3]. After upward frequency
conversion, filtering and amplifying the signals are launched into the wireless domain. At
the receiver the signals are captured by possibly multiple antennas and demodulation and
demapping operations are performed to recover the message. The selection of coding and
antenna mapping can vary a great deal depending upon the application and is primarily
decided by factors such as receiver and transmitter complexity, prior channel knowledge
among other factors. Here we are interested in exploring the absolute gains offered by
a single-user MIMO system and its special cases the SISO, SIMO and MISO systems,
in terms of Capacity when perfect CSI (Channel State Information) is available at the
receiver.

Consider the traditional SISO system. In a flat-fading channel, the capacity is achieved

with continuous Gaussian input and it is [2, 3],

C = Ellog, (1 + p|h|*)] bits/sec/Hz (1.1)

where the expectation is over the channel realizations h and p = U—PQ is the average SNR

expressed in terms of the total transmit power P and the average noise power 2.
For a matrix channel of NV transmit and M receive antennas with continuous Gaussian

input and Rayleigh fading the instantaneous capacity version of 1.1 generalizes to [3, 5, 6]
C(H) = log, [det (1 + %HHHH bits/sec/Hz (1.2)
where now p is the SNR for one receive antenna and H is the N x M channel matrix. In
a SIMO system with M receive antennas the capacity is given by [3]
M-1

C(H) = log, (1 +p Z \hi\2> bits/sec/Hz (1.3)

1=0
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where h; is the channel gain for i-th RX and for a MISO system with N Tx, we have [5, 6]

N-1
— r 12| i
C(H) = log, <1 + ZZ:; |l ) bits/sec/Hz. (1.4)

The ergodic mean capacity is obtained by taking expectation on the expression 1.2 with
respect to H. Observe that the factor £ ensures a fixed total transmit power. The
important point to observe [5, 6] is that in (1.2) C increases linearly with min(N, M).
while there is a logarithmic increase in C' with respect to M in (1.3) and with NV in (1.4).
The increase in capacity w.r.t. SISO is evident in all the three cases. Interestingly C'(H)
is a random variable and averaging this over H leads us to the ergodic mean capacity.
From the practical point of view, for a quasi-static channel, what is more useful is the
outage capacity, C), i.e. the capacity that is supported with a probability p defined by

Outage capacity C,: Channel capacity is higher than C, for p% of the time.

PrHO®)>GY= [ C (=

Fig. 1.2 gives the outages for various MIMO systems. Observe that the data rate is more
than double for a 2 x 2 MIMO system at all SNRs as compared to a SISO system.

1.2 Space-time Codes

The following subsection describes the channel model, coding, decoding and the per-
formance criteria for MIMO systems employing Space-Time Codes (STC). The primary
difference between coded modulation (used for SISO, SIMO) and space-time codes is that
in coded modulation the coding is in time only while in space-time codes the coding is
in both space and time and hence the name. Space-time Codes (STC) can be thought of
as a signal design problem at the transmitter to realize the capacity benefits summarized
in the previous section, though, several developments towards STC were presented in
[7,8,9, 10, 11] which combine transmit and receive, much prior to the results on capacity.
Formally, a thorough treatment of STCs were first presented in [12] in the form of trellis
codes (space-time trellis codes (STTC)) along with appropriate design and performance
criteria, a brief review of which is given in subsection 1.2.1 and 1.2.2 gives a review of

STBCs from orthogonal designs.
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- Achievable Data Rates with Multiple Antennas

200 _______________________ L L m

15 =1—o— 27Tx 2 Rx Antennas
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-0— 2 Tx 1Rx Antennas
—— 1 Tx 1RxAntennas

Achievable Date Rate (kbits/sec) per 30 kHz Channal
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5 20
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Figure 1.2: The outage Capacity, Cy g9, for various combinations of N = 2,1 and M = 2,1
MIMO systems in Rayleigh fading
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1.2.1 The Channel Model and Performance Criteria for STC

Let the number of transmit antennas be N and the number of receive antennas be M.
At each time slot ¢, the complex signals, s;;, ¢ = 0,1,--- , N — 1 are transmitted from
the N antennas simultaneously. Let h;; = a;;ei% denote the path gain from the transmit
antenna i to the receive antenna j, where j = /—1. Assuming that the path gains are
constant over a frame length L > N, ¢ = 0,---,L — 1, the received signal v;; at the
antenna j at time ¢, is given by

N-1

’th:ZSithij—i—njt, j:O,,M—l, t:O,"',L—l, (15)
=0

which in matrix notation is,

V=SH+N (1.6)

where, with C denoting the complex field,
V € CEXM s the received signal matrix,

S € CI*V  is the transmission matrix (also referred as codeword matrix),
N € C*M s the additive noise matrix, and

H e CVN*M  ig the channel matrix.

The entries of N and H are complex Gaussian distributed with zero mean and unit
variance and also are temporally and spatially white. Note that in V,S and N time
runs vertically and space runs horizontally and h;; is the entry in the ith row and the
jth column of H. Recall that for a matrix A, A" represents the Hermitian (conjugate
transpose) of A, A7 represents the transpose of A and |A| denotes the determinant of A.

If the transmission power constraint is given by E[tr{SS™}] = LN then

P
:,/— H+ N 1.
A\Y% NS + (1.7)

where p is the SNR at each receiver. Assuming that perfect channel state information
(CSI) is available at the receiver, the decision rule for ML decoding is to minimize the

metric

(1.8)




1.2 Space-time Codes 7

over all codeword matrices S. In vector form we have
Aﬂ&én?u«V—SHWWuSH»:HV—SHW. (1.9)

This ML metric (1.8)/(1.9) results in exponential decoding complexity, because of the
joint decision on all the complex symbols s;; in the matrix S. Let Cg denote the set of all
possible codeword matrices. Then the throughput rate R of such a scheme in bits/sec/Hz

2RL metric calculations are required; one for each possible transmission

is T log,(|Cs]) and
matrix S. Even for modest antenna configurations and rates this could be very large. For
a STTC zero padding at the end of each frame is done and Vector Viterbi algorithm [12]
is used to perform the minimization.

Towards describing the diversity and coding gains, let P(S — S) be the pairwise error
probability of S being transmitted and wrongly decoded as S for the receiver based on
(1.8). The Chernoff bound on this error probability takes the form [12, eq. (9)]

P(S—8) < % — (1.10)
{11+ (s -S)s -9}

where [ is the identity matrix. For large SNR’s (large values of p), (1.10) can be written

as

) 1 rM
P@H$S<H§§%) (1.11)

where 7 is the rank of the difference matrix, B(S,S) =S — S, and
A(S,8) = (S —-S)(S - 8)"Y" (1.12)

where |A|; represents the product of the non-zero eigen values of the matrix A. The
minimum of the ranks of all possible pairs of codeword matrices is referred to as the
diversity gain and the minimum value of A(S, S) over all possible pairs of codeword
matrices is referred to as the coding gain. The above pair-wise probability of error analysis

for a quasi-static channel leads to

Design Criteria for STC over quasi-static fading channels[12]

e Rank Criterion: In order to achieve full-diversity of NM, the matrix B(S,S) has
to be full-rank for any two codewords S, S. If B(S, S) has rank r, then a diversity
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gain of rM is achieved.

e Determinant Criterion: After maximizing the diversity gain the next criteria is

maximizing the minimum of A(S, S) over all pairs of distinct codewords.

1.2.2 Space-time block codes (STBC)

Definition 1.2.1 (STBC). An N x L (generally, L > N) space time block code (STBC)
C consists of a finite number |C| of N x L matrices with entries from the complex field. If
the entries of the codeword matrices take values from a complex signal set S or complex
linear combinations of elements of S then the code is said to be over S. For quasi-static,
flat fading channels a primary performance index of C is the minimum of the rank of the
difference of any two codeword matrices, called the rank of the code. C is of full-rank if
its rank is minimum of L and N and is of minimal-delay if L = N. The rate of the code

in symbols per channel use is given by § logg(IC]).

The study of space-time block codes (STBC) started with the paper by Alamouti [16]
and their subsequent generalization in [13] and development in [17, 18, 19, 15, 20, 21, 22,
23] using the theory of Orthogonal Designs (OD) [24, 25, 26, 27]. Many other STBCs like
STBCs from Quasi-Orthogonal Designs (QOD) [28, 29, 30, 31, 32, 33, 34|, STBCs using
unitary precoders [35, 36, 37, 38] and other STBCs like [39, 40, 41] etc. were developed.

We first review the definition and important results of ODs and QODs before contin-

uing our discussion.

Definition 1.2.2 (Generalized Linear Complex Orthogonal Design (GLCOD)[13]).
A GLCOD! in k complex indeterminates 1, x, - - - , 73, of size N and rate R = k/p, p > N
is a p x N matrix O, such that

e the entries of © are complex linear combinations of 0, +x;, 7= 1,---,k and their

conjugates.

e OO = D, where D is a diagonal matrix whose entries are a linear combination of

|z;|%,i=1,--- , k with all strictly positive real coefficients.

n [13] it is called a Generalized Linear Processing Complex Orthogonal Design where the word
“Processing” has nothing to be with the linear processing operations in the receiver and means basically
that the entries are linear combinations of the variables of the design. Since we feel that it is better to
drop this word to avoid possible confusion we call it GLCOD.
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If k=n=p then O is called a Linear Complex Orthogonal Design (LCOD). Furthermore,
when the entries are only from {+z, £xy, -+, £y}, their conjugates and multiples of j
then © is called a Complex Orthogonal Design (COD). STBCs from ODs are obtained
by replacing x; by s; and allowing s; to take all values from a signal set A. A GLCOD is
said to be of minimal-delay if N = p.

Actually, according to [13] it is required that D = Y  |z;I, which is a
special case of the requirement that D is a diagonal matrix with the conditions
in the above definition. In other words, we have presented a generalized
version of the definition of GLCOD of [13]. Also we say that a GLCOD satisfies
Equal-Weights condition if D = Y25 | |z,[21.

The Alamouti scheme [16], which is of minimal-delay, full-rank and full-rate is basically
the STBC arising from the size 2 COD.

The main results regarding GLCODs are summarized below:

e when A is a real constellation, then rate 1 square, real, Orthogonal Designs exist
ONLY for N=2/4 and 8 [13].

e when A is a complex constellation, Square/Non-square GLCODs exist ONLY for
N=2 [13, 20, 22].

e when A is a complex constellation, the maximal rates of Square GLCODs of size
N = 2%, b odd, satisfying Equal-Weights condition is [15]

a+1

R==5

Observe that the maximal rate, when the GLCODs do not satisfy the Equal-Weights

condition, is not known [22],

e the STBCs from GLCODs satisfying Equal-Weights condition are optimal SNR
codes [17, 18, 19, 23].

In the case of QODs, several constructions are given in [28, 29, 31, 32, 30, 33, 34] but
the fundamental questions of rate and existence of QODs has not been dealt with, to the

best of our knowledge.
All the above STBCs from designs belong to the class of linear STBCs which we
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define now: Following the spirit of [15], by a linear STBC? we mean those covered by the

following definition:

Definition 1.2.3 ( Linear STBC). A linear design, S, is a L x N matrix whose en-
tries are complex linear combinations of K complex indeterminates x = xpr + jTrg,
k=20,---,K —1 and their complex conjugates. The STBC obtained by letting each
indeterminate to take all possible values from a complex constellation A is called a linear
STBC over A. Notice that S is basically a “design”and by the STBC (S,.4) we mean
the STBC obtained using the design S with the indeterminates taking values from the
signal constellation A. The rate of the code/design® is given by K/L symbols/channel

use. Every linear design S can be expressed as

K-1

S = Z .Tk[Agk -+ .TkQAQk_H (113)

k=0
where {A4;}25 " is a set of complex matrices called weight matrices of S.

Throughout the thesis, we consider linear STBCs only and also we use the word “linear
design” and “linear STBC” interchangeably with the understanding that the signal set,
A, in (S,.A) is understood from context or will be specified when necessary. Linear
STBCs can be decoded using simple linear processing at the receiver with algorithms like
sphere-decoding [42, 43] which have polynomial complexity in, N, the number of transmit
antennas. But STBCs from ODs and QODs stand out because of very simple (linear
complexity in N) decoding. This is because the ML metric of (1.9) can be written as a sum
of several square terms, each depending on at-most one variable for OD and at-most two
variables for QOD. However, the rates of both ODs and QODs are restrictive; resulting in
search of other codes that allow simple decoding similar to ODs and QODs. We call such

codes “single-symbol decodable” and ”double-symbol decodable” respectively. Formally

Definition 1.2.4 (Single-symbol Decodable (SD) and Double-symbol Decod-
able (DSD) STBC). A single-symbol decodable STBC of rate K/L in K complex
indeterminates x, = xxr + jrrg, K = 0,---, K — 1 is a linear STBC such that the ML

decoding metric given by (1.9) can be written as a square of several terms each depending

2Also referred to as a Linear Dispersion (LD) code [39]
3Note that if the signal set is of size 2 the throughput rate R in bits per second per Hertz is related
to the rate of the design R as R = Rb.
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on at most one indeterminate. If (1.9) can be written as a square of several terms each
depending on at most two indeterminates, then the STBC is said to be double-symbol
decodable.

Examples of single-symbol decodable STBCs are STBCs from Orthogonal Designs
(ODs) and examples of double-symbol decodable STBCs are the QODs. To elucidate

further, consider the Alamouti code

S(zo, 1) = [ oo n ]

* *
—T; Iy

where z¢,x; are signal points from some complex constellation A. That the Alamouti
code is a SD STBC can be verified as follows,

M(S(xo,21)) = min tr((V - SH)"(V — SH)) = ||V — SH|? (1.14)
0,71
= min {IIV = S(z0,0)H||> + [V — S(0,z1)H[]*} — tr (VVT) (1.15)
XT1,22
= min {||V — S(z9,0)H|?} + min {|V — S(0,z1)H|*} (1.16)
roEA r1€EA

and hence each variable z, x1 can be detected separately (see Proposition 2.3.1 for more

details).

1.3 Motivation, Overview and Scope of the Thesis

Despite enormous interest and research in STBCs from ODs and QODs, to the best of
our knowledge the following fundamental questions related to STBCs from designs either

remain unaddressed or are not answered fully:
1. Are STBCs from ODs the only single-symbol decodable linear STBCs?
2. Are single-symbol decodable codes necessarily full-rank also?

3. What are the maximal rates of single-symbol decodable linear STBCs, with or

without full-rankness?
4. If they exist outside the domain of ODs, are all of them optimal SNR codes?

5. Are STBCs from QODs the only double-symbol decodable linear STBCs? What

are the maximal rates of square QODs?
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6. Are STBCs with single/double-symbol decodablity for quasi-static channel useful,

or in some sense related to STBCs suitable, for fast-fading channels?

The above questions are also precisely the set of issues addressed and answered /settled
almost completely in this thesis. This is achieved by way of characterizing the entire class
of SD and DSD STBCs, without out taking into account their full-rankness and then
bringing the full-rankness into consideration. This thesis also deals with the various
aspects of these designs including the diversity and coding gain with various signal sets.

The contributions of this thesis are presented in the form of following five chapters
1. Chapter 2: Single-symbol Decodable, Full-diversity Linear STBCs*

2. Chapter 3: Generalized Co-ordinate Interleaved Designs®

3. Chapter 4: Characterization of Optimal SNR STBCs

4. Chapter 5: Double-symbol Decodable Designs®

5. Chapter 6: STBCs from Designs for Fast-Fading Channels”

an outline of each of which follows:

Chapter2: Single-symbol Decodable, Full-diversity Linear STBCs

Space-Time block codes (STBC) from Orthogonal Designs (OD) has been attracting wider
attention due to their amenability for fast (single-symbol decoding) ML decoding, and full-
rate with full-rank over quasi-static fading channels [16]-[23]. Unfortunately, for complex
constellations full-rate, full-rank, square ODs exist only for 2 transmit antennas and for
larger number of antennas one needs to pay in terms of reduced symbol-rate or rank or
not having single-symbol decodability.

It is natural to ask, if there exist codes other than STBCs form ODs that allow
single-symbol decoding? In this chapter, this question is answered in the affirmative by
showing that full-rank, full-rate and single-symbol decodable designs can exist outside
the well-known Generalized Linear Complex OD (GLCODs) [13]. We first characterize
all linear STBCs, that allow single-symbol ML decoding (not necessarily full-diversity)

4Part of the results of this chapter are reported in the the publications
5Part of the results of this chapter are reported in the the publications
5Part of the results of this chapter are reported in the the publications
"Part of the results of this chapter are reported in the the publications

50, 52, 53, 55
50, 51, 52]
53, 57]

54, 56]
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over quasi-static fading channels-calling them single-symbol decodable designs (SDD).
The class SDD includes GLCOD as a proper subclass. Among the SDD, those that offer
full-diversity are called Full-rank SDD (FSDD).

We show that the class of FSDD comprises of (i) an extension of GLCOD which we
have called Unrestricted Full-rank SDD (UFSDD) and (ii) a class of non-UFSDDs called
Restricted Full-rank SDD (RFSDD)8.

We then concentrate on square designs and show that the class of square FSDD com-
prises of (i) square GLCODs (a proper subset of UFSDDs) and (ii) square Co-ordinate
Interleaved Orthogonal Designs (CIODs) a proper subset of RFSDDs.

The problem of deriving the maximal rate for square RFSDDs is then addressed and
a constructional proof of the same is provided. It follows that, except for N = 2, square
GLCODs are not maximal rate FSDD. These maximal rate square RFSDDs have a special
property that they can be thought of as a combination of co-ordinate interleaving [44,
45, 46, 47, 48, 49, 55] and maximal rate square orthogonal designs. Consequently we call
square RFSDDs as square co-ordinate interleaved orthogonal designs (CIODs). Finally,
we show that full-rank, rate-1, square FSDD exist only for 2 and 4 transmit antennas:
these are respectively the Alamouti scheme and the 2 x 2 and 4 x 4 schemes based on the
Co-ordinate Interleaved Orthogonal Designs (CIODs).

Chapter 3: Generalized Co-ordinate Interleaved Designs

In this chapter, we generalize the construction of square RFSDDs given in Chapter 2, and
give a formal definition for Co-ordinate Interleaved Orthogonal Designs (CIOD) and its
generalization, Generalized Co-ordinate Interleaved Orthogonal Designs (GCIOD). This
generalization is basically a construction of RFSDD; both square and non-square. We
conjecture that this construction can realize maximal rate non-square RFSDDs. We
then show that rate 1 GCIODs exist for 2, 3 and 4 transmit antennas and for all other
antenna configurations the rate is strictly less than 1. Rate 6/7 designs for 5 and 6
transmit antennas, rate 7/9 designs for 7 transmit antennas, rate 3/4 designs for 8 transmit
antennas, rate 7/11 designs for 9 and 10 transmit antennas and rate 3/5 designs for 11
and 12 transmit antennas are also presented. A construction of rate 2/3 GCIOD for

N > 8 is then presented. The signal set expansion due to co-ordinate interleaving is then

8the word Restricted in RFSDD reflects the fact that the designs in this class can achieve full-diversity
iff the signal set used satisfies a restriction and the word Unrestricted in UFSDD indicates that without
any restriction on the complex constellation the codes in this class give full-rank.
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highlighted and the coding gain of GCIOD is shown to be equal to generalized co-ordinate
product distance (GCPD). A special case of GCPD, the co-ordinate product distance
(CPD) is derived for lattice constellations. We then show that, for lattice constellations,
GCIODs have higher coding gain as compared to GLCODs. Simulation results are also
included for completeness. Finally, the maximum mutual information (MMI) of GCIODs
is compared with that of GLCODs to show that, except for N = 2, CIODs have higher
MMI. In short, this chapter shows that, except for N = 2 (the Alamouti code), CIODs
are better than GLCODs in terms of rate, coding gain and MMI.

Chapter 4: Characterization of Optimal SNR STBCs

In a recent work [17, 18, 19|, space-time block codes (STBC) from Orthogonal designs
(OD) were shown to maximize the signal to noise ratio (SNR) and also it was shown that
for a linear STBC the maximum SNR is achieved when the weight matrices are unitary. In
this chapter we show that STBCs from ODs are not the only codes that maximize SNR;
we characterize all linear STBCs that maximize SNR thereby showing that maximum
SNR can be achieved with non-unitary weight matrices also, subject to a constraint on
the transmitted symbols (which is that the in-phase and quadrature components are of
equal energy). This constraint is satisfied by some known signal sets like BPSK rotated
by an angle of 45°, QPSK and X-constellations (defined in Chapter 4). It is then shown
that the Generalized Co-ordinate Interleaved orthogonal Designs (GCIOD) presented in
the previous chapter achieve maximum SNR and corresponds to a generalized maximal
ratio combiner under this constraint. This result is a generalization to a previous result on
maximum SNR presented in [17] (in the sense that the necessary conditions for maximal
SNR derived in [17] for real symbols are not necessary for the complex symbol case).
Also we show that though GCIOD maximizes SNR for QPSK, the same GCIOD with the
rotated QPSK performs better in terms of probability of error; although with this rotated
QPSK, GCIOD is not maximal SNR. This result is due to the fact that the maximum
SNR approach does not necessarily maximize the coding gain also. Note that GCIODs

are single-symbol decodable and therefore it is pertinent to talk of maximizing SNR.

Chapter 5: Double-symbol Decodable Designs

In this chapter we consider Double-symbol Decodable Designs. Previous work in this di-

rection is primarily concerned with Space-Time block codes (STBC) from Quasi-Orthogonal
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designs (QOD) due to their amenability to double-symbol decoding and full-rank along
with better performance than STBCs obtained from Orthogonal Designs over quasi-static
fading channels for both low and high SNRs [28]-[34]. But the QODs in literature are
instances of Double-symbol Decodable Designs (DSDD) and in this chapter all Double-
symbol Decodable Designs are characterized ( as Single-symbol Decodable Designs were
characterized in Chapter 1).

In this chapter we first characterize all linear STBCs, that allow double-symbol ML de-
coding (not necessarily full-diversity) over quasi-static fading channels-calling them double
symbol decodable designs (DSDD). The class DSDD includes QOD as a proper subclass.
Among the DSDDs those that offer full-diversity are called Full-rank DSDDs (FDSDD).
We show that the class of FDSDD consists comprises of (i) Generalized QOD (GQOD)
and (ii) a class of non-GQODs called Quasi Complex Restricted Designs (QCRD). Among
QCRDs we identify those that offer full-rank and call them FQCRD. These full-rank
QCRDs along with GQODs constitute the class of FDSDD.

We then upper bound the rates of square GQODs and show that rate 1 GQODs
exist for 2 and 4 transmit antennas. Construction of maximal rate square GQODs are
then presented to show that the square QODs of [34] are optimal in terms of rate and
coding gain. A relation is established between GQODs and GCIODs which leads to the
construction of various high rate non-square QODs not obtainable by the constructions of
[28]-[34]. The coding gain of GQODs is analyzed which leads to generalization of results
of [34]. Also, we upper bound the rates of square QCRDs and show that rate 1 QCRDs
exist for 2, 4 and 8 transmit antennas. Construction of maximal rate square FQCRDs are
then presented. Simulation results for 8 FQCRD is then presented to show that although
the rate is 1, the performance is poorer than that of rate 3/4 QOD.

Chapter 6: Space-Time Block Codes from Designs for Fast-Fading Channels

In the previous chapters we were primarily concerned with STBCs over quasi-static fading
channel. STBCs from Designs have not been studied well for use in fast-fading channels
previously and literature on this is very scant. In this chapter, we study these codes
for use in fast-fading channels by giving a matrix representation of the multi-antenna
fast-fading channels. We first characterize all linear STBCs that allow single-symbol ML
decoding when used in fast-fading channels. Then, among these we identify those with
full-diversity, i.e., those with diversity L when the STBC is of size L x N, (L > N), where

N is the number of transmit antennas and L is the time interval. The maximum rate
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for such a full-diversity, single-symbol decodable code is shown to be 2/L from which
it follows that rate 1 is possible only for 2 Tx. antennas. The co-ordinate interleaved
orthogonal design (CIOD) for 2 Tx (introduced in Chapter 1) is shown to be one such
full-rate, full-diversity and single-symbol decodable code. (It turns out that Alamouti
code is not single-symbol decodable for fast-fading channels.) This code performs well
even when the channel is varying in the sense that sometimes it is quasi-static and other
times it is fast-fading. We then present simulation results for this code in such a scenario.
Finally, double-symbol decodable codes for fast-fading channels are characterized using
which it is shown that maximal rate codes over fast-fading channels are not double-symbol

decodable over quasi-static fading channels®.

91n the course of this research, several other topics were pursued but were not presented in this thesis
as they are not directly linked to STBC. These works concern differential STBCs from orthogonal designs,
bit and co-ordinate interleaved coded modulation (BCICM), bit interleaved coded modulation (BICM)
and TCM mapped to asymmetric PSK signal sets and part of these can be found in [58, 59, 60, 61]. In
fact the intuition behind this thesis was the application of co-ordinate interleaving to STBCs. The CIODs
of Chapter 3 were first obtained by combining co-ordinate interleaving with STBCs from ODs. Since
the CIODs were single-symbol decodable, need for characterization of single-symbol decodable codes was
immediately felt.



Chapter 2

Single-symbol Decodable STBCs

In this chapter we characterize the class of single-symbol decodable linear STBCs (Through-
out the thesis we consider only linear STBCs and hence unless explicitly specified all
STBCs in this thesis will mean linear STBCs).

2.1 Introduction

We begin by recollecting few basic notions like linear STBC, weight matrices of a linear
STBC and single-symbol decodable (SD) STBCs already given in Chapter 1:

Definition 2.1.1 ( Linear STBC). A linear design, S, is a L x N matrix whose en-
tries are complex linear combinations of K complex indeterminates x = xpr + jTro,
k=0,---,K —1 and their complex conjugates. The STBC obtained by letting each
indeterminate to take all possible values from a complex constellation A is called a linear
STBC over A. Notice that S is basically a “design” and by the STBC (.S,.4) we mean
the STBC obtained using the design S with the indeterminates taking values from the
signal constellation A. The rate of the code/design® is given by K /L symbols/channel

use. Every linear design S can be expressed as

K-1

S = Z .CEkIAgk; + l’kQAQk_H (21)

k=0

where {A4;}25 1 is a set of complex matrices called weight matrices of S.

INote that if the signal set is of size 2° the throughput rate R in bits per second per Hertz is related
to the rate of the design R as R = Rb.
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Among the linear STBCs we are concerned with STBCs that allow simple decoding
similar to ODs i.e. “single-symbol decodable” STBCs which are defined as

Definition 2.1.2 (Single-symbol Decodable (SD) STBC). A single-symbol decod-
able (SD) L x N STBC of rate K/L in K complex indeterminates x, = zx; + jTio,
k=0,---,K —11is a linear STBC such that the ML decoding metric given by (1.9)
can be written as a square of several terms each depending on at-most one indeterminate
only. Such a SD STBC is said to be of Full-rank, abbreviated as FSDD (Full-rank, Single-
symbol Decodable Design), if its rank is equal to the minimum of L and N for a chosen

constellation for the indeterminates.

Fig.2.1 shows the classes of SD STBCs studied in this chapter. We first characterize
all linear STBCs that admit single-symbol ML decoding (not necessarily full-rank) over
quasi-static fading channels-called Single-symbol Decodable Designs (SDD). Further, we
characterize all full-rank SDD called Full-rank SDD (FSDD). We show that the class of
FSDD consists of only

e an extension of GLCOD which we have called Unrestricted Full-rank Single-symbol
Decodable Designs (UFSDD) and

e a class of non-UFSDDs called Restricted Full-rank Single-symbol Decodable Designs
(RFSDD).

The remaining part of this chapter is organized as follows: A brief presentation of
basic, well known results concerning GLCODs along with a generalization [55] is given in
Section 2.2. In section 2.3 we characterize the class SDD of all single-symbol decodable
(not necessarily full-rank) designs. Within the class of SDD the class FSDD consisting
of all Full-rank SDD is characterized in Section 2.4. Section 2.5 deals exclusively with
square designs. Finally, Section 2.6 consists of some concluding remarks and a couple of

directions for further research.

2.2 Generalized Linear Complex Orthogonal Designs
(GLCOD)

In Subsection 1.2.2 the definition of GLCOD and few basic results were mentioned. In this

section we collect some more important results on square as well as non-square GLCODs
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Non-square

Square

Figure 2.1: The classes of single-symbol decodable (SDD) codes.

from [13, 15, 22] which are presentable in terms of the weight matrices. In the Subsection
2.2.1 we show that some existence results on the ODs for STBCs given in [13] are valid
under milder conditions, and are reported in [55].

Consider a square GLCOD?, S = ZkK:_Ol T Aog+2pgAsk1. The weight matrices sat-
isfy,

AlA, =Dy, k=0,---,2K—1 (2.2)
AlAL + ATPA =0, 0<k#I1<2K—1. (2.3)

Observe that ﬁk is of full-rank for all k. Define B, = A;ﬂﬁ;l/ > Then the matrices By

satisfy (using the results shown in [55] and also given in Subsection 2.2.1)

Bl'B,=1Iy, k=0,---,2K—1 (2.4)
B'B,+Bl'By=0, 0<k#I1<2K—1. (2.5)

2A rate-1, square GLCOD is referred to as complex linear processing orthogonal design (CLPOD) in
[13].
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and again defining
Cp=B)By, k=0, ,2K—1, (2.6)

we end up with Cy = Iy and

Cit=—-Cy, k=1,---2K—1 (2.7)
CNCy+ClICy =0, 1<k#1<2K -1 (2.8)
The above normalized set of matrices {Cy, -+ ,Cox_1} constitute a Hurwitz family of

order N [24]. Let H (N) — 1 denote the number of matrices in a Hurwitz family of order

N, then the Hurwitz Theorem can be stated as

Theorem 2.2.1 (Hurwitz [24]). If N = 2%, b odd and a,b > 0 then
H(N) < 2a+2.

Observe that H (N) = 2K. An immediate consequence of the Hurwitz Theorem are the

following results:

Theorem 2.2.2 (Tarokh, Jafarkhani and Calderbank [13]). A square GLCOD of
rate 1 exists iff N = 2.

Theorem 2.2.3 (Trikkonen and Hottinen [15]). The maximal rate, R of a square
GLCOD of size N = 2°b,b odd, satisfying equal weight condition is

_a—i—l

R="%

Remark 2.2.1. Following the results of [55] which is also given in Subsection 2.2.1, we can
now say that the Trikkonen and Hottinen theorem holds for all square GLCOD.

An intuitive and simple realization of such GLCODs based on Josefiak’s realization of

the Hurwitz family, was presented in [22] as

Construction 2.2.4 (Su and Xia [22]). Let Gi(x¢) = x¢l1, then the GLCOD of size
2K Gy (wo, 1, -+ ,2K), can be constructed iteratively for K =1,2,3,--- as
GgK—l(QfQ,.Tl,"' ,.TK_l) xKIQK_1

G2K(x07x17”' ,Z'K) = . (29)
— Xy lox— Gg{ml(xo, Ty, 7731(—1)



2.2 Generalized Linear Complex Orthogonal Designs (GLCOD) 21

While square GLCODs have been completely characterized non-square GLCODs are
not well understood. The main results for non-square GLCODs are due to Liang and Xia.

The primary result is
Theorem 2.2.5 (Liang and Xia [20]). A rate 1 GLCOD exists iff N = 2.
This was further, improved later to,

Theorem 2.2.6 (Su and Xia [22]). The mazimum rate of GCOD (without linear pro-
cessing) is upper bounded by 3/4.

The maximal rate and the construction of such maximal rate non-square GLCODs for
N > 2 remains an open problem. Finally, rate 1/2 constructions for non-square GLCODs
were presented in [13] and some constructions for N = 5,6 of rate greater than 1/2 were
presented in [21]. The known GLCODs with rate greater than 1/2 are:

1) The rate 3/4 scheme for N =4

i) I To 0
—x7 x5 0  ®9

O4(z0, 71, 22) = . (2.10)
—T5 0 Ty —T1

0 —a5 7 a9

Dropping one of the columns, we have a rate 3/4 GLCOD fro three antennas,
2) the rate 7/11=0.6364 design for N =5

Zo €1 T2 0 I3
—x] T 0 Ty T4
x5 0 -z =1 5
0 Ty —x] —Xoy e
T 0 0 —x5 —ux
Os(zg, x1,-,x6)= | 0 a3 0 af -} (2.11)
0 0 a5 x5 -5
0 —a; xf Zo
i 0 T T
—xr —zg 0 T
Tg —T5 —T4 I3 0
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3) and the rate 3/5 design for N =6

ZTo I xTo 0 I3 T
—x] oz 0 ) T4 xg
x5 0 -} 1 Ts5 Zg
0 x3 -z —Tp Tg  T10
x4 0 0 —x5  —xy T
0 x30 xE —xy  T12
0 0 x4 Ty  —T3;  T13
0 -z} T3 0 To T4
x4 0 TG 0 T Tis
—xf - 0 0 T T16
Ze —T5 —xy T3 0 T17
7 0 0—zjp -7y, —7p
0 7 0 T4 Tl —T]
0 0 Ty g Tig —T5
0 0 0 77 Ty —x3
O6(20, 21,72, -+ ,T17) = (2.12)
0 0 -]y 0 Ty —x
0 —xy 0 0 G
—xiy 0 0 0 xig  —T§
0 —x3 x4 0 T Zo
x5 0 Z7o 0 T1a 1
—x5  —x]g 0 0 z75 T2
—r] Ty~ 0 0 x3
—Tl5  —Ty 0 —T13 0 T4
— 7 0 Tl —Ty 0 L5
0 —Tle  —T1s T 0 L6
0 13 —T12 —T14 Z10 0
r13 0 —T11 —T15 Ty 0
—T12  Tn 0 Tie T8 0
Tia  —Ti5  Ti6 0 x7 0
|~ T9 xg —r7  T17 0 |
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2.2.1 Generalization of certain existence results on ODs

In this subsection we show that two theorems regarding the existence of Generalized Linear
Orthogonal Designs (GLODs) in the paper [13] are valid under more general conditions
than for which they have been stated and proved.

Recalling the definition of GLCOD in [13] along with a correction by the same authors
in [14] a Generalized Linear Complex Orthogonal Design (GLCOD)[13] in K complex

indeterminates xg, z1, -+ , k1 of size N and rate R = K/p, p > N is a p x N matrix &,
such that
e the entries of £ are complex linear combinations of 0,+z;, ¢ =20,---,K — 1 and

their conjugates.

o £ME = D, where D is a diagonal matrix with the (4,7)-th diagonal element of the
form

01202 + 1921 2+ -+ 19 Jzge_y? (2.13)

where lg»i),i =12,---,N, 7=0,1,--- , K —1 are strictly positive numbers and for
all values of i,
=1 = =1 . (2.14)

The condition given by (2.14), which we will be henceforth referred as Equal-Weights
condition has been introduced in [14] as a correction to [13]. When K=N=p, £ is called a
Linear Complex Orthogonal Design (LCOD). Furthermore, when the entries are only from
{£wo, 21, -+ , 2K 1}, their conjugates and multiples of j then & is called a Complex
Orthogonal Design (COD). If the variables are real and only real linear combinations
are used in the above definitions then we get Generalized Linear Real Orthogonal Designs
(GLROD), Linear Real Orthogonal Design (LROD) and Real Orthogonal Designs (ROD).

The existence of Orthogonal Designs (OD) is of fundamental importance in the theory
of Space-Time Block Codes [13]. In this regard, the paper [13] presents four theorems
(Theorems 3.4.1, 4.1.1, 5.4.1 and 5.5.1): Theorem 3.4.1 deals with RODs, Theorem 5.4.1
with CODs and Theorems 4.1.1 and 5.5.1 with GLROD and GLCOD respectively. The
proof is given only for Theorem 3.4.1 and the remaining three theorems are stated with
the remark that the proofs are similar to that of Theorem 3.4.1.

In what follows, we show that Theorems 3.4.1 and 5.5.1 of [13] are valid under the

following two generalizations:
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e Dropping the Equal-Weights conditions from the definition of GLCODs.
e Under the condition N = p in contrast to N =p = K as in [13].

Notice that the second generalization above means that as long as the design is a
square (not rectangular) then Theorems 3.4.1 and 5.5.1 of [13] are valid without the
Equal-Weights condition and moreover the number of variables K need not be equal to
N =p.

Theorem 3.4.1 of the subject paper - revisited

We begin with analyzing the proof of Theorem 3.4.1 given in the paper [13], which is for

real orthogonal designs, without assuming the Equal-Weights condition.

Theorem 2.2.7 (Theorem 3.4.1 of [13]). A linear processing orthogonal design, € in
variables xg, 1, -+ ,xNn_1 exists iff there exists a linear processing orthogonal design L,
such that

LTL=LL =@i+a?+ - +a% )] (2.15)

The proof given in the subject paper is as follows:

Let £ = 2940+ -+ xny_1ANn_1 be a linear processing orthogonal design and let
ETE =alDy+ -+ 2% Dy (2.16)
where the matrices D; are diagonal and full-rank. Then, it follows that

AT A; = D, i=01---,N—-1 (2.17)
AT A; = —ATA;, 0<i<j<N-1 (2.18)

where D; is a full-rank diagonal matrix with positive diagonal entries. Let Dl-l /2 be the

diagonal matrix having the property that D; / 2D3 /2= D;. Define

U, = A;D; /2. (2.19)
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Then the matrices U; satisfy the following properties:

Ulu, =1, i=0,1,---,N—1 (2.20)
UlU; =-U'U;,  0<i<j<N-1 (2.21)

After this step, the proof is completed in [13] with “It follows that £ = zoUy + z1U; +
-+ 4+ xn_1Un_1 is a linear processing orthogonal design with the desired property”. If
the Equal-Weights condition is included in the definition of GLCOD then the proof is
complete.
However, even without the Equal-Weights condition, (2.21) is valid as shown
below: Substituting from(2.19) in (2.21) we have,

D;PATAD; P = —DVPATAD ' 0<i<j<N-1, (2.22)
D;PATAD P =D PATADY?, 0<i<j<N-1. (2.23)

Equating the (k,[) entries on both sides of (2.23), we have

d(-k)akld(l) = dk akld

(
¥l 1 1
= dVd) = dMd ay #0
i q®
= 4= = S VI k such that ay # 0 (2.24)
d .
= Dj = CLle VJ:1;27 ;N_l (225)

where dg-k) is the k-th diagonal entry of Dj_l/ ? and ay, is the (k,1) entry of AT A;.

From the derivation of (2.25) above, it follows that if the set of D;’s in (2.16) satisfy
(2.25) or (2.22) then Theorem 3.4.1 of the paper[13] is correct without the Equal-Weights
condition included in the definition of GLROD. For GLCOD, the equivalent of (2.22) is

D;PARAD YV = D VPAMAD L 0<i<j<N -1, (2.26)

and in the following subsection we show that (2.26) is satisfied for all square designs

real or complex.
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A generalization of Theorems 3.4.1 and 5.4.1 of [13]

We now prove a generalization of Theorems 3.4.1 and 5.4.1 of [13]. Note that Theorems
3.4.1 and 5.4.1 of the subject paper assume N = p = K whereas our theorem assumes

N = p and there is no restriction on K.

Theorem 2.2.8. With the Equal-Weights condition removed from the definition of GLCOD:s,
an N X N square (GLCOD), &, in variables g, - - - ,xx_1 exists iff there exists a GLCOD
L. such that

LNL. = (|Jzo)* + - + |z 1[I (2.27)

Proof. Let &, = Zle TirAg; + 19 Asip1 where x; = ;1 + jxig. The weight matrices {A4;}

satisty,

AMA; =D;, i=0,1,--- 2K —1 (2.28)

ATA; + ATPA; =0, 0<i#j<2K-1. (2.29)

It is important to observe that D; is a diagonal and full-rank matrix for all 7. Define
B, = Aﬂ);l/2 and L, = Zle xir B + xigBaiy1. Then the design L. satisfies (2.27) iff

the matrices B; satisfy

BB, =1y, i=0,1,---,2K—1 (2.30)

BI'B;+ Bl'B; =0, 0<i#j<2K-1. (2.31)
Substituting B; = AiDi_l/Q, while (2.30) is always satisfied, (2.31) is satisfied iff
D PARAD P = DV AMAD P 0<i#£j<2K 1. (2.32)

Notice that (2.32) reduces to (2.22) for real orthogonal designs and with K = N. In what
follows we show that for square designs, (2.32) is satisfied without the Equal Weights
condition in the definition of GLCODs.
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Define B = D;?AHA,D; ' for 0 < 1,i < 2K — 1. Then BY = Iy and

H 2 ~
B8O ==Y [BY] = -D'D 2 D0, 0<iFi<ok -1 (2.33)
BYBY + BYBY =0, 0<i#l#j<2K -1 (2.34)

where we have used the fact that D, YA is the inverse of A;, so AD; YAt = I (which is
-1
true only for square A;). Now the inverse of BZ-(l), 0<i#1<2K —1is BZ-(Z) [Dgl)] and
-1
also [D(l)} BY which can be verified by multiplying with BZ.(l) and then using (2.33).

(2 (2

Since the inverse is unique, we have
-1 -1
BY [D@] - [DZ@] BY, 1<iAl<2K-1. (2.35)

o1 L ,

The (r,m)-th entry, where (1 < r,m < N), of BY [Dgl)] is 0\,d") where b\, is the
, =1

(r,m)-th entry of Bi(l) and d') is the m-th entry of [Di(l)} . Similarly, the (7, m)-th entry

-1 o
of [Di(l)] B is dPbY),. Equating the (r,m)-th entries on both sides of (2.35), we have
Vr, m. (2.36)

If bffzn % 0 then d% = dfni), otherwise, both sides of (2.36) is 0. In either case, we can
multiply the left hand side term by [dﬁf}]—l/ 2 and the right hand side term by [d&i)]_l/ 2 to

obtain

AT = ),

Vr,m

o1 —1/2 o —1/2
- BY [Dg”] _ [pgﬂ BY, 0<i#i<2K -1 (2.37)
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Substituting the value of BZ-(l), f)gl) from (2.33) in (2.37), we have,

D; V2 AN AD; V[ D)2 = [~ D, V2D, 2 AN A D

= D, PANAD;V? = —D VP AR AD (2.38)

which is the same as (2.32). O

When K = N, Theorem 2.2.8 reduces to Theorem 5.4.1 of the subject paper. Similarly,
when x;’s are real, the weight matrices A; are real matrices and K = N then Theorem
2.2.8 includes Theorem 3.4.1 of the subject paper. The arguments of this correspondence
can not be used to prove Theorems 4.1.1 and 5.5.1 in [13] without the Equal-Weights
condition. Indeed, the two designs presented in [22] show that Theorems 4.1.1 and 5.5.1
of [13] are not valid without the Equal-Weights condition.

The results of [15] are for square designs satisfying the condition (2.27). By virtue of
Theorem 2.2.8 the results of [15, 13] are valid for all square designs without the Equal-

Weights conditions and hence we have the following corollary.

Corollary 2.2.9. Let N = 2% where b is an odd integer and a = 4c+d, where 0 < d < ¢
and ¢ > 0. The mazimal rate of size N, square GLROD without the Equal-Weights

condition satisfied is % and of size N, square GLCOD without the Equal-Weights

a+1

condition satisfied is 3.

2.3 Single-symbol Decodable Designs

In this section we characterize all STBCs that allow single-symbol ML decoding (Subsec-
tion 2.3.1) and using this characterization define single-symbol decodable designs (SDD)

in terms of the weight matrices and discuss several examples of such designs.
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2.3.1 Characterization of Single-symbol Decodable STBCs

Consider the matrix channel model for quasi-static fading channel given in (1.6)

V=SH+N (2.39)

CEL*N s the transmission or codeword

where V € CF*M is the received signal matrix, S €
matrix, N € CI*M is the noise matrix and H € CN*M defines the channel matrix
whose ith row and the jth column element is h;;. Assuming that perfect channel state
information (CSI) is available at the receiver, the decision rule for ML decoding is: decide

in favor of that matrix S for which the decoding metric given by
M(S) = tr ((V—SH)"(V—-SH)). (2.40)

is minimum. This ML metric (2.40) results in exponential decoding complexity with the
rate of transmission in bits/sec/Hz.

For a linear STBC with K variables, we are concerned about those STBCs for which
the ML metric (2.40) can be written as sum of several terms with each term involving
at-most one variable only and hence single-symbol decodable.

The following theorem characterizes all linear STBCs, in terms of the weight ma-

trices, that will allow single-symbol decoding.

Proposition 2.3.1. For a linear STBC in K variables, S = ZkK:_Ol Trr Aok + Tro Aok,
the ML metric, M(S) defined in (2.40) decomposes as M(S) = Sor_' My(wx) + M, where
M, = —(K—1)tr (VHV) is independent of all the variables and My (xy) is a function only
of the variable xy,, iff®

VI # k. k+1ifkis even
ARA + AT AL =0 ? / : (2.41)
Vi#£k k—1ifkis odd

3The condition (2.41) can also be given as

Vi#k,k+1if kis even

H Ho_
ARA"+ AlAy =0 { VI#kk—1ifkis odd

due to the identity tr(V — SH)™(V — SH) = tr(V — SH)(V — SH)™ when S is a square matriz.
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Proof. From (2.40) we have
M(S) = tr (VI'V) — tr (SH)"'V) — tr (V'SH)) + tr (S""SHH™) .

Observe that tr (V*V) is independent of S. The next two terms in M(S) are functions

of S, S™ and hence linear in w7, xxg. In the last term,

K-1 K-1 K-1
sMS = Z(A;{kA%le + A;-i:-i-lA%—i—leQ) + (AN Ay + AYE Ao ) mpray;
k= k=0 I=k+1
K-1 K-1
+ 2k+1A2l+1 + A§+1A2k+1)$kQ$lQ
k=0 I=k+1
K-1K-1
+ (AgeAle + AZHA%)ZEM%@- (2.42)
k=0 1=0

(a) Proof for the “if part”: If (2.41) is satisfied then (2.42) reduces to

K-1
SHS = (A%Agkle + A;-i:—i-lA?k‘-i-lxiQ + (A%Agk_;_l + A;;C_’_lAQk) l’k[l’kQ)
k=0
-1
= T"T, where (2.43)
k=0
T = A2k$k1 + A2k+1$kQ (244)

and using linearity of the trace operator, M (S) can be written as

K-1
M(S) = tr(VV) =) {tr (TH)"V) —tr (VI'TH)) + tr (T""THH")
k=0
= ZJV — (Aogpxrr + A2k+1$kQ>H||i+Mc (2.45)
g Mk‘(,xk)

where M, = —(K — 1)tr (V*V) and ||| denotes the Frobenius norm.
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(b) Proof for the “only if part”: If (2.41) is not satisfied for any Ay, , A;,, k1 # [1 then

M(S) = Y IV = (Aspanr + Aspprzig)HI” + tr (AR Ay, + A AL, )HH) y + M,
k

X (k1 /2)IT (11 /2)1 if both ki, l; are even
where y = T((k1-1)/2)QT((11-1)/2)Q if both kq,1; are odd
x((kl_l)/g)Qx(ll/g)I if ]{31 Odd, ll evell.

Now, from the above it is clear that M (S) can not be decomposed into terms involving
only one variable. O

It is important to observe that (2.41) implies that it is not necessary for the weight
matrices associated with the in-phase and quadrature-phase of a single variable (say k-th)
to satisfy the condition AY_ ;Ao + AY Agpyr = 0. Since AN Aoy + AY Agpyy is indeed
the coefficient of xy;7ro in S™S, this implies that if terms of the form @771 can appear

in S™S without violating single-symbol decodability. An example of such a STBC is given
in Example 2.3.1.

Example 2.3.1. Consider

Tor +jrir oo +jx
Srg,ar) = | Lo T e (2.46)

ToQ +Jjrig  wor +jTir

The corresponding weight matrices are given by

10 0 1 i 0 0 j
A0: 7A1: 7A2: 7A3:
01 10 0 j i o0

and it is easily verified that (2.41) is satisfied and AR | Aoy, + AR Aopy1 #0 for k=0 as

well as k=1 and

det {(s _8)(s - S)} = [(Azor — Az0g)? + (Azys — Azg)?]

[(Amoj + Aon)z + (Axyy + Ale)z]



2.3 Single-symbol Decodable Designs 32

where x; — T; = Aw;r + jAzq. If we set Az = Azg = 0 we have

A A

det {(s —9)H(S — S)} = [(A2z0; — A229g)?] (2.47)

which is mazimized when either N?*xyr = 0 or A%OQ = 0, 7.e. the k-th indeterminate
should take values from a constellation that is parallel to a “real axis” or the “imaginary
axis”.

As shown in the above example, it is easily seen that whenever the weight matrices
corresponding to one indeterminate (say k-th) of SD design does not satisfy A% Aok +
ASCA%H = 0, then whenever all the indeterminates of the design take value from the same

constellation, the coding gain is maximized when the constellation is a one dimensional

constellation parallel to the z-axis or the y-axis®.
Henceforth, we consider only those STBCs S = Zf:_ol Tpr Aok + TroAkt1,
which have the property that the weight matrices of the in-phase and quadra-

ture components of any variable are orthogonal, that is

AR Ao + AR Ag, =0, 0<k<K-1 (2.48)

for the following reasons: (i) it is customary and also convenient to assume that
all indeterminates take values from one and the same complex constellations
and and (ii) all known STBCs satisfy (2.48). Proposition 2.3.1 for these cases

specializes to:

Theorem 2.3.2. For a linear STBC in K complex variables, S = ZkK:_Ol TrrAgy +
Tk Aok 11, the ML metric, M(S) defined in (2.40) decomposes as M(S) = S0 ' My (1) +
M. where M, = —(K — L)tr (V*V), iff

AVA + ATLA, =0, 0<k#I1<2K -1, (2.49)

4Such codes are closely related to Quasi-Orthogonal Designs (QOD) discussed in Chapter 5 where we
show that such codes are constructible from QODs.
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Theorem 2.3.2 implies

Corollary 2.3.3. For a linear STBC in K complex variables, S = Zf:_ol Trr Agg +
Tk Aok 11, the ML metric, M(S) defined in (2.40) decomposes as M(S) = Sor_ ' My(z)+
M, where M, = —(K — 1)tr (V?V), iff

tr (ALHH"AT + AHH"A}) =0, 0<k#1<2K—1. (2.50)
If in addition S is square (N = L), then (2.50) is satisfied if and only if
ARATT 4+ A A =0, 0<k#1<2K -1, (2.51)

Proof. Using the identity, tr(V — SH)™(V — SH) = tr(V — SH)(V — SH)™ and pro-
ceeding as in the proof of Theorem 2.3.2 we have (2.50). For square S, (2.50) can be

written as

tr (HH" { A A + AA] ) =0, 0<k#1<2K -1 (2.52)

which is satisfied iff
AATTF AATE =0, 0<k#I1<2K —1.

O

Examples of SD STBCs are those from OD, in-particular the Alamouti code. The
following example gives two STBCs that are not obtainable as STBCs from ODs.

Example 2.3.2. For N = K = 2 consider

xor + jx 0
S _ 01 J 1Q ' (253)

0 T1r +jl’0Q
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The corresponding weight matrices are given by
10 0 0 0 0 Jj
AO_ 7A1_ 7A2_ 7A3:
0 0 0 j 0 1 0
Similarly, for N = K = 4 consider the design
Tor +j£l?2Q T1r +j£l?3Q 0 0
o —Tir +JjT3g  Tor — jT2q 0 0 (2.5)
0 0 Tor +Jjxog w31+ jT10
0 0

The corresponding weight matrices are

2
I

o o O

o o o O

—
o o o O

o o o O

o O
o O
o O

7A4

o
o
—

0
0
0
0

o o o O

o o o O

o o O
o O

1

-1 0

—Z3r +JjT1g  Tar — jToq

7A5

0
0

jan} jan} S

0 10
-1 00
- 0 00

0 00

__] 0 O
0 —j O
- 0 0 O
0 0 O
0 O_
00
00
00

o o o O

It is easily seen that the two codes of the above example are not covered by GLCODs

and satisfy the requirements of Theorem 2.3.2 and hence are single-symbol decodable.
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These two STBCs are instances of the so called Co-ordinate Interleaved Designs (CIOD),
which is discussed in detail in Chapter 3 and a formal definition of which is Definition
3.1.1. These codes apart from being SD can give STBCs with full-rank also when the
indeterminates take values from appropriate signal sets- an aspect which is discussed in
detail in Chapter 3.

2.4 Full-rank SDD

In this section we identify all full-rank designs with in the class of SDD, i.e., characterize
the class of FSDD and classify the same. Towards this end, we have for square (N = L)
SDD

Proposition 2.4.1. A square single-symbol decodable design, S = ZkK:_Ol Tpr Aog+Tro Aok,
ezists if and only if there exists a square single-symbol decodable design, S = ZkK:_Ol Tpr Aop+

ku/l%H such that
AlA + ATYA, =0,k # 1, and AJLA,, = Dy, VE,

where Dy, is a diagonal matrix.

Proof. Using (2.49) and (2.51) repeatedly we get
AP AL AT A = AJ(=A AT A = (AT AR AL A = AT A= ATEAL) = ATH(AAT) Ay,

which implies that the set of matrices { AJf Ay }2%; ! forms a commuting family of Hermitian
matrices and hence can be simultaneously diagonalized by a unitary matrix, U. Define
A, = A U™, then S = kK:_Ol Ty Aoy + kuflng is a linear STBC such that ATLA; +
AMA, = 0,Vk # 1,Al'A, = Dy, Vk, where Dy, is a diagonal matrix. For the converse,
given S, S = SU where U is a unitary matrix. O

Therefore for square SDD, we may, without any loss of generality, assume that S™S

is diagonal. One may expect a similar result to hold for N # L, but the problem is that
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AR AT+ AJAT = 0,VE # 1 is not true in this case. Instead we have a condition of the
form

where H € CV*¥ is any Hermitian matrix. But still we have proposition 2.4.2 for N # L.
Proposition 2.4.2. A non-square single-symbol decodable design, S = ZkK:_Ol Tpr Aok +
TrAokt1, exists if and only if there exists a design, S = 25:_01 Tir AQk + kuflng such

that
AFA + ATPA, =0, k#1, and S™S =D,
where D is a diagonal matrix whose entries are linear sum of xil,xiQ, k=0,---,K—1

with non-negative coefficients.

Proof. Consider a SDD, S = Zf:_ol TprAog + xrAok+1. Then SH"S is Hermitian, as a

result S"S = UDU™, where U € CV*¥ is a unitary matrix and D is diagonal. Define

K—1
S = SUH = Z kuAQk + kuA2k+1 where Ak = AkUH (255)
k=0
Now
AMA + AT A, = U {AZA + AT ALY = 0,k #£ 1.
Consider
K—1
SHS =D = Y 2} Al Ay + 230 AL Agrs
k=0
K—1
= 2 UAR AU + a3 QU ASL | Age 1 U (2.56)
k=0
The diagonal entries of Aﬁflk are non-negative for all k = 0,--- ;2K — 1 and the non-

diagonal entries cancel out in the sum i.e. in SMS. Therefore, D is a diagonal matrix whose

entries are linear sum of 23;, 73,k = 0,--- , K — 1 with non-negative coefficients. O

Observe that the matrices Ay in proposition 2.4.2 need not be constant matrices and
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accordingly S need not be a linear STBC. However, for the characterization of full-rank
SDD this will not matter. Also we could not fabricate a single example for which S is

non-linear. Hence we conjecture

Conjecture 2.4.3. A non-square single-symbol decodable design, S = ZkK:_Ol Tpr Aok +

TrAokt1, exists if and only if there exists a single-symbol decodable design, S = 25:_01 Tl

Agk + kuflng such that
A;:Al + A;HAk = O, k 7£ l, and A;:Ak = Dk,

where Dy, is a diagonal matrix.

To characterize non-square SDD, use the following property,

Property 2.4.4. For a SDD, S = ZkK:_Ol iAok + TrAokt1, the matrix SMS is positive

semi-definite and Al Ay, Vk are positive semi-definite.

Using property 2.4.4, we have the characterization of full-rank SDD in the next propo-

sition which gives the necessary condition for SDD to achieve full-diversity.

Proposition 2.4.5. A single-symbol decodable design, S = Zf:_ol iAok + Tpo Aok,

whose weight matrices Ay satisfy
ARA 4+ ATTA, =0, VE#1 (2.57)

achieves full-diversity only if AN, Aoy, + A% | Aoya is full-rank for allk =0,1,--- | K —1.
In addition if S is square then the requirement specializes to Doy + Dogyq being full-rank

forallk=0,1,--- K —1.

Proof. The proof is by contradiction and in two parts corresponding to whether S is
square or non-square.

1) Let S be a square SDD then by proposition 2.4.1, without loss of generality, A}*A; =
Dy, Vk. Suppose Doy, + Dojyq, for some 0 < k < K — 1, is not full-rank. Then S*"S =
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kK:_Ol Do}y + Dagy1y. Now for any two transmission matrices S, S that differ only
in x, the difference matrix B(S,S) = S — S, will not be full-rank as B™(S, $)B(S, ) =
Dor(xkr — Z1)* + Dagr1 (7o — Zxg)? is not full-rank.
2) The proof for non-square SDD, S, is very similar to the above except that B7(S, S )
B(S,S) = A% Aoy (wps — 1) + AN Agpir (2rg — Tg)? where AJLA are positive semi-
definite. Since a non-negative linear combination of positive semi-definite matrices is
positive semi-definite, for full-diversity it is necessary that AX Aoy + A% | Aoy is full-

rank for all k =0,1,--- , K — 1. O

Towards obtaining a sufficient condition for full-diversity, we first introduce

Definition 2.4.1 (Coordinate Product Distance (CPD)). The Coordinate Product
Distance (CPD) between any two signal points u = u; + jug and v = vy + jug, u # v, in

the signal set A is defined as
CPD(u,v) = |ur — vrllug — vg| (2.58)

and the minimum of this value among all possible pairs is defined as the CPD of A.

Theorem 2.4.6. A SSD, S = ZkK:_Ol Tr Aok +2pgAok+1 where xy, take values from a signal

set A, Vk, satisfying the necessary condition of proposition 2.4.5 achieves full-diversity iff
1. either A Ay, is of full-rank for all k

2. or the CPD of A # 0.

Proof. Let S be a square SDD satisfying the necessary condition given in Theorem 2.4.5.
We have B”(S, S)B(S, 3): kK:_Ol Datr1 (wpr — Tr1)* + Dogs1 (g — Trg)?. Observe that
under both these conditions the difference matrix B(.S, S ) is full-rank for any two distinct

S, S. The proof is similar for When S is a non-square design. O

Remark 2.4.1. From Proposition 2.4.5 and Theorem 2.4.6 a FSDD is a SDD such that
AN Aoy, + AN Agpyy i full-rank for all k and APA, + AJTA, =0; 0<k#1<2K—1.
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Examples of FSDD are the GLCODs and the STBCs of Example 2.3.2.

Note that the sufficient condition 1) of Theorem 2.4.6 is an additional condition on
the weight matrices whereas the sufficient condition 2) is a restriction on the signal set
A and not on the weight matrices Ay. Also, notice that the FSDD that satisfy the
sufficient condition 1) are precisely an extension of GLCODs; GLCODs have an additional
constraint that A} A, be diagonal.

An important consequence of Theorem 2.4.6 is that there can exist designs that are
not covered by GLCODs offering full-diversity and single-symbol decoding provided the
associated signal set has non-zero CPD. It is important to note that whenever we
have a signal set with CPD equal to zero, by appropriately rotating it we can
end with a signal set with non-zero CPD. Indeed, only for a finite set of angles
of rotation we will again end up with CPD equal to zero. So, the requirement
of non-zero CPD for a signal set is not at all restrictive in real sense. In the
next chapter we find optimum angle(s) of rotation for lattice constellations that maximize
the CPD.

For the case of square designs of size N with rate-one it is shown in Section 2.5 that
FSDD exist for N = 2,4 and these are precisely the STBCs of example 2.3.2 (to be named
as Co-ordinate Interleaved Designs in Chapter 3) and the Alamouti code.

For a SDD, when Al A, is full-rank for all k, corresponding to Theorem 2.4.6 with the
condition (1) for full-diversity satisfied, we have an extension of GLCOD in the sense that
the STBC obtained by using the design with any complex signal set for the indeterminates
results in a FSDD. That is, there is no restriction on the complex signal set that can be

used with such designs. So, we define,

Definition 2.4.2 (Unrestricted FSDD (UFSDD)). A FSDD is called an Unrestricted
Full-rank Single-symbol Decodable Design (UFSDD) if A Ay is of full-rank for all k =
0,---,2K - 1.

Remark 2.4.2. Observe that for a square UFSDD S, AJ*A; = Dy, is diagonal and hence
UFSDD reduces to LCOD. For non-square designs GLCOD is a subset of UFSDD. Also
the above extension of the definition of GLCODs was hinted in [22] where they observe
that AJ* Ay can be positive definite. However it is clear from our characterization that such

a generalization does not result in any gain for square designs. For non-square designs
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existence of UFSDDs that are not GLCODs or unitarily equivalent to GLCODs is an
open problem.

The FSDD that are not UFSDDs are such that A Ay, and/or A% 11 A2k 1s not full-
rank for at least one k. (The CIOD codes of Example 2.3.2 are such that Doy + Doy
is full-rank Yk and Dy is not full-rank for all k.) We call such FSDD codes Restricted
Full-rank Single-symbol Decodable Designs (RFSDD), since any full-rank design within
this class can be there only with a restriction on the complex constellation from which the
indeterminates take values, the restriction being that the CPD of the signal set should

not be zero. Formally,

Definition 2.4.3 (Restricted FSDD (RFSDD)). A Restricted Full-rank Single-symbol
Decodable Designs (RFSDD) is a FSDD such that AJ* Ay, is not full-rank for at least one
k where k =0,--- 2K — 1 and the signal set, from which the indeterminates take values
from, has non-zero CPD.

Observe that the CIODs are a subset of RFSDD. Figure 2.1 shows all the classes

discussed so far, viz., SDD, FSDD, RFSDD, UFSDD. In Section 2.5 we focus on the
square RFSDDs as square UFSDD have been discussed in Section 2.3.

2.5 Existence of Square RFSDDs

A main result in this section is the proof for the fact that there exists square RFSDDs

with the maximal rate 57 for N = 2 antennas whereas only rates up to “;;1

possible with square GLCODs with the same number of antennas. The other

2a iS

results are: (i) rate-one square RESDD of size N exist, iff N = 2,4 and (ii) a construction
of RFSDDs with maximum rate from GLCODs.
Let S = ZkK:_Ol T Aog + TR Aok41 be a square RFSDD. We have,

Al A, = Dy, k=0,---,2K —1 (2.59)
ATLAL 4+ AlA; =0, 0<k#I1<2K -1 (2.60)
where Dy, k = 0,--- ,2K — 1 are diagonal matrices with non-negative entries such that

Doy, + Doy is full-rank Vk. First we show that rate 1 RFSDD exist only if N = 2,4, 8.
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Theorem 2.5.1. If S is a size N square RESDD of rate 1, then N = 2,4 or 8.

Proof. Let
Bk:A2k+A2k+1, kZZO,"',K—l

then

BB, =Dy = Doy + Dop1, k=0, K —1 (2.61)

Bl'B,+ Bl'B;=0, 0<k#I<K—1. (2.62)

Observe that ﬁk is of full-rank for all k. Define C} = ka),;l/ 2 Then the matrices Ch

satisfy
ClCp=1Iy, k=0 K-1 (2.63)
ClCL,+ClCy =0, 0<k#I<K-1. (2.64)

Define
Ch=ClCy, k=0,--- ,K—1, (2.65)

then C’o = Iy and

CHh=—-Cp k=1,---,K—1 (2.66)
CHC+CHCi =0, 1<k#I<K-1. (2.67)
The normalized set of matrices {Cy,---,Cx_1} constitute a Hurwitz family of order N

[24] and for N = 2%b, b odd and a,b > 0 the number of such matrices K — 1 is bounded
by [24]

K <2a+2.
For rate 1, RFSDD (K = N), the inequality can be satisfied only for N =2,4 or 8. [

Therefore the search for rate 1, square RFSDDs can be restricted to N = 2,4,8. The
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rate 1, RFSDDs for N = 2,4 have been presented in Example 2.3.2. We will now prove
that a rate 1, square RFSDD for N = 8 does not exist. Towards this end we first derive

the maximal rates of square RFSDDs.

Theorem 2.5.2. The maximal rate, R, achievable by a square RFSDD with N = 2%b, b

odd (where a,b > 0) transmit antennas is

2a

R=23

(2.68)

Proof. Let S = Yor ' a1 Aoy + TroAgks1 be a square RFSDD. Define the RFSDD

K-1

S/ = Z L1 C’S-[‘Agkj)o_l/2 +l’kQ CS-[AQk_;_lDO_lm
——— ~~ ~

k=0

/ /
AQk A2k+1

where C), and Dy, are defined in the proof of the previous theorem. Then the set of
matrices {C}, = A5, + Ay} is such that Cfj = Iy and {C},k =1,--- , K —1} is a family

of matrices of order N such that

CMct =Dy'Dy,, 1<k <K -1, (2.69)

CMe, +CCl =0, 0<k#I<K -1, (2.70)
where Dy Dy, is diagonal and full-rank for all k. Then we have
A+ A =Cy = Iy. (2.71)

Recollect that the set of matrices { A} } satisfy (2.59)- (2.60). Also, at least one A} is not
full-rank. Without loss of generality we assume that Aj is of rank r < N (if this not
so then exchange the indeterminates and/or the in-phase and quadrature components so
that this is satisfied). As Ajf is of rank r, due to (2.59), n — r columns of A{ are zero

vectors. Assume that first » columns of Aj are non-zero (If this is not the case, we can
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always multiply all the weight matrices with a Permutation matrix such that Aj{ is of this

form) i.e.

A= By o] (2.72)

where Bj € CV*". Applying (2.60) to Af, A} and substituting from (2.71),(2.72) we have

ATH Iy = Ap) + (In — ATHAG =0 (2.73)
= AJ'+ A) = 2D, (2.74)
Bt .
= + [ By 0 ] = 2D, (2.75)
0

B/

0
where B}, is a r X r matrix and full-rank and A*A; = D;, k= 0,--- ,2K — 1. Therefore

the matrices A{), A} are of the form

Al = VA = ) (2.77)
0 O 0 In_,
Let
D, = Dy Do
Dy Dy
be a matrix such that
AMD, + DJ'A, =0,i=0,1 (2.78)

where Dy € C™", Dyy € CN7*N="_ Substituting the structure of A} we have

AJ'D, + DITAL =0 (2.79)

BMDy, + DBy, BH}D
N 11 ~11 1111 1112 -0 (2.80)
DB, 0
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As By, is full-rank it follows that Dy = 0. Substituting the structure of A} we have

(Ir - Bﬁ[)Dll + Dﬁ(lr - Bil) D;-i
Doy Doy + D3}

—0 (2.81)

It follows that D; is block diagonal and consequently all the A},2 < k < 2K —1 are block
diagonal of the form D; as they satisfy (2.78). Consequently, C; = A'op + Alopy1, k =
1,---, K — 1 are also block diagonal of the form

Cp = | where Gy €€, Cpp € CY TN
0 Chy

Also, from (2.80), (2.81) we have
Dyy = —D{{, Dy = —DJ5. (2.83)

Now, in addition to this block diagonal structure the matrices A;,2 < k < K — 1 have
to satisfy (2.60) among themselves. It follows that the sets of square matrices {C},, k =

0,....,K —1}and {C},, k=0..., K — 1} satisty

Ci=-Dn, k=1, K-1, i=12 (2.84)

where —D,,; are diagonal and full-rank Vk,¢. Define

Coi=CLD."? k=1 K—-1, i=12; (2.86)
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then from Theorem 2.2.8,

C2=—I, k=1--- K—1, i=12 (2.87)

CriCli = —CiCriy, 1<k#I<K—-1,i=1,2. (2.88)

and the sets of square matrices {C’kl, k=1,2,...,K —1} and {C’k2, k=1,2,..., K -1}
constitute Hurwitz families of order r, N — r corresponding to ¢ = 1,2 respectively. Let
H (N) — 1 be the maximum number of matrices in a Hurwitz family of order IV, then

from the Hurwitz Theorem [24] , N = 2%, b odd and
H(N) =2a+2. (2.89)

Observe that due to the block diagonal structure of C}, K = min{H (r;),H (N —r;)}.
Following the Hurwitz Theorem it is sufficient to consider both r, N —r to be of the form 2¢,
say 271, 2% respectively. It follows that K is maximized iff r = N —r = 2¢ = N = 2¢'+1,

It follows that the maximum rate of RFSDD of size N =2% (a =d' + 1) is

_2a

R_ﬁ'

(2.90)

0

An important observation regarding square RFSDDs is summarized in the following

Corollary:

Corollary 2.5.3. A maximal rate square RFSDD, S = ZkK:_Ol Tpr Aok + TpgAoky1 exists
iff both Day, Do 1 are not full-rank for all k.

Proof. Immediate from the proof of above theorem. O

An immediate consequence of this characterization of maximal rate RFSDDs is:

Theorem 2.5.4. A square RFSDD of rate 1, exists iff N = 2, 4.
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Proof. From (2.90) R=1iff N =2,4 O
It follows that

Theorem 2.5.5. The mazimal rate, R, achievable by a square FSDD with N = 2%b, b

odd (where a,b > 0) transmit antennas is

2a

R:%.

(2.91)

Furthermore square GLCODs are not mazimal rate FSDD except for N = 2.

Next we give a construction of square RFSDD that achieves the maximal rates obtained
in Theorem 2.5.2.

Theorem 2.5.6. A square RFSDD S, of size N, in variables x;,i = 0,--- , K achieving

the rate of Theorem 2.5.2 is given by

9(‘%07 o 7‘%K/2)1 0
S = O (2.92)
0 O(Tkya, - Tr-1)
62

where O(xg, - ,Tx/2—1) s a marimal rate square GLCOD of size NJ/2 [15, 22], &; =

Re{z;} + jIm{x ko), } and where (a)x denotes a (mod K).

Proof. The proof is by direct verification. As the maximal rate of square GLCOD of size

N/2is 5% [15, 22] the rate of S in (2.92) is 25% = 2% consequently S is maximal rate.

Next we show that S is a RFSDD. Consider

gig_ | OO0 0
0 ere, |

by construction, the sum of weight matrices of x7;, 7, for any symbol ) is Iy and

(2.59)-(2.60) are satisfied as © is a GLCOD. Therefore S is a RFSDD. O
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Other square RFSDDs can be constructed from (2.92) by applying some of the follow-

ing

permuting rows and/or columns of (2.92),

permuting the real symbols {wxr, 1o},

multiplying a symbol by -1 or =+j

conjugating a symbol in (2.92).

Following [15, Theorem 2] we have

Theorem 2.5.7. All square RFSDDs can be constructed from RFSDD S of (2.92) by

possibly deleting rows from a matrixz of the form

S =USV (2.93)

where U,V are unitary matrices, up to permutations and possibly sign change in the set

of real and imaginary parts of the symbols.

Proof. This follows from the observation after (2.84) that the pair of sets {C},} 2! i = 1,2

constitute a Hurwitz family and Theorem 2 of [15] which applies to Hurwitz families. O

It follows that the CIOD codes presented in Example 2.3.2 are unique up to multipli-
cation by unitary matrices.

Observe that the square RFSDDs of Theorem 2.5.6 can be thought of as designs
combining co-ordinate interleaving and GLCODs. We therefore, call such RFSDDs as
(instances of ) co-ordinate interleaved orthogonal designs (CIOD) and study such designs

in detail in the next chapter.

2.6 Discussion

In this chapter we have characterized all linear STBCs from designs called SDD that
allow single-symbol decoding. Among these all those that offer full-diversity have been

identified. The maximal rates of such designs have been derived and a construction that
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achieves these maximal rates is presented. Throughout the chapter we have assumed
that the indeterminates of a design take values from one complex constellation. All
the arguments and results hold even if we allow different indeterminates to take values
from different complex constellations. In summary, it has been shown that full-rate, full-
diversity and single-symbol decodable designs can exist outside the well-known class of
GLCODs. Such codes have been explicitly shown for square designs. Interesting directions
for further research are: (i) constructing non-square RFSDDs and (ii) obtaining maximal

rate of non-square RFSDDs.



Chapter 3

Co-ordinate Interleaved Orthogonal

Designs

In the previous chapter we completely characterized single-symbol decodable designs
(SDD) in terms of the weight matrices. Among these we characterized all full-rank SDD
called FSDD. This chapter is devoted to an interesting class of FSDD called co-ordinate
interleaved orthogonal designs.

We first give the construction of the CIOD for two transmit antennas and then formally
define the class of Co-ordinate Interleaved Orthogonal Designs (CIOD) and its general-
ization, Generalized CIOD (GCIOD) which includes both square and non-square designs
in Section 3.1. Also, we show that rate 1 GCIODs exist for 2, 3 and 4 transmit antennas
and for all other antenna configurations the rate is strictly less than 1. Rate 6/7 designs
for 5 and 6 transmit antennas, rate 7/9 designs for 7 transmit antennas, rate 3/4 designs
for 8 transmit antennas, rate 7/11 designs for 9 and 10 transmit antennas and rate 3/5
designs for 11 and 12 transmit antennas are also presented. A construction of rate 2/3
GCIOD for N > 8 is then presented. In Section 3.2 the signal set expansion associated
with the use of STBC from any co-ordinate interleaving when the uninterleaved complex
variables take values from a signal set is then brought out and the notion of co-ordinate
product distance (CPD) is discussed. The coding gain aspects of the STBC from CIODs
constitute Section 3.3 and we show that, for lattice constellations, GCIODs have higher
coding gain as compared to GLCODs. Simulation results are presented in Section 3.4.

The maximum mutual information (MMI) of GCIODs is discussed in Section 3.5 and is
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compared with that of GLCODs to show that, except for N = 2, CIODs have higher
MMI. A brief discussion on the results of this chapter constitute Section 3.6.

3.1 Co-ordinate Interleaved Orthogonal Designs

We begin from an intuitive construction of the CIOD for two transmit antennas before

giving a formal definition (Definition 3.1.1). Consider the Alamouti code

. [xo 7 ] |
i -
When the number of receive antennas M = 1, observe that the diversity gain in the
Alamouti code is due to the fact that each symbol sees two different channels hg and hq
and the low ML decoding complexity is due to the use of the orthogonality of columns of
signal transmission matrix, by the receiver, over two symbol periods to form an estimate
of each symbol.

Alternately, diversity gain may still be achieved by transmitting quadrature compo-
nents of each symbol separately on different antennas. More explicitly, consider that the
in-phase component, zg;, of a symbol, zqg = zo; + ijQ, is transmitted on antenna zero
and in the next symbol interval the quadrature component, g, is transmitted from an-

tenna one as shown in Table 3.1. It is apparent that this procedure is similar to that of

Table 3.1: The Encoding And Transmission Sequence For N =2, Rate 1/2 CIOD

antenna 0 | antenna 1
time ¢ Tos 0
time ¢t + T 0 ZoQ

co-ordinate interleaving! and that the symbol has diversity two if the difference of the

in-phase and quadrature components is not-zero, but the rate is half. This loss of rate can

!The idea of rotating QAM constellation was first presented in [66] and the term “co-ordinate inter-
leaving” was first introduced by J. Roy in [46, 47] in the context of TCM for fading channels. This concept
of rotation of QAM constellation was extended to multi-dimensional QAM constellations in [67, 62] at
the cost of the decoding complexity. However, for the two-dimensional case there is no increase in the
decoding complexity as shown in [44, 45].
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be compensated by choosing two symbols and exchanging their quadrature components
so that one coordinate of each symbol is transmitted on one of the antennas as shown in

Table 3.2. As only one antenna is used at a time for transmission, the only operation re-

Table 3.2: The Encoding And Transmission Sequence For N =2, Rate 1 CIOD

antenna 0 | antenna 1
time ¢ Zor + jrig 0
time t + T 0 17 +jl’0Q

quired at the receiver to decouple the symbols is to exchange the quadrature components
of the received signals for two symbol periods after phase compensation. That the decod-
ing is single-symbol symbol decoding with the in-phase and quadrature-phase components
having got affected by noise components of different variances for any GCIOD is shown
in Subsection 3.1.1. In the same subsection the full-rankness of GCIOD is also proved. If
we combine, the Alamouti scheme with co-ordinate interleaving we have the scheme for
4 transmit antennas of Example 2.3.2, and whose baseband representation shown in Fig.

3.1 and whose receiver structure is explained in detail in Example 3.1.2. Now, a formal
definition of GCIODs follows:

Definition 3.1.1 (Generalized Co-ordinate interleaved design (GCIOD)). A
Generalized co-ordinate interleaved design of size Ni x N, in variables z;,i =0,--- , K —1
is a L x N matrix S, such that

@1(j07". aij 2—1) 0
S(xo,- -+ wx_1) = / (3.1)

0 O2(Txy2, -, Tr—1)
where @1(1’0, s 7-1:K/2—1) and @2(1‘0, cee >$K/2—l) are GLCODs of size N1 XL1 and N2 XL2
respectively, and rates K/2Lq, K/2L, respectively, where Ny + Ny = N, Ly + Ly, = L,
T; = Re{x;} +jIm{z (4 k/2), } and where (a)x denotes a (mod K). In addition if ©, = ©,

then we call this design a Co-ordinate interleaved orthogonal design(CIOD)?.

2These designs were named as Co-ordinate interleaved orthogonal design (CIOD) in [51, 52] since
two different columns are indeed orthogonal. However, the energy of different columns may be different
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Figure 3.1: Baseband representation of the CIOD for four transmit and the j-th receive
antennas.
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It turns out that the theory of CIODs is simpler as compared to that of GCIOD. Note
that when ©; = ©, and N = L we have the construction of square RFSDDs given in
Theorem 2.5.6. Examples of square CIOD for N = 2,4 were presented in Example 2.3.2.
An example of GCIOD, where O # O, is

Example 3.1.1.

Tor +jTag  Tir +jTag 0
—T1r +JT3Q  Tor — jT20 0
S(ZE(),"' ,I‘g) = (32)
0 0 Tor +jl’0Q
0 0 —XT3] +j£E1Q

where Oy is the rate 1 Alamouti code and © is the trivial, rate 1, GLCOD for N =1

given by
Zo
O, =
_xll
Observe that S is non-square and rate 1. This code can also be thought of as being

obtained by dropping the last column of the CIOD in (2.54). Finally, observe that (3.2)

is not unique and we have different designs as we take

ete. for the second GLCOD.

3.1.1 Coding and Decoding for STBCs from GCIODs

First, we show that a GCIOD is a RFSDD and hence is single-symbol decodable and

achieves full diversity if indeterminates take values from a signal set with non-zero CPD.

Theorem 3.1.1. A GCIOD is a RFSDD.

whereas in conventional GLCODs apart from orthogonality or two different columns, all the columns will
have the same energy. GLCODs are in fact, “orthonormal”.
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Proof. The proof is by direct verification. Let S be a GCIOD defined in (3.1). Consider

[ ore, 0
SHS — 11 (33)
i 0 0o,
[ (k)21
_ < k:/o wir + x%k+K/2)KQ) I, 0 (3.4)
K—1 o
0 (Zk:K/2 i + x?k+K/2)KQ) Iv,

where (a)g denotes a (mod K). By construction, the sum of weight matrices of z7;, 27,
for any symbol xy is Iy and (2.59)-(2.60) are satisfied as ©1, 0, are GCLODs. Moreover,
observe that there are no terms of the form xy;zig, Trrzig ete. in SH"S . and therefore S
is a FSDD. Now for any given 0 < k < K — 1 the weight matrices of both 3,7, are
not full-rank and therefore, by definition 2.4.3, .S is a RFSDD. O

The transmission scheme for a GCIOD, S(zg, - ,xx_1) of size N, is as follows: let
Kb bits arrive at the encoder in a given time slot. The encoder selects K complex
symbols, s;,i = 0,---,K — 1 from a complex constellation A of size |A| = 2°. Then
setting x; = s;,1 =0,--- , K — 1, the encoder populates the transmission matrix with the
complex symbols for the corresponding number of transmit antennas. The corresponding
transmission matrix is given by S(so,---,sx_1). The received signal matrix (1.6) is given
by,

V=SH+N. (3.5)

Now as GCIODs is a RFSDD (Theorem 3.1.1), it is single-symbol decodable and the
receiver uses (2.45) to form an estimate of each s;. That is the ML rule for each s;,i1 =

0,---, K —1is given by

min M;(s;) = min [V — (Aysir + Agi15i0)H|? . (3.6)
Remark 3.1.1. Note that forming the ML metric for each variable in (3.6), implicitly
involves co-ordinate de-interleaving, in the same way as the coding involves co-ordinate
interleaving. Also notice that the components s;; and s, have been weighted differently-

something that does not happen for GLCODs. We elaborate these aspects of decoding
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GCIODs by considering the decoding of rate 1, CIOD for N = 4 in detail.

Example 3.1.2 (Coding and Decoding for CIOD for N = 4). Consider the CIOD
for N =4 given in (2.54). If the signals so, s1, S2, S3 € A are to be communicated, their

interleaved version as given in Definition 3.1.1 are transmitted. The signal transmission

matrizc is ) )
Sor +Jsag  S1r+Js30 0 0
N . 2 —
g =811 +Js3g  Sor — Js20 0 0 (3.7)
0 0 S21 +jsoq  S31 +Js1q
5 5
i 0 0 —s3r +Js1q  Sar — jsoq |

which is obtained by replacing x; in the CIOD by s; where each s;, 1 = 0,1,2,3 takes
values from a signal set A with 2° points.
The recewed signals at the different time slots, vy, t = 0,1,2,3 and j = 0,1,--- , M —1

for the M receive antennas are given by

vjo = ho;S0 + hij81 + njo; vj1 = —ho;8] + h1j85 + nj;
Vjo = hojSy + h3;Ss + njo; vj3 = —hg;j83 + hs;85 +njs (3.8)
where nj; .1 =0,1,2,3 and j =0,---,M — 1 are complex independent Gaussian random

variables.

_ * * 17 I = = 17 _ * * 17T
Let V; = [vjo, v}y, vja, V], S =[30, 81, 52, 83", Nj = [njo, nfy, nje, njs]” and

hoj hlj 0 0

H, - Wy, —hy; 00
0 0 hy hg

* *
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where j =0,1,--- , M — 1. Using this notation, (3.8) can be written as
V, = H;5 + N, (3.9)

Let

I ~ ~ ~ 17 _ 17H
Vj = [Ujo, V51, Vj2, ’Ujg] —Hj Vj.

Then, we have

5 hoj|2 + |hi;]?) I 0 ~
v, = (|hos|* + [hay]*) 12 S—‘—H;‘-‘Nj' (3.10)

0 (Jhoj | + |hs;|?) I

Rearranging the in-phase and quadrature-phase components of v;;’s, (which corre-

sponds to deinterleaving) define, fori = 0,1,

M-1
@i = Z 17]'2',[ +j7§ji+2,Q = as; g +jb8i,Q + Uo; (311)
7=0
M-1
Vigo = Z Vjipo,r +30ji,0 = bSivor +jasiyo g + U (3.12)
7=0

where a = ij‘igl{agj +af}, b= ijvial{a%j + a3;} and ug;, uy; are complex Gaussian
random variables. Note that we have used hy; = oy;e% from Chapter 1. Let N; =
[fijo fij1 Tij fijs]T = HIIN;. Then ug; = Y 1o fijis + jfijisnq and uy = Y000 jipas +
Jnjig where ¢ = 0,1. Note that ugy and ug; have the same variance and similarly wyo
and uy1. The variance of the in-phase component of ugy s a and that of the quadrature-
phase component is b. The in-phase component of uig has the same variance as that of
the quadrature-phase component of ugy and vice versa. The ML decision rule for such a

situation, derived in a general setting is: Consider the received signal r, given by

r = c15r + jcasg +n (3.13)
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where c1, o are real constants and sy, sg are in-phase and quadrature-phase components
of transmitted signal s. The ML decision rule when the in-phase, ny, and quadrature-
phase component, ng, of the Gaussian noise, n have different variances c10* and ca0? is

derived by considering the pdf of n, given by

1 G
Pn(n) e 210t 20207 (3.14)

- 2mo2.\/cico

The ML rule is: decide in favor of s;, if and only if
pu(r/8:) > pa(r/sk), ¥V i#k. (3.15)
Substituting from (3.13) and (3.14) into (3.15) and simplifying we have
colrr — asig|* + cilrg — bsigl® < calrr — aspg|® + eilrg — bspol?, Vi # k. (3.16)

We use this by substituting c; = a and ¢y = b, to obtain (3.17) and ¢ = b and c3 = a, to
obtain (3.18). For v;, j =0,1, choose signal s; € A iff

b‘@j,[ — CLSZ"[|2 + a\@j,Q — bSZ'7Q|2 S b‘@j,[ — a8k7[‘2 + a\@j,Q — b8k7Q‘2, V ) 7é ]{Z (317)

and for vj, j = 2,3, choose signal s; iff

a‘@j’[ — bsz‘,IP -+ b‘@j,Q - CLSZ"Q|2 S a‘@j’[ - b8k7[‘2 + b|’lAJj7Q - astP, V1 7& k. (318)

From the above two equations it is clear that decoupling of the variables is achieved by
involving the de-interleaving operation at the receiver in (3.11) and (3.12). Remember
that the entire decoding operation given in this example is equivalent to using (3.6). We

have given this example only to bring out the de-interleaving operation involved in the

decoding of GCIOD:s.

Next we show that rate-1, GCIODs (and hence CIODs) exist for N = 2, 3,4 only.

Theorem 3.1.2. A rate 1, GCIOD ezists iff N = 2,3, 4.
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Proof. First observe from (3.1) that the GCIOD is rate 1 iff the GLCODs 04,0, are
rate 1. Following, Theorem 2.2.5, we have that a rate 1 non-trivial GLCOD exist iff
N = 2. Including the trivial GLCOD for N = 1, we have that rate 1 GCIOD exists iff
N=1+1,1+2,2+2ie. N=234. O

Next we construct GCIODs of rate greater than 1/2 for N > 4. Using the rate 3/4
design (2.10) i.e. by substituting ©; = 9 by the rate 3/4 GLCOD in (3.1), we have rate
3/4 CIOD for 8 transmit antennas which is given by

g_ Ou(xor + jraq, T1r + jTaq, Tar + j250) 0
0 O4(xsr + jrog, Tar + jT10, Tsr + j220)

(3.19)
Deleting one, two and three columns from S we have rate 3/4 GCIODs for N = 7,6,5
respectively. Observe that by dropping columns of a CIOD we get GCIODs and not
CIODs. But the GCIODs for N = 5,6,7 are not maximal rate designs that can be
constructed from the Definition 3.1.1 using known GLCODs.

Towards constructing higher rate GCIODs for N = 5,6, 7, observe that the number
of indeterminates of GLCODs ©1, O, in Definition 3.1.1 are equal. This is necessary for
full-diversity so that the in-phase or the quadrature component of each indeterminate,
each seeing a different channel, together see all the channels. The construction of such
GLCODs for N; # N,, in general, is not immediate. One way is to set some of the
indeterminates in the GLCOD with higher number of indeterminates to zero, but this
results in loss of rate. We next give the construction of such GLCODs which does not

result in loss of rate.

Construction 3.1.3. Let ©1 be a GLCOD of size Ly x Ny, rate 1 = Ky/Ly in K,
indeterminates xo, -+ ,Tx,—1 and similarly let ©y be a GLCOD of size Ly x Ns, rate

ro = K3/ Ly in Ky indeterminates yo, -+ ,Yx,—1. Let K = lem(K;, Ks), ny = K/K; and
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ny = K/K;. Construct

@l(x()a Ly, 7'1:1(1—1)
@1($K17$K1+1> ce 7$2K1—1)
0, = O1(Z2ky s Tary+1, T3k, —1) (3.20)
L @l(x(nl—l)Klax(nl—l)Kl—i-l? e 7xn1K1—1> ]

and _ -
O2(Yo, Y1, s Yry—1)
O2(Yras YKat1, "+ Y2K—1)
é2 = Oa(Y2ry, Y2kat1s " 5 Y3Ka—1) : (3.21)
i 62(y(n2—1)K27y(ng—l)KQ-‘,-b cet 7yn2K2—1> ]
Then él of size n1Ly x Ny is a GLCOD in indeterminates xo, 1, ,Tx_1 and @2

of size nolLy X Ny is a GLCOD in indeterminates yo,y1,- - ,Yx—1. Substituting these
GLCODs in (3.1) we have a GCIOD of rate

R 2K _ 2lem(Ky, Ky) 2lem (K, Ky) B
- n1L1 +n2L2 - 7’L1L1 +7’LQL2 - 1CH1(K1,K2)(L1/K1 —+ LQ/KQ) -

H(ry,m) (3.22)

where H(ry,19) is the Harmonic mean of r1,r9 with N = N1+ Ny and delay, L = niLy +
7’L2L2.

We illustrate Construction 3.1.3 by constructing a rate 6/7 GCIOD for six transmit

antennas in the following example.

Example 3.1.3. Let

To I1

61

* *
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be the Alamouti code. Then Ly = N; = Ky = 2. Similarly let

ZTo o ) 0
—x7 xy; 0 1o
—x5 0 x5 —m

0 —x5 x7 =

Then Ly = Ny =4, Ky = 3 and the rate is 3/4. K =lem(Kq,Ky) =6, ny = K/K; =3
and ng = K/ Ky = 2.

Zo i
-] T
@1(5507551)
~ To T3
@1 = @1(%2,%3) = s (323)
—T3 25
@1($4,$5)
Ty Ty
—r5 X

Simalarly

—x7 x; 0 1o
—x5 0 x5 —x;

0 —x5 x7 =0

oF
|

(3.24)

* *
—x; a3 0 x3

*
-z 0 73 —x4

0 —a; x3 a3
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The GCIOD for N = Ny + Ny = 6 is given by
[ zor +ireqQ T +JjTrQ 0 0 0 0 |
—z17 +jT7g  Tor — jTeq 0 0 0 0
Tor +jr8Q w31 +jToq 0 0 0 0
—T3r +jTog  Tar —jTsQ 0 0 0 0
ar +JT100  Tsr +Jjriig 0 0 0 0
—Ts57 +jT11Q  Tar — jT10Q 0 0 0 0
g 0 0 T61 + jToqQ Trr +jrig  xsr +jreq 0
0 0 —x7r +jrigq  %er — jToo 0 xsr + jra20
0 0 —x81 + jT2q 0 Ter —JjTog  —T7r — jriQ
0 0 0 —x8r +jT2q  Trr —jTiQ  Ter +jToq
0 0 Tor + jT30 Tior +JjTag  T111 +JT50 0
0 0 —T10r +jrag  Tor — jr3o 0 111 + jxsQ
0 0 —z117 + jT50Q 0 Tor —JjrzQ —Ti0r — jTaqQ
L 0 0 0 —x117 +iT5Q  Tior —jTaQ  Tor +jT3g |
(3.25)

This increased rate comes at

The rate of the above design is i—i = g = 0.8571 > 3/4.
the cost of additional delay. While the rate 3/4 CIOD for N =6 has a delay of 8 symbol
durations, the rate 6/7 GCIOD has a delay of 14 symbol durations. In other words,
the rate 3/4 scheme is delay-efficient, while the rate 6/7 scheme is rate-efficient?.

Deleting one of the columns we have a rate 6/7 design for 5 transmit antennas.

Similarly, taking ©; to be the Alamouti code and ©, to be the rate 7/11 design of
(2.11) in Construction 3.1.3, we have a CIOD for N = 7 whose rate is given by

2 14 7
R=—r—=—=-=0777....
11/7+1 18 9
The delay for this scheme is 36 symbol durations. For, N = 8 the maximum rate obtained
using known GLCODs is 3/4. Significantly, there exist CIOD and GCIOD of rate
greater that 3/4 and less than 1, while no such GLCOD is known to exist.
Next, we present the construction of rate 2/3 GCIOD for all N > 6 in the following

3 Observe that we are not in a position to comment on the optimality of both the delay and the rate.
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example.

Example 3.1.4. For a given N, let ©1 be the Alamouti code. Then Ly = Ny = K1 = 2
and No = N — 2. Let Oy be the rate 1/2 GLCOD for N — 2 transmit antennas (either

using the construction of [13] or [19]). Then ro = 1/2. The corresponding rate of the

GCIOD is given by
2 2

T241 3
In Table 3.3, we present the rate comparison between GLCODs and CIODs-both rate-

efficient and delay efficient; and in Table 3.4, we present the delay comparison.

Table 3.3: Comparison of rates of known GLCODs and GCIODs for all N

Tx. Antennas | GLCODs | GCIOD (rate-efficient) | GCIOD (delay-efficient)

N=2 1 1 1
N=34 3/1 1 1
N=5 7/11 6/7 374
N=6 3/5 6/7 3/4
N=7 1/2 779 3/1
N=8§ 1/2 3/4 3/4
N=9 1/2 273 > 7/11 7/11
N=10 1/2 273 7/11

N=11,12 1/2 273 3/5
N>12 12 2/3 2/3

Table 3.4: Comparison of delays of known GLCODs and GCIODs N < 8

Tx. Antennas | GLCODs | GCIOD (rate-efficient) | GCIOD (delay-efficient)
N=2 2 2 2
N=34 1 1 4
N=5 11 14 8
N=6 30 14 8
N=7 8 36 8
N=8 8 8 8

Observe that both in terms of delay and rate GCIODs are superior to GLCOD.
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3.2 GCIODs vs. GLCODs

In this section we make a comparative study of GCIODs and GLCODs with respect to
different aspects including signal set expansion, orthogonality and peak to average power
ratio (PAPR). Other aspects like Coding gain, performance comparison using simulation
results and maximum mutual information are presented in subsequent sections.

As observed earlier, a STBC is obtained from the GCIOD by replacing x; by s; and
allowing each s;, i = 0,1,---, K — 1, to take values from a signal set A. For notational
simplicity we will use only S for S(xg,- -+ ,zx_1) dropping the arguments, whenever they
are clear from the context.

The following list highlights and compares the salient features of GCIODs and GLCODs:

e Both GCIOD and OD are FSDD and hence STBCs from these designs are single-
symbol decodable.

e GCIOD is a RFSDD and hence STBCs from GCIODs achieve full-diversity iff CPD
of A is not equal to zero. In contrast STBCs from GLCODs achieve full-diversity
for all A.

e Signal Set Expansion: For STBCs from GCIODs, it is important to note that
when the variables z;, 1 = 0, 1, - - -, take values from a complex signal set A the trans-
mission matrix have entries which are coordinate interleaved versions of the variables
and hence the actual signal points transmitted are not from A but from an ezxpanded
version of A which we denote by A. Figure 3.2(a) shows A when A = {1, -1, j, —j}
which is shown in Figure 3.2(c). Notice that A has 8 signal points whereas A has
4. Figure 3.2(b) shows A’ where A’ is the four point signal set obtained by rotat-
ing A by 13.2825 degrees counter clockwise i.e., A" = {ei?, —e? jei? —jel?} where
0 = 13.2825 degrees as shown in Figure 3.2(d). Notice that now the expanded signal
set has 16 signal points (The value 6§ = 13.2825 has been chosen so as to maximize
the parameter called Coordinate Product Distance of the signal set which is related
to diversity and coding gain of the STBCs from GCIODs, discussed in detail in
Section 3.3). It is easily seen that |A’| < |AJ2.

Now for GLCOD, there is an expansion of signal set, but |A’| < 2|A|. For example
consider the Alamouti scheme, for the first time interval the symbols are from the
signal set A and for the next time interval symbols are from A*, the conjugate of

symbols of A. But for constellations derived from the square lattice |A’| << 2|A]
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Figure 3.2: Expanded signal sets A for A = {1,—1,j, —j} and a rotated version of it.

and in particular for square QAM |A’| = |A|. So the transmission is from a larger
signal set for GCIODs as compared to GLCODs.

e Another important aspect to notice is that for GCIODs, during the first L/2 time
intervals Ny < N of the N antennas transmit and the remaining No = N — N; an-
tennas transmit nothing and vice versa. So, on an average half of transmit antennas

are idle.

e For GCIODs, S, is not an orthonormal matrix but is an orthogonal matrix while
for GCLOODs, S, is orthonormal. For example consider the GCIOD for 4 transmit
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antennas,
|5é0\2 + |71]2 0 0 0
0 Tol* + |21 0 0
SMS = 2ol + 124 R (3.26)
0 0 ‘1’2‘ + ‘1’3‘ 0
0 0 0 |Zo|* + [75]?

e GCIODs out perform GLCODs for N > 2 both in terms of rate and delay as shown
in Tables 3.3, 3.4.

e Due to the fact that at least half of the entries of GCIOD are zero, the peak-to-
average power ratio for any one antenna is high compared to those STBCs obtained
from GLCODs. This can be taken care of by “power uniformization” techniques as

discussed in [15] for GLCODs with some zero entries.

3.3 Coding Gain and Coordinate Product Distance
(CPD)

In this section we derive the conditions under which the coding gain of the STBCs from
GCIODs is maximized. Recollect from Chapter 2 that since GCIOD and CIOD are
RFSDDs, they achieve full-diversity iff CPD of A is non-zero. Here, in Subsection 3.3.1
we show that the coding gain defined in (1.12) is equal to a quantity, which we call,
the Generalized CPD (GCPD) which a generalization of CPD. In Subsection 3.3.2 we
maximize the CPD for lattice constellations by rotating the constellation?. Similar results
are also obtained for the GCPD for some particular cases. We then compare the coding
gains of STBCs from both GCIODs and GLCODs in sub-section 3.3.3 and show that,
except for N = 2, GCIODs have higher coding gain as compared to GLCODs for lattice

constellations at the same spectral efficiency in bits/sec/Hz.

4The optimal rotation for 2-D QAM signal sets is derived in [62] using Number theory and Lattice
theory. Our proof is simple and does not require mathematical tools from Number theory or Lattice
theory.
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3.3.1 Coding Gain of GCIODs

Without loss of generality, we assume that the GLCODs ©1, ©, of Definition 3.1.1 are
such that their weight matrices are unitary. Towards obtaining an expression for the

coding gain of CI-STBCs, we first introduce

Definition 3.3.1 (Generalized Coordinate Product Distance (GCPD)). The
GCPDy, n,(u,v) between any two signal points u = u; + jug and v = v; + jug, u # v of

the signal set A is defined as
GCPDNL]\&(U, U) = min {\ul — U[PNI‘UQ — UQ|2N2, |u1 - U[|2N2|UQ - UQPNI} (327)

and the minimum of this value among all possible pairs of distinct signal points of the sig-
nal set A is defined as the GCPD of the signal set and will be denoted by GCP Dy, n,(A)

or simply by GCPDy;, n, when the signal set under consideration is clear from the context.
Remark 3.3.1. Observe that

1. When N; = Ny, the GCPD reduces to the CPD defined in Definition 2.4.1

2. GCPDn, n,(u,v) = GCPDpy, n,(u,v) for any two signal points u and v and hence
GOPDNI’NQ(A) == GOPDN%NI(A).
We have,

Theorem 3.3.1. The coding gain of a full-rank GCIOD with the variables taking values

from a signal set, is equal to the GCPDy, n, of that signal set.

Proof. For a GCIOD in Definition 3.1.1 we have,

Iny ([Zo? + -+ + [T /21 ]?) 0 (3.28)

0 In,(|1Zxp2l® 4 -+ - + [Tx 1 ]?)

where ; = Re{z;} + jIm{w1k/2),} and where (a)x denotes a (mod K). Consider

the codeword difference matrix B(S,S’) = S — S’ which is of full-rank for two distinct
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codeword matrices S, S’. We have

B(S,8)"B(S,S') =

(120 = Zp|* + -+ + |[Tr /o1 — Ty 1 )N, 0
0 (Zrp2 = Thepol® + o + B2 — T4 [ I,
(3.29)
where at least one x, differs from @}, k= 0,--- , K — 1. Clearly, the terms (|Zo — Z)|* +

o [T jar — Ty [P) and (|Txjo — T+ o+ [T — T _4|?) are both minimum iff
xy, differs from x}, for only one k. Therefore assume, without loss of generality, that the
codeword matrices S and S’ are such that they differ by only one variable, say xy taking
different values from the signal set A.

Then, for this case,
2N 2N
Al = det {BH(S, S,)B(S, S,)}l/N — |,’,U0[ — x,01| N1+}V2 |LEOQ — ,’,U,OQ‘ N1+%\’2 .

Similarly, when S and S" are such that they differ by only in xx/, then

1/N 2N, , 2N
NNz (g jaq — @'k jaq| V12

As = det { B(S,8)B(S,S")}

= |$K/21 - x,K/2I‘
and the coding gain is given by

min A{Al,AQ} == GCPD(Nl,NQ)

T0,TR)2€

An important implication of the above result is,

Corollary 3.3.2. The coding gain of a full-rank STBC from a CIOD with the variables

taking values from a signal set, is equal to the CPD of that signal set.

Remark 3.3.2. Observe that as the CPD is independent of the constructional details of

GCIOD like the parameters Ny, Ny and is dependent only on the elements of the signal
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set, it becomes very amenable to maximization techniques. Therefore the coding gain of
STBC from CIOD is independent of the CIOD. In contrast, for GCIOD the coding gain
is a function of Ny, Ns.

The full-rank condition of RFSDD i.e. C'PD # 0 can be restated for GCIOD as

Theorem 3.3.3. The STBC from GCIOD with variables taking values from a signal set

achieves full-diversity iff the GCPDy, n, of that signal set is non-zero.

It is important to note that the GCPD (Ny, NV3) is non-zero iff the CPD is non-zero and
consequently, this is not at all a restrictive condition, since given any signal set
A one can always get the above condition satisfied by rotating it. In fact, there
are infinitely many angles of rotations that will satisfy the required condition
and only finitely many which will not. Moreover, appropriate rotation leads
to more coding gain also.

From the above results it follows that signal constellations with C'PD = 0 and hence
GCPD = 0 like regular M — ary QAM, symmetric M — ary PSK will not achieve
full-diversity. But the situation gets salvaged by simply rotating the signal set to get
this condition satisfied as also indicated in [46, 47, 66]. This result is similar to the ones
on co-ordinate interleaved schemes like co-ordinate interleaved trellis coded modulation
[46, 47] and bit and co-ordinate interleaved coded modulation [44]-[49], [58] for single

antenna transmit systems.

3.3.2 Maximizing CPD and GCPD for Lattice constellations

In this subsection we derive the optimal angle of rotation for QAM constellation so that
the CPD and hence the coding gain of CIOD is maximized. We then generalize the

derivation so as to present a method to maximize the GCPDy;, y,.

Maximizing CPD

In the previous section we showed that the coding gain of CIOD is equal to the CPD and
that constellations with non-zero CPD can be obtained by rotating the constellations with
zero CPD. Here we obtain the optimal angle of rotation for lattice constellations analyti-
cally. It is noteworthy that the optimal performance of co-ordinate interleaved TCM for

the 2-D QAM constellations considered [46, 47|, using simulation results was observed at
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32°; analytically, the optimal angle of rotation derived herein is 6 = tan(2)/2 = 31.7175°
for 2-D QAM constellations. The error is probably due to the incremental angle being
greater than or equal to 0.5. We first derive the result for square QAM

Theorem 3.3.4. Consider a square QAM constellation A, with signal points from the
square lattice (2k —1—Q)d+j(2l — 1 — Q)d where k,l € [1,Q] and d is chosen so that the
average enerqy of the QAM constellation is 1. Let 6 be the angle of rotation. The CPD

. . __arctan(2) __ o ; ;
of A is mazimized at 0 = === = 31.7175° and is given by

4d?

CPDOpt == % (330)

Proof. The proof is in three steps. First we derive the optimum value of 6 for 4-QAM,
denoted as O, ( the corresponding C'PD is denoted as CPD,,). Second, we show that
at Oopt, CP D,y is in-fact the CPD for all other (square) QAM. Finally, we show that for
any other value of 6 € [0,7/2], CPD < CPD,, completing the proof.

Step 1: Any point P(z,y) € R? rotated by an angle 6 € [0,90°] can be written as

TR | _ cos(f)  sin(0) x | (3.31)

YR —sin(#) cos(0) y

R
Let Pi(x1,y1), Pa(x2,y2) be two distinct points in A such that Ax = x1 — 29, Ay = y1 — .
Observe that Az, Ay = 0,+2d,--- ,+2(Q — 1)d. We may write Az = £2md, Ay =

+2nd, m,n € [0,Q — 1] but both Az, Ay cannot be zero simultaneously, as Py, P, are

distinct points in A. Since, rotation is a linear operation,

=R : (3.32)
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where Az, = x15 — Tag, AYr = Y1z — Y2 The CPD(Py, P,) is then given by

(Ax)* — (Ay)?

CPD(Py, Py) = |Ax,||Ay,.| = |AxAycos(26) + 5

sin(20)].  (3.33)
For 4-QAM, possible values of CPD(Py, P,) are
CPD,(Py, Py) = 2d*|sin(20)| and CPDy(P;, P,) = 4d*| cos(26)|.  (3.34)

As sine is an increasing function and cosine a decreasing function of # in the first quad-
rant, equating CPD;,CPD, gives the optimal angle of rotation, 6,,. Let CPD(f) be
the CPD at angle § and CPD,,, = maxgCPD(f). It follows that 6,,, = %n(ﬂ) =
31.7175°,58.285° and C'P Dy = 2d? sin(20,;) = 4d* cos(20,,).

Step 2: Substituting the optimal values of sin(26,,;), cos(26,,) in (3.33) we have
CPD(P, P) = 7 |+nm + n* — m®| where n,m € Z (3.35)

and both n, m are not simultaneously zero and 7Z is the set of integers. It suffice to show
that

| £ nm +n? —m? > 1¥n,m

provided both n, m are not simultaneously zero, completing the proof. We consider the

=+ case separately. We have

|nm +n® —m? = <n+%)2 <1+le)
- <n+%{1+\/3}><n+ {1—f}>‘
1%, | —nm+n?—m?| = <n—%{1—\/§}) (n——{l—f}))
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The quadratic equations in n, | & nm + n? — m?| has roots
n= %{il +/5}.

Since n,m € Z, | & nm + n* — m?| € Z and is equal to zero only if n = 0, 2{+1 + /5}.
Necessarily, | = nm + n? — m?| > 1 for n,m € Z and both n,m are not simultaneously
zero. Therefore at 0, the CPD(Oppt) = CPDopy.

Step 3: Next we prove that for all other values of § € [0, 7], CPD(6) < CPDy. To this
end, observe that for any value of 6 other than 0,, either CPD; or CPDs is less than
CPD,, (see the attached plot of CPD;,CPD, in fig. 3.3). It follows that

CPD(0) < CPD,y

with equality iff 6 = 0. O

Observe that Theorem 3.3.4 has application in all schemes where the performance
depends on the C'PD such as those in [53], [48], [49], [46, 47], etc. and the references
therein.

Remark: The 4 QAM constellation in Fig. 3.2 is a rotated version (45°) of the QAM
signal set considered in Theorem 3.3.4.

Next we generalize Theorem 3.3.4 to all lattice constellations. We first find constella-

tions that have the same CPD as the square QAM of which it is a subset. Towards that

end we define,

Definition 3.3.2 (non-reducible lattice constellation (NLC)). A non-reducible lat-
tice constellation is a finite subset of the square lattice, (2k — 1 — Q)d +j(2l — 1 — Q)d
where k, [ € Z, such that there exists at least a pair of signal points p; = (2k; —1—Q)d+
j2Lh —1—=Q)d and py = (2ky — 1 — Q)d + j(2l, — 1 — Q)d such that either |k; — k3| or

|l; — I3 is equal to 1 and correspondingly either |l; — lo| or |k1 — ko is equal to 0.

We have,
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Corollary 3.3.5. The CPD of a non-reducible lattice constellation, A, rotated by an

angle 0, is mazimized at 0 = am;n(z) = 31.7175° and is given by

4d?

CPDOpt - %

(3.36)

Proof. Since A is a subset of an appropriate square QAM constellation, we immediately

have from Theorem 3.3.4
4>

7

We only need to prove the equality condition. The CPD between any two points in NLC

CPD,y > (3.37)

at Oyt is given by (3.35)
4d? s
CPD(P, P,) = NG |£nm +n® — m?| where n,m € Z. (3.38)

Since for NLC there exists at least a pair of signal points p; = (2k1—1—-Q)d+j(2l1—1—-Q)d
and ps = (2ka — 1 — Q)d + j(2ly — 1 — Q)d such that either |ky — ko or |} — I3 is equal to

1 and correspondingly either |l; — l3] or |k; — k»| is equal to 0, we have

4d?
CPD(p1,p2) = —=- (3.39)

&

O

In addition to the NLCs, the lattice constellations that are a proper subset of the scaled
rectangular lattices,(2k — 1 — Q)2d+j(2l — 1 - Q)d and (2k — 1 —Q)d+j(2l — 1 — Q)2d
where k,[ € Z have CPD equal to %. All other lattice constellations have CPD > %.
Maximizing the GCPD of the QPSK signal set

To derive the optimal angles of rotation for mazimizing the GCPD we consider only

QPSK, since the optimal angle varies with the constellation, unlike CPD.

Theorem 3.3.6. Consider a QPSK constellation A, with signal points (2k—3)d+j(21—3)d
where k,1 € [1,2] and d = 1/+/2, rotated by an angle 6 so as to mazimize the GCPDy, ,.
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The GCPDNn, n,(A) is mazimized at O, = arctan(zg) where g is the positive root of the

equation
1\ 2 .
1—= (14+2)"? =1 (3.40)
x
2Ny
NN
where Ny > Ny and the corresponding GCP Dy, n,(A) is 4d? < e ) :
0

Proof. Any point P(x,y) € R? rotated by an angle 6 € [0,90°] can be written as

TR | _ cos(f)  sin(0) x | (3.41)

YR —sin(#) cos(0) Yy

R

Let Py(z1,y1), Pa(x2,ys) be two distinct points in A such that Az = x; — 9 and Ay =
y1—y2. Observe that Az, Ay € {0, £1d}. We may write Az = +2md, Ay = £2nd, m,n €
[—1,0,1] but both Az, Ay cannot be zero simultaneously, as Pj, P are distinct points in

A. Since, rotation is a linear operation,
=R (3.42)

where Ax, = x1gr — Tar, AYr = Y15 — Y2z Then, we have

2N 2Ny ] 2Ny
|A$T|N1+N2 |Ayr|N1+N2 e ‘2dm COS(&) _|_ 2dn Sln(0)| Ni+No

|—2dm sin(0) + 2dn cos(6)| 7z . (3.43)
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The possible values of GCPDn, n,)(Py, P») are

GCPD,; = 4d* |sin(0) — 003(9)]% |sin(6) + cos(9)|% (3.44)
GCPD, = 4 |sin(8) + cos(6)| ™% [sin(8) — cos(6)| ™77 (3.45)
GCPDs = Ad? [sin(6)|M¥5 |cos(6)| ™ +¥2 (3.46)
GCPD, = 4d? |cos(6) |7 |sin(0)| ¥+ . (3.47)

Now by symmetry it is sufficient to consider 6 € [0, 7/4). In this range sin(f) < cos(f) < 1
and accordingly, if N7 > Ny then GCPD3 < GCPD, and similarly GCPD, < GCPD..
Equating GCPD;, GCPDs gives the optimal angle of rotation, ,,;. We have

GCPD, = GCPDs

(51 (Bopt) — €OS(0upt)) T (810 (Bopr) + COS(Bopr)) V172 = (i1 (Bpy)) 772 (cOS(6py)) 172
(1 — cOt(Bope)) ¥ (1 + tan(fuy)) Mi782 = 1.

Substituting tan(f,,:) = x we have that z is the root of the equation (3.40). The GCPD,

and hence the GCPD at this value is

GOPD, = Ad® [$i0(Bupt) — COS(Bopt)| T275% [$in2(0pt) + COS(Oope)| ¥1772

2Ny _2Ng
(rg — 1) M0z (g + 1) M2

= 4d?
1+ a2
2N7
xN1+N2
= 4d? 10+ o (3.48)
0
O

Table 3.5 gives the optimal angle of rotation for various values of N = N; + N, along
with the normalized GCPDy, n, (GCPDy, n,)/4d?). Observe that for any given N the
coding gain is large if N, Ny are of the same size i.e nearly equal. Also observe that

the optimal angle of rotation lies in the range (26.656, 31.7175] and the corresponding
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normalized coding gain varies from (0.2,0.4472]. Note that the infimum corresponds

Table 3.5: The optimal angle of rotation for QPSK and normalized GC'P D, y, for various
values of N = N; + N,.

N Nl N2 Zo 6’Opt GCPDN17N2/4d2
3 2 1 0.555 29° 0.3487
5 4 1 0.5246 27.76° 0.28
3 2 0.5751 29.9° 0.3869
6 4 2 0.555 29.9° 0.3487
3 3 0.61 31.7175° 0.4472
7 d 2 0.543 28.51° 0.3229
4 3 0.5856 30.35° 0.40
9 7 2 0.53 27.94° 0.29
> 4 0.591 30.622° 0.4135
10 8 2 0.526 27.76° 0.3487
> 5 0.61 31.7175° 0.4472
12 10 2 0.52 27.5° 0.265
6 6 0.61 31.7175° 0.4472
N|N-2| 2 > 0.5 | > 26.5656° > 0.2

to the limit where Ny = N, Ny = 0 and the maximum corresponds to Ny = Ny =
N/2. unfortunately, the optimal angle varies with the constellation size, unlike CPD. In
the next proposition we find upper and lower bounds on GCPDy, n, for rotated lattice

constellations.

Proposition 3.3.7. The GCPDy, n, for rotated NLC' is bounded as
2N.
CPD™% < GOPDy, n, < CPD,Ny > N

with equality iff Ny = Ns.

Proof. From Definition 3.3.1 we have for a given signal set A

2Ny 2Ny 2Ny 2Ny
GCPDn, N, = ur;g}iélA{mI — vr| M2 Jug — vg| NNz | Jup — vp| MRz |ug — vg| Mtz } :

(3.49)
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Let p, q be two signal points such that
C;C'Pl)]\/l,]\/2 = GCPDNLJ\@(]?, q). (350)

When Ny = Ny or Az = Ay there is nothing to prove as the inequality is satisfied.
Therefore let Ny # Ny and Ax # Ay. When the signal points from a the square
lattice (2k —1—Q)d+j(2l —1—Q)d where k, [ € [1Q] and d is chosen so that the average

energy of the QAM constellation is 1, rotated by an angle 6 then

2N 2N, 2N 2N
GCPD(NLNQ)(]), q) = {‘AJJT‘ N1+}V2 ‘Ayr‘ N1+?V2 , |A]JT| N1+?\’2 |AyT‘ N1+}\’2 }

2N

= 4d*|mcos(f) + nsin(f)| ¥+

2N
|—m sin(#) + n cos(6)| N ,m,n € Z. (3.51)

For a NLC the GCPDy, n, is bounded by the GCPDy, n, for QPSK and is given by
(3.48). Now the root of (3.40), ¢, is such that zo € (0.5,1) and Ny > N/2 and we

immediately have

2Ny
2 g o (3.52)
(1+ 23)2 (1+ 23)? '

completing GCPDy, n, < CPD. For the second part observe that, for Ny > Ny,
|m cos(6) + nsin(0)]™2 < |mcos(#) + nsin(0)|N as |m cos(f) +nsin(f)| < 1. Substituting

this in (3.51) we have the lower bound. O

In Proposition 3.3.7, if we use 6 = arctan(2) for rotating the NLC then the GCPD is

bounded as

2Ny

CPD,;" < GOPDy, N, < CPDgy, N2 > Ny, (3.53)
2Ny
4d2 N1+N2 4d2
= |\ = <GOPDn, N, < | —= |, N2> N1 3.54
(\/5) — N1,N2 (\/5) 2 1 ( )

Remark 3.3.3. It is clear from Table 3.5 and the above inequalities on GCPD that the

value of GCPD decreases as the QAM constellation size increases and also as the difference
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between Ny, Ny increases. Therefore, while Construction 3.1.3 gives high-rate designs, the
coding gain decreases for QAM constellations. In Appendix A, we present another class
of non-square RFSDDs whose coding gain is greater than CPD and a construction derived
from Construction 3.1.3 where the coding gain is still given by GCPD but the difference
between Np, N, is smaller. These codes do not belong to the class of GCIODs considered

in this chapter.

3.3.3 Coding gain of GCIOD vs that of GLCOD

In this subsection we compare the coding gains of GCIOD and GLCOD for the same
number of transmit antennas and the same spectral efficiency in bits/sec/Hz-for same
total transmit power. For sake of simplicity we assume that both GCIOD and GLCOD

use square QAM constellations.

The number of transmit antennas N=2

The total transmit power constraint is given by tr (SHS) = L = 2. If the signal set has

unit average energy then the Alamouti code transmitted is

1 Zo al
S=—
\/il—af{ x;;]

where the multiplication factor is for power normalization. For the same transmit power
the rate 1 CIOD is

S:

XTor +j331Q 0
0 T1r +j330Q

Therefore the coding gain of the Alamouti code for NLC is given by % and that of CIOD

is given by Theorem 3.3.4 as %. Therefore the coding gain of the CIOD for N=2 is
inferior to the Alamouti code by a factor of % = 22—23 = 0.894, which corresponds to a

coding gain of 0.4 dB for the Alamouti code®.

5In Chapter 6, we revisit these codes for their use in fast-fading channels where we show that this loss
of coding gain vanishes and the CIOD for N = 2 is single-symbol decodable while the Alamouti code is
not.
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The number of transmit antennas N=4

The total transmit power constraint is given by tr (SHS) = L = 4. If the signal set has
unit average energy then the rate 3/4 COD code transmitted is

To r1 x9 O

* *
—x7 x5 0 19

Sl

x5 0 x5 —x

0 —z3 27 o

where the multiplication factor is for power normalization. For the same transmit power,

the rate 1 CIOD is

Tor +ir20 T +jTsg 0 0

g 1| mrir At Jrsg Tor — jraq 0 0
V2 0 0 Tor +Jjxog w31+ jT1Q
0 0 —Z3r +JjT1g  Tar — jTog

If the rate 3/4 code uses a 2" square QAM and the rate 1 CIOD uses a 2% square QAM,
then they have same spectral efficiency in bits/sec/Hz, and the possible values of n for
realizable square constellations is n = 8i,i € Z™. Let dy, dy be the values of d so that the
average energy of 2" square QAM and 2°F square QAM is 1. Therefore the coding gain
of rate 3/4 COD for NLC is given by Acop = % and that of CIOD is given by Theorem
3.3.4 as Acrop = %35. Using the fact that for unit energy M-QAM square constellations

8 12
and Acjop = ————— where i € Z*

\/3(2& —1)

A —_-

cop 25— 1)
for a spectral efficiency of 6i bits/sec/Hz. For i = 1,23 we have Acop = 0.0314, 1.2207e-
004, 4.7684e-007 and Acrop = 0.0422, 6.5517e-004, 1.0236e-005 respectively, correspond-
ing to a coding gain of 1.29,7.29,13.318 dB for the CIOD code. Observe that in contrast
to the coding gain for N = 2 which is independent of the spectral efficiency, the coding

gain for N = 4 appreciates with spectral efficiency.
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The number of transmit antennas N=8

The total transmit power constraint is given by tr (SHS) = L = 8. If the signal set has
unit average energy then the rate 1/2 COD code has a multiplication factor of 1/2 and
for the same transmit power, the rate 3/4 CIOD has a multiplication factor of 1/4/3. The
rate 1/2 COD code uses a 2" square QAM and the rate 3/4 CIOD uses a 2% square QAM,
then they have same spectral efficiency in bits/sec/Hz, and the possible values of n for
realizable square constellations is n = 4i,7 € Z™*. Let dy, dy be the values of d so that the
average energy of 2" square QAM and 2% square QAM is 1. Therefore the coding gain
of rate 1/2 COD for NLC is given by Acop = % and that of CIOD is given by Theorem
3.3.4 as A¢crop = %35. Using the fact that for unit energy M-QAM square constellations

_ 6
d = /377, We have

6 8

and ACIOD = m where 7 < Z+

A = T
for a spectral efficiency of 3i bits/sec/Hz. For i = 1,2,3 we have Acop= 0.4, 0.0235,
0.0015 and Acrop = 0.4737, 0.0563, 0.007 respectively, corresponding to a coding gain
of 0.734,3.789,6.788 dB for the CIOD code. Observe that as in the case of N = 4 the
coding gain appreciates with spectral efficiency.

Next we compare the coding gains of some GCIODs.

The number of transmit antennas N=3

Both the GCIOD and GCOD for N = 3 is obtained from the N = 4 codes by dropping
one of the columns, consequently the rates and the total transmit power constraint are
same as for N = 4. Accordingly, the rate 3/4 GCOD code uses a 2" square QAM and
the rate 1 GCIOD uses a 2% square QAM where n = 8i,7 € Z". The coding gain for the
rate 3/4 GCOD for NLC is given by Agcop = 4;)1% and that of GCIOD is lower bounded

4
by Proposition 3.3.7 as Agcrop > (%) . Using the fact that for unit energy M-QAM

5 we have

square constellations d = /577,

ol

12
and A > —=—— where i € Z7T
GCIOD (\/5(2& — 1))

8
Agcop = m
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for a spectral efficiency of 6i bits/sec/Hz. For i = 1,2,3 we have Agcop = 0.0314,
1.2207e~%, 4.7684e~" and Agcrop > 0.0147, 5.69¢75, 2.22¢~7 respectively.

Observe that at high spectral rates, even the lower bound is larger than the coding
gain of GCOD. In practice, however, the GCIOD performs better than GCOD at all

spectral rates.

3.4 Simulation Results

In this section we present simulation results for 4-QAM and 16-QAM modulation over a
quasi-static fading channel. The fading is assumed to be constant over a fade length of
120 symbol durations.

First, we compare the CIOD for N = 4, with (i) the STBC (denoted by STBC-CR
in Fig.3.4 and 3.5) of [62], (ii) rate 1/2, COD and (iii) rate 3/4 COD for four transmit
antennas for the identical throughput of 2 bits/sec/Hz. The comparison with quasi-
orthogonal design for N = 4 is given in Chapter 5. For CIOD the transmitter chooses
symbols from a QPSK signal set rotated by an angle of 13.2825° so as to maximize the
CPD. For STBC-CR the symbols are from a QPSK signal set and rate 1/2 COD from 16-
QAM signal set. For rate 3/4 COD, the symbols are chosen from 6-PSK for a throughput
of 1.94 bits/sec/Hz which is close to 2 bits/sec/Hz. The average transmitted power is
equal in all the cases i.e. E{tr(S™S)} = 16, so that average energy per bit using the
channel model of (1.7) is equal. Fig. 3.4. shows the BER performance for these schemes.
Observe that the scheme of this paper outperforms rate 1/2 COD by 3.0 dB, rate 3/4
COD by 1.3 dB and STBC-CR by 1.2 dB at P, = 107°. A comparison of the coding
gain, A, of these schemes is given in tabular form in Table 3.6. For CIOD, A¢grop = 1.788

Table 3.6: The coding gains of CIOD, STBC-CR, rate 3/4 COD and rate 1/2 COD for 4
tx. antennas and QAM constellations

R (bits/sec/Hz) | Aciop | AsrBo—cr | Avate 3/4 cop | Avate 172 cop
2 1.788 2 1.333 0.8
3 0.5963 0.66 0.5333 0.1905
4 0.3587 0.4 - 0.0471

while for STBC-CR Agrpe—cr = 2 at R = 2 bits/sec/Hz, but still CIOD out-performs
STBC-CR because the coding gain is derived on the basis of an upper bound. If we take
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Figure 3.4: The BER performance of coherent QPSK rotated by an angle of 13.2825°
(Fig.3.2) used by the CIOD scheme for 4 transmit and 1 receive antenna compared with
STBC-CR, rate 1/2 COD and rate 3/4 COD at a throughout of 2 bits/sec/Hz in Rayleigh
fading for the same number of transmit and receive antennas.
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Figure 3.5: The BER performance of the CI-STBC with 4- and 16-QAM modulations
and comparison with ST-CR and DAST schemes
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into consideration the kissing number i.e. the number of codewords at the given minimum
coding gain, then we clearly see that though both STBC-CR and STBC-QOD have higher
coding gains, both have more than double the Kissing number of CIOD. The results for

rest of the schemes are in accordance with their coding gains;

A A
10log; [ ——22 ) = 3.5 and 10logy, (| ——22 ) = 1.3.
Arate 1/2 COD Arate 3/4 COD

Observe that rate 3/4 COD and STBC-CR have almost similar performance at 2 bits/sec/Hz,
and around 1.6dB coding gain over rate 1/2 COD. A possible apparent inconsistency of
these with the results in [35, 36], which report coding gain of over 2 dB, is due to the
fact that symbol error rate (SER) vs. p is plotted in [35, 36]. As rate 1/2 COD chooses
symbols from 16 QAM and STBC-CR from 4 QAM, SER vs. p plot gives an overesti-
mate of the errors for STBC-OD as compared to STBC-CR and therefore bit error rate
(BER) vs. E,/Ny is a more appropriate plot for comparison at the same through put (2
bits/sec/Hz).

From the Table 3.6, which gives the coding gains of various schemes at spectral ef-
ficiencies of 2,3,4 bits/sec/Hz, we see that the coding gain of STBC-CR and CIOD are
nearly equal (differ by a factor of 1.11) and significantly greater than other schemes. But,
the main factor in favor of CIOD as compared to STBC-CR (as also any STBC other than
STBC-OD) is that CIOD allows linear complexity ML decoding while STBC-CR has ex-
ponential ML decoding complexity. At a modest rate of 4 bits/sec/Hz, CIOD requires 64
metric computations while STBC-CR requires 16* = 65, 536 metric computations. Even
the sphere-decoding algorithm is quite complex requiring exponential complexity when
M < N and polynomial otherwise [42].

For 4-QAM and 16-QAM constellations, Fig. 3.5 shows the performance for CIOD,
STBC-CR and Diagonal Algebraic Space Time (DAST) codes of [37]. As expected CIOD

shows better performance.

3.5 Maximum Mutual Information (MMI) of CIODs

In this section we analyze the maximum mutual information (MMI) that can be attained
by GCIOD schemes presented in this chapter. We show that except for the Alamouti
scheme all other GLCOD have lower MMI than the corresponding GCIOD. We also
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compare the MMI of rate 1 STBC-CR with that of GCIOD to show that GCIOD have
higher MMI. Comparison with QOD is presented in Chapter 5.

It is very clear from the number of zeros in the transmission matrices of GCIODs,
presented in the previous sections, that these schemes do not achieve capacity. This
is because the emphasis is on low decoding complexity rather than attaining capacity.
Nevertheless we intend to quantify the loss in capacity due to the presense of zeros in
GCIODs.

We first consider the N = 2, M = 1 CIOD. Equation (1.6), for the CIOD code given

in (2.53) with power normalization, can be written as

V =/pHs+N (3.55)

ho 0
H p—t
0 M

and s = [59 |7, and where 5y = so; + js10,51 = S11 + jSog, S0, 51 € A. If we define
Cp(N, M, p) as the maximum mutual information of the GCIOD for N transmit and M

where

receive antennas at SNR p then

1 1
Cp(2,1,p) = gB(logdet(l + pH"H)) = 5B log{(1 + plhool*) (1 + plh1ol*) }
1 1
= §E10g{1 + plhool*} + iElog{l + plhiol*}
= C(L1,p) <C(2,1,p). (3.56)

It is similarly seen for CIOD code for N = 4 given in (2.54) that

1
Cp(4,1,p) = ZE(log det(Iy + g'HTH))
1
= S Blog{(1+ L(lhal* + o) (1 + 5 (a0l + [haol*)))

1 1
= S Elog{L+ S(lhool” + [huof)} + 5B log{1 + £ (lhaol” + haol*)}

= (C(2,1,p) <C(4,1,p) (3.57)

and
Cp(3.1,p) = %{0(2, 1p) +C(1,1,p)} < C(3.1, ). (3.58)
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Therefore CIODs do not achieve full channel capacity even for one receive antenna. The
capacity loss is negligible for one receiver as is seen from Fig. 3.6 and Fig. 3.7; this is
because the increase in capacity is small from two to four transmitters in this case. The
capacity loss is substantial when the number of receivers is more than one, as these schemes
achieve capacity that could be attained with half the number of transmit antennas. This
is because half of the antennas are not used during any given frame length. The capacity
loss when M > 2 is even more.

Another important aspect is the comparison of MMI of CODs for three and four trans-
mit antennas with the capacity of CIOD and GCIOD for similar antenna configuration-we
already know that for two transmit antennas complex orthogonal designs have higher ca-

pacity. It is shown in [39] that
3

where Co(N, M, p) is the MMI of GLCOD for N transmit and M receive antennas at a
SNR of p. Using similar procedure as given in [39] we found that

Co(d, M, p) = SC(4M,1, Mp) (3.60)

Equation (3.60) is plotted for , M = 1,2, in Fig. 3.6 and (3.58) is plotted in Fig. 3.7

along with the corresponding plots for CIOD derived from (3.57) and (3.58). We see
from these plots that the capacity of CIOD is just less than the actual capacity when there
is only one receiver and is considerably greater than the capacity of code rate 3/4 complex
orthogonal designs for four transmitters. When there are two receivers the capacity of
CIOD is less than the actual capacity but is considerably greater than the capacity of
code rate 3/4 complex orthogonal designs four transmitters.

Next we present the comparison of GCOD and GCIOD for N > 4. Consider the MMI
of GLCOD of rate K/L. The effective channel induced by the GLCOD is given by [40]

L
y = K—%HHHzx—l—n (3.61)
where y is a 2K x 1 vector after linear processing of the received matrix Y, x is a 2K x 1

vector consisting of the in-phase and quadrature components of the K indeterminates

Zo, - ,Trg_1 and n is the noise vector with Gaussian iid entries with zero mean and
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Figure 3.6: The maximum mutual information of CIOD code for two transmitters and
one, two receiver compared with that of complex orthogonal design (Alamouti scheme)
and the actual channel capacity.
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Figure 3.7: The maximum mutual information of GCIOD code for three transmitters and
one, two receiver compared with that of code rate 3/4 complex orthogonal design for three
transmitters and the actual channel capacity.

30



Capacity (bits)

3.5 Maximum Mutual Information (MMI) of CIODs 89

20

0 5 10 15 20 25
SNR (dB)

Figure 3.8: The maximum mutual information of CIOD code for four transmitters and
one, two receiver compared with that of code rate 3/4 complex orthogonal design for four
transmitters and the actual channel capacity.
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variance ||H||?/2. Since (3.61) is a scaled AWGN channel with SNR = 22 ||H||? and rate
K /L, the average MMI in bits per channel use of GLCOD can be written as [63]

_K Lp e
Co(N.M.p) = {bgz (1 + 22w )} (3.62)

observe that H is a N x M matrix. Since ||H||> = H*H where H is the NM x 1 vector

formed by stacking the columns of H, we have

K ML
Co(N,M,p) = fC(MN,l,Y,O) (3.63)

K[ 1 LoA\ aives s
= L(F(MN)/O log(1+KN))\ e "dA (3.64)

where (3.64) follows from [6, eqn. (10)]. For GCIOD, recollect that it consists of two
GLCODs, ©1, 0, of rate K /2Ly, K/2Ly as defined in (3.1). Let C 0, Cs 0 be the MMI of
©1, O, respectively. Then the MMI of GCIOD is given by

1
Cp(N,M,p) = 7 {L1C10 + L2Ca 0} (3.65)
1
= 7 {L1Co(Ny, M, cp) + LaCo(Na, M, cp)} (3.66)
K 2L M 2LocM
- = {C(MNl,l, LDy 4 O(MNy, 1, 2226 '0)} (3.67)

where ¢ is a constant so as to normalize the average transmit power i.e. (N;4+Ny)cK/2 = L
= c = ;—fv The above result follows from the fact that the GCIOD is block diagonal

with each block being a GLCOD. When L, = L i.e. ©; = O, we have

K __MN _ 2LMp

N, M, p)=— 1 .
CD( ) >p> LC( 9 s Ly K ) (368)
as we have already seen for N = 2, 4.
Let AC' = Cp — Co. For square designs (N = L = 2%, b odd) we have
2 1
AC = 2O, 1,2 M) “; C(M2b, 1,2°Mp). (3.69)

It is sufficient to consider b = 1. When N = 2, QW“ = %1 =1land AC =C(M,1,Mp) —
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C(2M,1, Mp) < 0, as seen from [6, Figure 3: and Table 2]. When N > 2, 2a > a + 1
and lim, .. f—fl = 2. Also C(M2°7' 1, Mp) is marginally smaller than C(M2%, 1, Mp)
for M > 1,a > 1 as can be seen from [6, Figure 3: and Table 2|. It therefore follows that

Theorem 3.5.1. The MMI of square CIOD is greater than MMI of square GLCOD except
when N = 2.

It can be shown that a similar result holds for GCIOD also, by carrying out the analysis
for each N. We are omitting N = 5,6,7. For N > 8 we compare rate 2/3 GCIOD with
the rate 1/2 GLCODs. The MMI of rate 1/2 GCIOD is given by

1
The MMI of rate 2/3 GCIOD is given by,

CMNJWW):%{C@Aﬂmey+CwﬂN—2%LAmﬂ. (3.71)

For reasonable values of N that is N > 8, C(MN,1,Mp) ~ C(M(N — 2),1, Mp) and
C(2M,1, Mp) ~ C(MN, 1, Mp) and it follows that

Cp(N, M, p) ~ 2C(MN, 1, Mp). (3.72)

[GVRI )

Figure 3.9 shows the capacity plots for N = 8, observe that the capacity of rate 2/3
GCIOD is considerably greater than that of rate 1/2 GLCOD. At a capacity of 7 bits the
gain is around 10 dB for M = 8. Similar plots are obtained for all N > 8 with increasing

coding gains and have been omitted.

3.6 Discussion

In this chapter we have presented a class of FSDD called GCIOD of which CIOD is
a subclass. Construction of fractional rate GCIODs have been dealt with thoroughly
resulting in construction of various high rate GCIODs. In particular a rate 6/7 GCIOD for
N = 5,6, rate 7/9 GCIOD for N = 7 and rate 2/3 GCIOD for N > 6 have been presented.

The expansion of signal constellation due to co-ordinate interleaving has been brought
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Figure 3.9: The maximum mutual information (average) of rate 2/3 GCIOD code for
eight transmitters and one, two, four and eight receivers compared with that of code rate
1/2 complex orthogonal design for eight transmitters over Rayleigh fading channels.
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out. The coding gain of GCIOD is linked to a new distance called generalized co-ordinate
product distance (GCPD) as a consequence the coding gain of CIOD is linked to CPD.
Both the GCPD and the CPD for signal constellations derived from the square lattice
have been investigated. Simulation results are then presented for N = 4 to substantiate
the theoretical analysis and finally the maximum mutual information for GCIOD has
been derived and compared with GLCOD. It is interesting to note that except for N = 2,
the GCIOD turns out to be superior to GLCOD in terms of rate, coding gain and MMI.
A significant drawback of GCIOD schemes is that half of the antennas are idle,as a
result these schemes have higher peak-to-average ratio (PAR) compared to the ones using
Orthogonal Designs. This problem can be solved by pre-multiplying with a Hadamard
matrix as is done for DAST codes in [37]. This pre-multiplication by a Hadamard matrix
will not change the decoding complexity while more evenly distributing the transmitted
power across space and time and achieve full-diversity over fast-fading channels resulting
in 'smart and greedy’ GCIOD codes.

In a nutshell this chapter shows that, except for N = 2 (the Alamouti code),
CIODs are better than GLCODs in terms of rate, coding gain, MMI and BER.

Few possible directions for further research are listed below.

e While we know that no square RFSDD exists other than square GCIOD the same is
not known for non-square RFSDD. If this is true then the GCIOD codes presented

here complete the theory of FSDD, if not then there exists a class of codes other
than GCIODs that are also FSDD.

e Maximal rates for non-square GCIOD is also an open problem?

e The CPD of non-square lattice constellations and the GCPD for both square and

non-square lattice constellations needs to be quantified.



Chapter 4

Characterization of Optimal SNR
STBCs

In a recent work [19], space-time block codes (STBC) from Orthogonal designs (OD)
were shown to maximize the signal to noise ratio (SNR) and also it was shown that for
a linear STBC the maximum SNR is achieved when the weight matrices are unitary. In
this chapter we show that STBCs from ODs are not the only codes that maximize SNR;
we characterize all linear STBCs that maximize SNR thereby showing that maximum
SNR can be achieved with non-unitary weight matrices also subject to a constraint on
the transmitted symbols (which is that the in-phase and quadrature component are of
equal energy). This constraint is satisfied by some known signal sets like BPSK rotated
by an angle of 45°, QPSK and X-constellations. It is then shown that the Generalized
Co-ordinate Interleaved orthogonal Designs (GCIOD) presented in the previous chapter
achieve maximum SNR and corresponds to a generalized maximal ratio combiner under
this constraint. This result is a generalization to a previous result on maximum SNR
presented in [17] because the necessary conditions for maximal SNR derived therein for
real symbols are not necessary for the complex symbol case as shown in this chapter. Also
we show that though GCIOD maximizes SNR for QPSK of Fig. 4.1 (b), the same GCIOD
with the rotated QPSK of Fig. 4.1 (c¢) performs better in terms of probability of error.
This is due to the fact that the maximum SNR approach does not necessarily maximize

the coding gain also.
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4.1 Background

In a recent work [19], space-time block codes were constructed from an optimal SNR
perspective. The approach adopted therein is:(i) obtain a linear filter, Z, at the receiver,
for a real symbol weighed by a matrix A, that maximizes SNR, (this maximized SNR is a
function of A) (ii) for the case when channel state information is not known at the receiver,
obtain A that maximizes SNR and (iii) add additional symbols with weight matrices that
maximize SNR and are orthogonal to each other so as to increase data rate.

Although, this strategy leads to an alternate construction of STBC from ODs, it is

deficient in that it dose not characterize all STBCs that maximize SNR. For example

Example 4.1.1. Consider the CIOD for 2 transmit antennas given by,

Zo 0 10 0 0 0 0 j o
S = = Tor + ZoQ + rir + r1Q (41)
0 0 0 0 j 0 1 0 0
S——— S———— S———
Ag A1 Ao As

where x; = x;; + jrig,1 = 0,1 are symbols from the QPSK signal set shown in Fig. 4.1
(b). The received signal matriz is given by V = SH + W, where H denotes the channel
matriz and W the noise matriz. Let V = ZNMV = ZySH + Z}'W where Zy = Ag + A
is the matriz used linear processing at the receiver for detecting xy. Then the symbol x
is detected based on Dy = tr (V) The SNR of this code for symbols transmitted from
the QPSK signal set shown in Fig. 4.1 (b), under the total transmit power constraint

tr (SHS) =2F,, is
tr (ZSH) |2 tr (HH" { A} AEyy, + AT AVEyy, }) _ tr (H™H) E,

NR = _
SR = e (27 153 252 207

(4.2)

where By, = 37, By = 23,1 = 0,1 and are equal for QPSK such that E,, = Eq, =

By, = By, = Eg/2. When we set Z = Ay + A3 we again get (4.2). Now the SNR of
Zo T

Alamouti code, S = % , for symbols transmitted from the same signal set,
—ry g

under the same total transmit power constraint i.e. tr (SHS) = 2F,, is given by [23, eqn.
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2.18]
H"H)E
SNRpox = M (4.3)

202
Since (4.3) and (4.2) are equal, this CIOD achieves the maximal SNR when the symbols
xg, x1 are from the QPSK shown in Fig. 4.1 (b). This implies that there are STBCs other
than STBCs from ODs that mazimize SNR.

In this chapter we characterize all linear STBCs that maximize SNR. Towards this
end, we first obtain a linear filter, Z, at the receiver, for a complex symbol whose in-
phase and quadrature components are weighed by different weight matrices, that maximizes
SNR. This is the basic difference between our approach and the approach of [17, 18, 19].
As a result of this maximization, we get the conditions that SNR is maximized only if
restrictions are placed on the weight matrices or on the signal set. We then optimize weight
matrices under a total transmit power constraint to show that if there is no-restriction on
the signal set then the weight matrices are necessarily orthogonal (unitary) and if there
is a restriction on the signal set then the sum of weight matrices of the in-phase and
quadrature components is unitary. It is then shown that the first case leads to ODs and
the later case to CIODs, if the data rate is maximized. We then show that maximum
SNR approach is deficient in that it dose not necessarily result in optimal performance
due to possible smaller coding gain compared to a case where the SNR is not maximized

but has larger coding gain.

4.2 Optimal Linear Filter

As in [17, 18, 19], we start by considering that the transmission from all the antennas N
for L symbol durations depends on a complex symbol s. The dependence is as follows:
let s = s; + jsg denote the complex transmitted symbol and let a1, ax2 € C™N denote
the transmission weight vectors for sy, sg respectively during the kth symbol period, then

the transmission from the ¢th antenna during the kth symbol duration is given by

i i
Ay, 151+ 95Q
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where ai:’p is the ¢th element of aj,, p = 1,2. Assuming that the receiver uses a matched

filter, the output of the matched filter is the 1 x M vector
Vr = [s;am + SQCLk,g]H + Wi, k= 1, cee ,N (44)

where wy, is a complex Gaussian noise vector that is spatially and temporally white and
the variance of each entry is o2. Let 2z, denote the C'*™ vector used at the receiver for

linear processing to detect s, then detection of s is based on

L

D = —Z{[s;ak,l + sQapa] H + wy} 2]t (4.5)
k=1

In matrix notation (4.4) can be written as

V = [A181 + AQSQ]H + w (46)
where V' € C*M is the received matrix whose kth row is given by vy, A;, Ay € CI*V
are the weight matrices of sy, sg respectively whose kth row is given by a1, ar2. Note
that the transmission matrix is given by S = A;s; + Assg. Correspondingly (4.5) can be

written as,

D= %tr vzl = %Real {tr ({[A1s; + AssglH + W}Z™)}

= (i (A HZ ) s+t (A HZ)sq + tx (W2} (4.7)

The decision on the symbol s is based on D and the SNR in (4.7) is given by,

g |zt (s + Aasgh HZM)[ (4.8)

E|Ltr(wzn)|?
[ Ltr (A HZM) | By, + | Ltr (AL HZY) | E
(7)tr(227)
#tl‘ (ZHH {A,{—{AQ + A;{Al} HZHS[SQ)
(7)tr (227

SQ

+



4.2 Optimal Linear Filter 98

where E{W"W} = Lo*I);. Since s;sg can be either positive or negative and is unknown

at the receiver, necessarily

AJtAy + ANTA; =0 (4.10)
and
(LN |t (MHZY) B, + |2t (AHZM)| E,,
o - (L) 2RI, am

where E,, = s7, B, = 5. Define

Efa™ b} =1/L> (a™),

then (4.11) can be written as

SNR =

. 2 . 2
I ‘E{ukl,sz}‘ E,, + )E{um,sz}) E,,
2

- o (4.12)

where
Uk p = ak,pH,p: 1,2,]{,‘ = 1’ ’L'

Observe that SNR expression for a complex symbol whose in-phase and quadrature com-
ponents are weighed by different weight matrices (A;, As), given by (4.12), is different

from the corresponding expression when s is real and is given by

- 2
L ‘E{Um,zzf}‘ E,

SNR = —-——= 4.13
o E{x, 2t} (4.13)
From (4.12) the maximum SNR is obtained by choosing A;, Ag, Z such that
. 2 . 2
L ’E{Um;Z}?f}‘ E,, + ‘E{Ukz,zzf}‘ Esq
— is maximum. (4.14)

o? E{zk,z]f}

Using
max {a(z,y) + b(z,y)} < max(a(z,y)) + max(b(z,y)) (4.15)
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and the generalized Cauchy-Schwartz inequality given in [18, 19, Theorem 1]
| B{ur, 23 < E{ug, uff} E{z, 2} (4.16)

with equality when
2 = aup, 0 0 € R, (4.17)

we have

. 2 . 2

L ‘E{uk,l,sz}‘ Es;+ )E{Uk’Q,ZZ;{}) ESQ

max SNR = max — _
5 2o B 1Y)

_ 2 . 2
I ‘E{Uklaz]z{}‘ E, I ‘E{Umazzf}‘ Es,

< max — = + max — = 4.18
w 0f Bz, '} a 02 Bz, 2t (4.18)
1 (-~ -

< = {E{uk,l, uh Y Es, + E{uge, U;f,g-}EsQ} : (4.19)

Theorem 4.2.1.
1 ~ -
max SNR < — {E{um, ult, } B, + E{uy o, uf?}ESQ}
Zk 0— K K

with equality iff Z = a(A; + Ay)H and
i) E{ugs, upty} = E{uk@,u%}
or
ii) £, = E,,
Proof. The “if part” is proved by substituting these conditions in (4.12). For the “only if

part,” if, Z # a(A; + A2)H then applying (4.16) to (4.12)

|Eun1, Y By + | Euna, Y Bog < { By, wf'} By + Bluna, afls} B } Bz, 211}
(4.20)
with equality iff Z = a(A; + Ay)H as AT'Ay + A¥ A, = 0. The corresponding value of
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SNR is

SNR . £ ‘(tl‘ (HHHA?Al) ‘2 ‘Oél|2EA'SI + ‘(tl‘ (HHHA;{AQ) ‘2 ‘062|2EA'3Q
o2 tr (HHMAYA)) |aq|? + tr (HHT A Ay) |as|?

(4.21)

and the proof is completed for a; = ay by verifying that the bound of (4.19) is achieved

only if the conditions are satisfied. O

Remark 4.2.1. In Theorem 4.2.1 we have obtained the optimal receiver weight matrix Z
in terms of the channel matrix H and the weight vectors Ay, A;. Further it shows that the
SNR is maximized iff constraints are placed on the weight matrices Ay, Ay (E{uy 1, upt} =
E{up,2, uffy} which corresponds to tr (HH™AJtA,) = tr (HH™AJAy)) or the transmitted
symbol (E,; = E,,). Also observe that when the symbol is real then no constraints are
imposed on the weight matrix or the signal set which is the case considered in [17, 18, 19].

We define the constellation that has the property E, = E;_ as

SQ

Definition 4.2.1 (X-constellation). A signal set is called an X-constellation if all its
elements on the z and y axes after rotated by an angle of 45°.
Observe that rotated BPSK (45°), QPSK are X-constellations and also any signal

set that has the property that E;, = E
presented in Fig. 4.1.

so- Pxamples of such signal constellations are

4.3 Design of Transmit Weight Vector

Now, consider the design of the weight matrices A;, As, p = 1,2 subject to total transmit

power constraint given by
tr (S™S) = LE, = tr (A['A) E,, + tr (A} A) E,, = E, (4.22)
and the constraints imposed by Theorem 4.2.1. We consider the two cases of Theorem

4.2.1 separately:

Case 1: E{um,ugl} = E{uk,g, u?jz}
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20 Ok 200

(a) rotated BPSK (b) QPSK

L0 ) |
Ot

00

O..' """"
........ Q <) .
10 11
(c) rotated QPSK, 6 = 31.68° (d) optimal 4 X-constellation

(e) 8 X-constellation

Figure 4.1: The signal constellations considered in Chapter 4. Except (c) all others are
examples of X-constellations that maximize SNR for CIODs.



4.3 Design of Transmit Weight Vector 102

Using, an identity from [64],
tr (AB) < tr (A) Aax(B) with equality when B = A/ (4.23)

where A, B are hermitian semi-definite matrices and Ayax(B) is the largest eigen value of

B, we have

{E{uk,l, wh Y Es, + E{uy, ugz.}EsQ} = tr (HHA'A)) E,, + tr (HH A} A5) E,
< tr (HH™) {Es Aa, + Esu A, ) (4.24)

with equality iff ATA; = A4, 1,4 = 1,2. On substituting the total power constraint we
have A4, = \/—% Substituting these condition in (4.22) and substituting back in (4.24) we
have
tr (H"H)
3 g,
No?
and the optimal weight matrices A;, Ay are such that ATA; = I, ATA, + A¥A; = 0.
Observe that Theorem 4.2.1 requires Ay, = Aa,. Also observe that (4.25) is same as [23,
eqn. 2.18].
Case 2: B, = b,
Using (4.23), we have

SNRypax = (4.25)

{E{uk,l, uzl}ESI + E{uk,Q, uzz.}EsQ} = tr (HHH(Al -+ AQ)H(Al + AQ)) EsI
< tr (HH™) {EgAa,4a,} (4.26)

with equality iff (A; + Ag)™(A; + Ay) = A4, 1a,I. Substituting these condition in (4.22)

and substituting back in (4.26) we have (4.25), and the optimal weight matrices A;, Ao

are such that (A; + A)"(A4; + Ay) = \/LNI, ATt Ay + AN A = 0 after normalization.
Observe that Case 1, was considered in [18, 19]. Proceeding as in [19], the rate of the

scheme considered so far is 1/L; if we can add 2K — 2, {As,- -, Aok 1} weight vectors
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such that
ARA 4+ ATTA, =0,0< k#1<2K —1 and (4.27)
AMAL=1,k=0,---,2K — 1 for Case 1: (4.28)
ASCA% + A;ZHA%H =1,k=0,---,K — 1 for case 2: (4.29)

then we have a rate K/L STBC that maximizes SNR.

Remark 4.3.1. A natural question arises as to why not start with K complex variables
and then find the conditions on the weight matrices that will lead to maximization of
SNR. This approach is not fruitful because in such a case maximization of SNR can be
done only by coding across the variables, in general, because we would require the energy
of each of the 2K real variables to be equal. Only exception to this is when all the K
complex variables take value from the rotated BPSK signal set of Fig. 4.1 (a). For this

case the conditions on the weight matrices that maximize SNR are,

ARA + ATAL, =0,0< k #1 < 2K — 1 and (4.30)
2K—-1
> AfA =KL (4.31)
k=0

Codes that satisfy the conditions of Case 1 are precisely the generalized complex or-
thogonal designs (GCOD) defined in Definition ??, as pointed out in [19] and their design
is considered in [16, 18, 17, 19, 15, 13, 20, 33] and reviewed in Chapter 2. The General-
ized Co-ordinate Interleaved orthogonal designs (GCIOD) of Definition ?? (constructed
in Chapter 3) satisfy the criteria of case 2, as can be easily worked out. To put this

formally, we have
Theorem 4.3.1. STBCs from GCIODs are maximal SNR codes iff the transmitted signals
constitute an X-constellation.

The problem of characterization of all codes that satisfy (4.27)-(4.29) has been already

discussed in a more general setting in Chapters 2, 3.
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4.4 Performance of Maximal SNR STBCs

In this section we show that the codes obtained by maximum SNR approach need not
necessarily be the best in terms of largest coding gain. This is done by presenting an
example of the performance of CIOD (case 2 codes) when the symbols are from the
X-constellation, which maximizes SNR, and also from rotated QPSK, which dose not
maximize SNR.

Consider the CIOD for 4 transmit antennas given by

i@ 00
—# & 0 0
0 0 & @&

Sk Sk
0 0 —x; 73

(4.32)

The maximal SNR of this CIOD when the symbols are from the X-constellation, SNR .«
(M = 1), is given by
tr (H HH )

N max —
SNR 12

E, (4.33)

In contrast when the symbols are from the rotated QPSK constellation (Fig. 4.1 (c)) is
given by

SNR = tr (H"H {AJf Ay B, + A1 Asii1 By, }) < SNRinax (4.34)

1
1602 s
with equality when H"H = ol,a € R, =0, ---,3. Fig. 4.2 gives the SNR performance
for both the cases discussed above. While the QPSK is an optimal SNR signal set, it
shows a diversity loss while compared to the QPSK signal set rotated by an angle of

0 = 31.7175°. This is explained by the pair-wise error probability expression for CIOD

[51]
P(S — 8) < <#> (4.35)

CPD 4?;2

where CPD denotes the Coordinate Product Distance. Observe that for full-diversity
CPD is required to be non-zero for any two distinct points in the signal set. When
0 = 0°, the CPD = 0 and hence there is a loss of diversity. When 6 = 31.7175°, the CPD
is maximized (CPD = 1.788) [51] and hence the performance of this signal set is better
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Figure 4.2: The BER performance of CIOD for 4 Tx, 1 Rx. for rotated QPSK when the
angle of rotation 6 = 0,31.68° and optimal X-constellation in quasi-static Rayleigh fading
channel.

than the case when # = 0°. Now we can construct a X-constellation with non-zero C'PD
by moving the points of QPSK as shown Fig. 4.1 (d). In-fact Fig. 4.1 (d) corresponds
to the 4 X-constellation with maximum C'PD under unit average energy constraint as
shown below: Construction of optimal 4 X-constellation: We construct optimal 4
X-constellation that maximizes CPD by scaling the signals of QPSK. Let the signal points
00,11 in Fig. 4.2 (b) be scaled by a and the other two points by b. Then for the average
energy of the constellation to be 1 we require a? + b*> = 2. The CPD between 00,11 is
CPD; = 2a® and between 00,01 or 10 is CPDy = 5%, Solving CPD; = CPD, and
a’? +b* = 2 we have a = %, b= \/é The optimal value of CPD is given by CPD = 2/3,

for unit energy X-constellation. For CIOD we require the constellation energy to be 2, so
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as to satisfy the total transmit power constraint of (4.22).

This maximum value is CPD = 4/3 and is considerably less than the maximum value
of CPD when the QPSK is rotated. As a result the performance of this optimal 4 X-
constellation is also inferior to the optimal rotated QPSK as shown in Fig. 4.2. The
rotated QPSK performs better than X-constellation that maximizes SNR because the
performance of CIOD dose not depend on average SNR as in the case of COD. Therefore

we conclude that maximizing SNR dose not necessarily lead to optimal performance.

4.5 Discussion

In this chapter we have characterized all STBCs that maximize SNR. Using this charac-
terization we showed that there exist codes other than STBCs form ODs that maximize
SNR subject to a constraint on the signal constellation with the constraint being: the
in-phase and quadrature components of all signals are of equal energy. We then showed
that STBCs from CIODs maximize SNR under this constraint. Finally, we showed that
optimal SNR codes need not have optimal performance in the sense of giving the largest

coding gain.



Chapter 5

Double-symbol Decodable Designs

Space-Time block codes (STBC) from Quasi-Orthogonal designs (QOD) have been at-
tracting wider attention due to their amenability to fast ML decoding (double-symbol
decoding) and full-rank along with better performance than those obtained from Orthog-
onal Designs over quasi-static fading channels for both low and high SNRs [28]-[34]. But
the QODs in literature are instances of Double-symbol Decodable Designs (DSDD) i.e.
designs that allow double-symbol ML decoding and it is worthwhile to characterize all
Double-symbol Decodable Designs, as Single-symbol Decodable Designs were character-
ized in Chapter 2 and whose instances were developed as GCIOD in Chapter 3.

In this chapter we first characterize all linear STBCs, that allow double-symbol ML de-
coding (not necessarily full-diversity) over quasi-static fading channels-calling them double
symbol decodable designs (DSDD). The class DSDD includes QOD as a proper subclass.
Among the DSDDs those that offer full-diversity are called Full-rank DSDDs (FDSDD).
We show that the class of FDSDD consists of only (i) Generalized QOD (GQOD) and (ii)
a class of non-GQODs called Generalized Quasi Complex Restricted Designs (GQCRD).
Among GQCRDs we identify those that offer full-rank and call them FGQCRD. These
full-rank GQCRDs along with GLCODs constitute the class of FDSDD.

We then upper bound the rates of square GQODs and show that rate 1 GQODs exist
for 2 and 4 transmit antennas. Construction of maximal rate square GQODs are then
presented to show that the square QODs of [33, 34] are optimal in terms of rate and
coding gain. A relation is established between GQODs and GCIODs which leads to the
construction of various high rate non-square QODs not obtainable by the constructions of

[28]-[34]. The coding gain of GQODs is analyzed which leads to generalization of results
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of [33, 34].

Next we upper bound the rates of square GQGCRDs and show that rate 1 GQCRDs
exist for 2, 4 and 8 transmit antennas. Construction of maximal rate square FGQCRDs
are then presented. Simulation results for 8 FGQCRD is then presented to show that
although the rate is 1, the performance is poorer that rate 3/4 QOD as the coding gain

is less.

5.1 Introduction

Quasi-Orthogonal Designs leading to STBCs that admit Double-symbol decoding were
introduced in [28, 29] and later studied in [30, 34] with improvements on the achievable
diversity. The designs of [33, 34] are constructed as follows: Let G (zg, 21, ,2x—_1) be
a p X N OD then, the QOD Qaon(z0, 21, - ,Z2x_1) of size 2p x 2N is constructed as

A B
Qv = 5.1
=L (5.1)
where A = Gy(zg, 21, ,2x-1) and B = Gn(xk, Ty, ,Tax—1). The variables
x;,, 1= 0,1,--- K — 1 take values from a complex signal set A and the variables
T, ©=0,1,--- K —1 from a rotated version of A. By a proper choice of the angle

of rotation one gets a full-rank code with rate K/p that is double-symbol decodable. The
construction of QOD in [28] is

A B

Q2N = _B* A

(5.2)

Where A* stands for the matrix A with all entries replaced by their complex conjugates.
The construction in [30, 31] also leads to STBCs with similar characteristics as those
[33, 34] and we call these also QODs. In-fact these designs are not unique and many such

constructions can be presented. For example consider the following construction:
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A new construction of a QOD:

Let A, B be as defined in the construction leading to (5.1), then the design

A+ B 0

Qan = 0 A_B

is also a QOD, with the additional property that Q24 Q. is diagonal.

Clearly, there is a need for systematic consideration of all such STBCs. Also, in
contrast to ODs, the primary question of the maximal rate of QODs was left unanswered
even for square QODs. In addition as in the case of ODs, QODs are a class of double-
symbol decodable designs and a complete characterization of such codes is very useful.

This chapter intends to answer these shortcomings. Recollect from Chapter 1 that:

Definition 5.1.1 ( Double-symbol Decodable (DSD) STBC). A double-symbol de-
codable STBC of rate K /L in K complex indeterminates x;, = zx+jrrg, k=0, , K—1
is a linear STBC such that the ML decoding metric given by (1.9) can be written as a

square of several terms each depending on at most two indeterminates only.

5.2 Double-symbol Decodable Designs

In this section we characterize all STBCs that allow double-symbol ML decoding in Sub-
section 5.2.1. The formal definition in terms of weight matrices and some examples of

double-symbol decodable designs (DSDD) are then presented in sub-section 5.2.2.

5.2.1 Characterization of Double-symbol Decodable Linear STBCs

Consider the matrix channel model for quasi-static fading channel given in (1.6)
V=SH+N (5.4)

where V- € CI*M (C denotes the complex field) is the received signal matrix, the trans-

mission matrix (also referred as codeword matrix) S € CE*V N € CF*M is the noise
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matrix and H € CV*M defines the channel matrix, such that the element in the ith row
and the jth column is h;;.
Assuming that perfect channel state information (CSI) is available at the receiver, the

decision rule for ML decoding is
M(S) £ tr ((V—SH)"(V — SH)) . (5.5)

This ML metric (5.5) results in exponential decoding complexity with the rate of trans-
mission in bits/sec/Hz.

For a linear STBC with K variables, we are concerned about those STBCs for whom
the ML metric (5.5) can be written as sum of several terms with each term involving
only two distinct variables and hence double-symbol decodable. The following proposi-
tion characterizes all S, in terms of the weight matrices, that will allow double-symbol

decoding.

Proposition 5.2.1. For a complex linear STBC in 2K wvariables, S = Zifo_l Trr Ao +

Tk Askt1, the ML metric, M (S) defined in (5.5) decomposes as M(S) = K:_Ol My (g, pr i)+
Me where Mc = —(K — L)tr (VV), iff

ARA 4+ ATA, =0 VI # K, (k+2K) 4k (5.6)

where (k+ 2K ),k = (k4 2K) mod 4K.

Proof. Recollect from Theorem (2.3.2) we have that S’ = ZkK:_Ol TprAog + T Aokt is

single-symbol decodable design iff
ARA 4+ ATTA, =0 0<VI#£k <2K — 1. (5.7)

Let S be a double-symbol decodable design such that zp, zp gk, k = 0,--- , K — 1 are
decoded together (for every double-symbol decodable S we can obtain such a STBC by

re-arranging variables). Now

M(S) = tr (VI'V) —tr (SH)"'V) — tr (V'SH)) + tr (S""SHH™) .
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Observe that tr (V*V) is independent of S. The next two terms in M(S) are functions

of S, S™ and hence linear in xys, xxg. In the last term,

2K —1 2K -1 2K—1
sHs = Z (AM Agp?, + A;{,CHA%szQ) + Z Z (AN Aoy + AY Ao mpray;
k=0 k=0 I=k+1
2K -1 2K—1
+ Z Z (A;{HlAle + A§+1A2k+1)$kQ$lQ
k=0 I=k+1
2K —12K—1
+ Z Z (A;-i;AQH-l + A§+1A2k)xk1xl62- (5.8)
k=0 =0

(a) Proof for the “if part”: If (5.6) is satisfied then (5.8) reduces to

K-1
s"s = Z {ASfAopiy + A§k+K)A2(k+K)x%+KI + A% Aok
k=0

+A;-€k+K)+1A2(k+K)+lxi+KQ + (ASCA2(1€+K) + A;EHK)A%) TRITk+ K1

(ASk 1 )1 A2kt + Adfyr Asrs )41) Tht KQTRQ |

K—1
= Y TM"T, where (5.9)
k=0
T = Agxpr + Aok 17k + Aspor k)Tt k1 + Ad(ht )17+ KQ (5.10)

and using linearity of the trace operator, M (S) can be written as

M(S) = tr (V”V)—Ki{tr((TH)HV) —tr (VHTH)) + tr (T""THH")

= Y _|[V-TH| +Mc (5.11)
k Y

My (z,2Tk+ k)

where M¢ = —(K — 1)tr (V*V) and ||| denotes the Frobenius norm.
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(b) Proof for the “only if part”: If (5.6) is not satisfied for any Ayg,, A;,, k1 # [1 then

M(S) = Z 'V —TH|? + tr (A} Ay, + AT A )H™H) y + Mc
k

Tk, /2171, J21 if both k4, 1; are even
where Yy = T(k1-1)/2QT(1,-1)/2Q if both kl, ll are odd
x(kl_l)/ngll/y if k’l Odd, ll even.

Now, from the above it is clear that M (S) can not be decomposed into terms involving

only two variables. O

Remark 5.2.1. Observe that for a SDD AlfA; + AT*A;, = 0 VI # k and hence (5.6) is
satisfied. In other words, a SDD is also double-symbol decodable, trivially. Similarly,
when A, = cpApiox, b = 0,--- 2K — 1 in a DSDD, S = Y25 1 ay Aoy + 2 Aok,
then S = ZkK:_Ol Yrer Aok + YroAok11 is a SDD where yir = x5 + ckTirxr and ypg =

TrQ + CkTrykg- In other words S is actually a SDD.

5.2.2 Definition and examples of DSDD

Observe from remark 5.2.1 that a SDD is also trivially a DSDD and the Definition 5.1.1
of DSDD needs to be sharpened to be meaningful. In this section we formally define

double-symbol decodable designs so as to avoid trivial cases discussed in remark 5.2.1.
We have,

Definition 5.2.1 (Double-symbol Decodable Designs (DSDD)). A Double-symbol
Decodable Design is a complex linear STBC, S = Zii{o_ Y 1 Aok + 2o A2k+1, whose weight

matrices, {Ag, -, Aok 1} satisfy

ATA, + ATA,,

0, VI #k, (k+2K)ix (5.12)

At Apyor + Al o i Ay 0, 0<k<2K -1 (5.13)

RN N

Ak - CkAk+2K O, k= 0, cee ,2K —1 (514)
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where (k4 2K)4x = (k+2K) mod 4K; and {c} are constants.

Remark 5.2.2. In Definition 5.2.1 we have not only excluded trivially double-symbol de-
codable codes like SDD but also those STBC in which some variables are single-symbol
decodable and some are double-symbol decodable. It turns out that all such codes are
derived from a DSDD and hence Definition 5.2.1 is appropriate. Such codes will be
considered towards the end of this chapter for completeness.

Examples of DSDD are the STBCs from QOD like,

Example 5.2.1. consider the rate 1 QOD for N = K =2

To IT1
T1 To
with the corresponding weight matrices
10 j o 0 1 0 j
Ay = Ay = , Ag = Az = ;
01 0 j -1 0 -j 0

and some other STBCs not covered by STBCs from QOD like the rate 1, QCIOD for
N=L=2

Example 5.2.2. Consider

Tor j$1Q

S(xo,x1) = . : (5.16)
Tir JToQ

The corresponding weight matrices are given by

10 0 0 0 0 0 ;
AOZ 7A1: 7A2: 7A3:
00 0 j 10 00
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such that

gHg _ x3r + T J(orr1g + 1170q)

—j(zorr1g + T11700) x(2)Q + fo

and det (SHS) = (zorog —xule)2. Observe that S is not a real orthogonal

design. In fact the coding gain is linked to the CPD of xq, x1.

Similarly

Example 5.2.3. the rate 1 QCIOD for N =8

Ty T 0 0 Ty Ip 0 O
—F @0 0 —& i 0 0
0 O Ty I3 0 0 ¢ 27
0 0 —it & 0 0 —& i
Ss(wo, T1, T2, T3, T4, T5, Te, T7) = (5.17)
T4 s 0 O To T 0 O
—T5 T 0 0 =27 0 0
0 0 T Iy 0 0 2o I3
0 0 —& & 0 0 —& i

18 a DSDD.

It is easily seen that these codes are not covered by QODs and satisfy the requirements

of the above theorem and hence are double-symbol decodable.

5.3 Full-rank DSDD

In this section we identify all full-rank designs with in the class of DSDD, i.e., characterize
the class FDSDD; subsection 5.3.1. The formal definition of FDSDD is then presented in
Subsection 5.3.2 and the classification of FDSDD is presented in 5.3.3.
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5.3.1 Characterization of Full-rank DSDD

In this sub-section we identify all full-rank designs with in the class of DSDD. Towards

this end, we have

Proposition 5.3.1. A square double-symbol decodable design, S = ifz(o_lkuAgk +

TrAokt1, exists if and only if there exists a square double-symbol decodable design, S =
ii{o_l kuA% + kuzZlng such that

AFA + ATPA, = 0, VI#Ek, (k+2K)x,

A Appor + Ao A # 0, 0<k<2K -1,

RN N

Ak—CkAkHK 0, k=0,---,2K -1,

A,

Dy, Vk

where (k4 2K )4k = (k + 2K) mod 4K, ¢ are constants Dy, Dy x1ox are diagonal ma-

trices.

Proof. Consider a DSDD, S = Zii(o_lkuA%: + 2rAzk+1. Then the family of Hermi-
tian matrices {AXf Ag, - -+, Abt. Aok 1} is a family of commuting matrices by Theorem
2.4.2 and are diagonalizable by a unitary matrix U. Similarly, the family of Hermi-
tian matrices {ATt A, -+ AN Agx 1, ATE Aok} is a family of commuting matrices by

Theorem 2.4.2 and are diagonalizable by the same unitary matrix U. It follows that

{AN Ay, AT Ay - ADE  Agre q, ABe-Aorc} is a family of diagonalizable matrices. Pro-
ceeding, in the same way, { Ahf Ag, - - , A%t | Ayrc—1} is a family of diagonalizable matrices.
Define
2K -1
S == SUH = Z xMAgk + ZL’kQAQk+1 where Ak = AkUH, (518)
k=0

then S satisfies the requirements of the proof. For the converse, given S, S can be obtained

by defining S = SU:; completing the proof. O

Therefore, without loss of generality we can assume that for square DSDD, S is such
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that the weight matrices

ARA + ATTA, = 0, VI#Fk, (k+2K) (5.19)

At Apyor + AL Ay, # 0, 0<E<2K —1 (5.20)
Ap — Ao # 0, k=0,--- 2K —1, (5.21)

A'A, = Dy, Vk (5.22)

We conjecture (as in Chapter 2) that this is true for non-square designs also. However
the characterization proceeds independent of this requirement. The following proposition

gives a necessary condition for DSDDs to achieve full-diversity.

Proposition 5.3.2. A double-symbol decodable design, S = Zifo_l TprAog + Tpg Aok,

whose weight matrices Ay satisfy (5.19) achieves full-diversity only if AN, Ao+ AL | Agyin
is full-rank for all k =0,1,--- 2K — 1.

Proof. The proof is by contradiction. First observe that AJf Ay is positive semidefinite.
Suppose that for some [ A;ngl + A;fHAng, 0 <l <2K —1isnot full-rank. Then for
any two transmission matrices S, S that differ only in z;, the difference matrix B(.S, S ) =
S—S, will not be full-rank as B*(S, S)B(S, S) = AN Ay (211 —#11)?+ AYf, Agpyi (110 —210)?

is not full-rank. O

5.3.2 Definition of FDSDD

Although, proposition 5.3.2 gives the necessary condition for full-rank STBCs, it charac-
terizes all full-rank double-symbol decodable STBCs, as sufficient condition for full-rank
is obtained by putting additional restrictions on the weight matrices or the signal set
(Theorem 5.3.3). Hence all STBCs that satisfy Proposition 5.3.2 are full-rank under some

restriction on the signal set. We have,

Definition 5.3.1 (Full-rank Double-symbol Decodable Designs (FDSDD)). A
Full-rank Double-symbol Decodable Design is a DSDD such that

AR Ag + AY Agp,  0<k<2K —1. (5.23)
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is full-rank.
Examples of FDSDD are the QODs and the STBCs of examples 5.2.2,5.2.3.

Remark 5.3.1. Observe that for square FDSDD, it is sufficient to consider S such that
S"S = D, where D is diagonal.

Towards obtaining a sufficient condition for full-diversity, we classify FDSDD into

classes that require different restrictions on the signal set for full-rank. We have

Proposition 5.3.3. A linear STBC, S = Zifo_l 2 Aok +2p0Ask+1 where zy, take values
from a signal set A,Vk, satisfying the necessary condition of proposition 5.5.2 achieves

full-diversity only if
1. either AF Ay, is of full-rank for all k
2. or the CPD of A#0

Proof. Let S, S be such that they differ in the k-th variable only. We have B™(S, g)B(S, 3)
= Zf:_ol AN Aoy, (wr — B1)* + AR Aoiyr (Tkg — Bx0)?. Since AJF Ay are positive semidef-
inite, it follows that B is full-rank either if AMA; k < 2K are all full-rank for or

(zpr — Zxr)? # 0 and (2o — Trg)? # 0 implying that the CPD is nonzero. O

Note that the necessary condition 1) is an additional condition on the weight matrices
whereas the necessary condition 2) is a restriction on the signal set A and not on the
weight matrices Aj. Proposition 5.3.3 essentially divides FDSDD into two classes, each
of which will be treated separately in the following sections.

An important consequence of Proposition 5.3.3 is that there can exist designs that are
not covered by QODs offering full-diversity and double-symbol decoding, provided the
associated signal set has non-zero CPD. It is important to note that whenever we have a
signal set with CPD equal to zero, by appropriately rotating it we can end with a signal
set with non-zero CPD. Indeed, only for a finite set of angles of rotation we will again
end up with CPD equal to zero. So, the requirement of non-zero CPD for a signal set is

not at all restrictive in real sense.
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5.3.3 Classification of FDSDD

In this sub-section we formally classify FSDD. When A} A, is full-rank for all k, corre-
sponding to Proposition 5.3.3 1., we have Generalized QOD (GQOD) of which QOD is a

subclass. Formally,

Definition 5.3.2 (Generalized Quasi Orthogonal Design (GQOD)). A generalized
quasi orthogonal design is a FDSDD such that A} A, is full-rank for all k = 0, -+ , 4K —1.

Observe that the QODs of Jafarkhani [28], Trikkonen and Hottinen [29], Sharma and
Papadias [30, 31] and Su and Xia [33, 34] are all GQODs. The FDSDDs that are not
GQODs are such that AX Ay, and/or AY | Asiq is not full-rank for at least one k.

We call such FDSDD codes Generalized Quasi Restricted Design (GQRD) in sym-
phony with the RFSDD codes that are FSDD. Formally,

Definition 5.3.3 (Generalized Quasi Restricted Design (GQRD)). A generalized
quasi restricted design is a FDSDD such that A}fAy is not full-rank for at least one k
where £ = 0,--- ;4K — 1. When a GQRD satisfying the conditions for full-rank is used

along with a signal set with non-zero CPD we simply refer the design as Full-rank GQRD
(FGQRD).

Figure 5.1 shows all the classes discussed so far, viz., DSDD, FDSDD, GQRD, GQOD,
FGQRD. Observe that vertical hatches denote FDSDD, square hatches denote FGQRD
and horizontal hatches denote DSDDs that are not GQODs. In Section 5.4 we analyze
GQODs and in section 5.5 we focus on the square FGQRDs and show that although we
gain in rate by using FGQRDs, there is a loss of performance as compared to GQODs.

5.3.4 Construction of single-symbol decodable designs from QODs

In this subsection we construct single-symbol decodable designs from Generalized Quasi-
Orthogonal designs (GQODs) defined in (5.3.2).

Let S(l’o, ce ,JIQK_l) = Ziio_l l’k[Agk + [L’kQAgk+1 be a GQOD defined in (532)
Then

—_

K— K-1

S(xo, -+, w2x-1) = Z {IkIAzk + x(k+K)1A2k+1}+Z {$kQA2(k+K) + «T(k+K)QA2(k+K)+1}
k=0 k=0
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Figure 5.1: The classes of double-symbol decodable (DSDD) codes.
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is single-symbol decodable. An example of such a code is given in example 2.3.1. As
discussed therein, these codes have maximum coding gain when the indeterminates take

value from a real constellation.

5.4 Generalized Quasi Orthogonal Designs

In this section we first derive the maximal rates of square QODs, and then present a
sufficient condition for a class of GQODs to obtain full-rank. We then link the existence
of GQODs to GCIODs and then use this to present various high rate GQODs. The
coding gain of GQODs is then considered and the MMI of QODs analyzed. A comparison
of GQODs and GCIODs is then presented.

5.4.1 Maximal rates of square GQODs

In this sub-section we find the maximal rates of square GQODs. Henceforth we assume
L = N. Since any maximal rate square LCOD is equivalent to the LCOD of (2.9) under
unitary transformation and/or change of variables [15, Theorem 2], we assume without

loss of generality that the maximal rate square LCOD are of the form (2.9). We have

Theorem 5.4.1. The mazximal rate of square GQOD of size N s bounded as R <
=2 — 20 N =29, b odd.

N — 2ap»

Proof. Define S; = {Ag, A1, -+, Ask—1} and Sy = {Aok, Aok 11, -+, Aux—1}. Following
(5.28)-(5.31), both the sets Sy, 52 independently form a set of weight matrices for ODs of
rate K/N. Invoking the Hurwitz Theorem (Theorem 2.2.1) we have K < % Assume
that |S1| = |Ss| = 2K = H (N).

Step 1: Claim: The elements of Sy are of the form UAy or AV, k=0, --- 2K —1 where
U,V are unitary.

Observe that the sets S, Sy are unitarily equivalent [15, Theorem 2]. Therefore the
elements of Sy can be written in terms of elements of S; as Ay = UApp—2x)V, b =
2K,--- JAK — 1 where U,V are unitary matrices and P is a permutation over the set of

indices 0,--- ,2K — 1. Applying (5.28) to Ao, Aj;,1 > 2K,0 < P(I—2K) =1 <2K —1 we
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have

ANUAV + VAU Ay = 0

which implies that the set {U™ Ay, A, V, -+, Ay 1V} are the weight matrices of a LCOD
and UM A, = AgV. Similarly, U"A; = A;V,i = 1,--- ,2K — 1. Consequently, S; = S,
and (5.30) is not satisfied. Therefore, the elements of Sy are of the form UAy or AV, k =
0,---,2K — 1. In what follows we assume that Sy = {Ask, -+, Aux—1} = {UApp),i =
0,---,2k — 1}. The other case can be similarly treated.

Step 2: Claim: U = +A,Al, for all0 <p#k < 2K — 1.

Applying (5.28) to A,, A;,q¢ > 2K,0 < P(q—2K) =i;p,i < 2K — 1 we have

ANUA; + AU A, = 0. (5.24)

But this is only possible if
UMA, =4+A,0<i#k#p<2K -1 (5.25)
= U=4AA00<i#k#p<2K—1. (5.26)

Step 3: Claim: U is anti-Hermitian.

Since S is a square QOD AMAy + AJfA, = 0,p # k is equivalent to A, A}l + A ATt =
0,p # k. Substituting in (5.26). We have U" = —U.

Step 4: claim: K < H(N) — 2.

Applying (5.28) to Ask, A1, P(2K) =i we have

AU A; + ATUM A, = 0. (5.27)

Implying UM A, = —UA, = £A, # A;. This implies that +A, is in both S;, Sy which is
not possible due to (5.30). Necessarily A, ¢ S; and |Si| = H (N) — 1. But |S] is even
by definition 2 and H () is even for any N, it follows that |S;| = |S2| < H (N) — 2.
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The following theorem shows that the upper bound of Theorem 2 is achievable.

, , _ H(N)-2 _ 24
Theorem 5.4.2. The mazimal rate, R of square QOD is R = —F%— = 57.

Proof. By Theorem 5.4.1, R < % = 2% The rate of QOD in Construction (5.1) and

in (5.3) when A, B are maximal rate CODs is

r< HWN/2) (N/2) _ 20
- N 22h
which achieves the bound completing the proof. O

Remark 5.4.1. Observe that the maximal rates of square CIODs (RFSDDs), given by
Theorem 2.5.2, is equal to that of square GQODs, given by Theorem 5.4.2 for the same

number of transmit antennas. This suggests that there might be a possible connection

between CIODs and GQODs.

5.4.2 Sufficient condition for full-rank GQOD

In this sub-section we derive the sufficient condition for a class of GQODs. However we

conjecture that this class consists of all GQODs.

Theorem 5.4.3. A N x N GQOD S = 2250_1 Aok +xpQ Aokt exists iff there exists a

GQOD of same size and rate, S = Zifo_l l’k[AQk +ku/12k+1 such that fl}g/lk =1Ix.

Proof. Consider a square GQOD, S = Zii{o_ 1xk1A2k+kuA2k+1. The weight matrices

satisty,

AVA + ATPA, = 0, VI#E, (k+2K)k (5.28)

Al Apyor + AL Ay # 0, 0<k<2K —1 (5.29)
Ap — cpArpox # 0, k=0,--- 2K — 1, (5.30)

ANA, = Dy, VEk. (5.31)



5.4 Generalized Quasi Orthogonal Designs 123

Observe that Dy, is of full-rank for all k. Define Ay = AklA)k_l/ . Then the matrices Ay

satisfy

ARA + AT A, = 0, VI#k, (k+2K)x, (5.32)
Al A ore + Al oAy # 0, 0<Ek<2K —1, (5.33)
Ap — chhpioe # 0, k=0,--- 2K — 1, (5.34)

AlA, = Iy, Vk (5.35)

where in proving (5.32) we have made use of the results of Subsection 2.2.1. It follows
that S = Zii(o_l xk[/igk + a:kalng is a GQOD having the claimed property. O

Next we present a conjecture regarding GQODs which is satisfied by all known GQODs.
Conjecture 5.4.4. A Lx N GQOD S = Zifo_l T Aok +xr Aokt exists iff there exists

a GQOD of same size and rate, S = Zifo_l xk[AQk +ku/12k+1 such that the entries of

SMS are linear sum of |z, £ 2o |? or |ak|?, |2ep x| with strictly positive real coefficients.

Remark 5.4.2. From Theorem 5.4.3 it for every GQOD S there exists S whose weight
matrices satisfy defined in (5.32)-5.35). In addition the entries of YA)MHKO <kE<2K-1

are 0, £2. This can be proved by observing that the columns of the matrix

~ A Apgor
Apg =
Appox A
are of length 2 and in addition the i-th column of g is orthogonal to all except
Aprar
. Aprox . A
i-th column of . Since Dy, 12x0 < k < 2K — 1 need not be full-rank we have,
Ay,

that the entries of S™S are linear sum of |z, +x  x|? or |zx|%, |2k k| With strictly positive
real coefficients. Therefore this conjecture seems to hold for square designs. A similar

argument holds for non-square designs also.
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Before presenting the sufficient condition for GQODs ( we assume that conjecture
5.4.4 holds) to achieve full-rank we define

Definition 5.4.1 (Minimum (-distance (MZD) [33, 34]). The minimum (-distance

between two signal constellations A and B is

Aminc (A, B) = min |(s1 — 5)2 — (89 — §2)2|1/2.
(51752)7é('§17§2)

We have,

Theorem 5.4.5. The GQODs achieve full-diversity iff the Minimum (-distances, dpin ¢
(Ai, Airk),i=0,--- | K — 1 is non-zero where A; is the signal constellation form which

the variable x; takes values.

Proof. The proof is an immediate consequence of Corollary 5.4.4 and Definition 5.4.1. O

Su and Xia [33, 34] pointed out that such a pair of constellations can be obtained by
rotating the signal constellation i.e. A; x = eV A;. It was also shown that for QOD the
coding gain is equal to the Minimum (-distance. Maximization of MZD for the case when
Ai=A,i=0,---, K —1 and A is a square or triangular lattice was also done. We show
in Subsection 5.4.4 that the coding gain of a class of GQOD is equal to the Minimum

generalized (-distance.

5.4.3 GQODs from GCIODs

In this subsection we follow the intuition from Remark 5.4.1 and show that a GQOD
exists if a GCIOD of same rate and same size exists. This result leads to construction of
several high rate codes, which are not covered by the QODs of [28]-[34]. In particular we
have a rate 1 GQOD for N = 3, rate 6/7 GQODs for N = 5,6 and so on as in the case
of GCIODs in Chapter 3.

We have for square designs

Theorem 5.4.6. A square GQOD of rate 2K/L, size N exists iff exists there exits a

square CIOD of same rate and size.
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Proof. Let S be a square GQOD. The set of 2K matrices, S; = {Aq, A1, -+, Asx_1, form
a Hurwitz family of matrices. By Theorem (5.4.1), 2K < 2a. Accordingly S; can be
assumed to be block diagonal as in Construction (5.1). Therefore

Ay 0

Ay =

0 Ay

and the sets of matrices satisfy { A }org s {Aak}ing " are two Hurwitz families of matri-

ces. Define
R Az O . 0 0
Ao = Ao = k=0,--- ,K—1
0 0 0 Ay
and
R Ay O . 0 0
A2k+l: >A2k:: >k:K772K_1
0 0 0 Ay

Then it follows that the design Zii(o_ ! xk[Agk + ku/igk+1 is a CIOD of same rate and
size as S.

Now given a CIOD, S, then S can be obtained form it as

. R Ay 0 0 O
Ap = Ao + Agpyr = + Jk=0,--- 2K —1
0 0 0 Ay

and

0 A 0 0
Apyorx = + Jk=0,--- 2K — 1.
0 0 Ao 0

Next we present a weaker condition for non-square designs that is,

Theorem 5.4.7. A non-square GQOD of rate 2K /L, size N exists if there exits a square
GCIOD of same rate and size.
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Proof. Consider a GCIOD given by Definition 3.1.1 as

O©1(Zo, -+, Tk/2-1) 0
S(zo, -+, Tx1) = / (5.36)

0 O (Txy,+  Tr—1)
where ©1(xo, -+ ,2x/2-1), O2(z0, - ,Tx/2-1) are GLCODs of size Ny, Ny respectively
such that N1+ N, = N, Z; = Re{z; } +j Im{z (i1 k/2), } and where (a)x denotes a (mod K).

Then a simple check shows that the design

. [ O1(xg, T1, ", Tx /o 0
S(wo, -+ oK) = (0. r/2-2)
0 Oa(wo, 71, + , Tr/2-1)
L | @) 0 -
L 0 _@2(3:%737%4_1)'” 7xK—l)
is a GQOD of same rate and size as S. O

We can interchange the + and — sign between two variables x) and zjx/» in the two
designs O1, 0, in (5.37) to obtain another GQOD.
Remark 5.4.3. Observe that Theorem 5.4.7 suggests that there might exist GQODs of
rate higher than GCIODs. We conjecture that this might not be true as we could not
find an example of any such GQOD and the if can be replaced by iff as and when we
completely understand non-square GLCODs.

Theorem 5.4.7 leads to construction of various high rate GQODs which are not covered
by known constructions of QOD.
In particular we have the rate 1 GQOD for N = 3 given by,

Ty + T2 T+ X3 0
—(@1 +23)" (20 + 22)* 0
g | Tlotas) (w0t m) (5.38)
0 0 g — T2
0 0 —(z1 — x3)*

Similarly, modifying the Construction 3.1.3, we have a construction for GQOD which
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gives various high rate GQODs. We have

Construction 5.4.8. Let ©1 be a GLCOD of size Ly x Ny, rate 1 = Ky/Ly in K,
indeterminates xo, - -+ ,Tx,—1 and similarly let ©y be a GLCOD of size Ly x Ns, rate
ro = K3/ Ly in Ky indeterminates yo, -+ ,Yx,—1. Let K = lem(Ky, Ks), ny = K/K; and
ny = K/Ks. Construct

@l(x()a Ty 7'1:1(1—1)
@1(331{17 TKi+15" " ,932K1—1)
O, = @1(932K1,£EK1+1, s ,932K1—1) (5~39)
L @l(m(nl—l)KUx(nl—l)Kl—i-l? te 7xn1K1—1> ]

and _ )
O2(Yo, Y1, Yry-1)
O2(YKs» YKat1s "+ Y2ro-1)
é)2 = Oa(Yarcy, YKat1s " 5 Y2ia—1) : (5.40)
i @2(y(n2—l)K2ay(nz—l)Kg-l—l; te aynzKQ—l) ]
Then él e CmlixNt s o GLCOD in indeterminates xg, 21, -+ ,Z_1 and ég €

Creb2xNz s g GLCOD in indeterminates yo, Y1, - - ,Yx—1. LThe design

~

@l(anxb”. axK/Q—l) 0
5(5507 T axK—l) = ~
0 @2(x07xla"' 7xK/2—1)
R 0 "
L 0 —@2($%,$%+1,"' 7'rK—1)
is a GQOD of rate
2K 2lem(K 1, Ky) 2lem (K, K)

= H(Tl, 7’2) (542)

R g g g
nlLl +77,2L2 nlLl —|—7’L2L2 1CH1(K1,K2)(L1/K1 —|—L2/K2)
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where H(ry,13) is the Harmonic mean of r1,re with N = N1+ Ny and delay, L = nyL; +
7’L2L2.

We illustrate the working of Construction 5.4.8 by constructing a rate 6/7 GQOD for

six transmit antennas.

Example 5.4.1. Let

Lo I1
©, =
—x] T

be the Alamouti code. Then Ly = Ny = Ky = 2. Similarly let

*
—x; 0 x5 —1

0 —x5 27 a0

Then Ly = Ny = 4, Ky = 3 and rate 3/4. K = lem (K, K3) =6, ny = K/K; = 3 and
ny = KK, = 2. Thetay, Thetay are defined in (3.23). Using (5.41) we have the GQOD
for N = Ny 4+ Ny =6 given by S =

To + Tg r1 +x7 0 0 0 0
—(z1 +27)*  (x0+ x6)* 0 0 0 0
ZTg + X8 3 + X9 0 0 0 0
—(x3+x9)* (w2 + 28)* 0 0 0 0
T4 + X190 Ts + T11 0 0 0 0
—(x5 +x11)* (x4 + 210)* 0 0 0 0
0 0 Ty — Tg T — X7 To — X8 0 (5.43)
0 0 —(x1 — x7)* (xo — x6)* 0 ZTo — g
0 0 —(xg — x8)* 0 (xo —x6)* —(x1 —7)
0 0 0 —(z2 —x8)*  (x1 —2a7)* To — Tg
0 0 T3 — Tg T4 — T10 T5 — T11 0
0 0 —(x4 — 10)* (x3 — x9)* 0 T5 — T11
0 0 —(z5 — x11)* 0 (x3 —x9)* —(x4 — x10)
i 0 0 0 —(z5 — z11)* (x4 — 210)* (x3 — x9)
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The rate of the above design is % = % = 0.8571 > 3/4. This increased rate comes at

the cost of additional delay. While the rate 3/4 QOD for N = 6 has a delay of 8 symbol
durations, the rate 6/7 GCIOD has a delay of 14 symbol durations. In other words,
the rate 3/4 scheme is delay-efficient, while the rate 6/7 scheme is rate-efficient.

Deleting one of the columns we have a rate 6/7 design for 5 transmit antennas.

Similarly, taking ©; to be the Alamouti code and ©, to be the rate 7/11 design, given
in (2.11) in Construction 5.4.8, we have a GQOD for N = 7 whose rate is 7/9 and delay
is 36 symbol durations. For, N = 8 the maximum rate obtained using known GLCODs
is 3/4. Significantly, these designs are not QOD. Next, we present the construction
of rate 2/3 GQOD for all N > 6 in the next example.

Example 5.4.2. For a given N, Let ©1 be the Alamouti code. Then L = Ny = K1 = 2
and No = N — 2. Let Oy be the rate 1/2 GLCOD for N — 2 transmit antennas (either
using the construction of [13] or [19]). Then ro = 1/2. The corresponding rate of the
GQOD is given by

5.4.4 Coding gain

In this sub-section we consider the coding gain for the scheme presented in the previous
section, i.e. GQODs derived from GCIODs. Recollect from Subsection 5.4.2 that GQODs
achieve full-diversity iff the minimum (-distance (MZD) of A, B is non-zero. Here we
show that the coding gain defined in (1.12) is equal to a quantity, which we call, the
Generalized (MZD) as it is a generalization of MZD. The maximization of GMZD for
lattice constellations is then considered by rotating the constellation. The results for
MZD derived in [33, 34] are a special case of this maximization.

Towards obtaining an expression for the coding gain, we first introduce

Definition 5.4.2 (Minimum Generalized (-distance (MGZD)). The minimum gen-

eralized (-distance between two signal constellations A and B is

dminc(A,B) = min |(s1 — 81) + (s2 — §2)\N1/N\(31 —81) — (82 — §2)|N2/N
(s1,82)#(31,82)
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where Ny, Ny are two given integers such that Ny + Ny = V.
Remark 5.4.4. Observe that

1. when N; = Ny then the MGZD(Ny, Ny) reduces to the MZD defined in Definition
5.4.1,

2. MGZD(N;, N2) # MGZD(N,, Ny) in general.

3. MGZD(Ny, Ny) #£0 iff GZD# MGZD # 0

We have

Theorem 5.4.9. The coding gain of a full-rank GQOD from GCIODs or a QOD, S, with
the variables xg, -+ ,xx_1 taking values from a signal set A and the remaining from B,

is equal to the MGZD(A,B).

Proof. Consider the QODs or the GQODs from GCIODs. Since f)k,HKO <k<2K-1
is full-rank we have, that the entries of S™S are linear sum of |z & .y x|* with strictly
positive real coefficients. In addition the first N; columns of S™S are of the form |y +

Tr1x|* and the remaining are of the form |z — 2y x|?.
Now consider the codeword difference matrix B(S,S’) = S — S’ which is of full-rank

for two distinct codeword matrices S, S’, we have

B(S,8)"B(S,8') =

K—1
Dico | (@k — ) + (@rek — Ty i) Py 0 (5.44)
Vzp Vrpix
0 Sy Vg, — Vg k2,

where at least one xy, differs from 2}, k = 0,--- ;2K —1. Clearly, the terms ZkK:_Ol |V, +
Vi |* are both minimum iff z, 7y, x differ from 2}, 7}, +x for only one k. Therefore
assume, without loss of generality, that the codeword matrices S and S’ are such that they

differ by only one variable, say z¢, zx taking different values from the signal set A, ¥ A.
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Then, for this case, the determinant of the matrix is given by

1/N

Ay = det { B(S, ) B(S, 8"}/ = |Vag + Vax | ¥ ||V £ Vag|| ¥ = MGZD(A, ¢ A).

O

An important implication of the above result is,

Corollary 5.4.10. The coding gain of a full-rank STBC' from a QOD with the variables

taking values from a signal set, is equal to the MZD of that signal set.

Remark 5.4.5. Observe that as the MZD is independent of the constructional details of
GOD i.e Ny, Ny and is dependent only on the elements of the signal set, it becomes
very amenable to maximization techniques. In contrast, for GQOD the coding gain is a
function of Ny, N,.

It is important to note that the MGZD (N, N,) is non-zero iff the MZD is non-
zero and consequently, this is not at all a restrictive condition, since given any
signal set A one can always get another signal set by rotating it /.4 such that
the MZD is non-zero. In fact, there are infinitely many angles of rotations
that will satisfy the required condition and only finitely many which will not.
Moreover, appropriate rotation leads to more coding gain also.

From the above results it follows that signal constellations with MZD = 0 and hence
MGZD =0 like M — ary QAM, M — ary PSK will not achieve full-diversity. But the
situation gets salvaged by simply rotating the signal set to get this condition satisfied as
also indicated in [34].

Maximizing MZD for Lattice constellations

In this subsection we derive the optimal angle of rotation for QAM constellations so that
MZD and hence the coding gain of QOD is maximized. Although Theorem 5.4.11 was

presented in [34], our proof is easier.

Theorem 5.4.11. Consider a square QAM constellation A, with signal points from the
square lattice (2k —1—Q)d +j(2l — 1 — Q)d where k,1 € [1Q] and d is chosen so that the
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average energy of the QAM constellation is 1, and e¥® A i.e. A rotated by an angle 0 so

as to mazimize MZD. The MZD of A,el® A is mazimized at 0 = 7 and is gien by

Apin.c (A, é° A) = 4d°. (5.45)

Proof. First observe that
Apminc (A, & A) < 4d°.

Now s — 8} = p12d + jq12d, where py,q; are integers. Similarly s, — s = 2de? (py + jgo)
where po, ¢o are integers such that py, ¢q, p2, g2 cannot be zero at the same time. It follows

that at 6 = 7/4

(51— 4)% = (s2 — s5)%| = 4d® [(p1 + pacos(0) — gasin(8)) + (g1 + pasin(6) + ga cos(9))?]/?

[(p1 — p2cos(0) + g2 sin(#))? + (q1 — pasin(f) — ¢o cos(&))z] 12

1/2
= A& [0 — ¢} + 20200)* + (& — 93 + 20100)%] 7. (5.46)

Now p? — ¢2 + 2paqe and ¢3 — p3 + 2p1q; cannot be simultaneously zero. Suppose they

are zero then

PP — @+ 2page + @5 — P34+ 2p1qy =0

(p1+ @) + (p2 + @2)* = 2(qi + p3)

which is not possible for py, p2, q1, ¢ € Z. O

A similar result is obtained for triangular constellations in [33, 34].

Maximizing MGZD for Lattice constellations

In this subsection we consider the optimal angle of rotation for QAM constellations so
that MGZD and hence the coding gain of GQOD is maximized.
Proceeding as in the previous section we have, did for the case MZD we find that the

optimization is difficult and varies with Ny, Ns.
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5.4.5 MMI of GQOD

In this sub-section we analyze the maximum mutual information (MMI) that can be
attained by the GQOD schemes presented in this section. We show that except for the
Alamouti scheme all other GCOD have lower MMI than the corresponding GQOD. We
also show that the MMI of GQOD is equal to that of GCIOD presented in Chapter 3.
We first consider the N =2, M =1 QOD. Equation (1.6), for the QOD code given in

(5.15) with power normalization, can be written as

V= \/gHS +N (5.47)

ho h
H = 0 1
hi  hg

and s = [sg s1]7. If we define Cqo(N, M, p) as the maximum mutual information of the

where

GQOD for N transmit and M receive antennas at SNR p then proceeding as in [39] we

have

1
Co(2,1,p) = §E(log det(I + g'H*H))

1 o 111
- —Elog(12+3H*H),H:UHUH;U:—[ ]

2 2 V2|1 -1
1 1
= §E10g{1+g|h0+h1\2}+§Elog{1+g|h0—h1\2}

1 1
= §Elog{1 + g|ho+h1\2} + §Elog{1 + g|ho —hl\z}

1 ~ 1 ~ - -
= §E10g{1 +p|h0\2} + §E10g{1 +p|h1|2}, [ho hy ] = [ho hy |U
= C(1,1,p) =Cp(2,1,p) < C(2,1,p). (5.48)
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It is similarly seen for QOD code for N = 4 given by (5.1), that

1
Cp(4,1,p) = ZE(log det(Iy + gHTH))

ho
—_ h’{

ha
— h;

where 'H =

hy
ho
hs
hs

ho  hs
—hs hs
ho M
—hi hg

1
= SElog{(1+ E(ho + ol + [y + ha) 1+ E(lho — hal? + [hs — h*))}

2

1 ~ ~ 1 - -
= S Blog{1+ L(lhol* + 1)} + 5 Blog{1 + L(hal® + s*)}

2

I

-~ - I
where [ho hi ho hg] = [ho hi hy hs ] % [12 12 ]
2 T 12

= C(2.1,p) = Cp(2,1,p) < C(4,1, p). (5.49)

Therefore even for rate 1 and M = 1 QODs do not achieve full channel capacity. A

general expression for the MMI of GQODs of Construction 5.4.8 can be derived as follows:
Recollect that it consists of two GLCODs, él,ég of rate K/2Ly, K/2Ly as defined in
(5.41). The K /2 variables of 0., (xo +xK)2, -+, Tk/2—1+ Tk/2) and the K/2 variables of
O,, (w0 — XK )2, , Tk j2—1 — Ti/2) are i.i.d complex Gaussian when xj, are i.i.d. complex
Gaussian. Let C o, Cy0 be the MMI of ©4, ©4 respectively. Then the MMI of GQOD is

given by
Coo(N, M, p) = %{Llc’w + LyCoo} (5.50)
_ % {Llc‘o(Nl, M, QNT”)) + LyCo(Ny, M, QNT”))} (5.51)
_ % {C(MNl,l, 2MMpy L oy, 1, 2N]1VM”)}
— Cp(N, M, p) (5.52)

where Cp(N, M, p) is defined in (3.65). When L; = Ly i.e. ©; = O3 we have

Cq(N, M, p)

K _MN

— fC’(T,l,]Wp) (5.53)
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as we have already seen for N = 2,4. It is clear that the MMI of QODs is equal to that
of CIODs and hence all the arguments that hold for MMI of CIOD hold here also. That

18

1. The capacity loss is negligible for one receiver as is seen from Fig. 3.6,3.7; this is

because the increase in capacity is small from two to four transmitters in this case.

2. The capacity loss is substantial when the number of receivers is more than one,
because these schemes achieve capacity that could be attained with half the number

of transmit antennas, roughly less than half of the actual capacity at high SNR’s.
3. For N > 4, i.e non-rate 1 codes the loss is much more.

4. The MMI of square QOD is greater than MMI of square GLCOD except when
N = 2.

Results similar to that of GCIOD can be derived here also and hence have been omitted.

5.4.6 Comparison of GQODs and GCIODs

Here we compare GQODs and GCIODs in terms of rate, coding gain, MMI and what it

implies in terms of BER performance. Recollect that

1. When ever a GCIOD exists a GQOD of same rate and size exists. Therefore in

terms of rate there is parity.
2. Similarly the MMI of GCIOD and GQOD is equal for a given N.

3. In terms of coding gain, we have for lattice constellations the coding gain of CIOD
is % while the coding gain of QOD is 4d? for same transmit power and a given N.

Therefore QODs have an advantage of 10 * log; 0(v/5/2) = 0.4 dB over CIODs.

4. Next we compare the number of codeword matrices having minimum coding gain,
i.e. the multiplicity. Assume that the rate of the designs is K/L. For lattice
constellations the multiplicity of CIOD is K * 71, where 7 is the maximum number
signal points of the signal set at CPD from any given signal point. For QOD the
multiplicity is equal to K * 75 , where 75 is the maximum number signal points of
the signal set at MZD from any given signal point. For square Q*-QAM, 7y can be

calculated by solving | £nm+n%—m?| = 1,n,m € [0Q —1] and counting the number
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Figure 5.2: The BER performance of coherent QPSK rotated by an angle of 13.2825°
(Fig. 3.2 )for of the CIOD scheme for 4 transmit and 1 receive antenna compared with
QOD in Rayleigh fading for the same number of transmit and receive antennas.

of solutions and 7, can be calculated by solving (p? — 3 +2p2q2)*+ (g5 —p3+2p1q1)? =
1;p,q € [0Q —1]. For QPSK we have 71 = 3, 75 = 4. Hence the multiplicity of CIOD
is 3K and that QOD is 4K for QPSK.

5. Fig. 5.2 gives the simulation results QPSK for N = 4. Observe that the CIOD and

QOD have almost similar BER performance with CIOD being better by about 0.1
dB. this is explained by the fact that CIOD has lower multiplicity as compared to
QOD.
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6. In terms of complexity GCIOD is single-symbol decodable while GQOD is double-
symbol decodable. This implies that for a spectral efficiency of b bits/sec/Hz, the
CIOD requires K2° metric computations while GQOD requires K2% metric com-

putations where K is the number of indeterminates of the designs.

5.5 Existence of Square FGQRDs

A main result in this section is the proof for the fact that there exists square FGQRDs
with rate % for N =2%> 2 (A rate 1 FGQRD for N = 2 is given in example
5.2.2), whereas only rates up to g_aa is possible with square QODs with the
same number of antennas. The other results are: (i) rate-one square FGQRD of size
N exist, iff N = 2,4,8 and (ii) a construction of FGQRDs with maximum rate from
GCIODs. We then show by simulation results that although FGQRDs have higher rate
their performance is inferior to GQODs.

Let S = ZkK:_Ol Tpr Aok + TpgAaky1 be a FGQRD. Recollect that the weight matrices

satisfy (5.19), that is

ARA + ATLA, = 0, VI#E, (k+2K)4x (5.54)

Al Apiog + Al oAy = Dpgror, 0<k<2K —1 (5.55)

Ak - ckAk-i-QK 7é 07 k= 07 e 72K - 17 (556)

ATA, = Dy, Vk (5.57)

where Dy, k = 0,--- ,4K — 1 are diagonal matrices with non-negative entries such that

Doy, + Doy is full-rank VE and at least one of Dy, is not full-rank.
We first give a construction of square FGQRDs and then show that the constructed

codes are maximal rate for N =4, 8.

Theorem 5.5.1. A square FGQRD, S, of size N = 2%,b odd, in variables x;,i =

0,---,2K —1 of rate R = 2}“\72‘1, s given by

;G)(x()?”' 7'IK—1)+®($K7“' 7'r2K—1) 0

7 7

S = 6 s (5.58)
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where ©(xg,- -+ ,xx_1) is a mazimal rate square RFSDD of size N/2 (constructed in

Theorem (2.5.6)).

Proof. The proof is by direct verification. As the maximal rate of square RFSDD of size

N/2 is 22(3—_111)) (Theorem 2.5.2) the rate of S in (5.58) is 22(;1;1)1) = 4(;_1)1). Next we show

that S is a FGQRD. Consider

O1'0; + O}, + 07'0, + 616, 0
0 oro, + ole, — oMo, — 0}te,

SMS =

by construction, the sum of weight matrices of le,xﬁQ for any symbol x; is Iy and

(5.28)-(5.31) are satisfied as © is a RFSDD. Therefore S is a FGQRD. O

Next we show that rate 1, FGQRD exists for N = 2,4 or 8 only.
Theorem 5.5.2. A square FGQRD of size N, rate 1 exists iff N =2, RFSDD4 or 8.

Proof. Consider a square FGQRD S. Let
By, = Aok + Agir1 + Aopyox + Asgyox1, k=0, K =1
then

BB, =Dy = Do + Dojpy1, k=0, K —1 (5.59)

Bl'By +Bl'!B;=0, 0<k#1< K — 1. (5.60)

Observe that ﬁk is of full-rank for all k. Define C} = ka)k_l/ > Then the matrices Ch

satisfy

ClCy=1Iy, k=0,--- | K—1 (5.61)

CHCL+CPC =0, 0<k#I< K —1. (5.62)
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Define
C=ClCk=0,--- K —1, (5.63)
then C’o = Iy and
CH=—-Cy k=1,--- , K—1 (5.64)
CHC+CC =0, 1<k#I<K-—1. (5.65)
The normalized set of matrices {C’l, e ,C’K_l} constitute a Hurwitz family of order N

[24] and for N = 2%b, b odd and a,b > 0 the number of such matrices K — 1 is bounded
by [24]
K <2a+2.

For rate 1, N = K, this equality is satisfied iff N = 2,4, 8. O

Observe that other square FGQRDs can be constructed from (5.58) by applying some
of the following

permuting rows and/or columns of (2.92),

permuting the real symbols {xxr, 1o} ',

multiplying a symbol by -1 or =+j

conjugating a symbol in (2.92).

It follows that the design
O; O,

5.66
o, o (5.66)

is also a FGQRD as it is unitary equivalent to (5.58) where ©1, 0, are as defined in
(5.58). Also observe that the square FGQRDs of Theorem 5.5.1 can be thought of as
designs combining co-ordinate interleaving and GQODs.

An important question remains to be answered, before proceeding with further de-
velopment of the theory of FGQRDs, that is, although FGQRDs have higher rate as

compared to GQODs do we gain in terms of coding gain?
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To answer this question we first present the sufficient condition for FGQRDs to achieve
full-diversity and then compare the BER of rate 1 FGQRD for N = 8 with rate 3/4 QOD
for N = 8. It turns out that although FGQRDs have higher rate, QODs perform better
than FGQRDs. Hence the characterization of FGQRDs completes the theory of FDSDD

but are not practical.

Theorem 5.5.3. The FGQRDs of Theorem 5.5.1 achieve full-diversity iff the x; €
Acl® 2, g € " A, 0y # 01 and CPD(Ae?™ ), CPD(Aei") # 0.

Proof. Tt is sufficient to consider the difference matrix S—S that differ only in the variables
7o, 7. Observing that ©;, 0, are RFSDDs, we have CPD(Aei%), CPD(Aei%) # 0. The

other requirement is straight forward. O

5.5.1 Coordinate-Interleaved Design for Eight Tx Antennas

Let xg, x1, T2, x3, 24, T5, x¢ and x7; denote eight complex indeterminates, where z; = z;; +

Jzig. We define,

Ty = Tor + jrag, T1 = Tir +Jr3g, T2 = Tar + jTog
Ty = T3r +jr1g, Ta = Tar +jTeq Ts = Tsr + jTr0

T = Tgr —i—jx4Q Ty = X7p —i—jx5Q (5.67)

to be the new complex indeterminates, called interleaved indeterminates henceforth, ob-
tained by coordinate interleaving the in-phase and quadrature-phase components of the

original indeterminates. Then using (5.66) the FGQRD for eight transmit antennas is
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given by
[ i, @& 0 0 F @ 0 0]

@@ 0 0 —& & 0 0

0 O To I3 0 O Te X7

0O 0 —z&t x5 0 0 —zr z%

Ss (20, 71, Ta, T3, T4, Ts, T, T7) = o S T e (5.68)

T4 Ts 0 O To I1 0 0

@t @ 0 0 - @ 0 0

0 O Te T 0 O To T3

0 0 —ix a5 0 0 —if &

We will use only Sg for the matrix above, dropping the arguments. It is easily verified
that

(4 000 0b 00 O]
0a 00O0WbO0O0
00 c¢c0O0O0dOo
000 ¢ O0O0O0d
SISy = (5.69)
b 000 a 000
0b0O0O0a00O0
00doOoOO0O0 O
000doOOO0 ¢
where
a = ToTh+ T3 + Tadh 4+ BT = |To2 + |71 |* + |Ta]? + |75
b = Ty + T4y + 0175 + T53] = 2(TorZar + ToTag + T11Tsr + T11Ts1)
C = ToTh+ T3Th + TeTh + Trds = |To|* + |T3)* + |T6|* + |77
d = Tolg+ TeTy + T3Th + T7T5 = 2(TorTer + TagTeq + T31Trr + T31T7r). (5.70)

The STBC based on the design Sg transmits signal matrices obtained by replacing
the indeterminates z; by s; in Sy and allowing s;, © = 0,1,2,3 to take values from a
signal set A and the remaining four variables s;, i = 4,5,6,7 to take values from a
rotated version Aei? of A. This rotation is needed to achieve full-diversity as elaborated

in Theorem 5.5.3. It is important to note that when the variables s;, i« = 0,1,2,3,
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take values from A the transmission matrix have entries which are coordinate interleaved
versions of the variables and hence the actual signal points transmitted are not from A
but from an expanded version of A which we denote by A. Figure 5.3(a) shows A when
A = {1,-1,j,—j} which is shown in Figure 5.3(c). Notice that A has 8 signal points
whereas A has 4. Figure 5.3(b) shows A’ where A’ is the four point signal set obtained
by rotating A by 13.2825 degrees counter clockwise i.e., A’ = {e¥ —e¥? jel? —jel} where
0 = 13.2825 degrees as shown in Figure 5.3(d). Notice that now the expanded signal set
has 16 signal points (The choice of the value § = 13.2825 has no particular significance).

Another important aspect to notice in the signal transmission matrix (5.68) is that at

o1 1 1
1 :
X T X e N o +o
| | 00
10 R e o SRR
‘ ‘ 00 : L. :
‘ f § §
10 +o Fo
X + X B A + """"" i1 +
11 : :
@ (b)
01 L()l
\ 0 __
U \>13.2885
10, 00 LI
! ! 10 =TT
,‘/'//"N’/ \'\
T .\ 1
1 \1
(©) (d)

Figure 5.3: Expanded signal sets A for A = {1, —1,j, —j} and a rotated version of it.

any time only four antennas transmit signals. However, at any time the symbols that
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are transmitted by four antennas carry a component (in- or quadrature-) of all the eight
indeterminates s;, ¢ =0,1,...,7. Moreover the decoding is for the variables s;’s and not

for the interleaved versions of these as is clear from Proposition 5.2.1.

Simulation Results

Figure 5.4 shows simulation results for data rate of 1.5 bits/sec/Hz over a quasi-static
Rayleigh fading channel. The fading is assumed to be constant over a fade length of 120

symbol durations.

T T T

Orth. with 8—-QAM
—--—-  QOD, not full diversity
- - QOD, full diversity
- —— Quasi-CID

I I I I I I I
4 5 6 7 8 9 10 11
p (dB)

Figure 5.4: The BER performance of STBCs from OD, QODs and the Quasi-CIOD for
N = 8 at 1.5 bits/sec/Hz in quasi-static Rayleigh fading channel.

We compare our scheme for 8 transmitters with rate 3/4 QODs and rate 1/2 real OD
at same energy per bit (Ej,/Ny). For the proposed scheme we choose signals from 3-PSK
rotated by angles 15° for the first two variable and —15° for the last two. This results
in a rate of 1.58 bits/sec/Hz. For QODs we select symbols from 4-QAM and for OD
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from 8-QAM. Two curves for QODs are shown: one with the symbols rotated to achieve
full-diversity and other where the symbols are not rotated. Note that the scheme of this
correspondence out-performs QODs at low p (SNR), but is inferior at p > 5.5dB. This is
due to different coding gains of these schemes. The coding gain of the proposed scheme is
0.09 while that of quasi-orthogonal design (full-diversity) is 0.27 and that of orthogonal
designs is 0.24. It is well known that the rank and determinant criteria apply at high
SNR’s and at low SNR’s and/or when the number of antennas is large the performance
is determined by the trace criterion [65]. This explains the behavior of the curves shown

in the figure.

5.6 Discussion

In this chapter, we characterized all double-symbol decodable STBCs called DSDD.
Among DSDD we have characterized all STBCs that can achieve full-diversity called
FDSDD. The FDSDD is then classified into Generalized Quasi-orthogonal Designs (GQODs)
and FGQRDs.

The maximal rates of square GQODs is then derived and the existence of GQODs is
linked to that of GCIODs. In particular rate 1 GQODs exist for N = 2,4 only. Based
on this link a construction of GQODs is presented that results in high rate GQODs. The
coding gain of GQODs is also analyzed and a comparison of GQODs and GCIODs is
presented that brings out the difference between the two designs.

For sake of completeness square FGQRDs are also analyzed. It is shown that rate 1
FGQRDs exist for N = 2,4,8. The rate 1 FGQRD for N = 8 is then compared with
rate 3/4 QOD for N = 8 and it is shown that although FGQRDs have higher rate their
performance is inferior to that of GQODs and hence does not merit a detailed analysis.

Important directions for future research are
1. Maximal rates of non-square GQODs and

2. Maximization of the coding gain of GQODs when N; # Ns.



Chapter 6

Space-Time Block Codes from

Designs for Fast-Fading Channels

Space-Time block codes (STBC) obtained from OD (Orthogonal Designs), QOD (Quasi-
Orthogonal Designs) and their variations [13]-[34] are attractive due to their fast ML
decoding (single/ double-symbol decoding) when used over quasi-static fading channels.
However, these STBCs from Designs have not been studied well for use in fast-fading
channels. In this chapter, we study these codes for use in fast-fading channels by giving a
matrix representation of the multi-antenna fast-fading channels. We first characterize all
linear STBCs that allow single-symbol ML decoding when used in fast-fading channels.
Then, among these we identify those with full-diversity, i.e., those with diversity L when
the STBC is of size L x N, (L > N), where N is the number of transmit antennas and L
is the time interval. The maximum rate for such a full-diversity, single-symbol decodable
code is shown to be 2/L from which it follows that rate 1 is possible only for 2 Tx.
antennas. The co-ordinate interleaved orthogonal design (CIOD) for 2 Tx (introduced in
Chapter 2) is shown to be one such full-rate, full-diversity and single-symbol decodable
code. (It turns out that Alamouti code is not single-symbol decodable for fast-fading
channels.) This code performs well even when the channel is varying in the sense that
sometimes it is quasi-static and other times it is fast-fading. We then present simulation
results for this code in such a scenario. For sake of completeness, we also consider double-
symbol decodable STBCs for fast-fading channels.
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6.1 Introduction

A design criterion for designing codes for multiple transmit and receive antennas suitable
for fading channels was first proposed in [8] and the implementation of multi-antenna
systems in the context of transmit diversity was extensively investigated in [12] with
space-time trellis codes (STTC). However, most of the subsequent research was directed
toward STBCs over quasi-static fading channels due to their amenability for fast decoding;:
Following Alamouti [16], lot of work has gone into fast decoding of STBC over quasi-
static fading channels [13]-[35],[28]-[34]. These are based on Orthogonal Designs (OD)
and Quasi-Orthogonal Designs (QOD). In Chapters 2,3,5 a complete characterization
of single-symbol and double-symbol ML decodable, full-diversity linear STBC has been
presented. All these are applicable for quasi-static fading channels. The use of ODs,
QODs and their variations like CIODs for fast-fading channels have not been studied so
far to the best of our knowledge. In this chapter, we study linear STBCs for fast-fading

channels with emphasis on fast decoding (single/double-symbol decoding).

6.2 Channel Model

In this section we present the channel model for fast-fading channels. Let the number of
transmit antennas be N and the number of receive antennas be M. At each time slot
t, complex signal points, s, ¢ = 0,1,---, N — 1 are transmitted from the N transmit
antennas simultaneously. Let h;;; = aijtejaiﬁ denote the path gain from the transmit
antenna i to the receive antenna j at time ¢, where j = /—1. The received signal v;; at

the antenna j at time ¢, is given by

N-1

Ve = Z hz’jtsit + it (61)

=0

j=0,--- ,M—1;, t=0,---,L —1. Assuming that perfect channel state information
(CSI) is available at the receiver, the decision rule for ML decoding is to minimize the

metric )

~

>

1=

P

(6.2)

Vit — hz‘jtsz't
V °

Il
o
-
Il
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over all codewords. This results in exponential decoding complexity, because of the joint
decision on all the symbols s;; in the matrix S. If the throughput rate of such a scheme
is R in bits/sec/Hz, then 2%l metric calculations are required; one for each possible
transmission matrix S. Even for modest antenna configurations and rates this could be
very large resulting in search for codes that admit a simple decoding while providing

full-diversity gain.

6.2.1 Quasi-Static Fading Channels

For quasi-static fading channels h;;; = h;; and (6.1) can be written in matrix notation as,
V=SH+N (6.3)

where V € CE*M (C denotes the complex field) is the received signal matrix, S € CL*V is
the transmission matrix (codeword matrix), H € CV*™ denotes the channel matrix and
W € CL*M has entries that are Gaussian distributed with zero mean and unit variance
and also are temporally and spatially white. In V.S and W time runs vertically and space
runs horizontally. The channel matrix H and the transmitted codeword S are assumed

to have unit variance entries. The ML metric can then be written as
M(S) = tr (V—SH)"(V — SH)). (6.4)

Recollect that all linear STBCs (not necessarily of full-rank) that admit single-symbol
decoding for quasi-static fading channels have been characterized as follows in Chapter 2,
Theorem 2.3.1:

Theorem 6.2.1. For a linear STBC, S = ZkK:_Ol Agrxpr + Aogr12kg tn K complex vari-
ables, the ML metric, M(S) defined in (6.4) decomposes as M(S) = >, My(zy) + Mc
where Mc = —(K — 1)tr (V*V) and My(2) is a function of one variable xy, iff

AVA +ATTAL =0,0<k #1<2K — 1. (6.5)

We exploit this result for fast-fading channels in the sequel.



6.3 Extended Codeword Matrix and the Equivalent Matrix Channel 148

6.2.2 Fast-Fading Channels:

We recall that the design criteria for fast-fading channels are [12]:

e The Distance Criterion : In order to achieve the diversity »M in fast-fading channels,
for any two distinct codeword matrices S and S’ the strings soy, 514, -+, S(v—1)¢ and
Sots 81t -+, S(v—1¢ must differ at least for r values of 0 < ¢ < L — 1. (Essentially,
the distance criterion implies that if a codeword is viewed as a L length vector with
each row of the transmission matrix viewed as a single element of C", then the

diversity gain is equal to the Hamming distance of this L length codeword over C¥.

e The Product Criterion : Let V(S,S) be the indices of the non-zero rows of S — S
and let|s; — §;|* = Zi]i_ol |sit — 8it)%, where s; is the ¢-th row of S, 0 <t < L — 1.
Then the coding gain is

min s — 8¢|%

578 teV(s,8)

6.3 Extended Codeword Matrix and the Equivalent

Matrix Channel

The inability to write (6.1) in the matrix form as in (6.3) for fast-fading channels seems to
be the reason for scarce study of STBCs for use in fast-fading channels. In this section we
solve this problem by introducing proper matrix representations for the codeword matrix
and the channel. In what follows we assume that M = 1, for simplicity. For a fast-fading

channel (6.1) can be written as
V=SH+N (6.6)

where V € CE*! (C denotes the complex field) is the received signal vector, S € CL*NL
is the Extended codeword matrix (ExCM) (as opposed to codeword matrix S) given
by

So 0 0 O
0 S 0 0
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where Sp = | so; S1 -0 S(v_1) ], H € CNIXL denotes the equivalent channel

matrix (EChM) formed by stacking the channel vectors for different ¢ i.e.

H, Doy
H h
H = ‘1 where H; = 8 ,
Hp h(n=1)t

and W € CE*1 has entries that are Gaussian distributed with zero mean and unit variance
and also are temporally and spatially white. We denote the codeword matrices by boldface

letters and the ExCMs by normal letters. For example, the ExCM S for the Alamouti

To I1

code, S = [ ] , is given by

* *

0 0
s=|" " . (6.8)
0 0 —a] x;

Observe that for a linear space-time code, its ExCM S is also linear in the indetermi-
nates xp,k = 0,--- , K — 1 and can be written as S = ZkK:_Ol 2 Aok + TroAokt+1, wWhere
Ay are referred to as extended weight matrices to differentiate from weight matrices

corresponding to the codeword matrix S.

Diversity and Coding gain criteria for fast-fading channels

With the notions of ExCM and EChM developed above and the similarity between (6.3)
and (6.6) we observe that,

1. The distance criterion on the difference of two distinct codeword matrices is

equivalent to the rank criterion for the difference of two distinct ExCM.

2. The product criterion on the difference of two distinct codeword matrices is equiv-

alent to the determinant criterion for the difference of two distinct ExCM.

3. The trace criterion on the difference of two distinct codeword matrices derived for
quasi-static fading in [65] applies to fast-fading channels also-following the observa-
tion that tr (S™S) = tr (S™5).
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4. The ML metric (6.2) can again be represented as (6.4) with the code word S replaced
by the ExCM, S i.e.

M(S)=tr ((V—-SH)(V—SH)). (6.9)

This amenability to write the ML decoding metric in matrix form for fast-fading
channels (6.9) allows the results on single/double-symbol decodable designs of Chap-
ter 2/5 to be applied to fast-fading channels.

6.4 Single-symbol decodable codes

Substitution of the codeword matrix S by the ExCM, S in Theorem 6.2.1 leads to char-
acterization of single-symbol decodable STBCs for fast-fading channels. We have,

Theorem 6.4.1. For a linear STBC in K complex variables, whose ExCM is given by,
S = Zf:_ol T Aok + TrQAokt1, the ML metric, M(S) defined in (6.9) decomposes as
M(S) =3, My(zy) + Me where Me = —(K — 1)tr (VV), off

AMA + ATPA, =0,0< k#1<2K — 1. (6.10)

Theorem 6.4.1 characterizes all linear designs which admit single-symbol decoding over

fast-fading channels in terms of the extended weight matrices.

Example 6.4.1. The Alamouti code is not single-symbol decodable for fast-fading chan-
nels. The extended weight matrices are

1 0 00 j 00 O 01 0 O 0 j 00O
Ag = J A = A = Az = :
0 0 0 1 00 0 —j 0 0 -1 0 00 j o

It is easily checked that the pair Agy, As does not satisfy equation (6.10).
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6.5 Full-diversity, Single-symbol decodable codes

In this section we proceed to identify all full-diversity codes among single-symbol decod-
able codes. Recall that for single-symbol decodability in quasi-static fading the weight
matrices have to satisfy (6.5) while for fast-fading the extended weight matrices, have to
satisfy (6.10).

In contrast to quasi-static fading (6.10) is not easily satisfied for fast-fading due to the
structure of the equivalent weight matrices imposed by the structure of S given in (6.7).

The weight matrices Ay are block diagonal of the form (6.7)

A9 o
o4 0 o
A= . : (6.11)

o o o AFY

where A,(:) € C™N. In other words even for square codeword matrix the equivalent

transmission matrix is rectangular. For example consider the Alamouti code, Ay =

1 000 100 O , )
, Ay = ) etc., (6.10) is not satisfied as a result we have

0 0 01 00O
|zo|* xhzy 0 0
* 2 0 0
sng = | “ito [l (6.12)
0 0 |1 —zy2)
0 0 —afzg |xof?

and hence single-symbol decoding is not possible for the Alamouti code over fast-fading
channels.

The structure of equivalent weight matrices that satisfy (6.10) is given in Proposition
6.5.1.

Proposition 6.5.1. All the matrices A; that satisfy (6.10), with a specified non-zero
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matriz Ay, in (6.11) are of the form

aAd? 0 0 0

0 mAT 00 613
(L-1)

0 0 0 ap A}

where a; = 0, Vi.

Proof. The the matrix A can satisfy the condition of Theorem 6.4.1 iff A,(f)HAl(t) =
—Al(t)HA,(f), Vt. For a given t, A,(:)HAl(t) is skew-Hermitian and rank one, it follows that
A,(f)HAl(t) = UDU™ where U is unitary and D is diagonal with one imaginary entry only.
Therefore A,(f) = :l:chl(t) where ¢ is a real constant-in fact only the values ¢ = 0,1 are of

interest as other values can be normalized to 1, completing the proof. O

We give a necessary condition, derived from the rank criterion for ExCM, in terms of
the extended weight matrices Ay for the code to achieve diversity » < L. This necessary

condition results in ease of characterization.

Lemma 6.5.2. If a linear STBC in K variables, whose ExCM is given by, S = ZkK:_Ol Tkl
Aok + xgAokt1, achieves diversity r then the matrices Agy, Agki1 together have at least r

different non-zero rows for every k, 0 < k < K — 1.

Proof. This follows from the rank criterion of ExCM interpretation of the distance crite-
rion. If, for a given k, Agy, Ao 1 together have at less than r different non-zero rows then
the difference of ExCMs, S — S which differ in 2 only, has rank less than r. O

The conditions of Lemma 6.5.2 is only a necessary condition since either (z;; — Zxs)

or (zxg — Txr) may be zero for z; # 2. The sufficient condition is obtained by a slight

modification of Theorem 2.4.6 and is given by

Corollary 6.5.3. A linear STBC, S = ZkK:_Ol Tpr Aok +2pQ Aokt where xy take values
from a signal set A,Vk, satisfying the necessary condition of Lemma 6.5.2 achieves diver-

sity r > N iff
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1. either At Ay, is of rank r (v different non-zero rows) for all k

2. or the CPD of A# 0.

Using Lemma 6.5.2 with » = L, we have

Theorem 6.5.4. For fast-fading channel, the maximum rates possible for a full-diversity

single-symbol decodable STBC using N transmil antennas is 2/ L.

Proof. We have two cases corresponding to the two cases of Corollary 6.5.3 and we consider
them separately.

Case 1: Ay has L non-zero rows Yk. The number of matrices that satisfy Proposition
6.5.1 are 2, and the maximal rate is R = 1/L. The corresponding STBC is given by its
equivalent transmission matrix S = xqAg, where Ay is of the form given in (6.11).

Case 2: Ay, has less than L non-zero rows for some k. As Lemma 1 requires Asgy, Aogy1 to
have L non-zero rows, we can assume that Ao, has r; non-zero rows and A, has non-
overlapping L — r; non-zero rows. The number of such matrices that satisfy Proposition
6.5.1 are 4, and hence the maximal rate is R = 2/L. O

From Theorem 6.5.4 it follows that the maximal rate full-diversity single-symbol de-

codable code is given by its ExCM
S == JIOIAO + ZL’OQAl + JIHAQ + l’lQAg, (614)

where Aoy, Aory1, k= 0,1 are of the form

A O
0 0

jA 0
0 0

0 0
0 B

0 0

6.15
0 jB (6.15)

Y Y

where A, B are of the form given in (6.11) with L = r; and L = L—r respectively. Observe
that other STBC’s can be obtained from the above, by change of variables, multiplication

by unitary matrices etc. Of interest is the code for L = 2 due to its full-rate. Setting
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A =110],B=[01] we have the ExCM,

+J 0 0 0
I R . (6.16)
0 0 0 =z 17+ JZoq
and the corresponding codeword matrix is
+J 0
S B R (6.17)
0 i + JZoq

Observe that this is the CIOD of size 2 presented in Chapter 2,3. Also observe that other
full-rate STBC’s that achieve full-diversity can be achieved from S by performing linear
operations (not necessarily unitary) on S and/or permutation of the real symbols(for each
complex symbol there are two real symbols). Consequently the most general full-diversity

single-symbol decodable code for N = 2 is given by the codeword matrix

Tor +jrig  b(zor + jrig)
c(xir +Jjzoq) w11 +jvoq

S = b,ceC. (6.18)

An immediate consequence is

Theorem 6.5.5. A rate 1 full-diversity single-symbol decodable design for fast-fading
channel exists iff L= N = 2.

Following the results of Chapter 2,

Theorem 6.5.6. The CIOD of size 2 is the only STBC that achieves full-diversity over
both quasi-static and fast-fading channels and provides single-symbol decoding.

Other STBC that achieves full-diversity over both quasi-static fading channels and
provides single-symbol decoding are unitarily equivalent to the CIOD.

Remark 6.5.1. Contrast the rates of single-symbol decodable codes for quasi-static and
fast-fading channels. From Theorem 6.5.4 we have the maximal rate is 2/ L for fast-fading

channels, while that of square matrix OD [15] is given by %

and that of square
FSDD is given by % respectively. The maximal rate is independent of the number

of transmit antennas for fast-fading channels.
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- -~ Aamouti p=0.25 - - - Alamouti p=0.25£ :f:
== Alamoutip=0.5 | : |-—- Alamoutip=05 |
| Alamouti p=0.75| | ; ; S Alamouti p=0.75|

cD : : g : ' cD

Figure 6.1: BER curves for Alamouti and CIOD schemes for a) QPSK and b) BPSK over
varying fading channels where the probability that the channel is quasi-static is p and
single-symbol decoding.

6.6 Robustness of CIOD to channel variations

In this section we intend to bring out the contrast in BER performance of CIOD for
N = 2 and the Alamouti scheme when the channel is quasi-static with probability p and
fast-fading with probability 1 — p.

The CIOD for N = 2 is suitable for both quasi-static fading and fast-fading channels,
in the sense it gives full-diversity and amenable for single-symbol decoding in both the
cases, whereas Alamouti code is not. This makes the CIOD suitable for varying-fading
scenario, i.e., the channel sometimes quasi-static and other times fast-fading. Here we
provide simulation results for the case when the channel is either fast-fading or quasi-
static with different probabilities to show that the CIOD is robust to channel variations.
The corresponding curves for Alamouti are also presented for comparison. The quasi-
static symbol duration is assumed to be 12 symbols. The probability that the channel
is quasi-static is denoted by p and perfect CSI is assumed to be available at the receiver
when the channel is quasi-static and fast-fading. At the decoder, single-symbol decoding

is performed for both Alamouti and the CIOD schemes-observe that this results in loss
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of diversity in the case of Alamouti scheme. It is observed from Fig. 1 that the BER of
CIOD is invariant for all p while the BER curves for Alamouti scheme shows considerable

loss of performance.

6.7 Double-symbol decodable codes

In this section we characterize all double-symbol decodable STBCs for fast-fading chan-
nels. Basically, we will tend to repeat all that was done for single-symbol decodable
STBCs in the previous two sections for double-symbol decodable STBCs in this and the
following section.

Substitution of the codeword matrix S by the ExCM, S in Theorem 5.2.1 leads to
characterization of double-symbol decodable STBCs for fast-fading channels. We have,

Theorem 6.7.1. For a linear STBC in 2K wvariables, whose ExCM 1is given by S =
ii(o_l T Aok + TR Askt1, the ML metric, M(S) defined in (6.9) decomposes as M(S) =
7 My (g, Ty i) + Mo where Mo = —(K — 1)tr (VHV), iff

ARA 4+ ATTA, =0 VI # k, (k+2K) 4k (6.19)

where (k+ 2K ),k = (k4 2K) mod 4K.

Theorem 6.7.1 characterizes all linear designs which admit double-symbol decoding
over fast-fading channels in terms of the extended weight matrices.

Examples of double-symbol decodable codes are
Example 6.7.1. The Alamouti code whose FxCM is given in example 6.4.1.

Example 6.7.2. Another code that is not double-symbol decodable for fast-fading channels
is the CIOD for jJ Tx. antennas, given by its codeword matrixz (2.54). Unlike the quasi-
static fading channel, the block Alamouti structure does mot help and does not lead to

any decoding simplicity. This can be seen by writing the extended weight matrices, few of
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which are given below for clarity.

100000O0OO0O0OOO0OO0OOO®O0OQO

A, — 0000O0O01O0O0OO0OO0OO0OO0OO0OO0OO®O |
0000O0O0OO0OO0OOOO0OOOO0O®O0O0
0000O0O0OO0OO0OOOO0OO0OO0OO0O®O0O0

_0 100 O 00000000000_

A, — 0000-10000O0O0OO0O0O0O0®O0QO0 |
0000 0O O0O0OO0OOOOOOOTO0OOQO0
0000 0O O0O0OO0OO0OOOO0OOO0OO0OOQO0

_j 0000 O 0000000000_

A — 00000 -J00O0O0O0OO0OO0DO0OO0OO |
00000 O0OO0OO0OO0OO0OO0OOO0OO0O®O0OO
00000 O0O O0OO0OOOOOO0OO0O®O0OO0
_OjOOOOOOOOOOOOOO_

A — 0000j300O0O0O0OO0OO0OO0O0O®O0O
0000O0OO0OO0OO0OOOOO0OOO0OO0O
0000O0OO0OO0OO0OO0OO0OO0OO0OOO0OO0O

It is easily verified that any pair of the above do not satisfy (6.19).

6.8 Full-diversity, Double-symbol decodable codes

In this section we proceed to identify all full-diversity codes among single-symbol decod-
able codes. Recall that for double-symbol decodability for fast-fading the extended weight
matrices, have to satisfy (6.19).

Again in contrast to quasi-static fading (6.19) is not easily satisfied for fast-fading due
to the structure of the block diagonal structure of equivalent weight matrices imposed by

the structure of S given in (6.7).
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The structure of equivalent weight matrices that satisfy (6.10) is given in Proposition
6.5.1.

Also observe that the necessary and sufficient condition for diversity » > N for single-
symbol decodable codes given in Lemma 6.5.2 and Corollary 6.5.3 are necessary conditions
for full-diversity but not sufficient. This claim is proved by setting all those variables in
S to zero due to which S becomes single-symbol decodable. There are two possible
realizations for this and in each realization the number of such variables can be at-most
half of the total number of variables of S. It is immediate then that both Lemma 6.5.2 and
Corollary 6.5.3 are necessary. Also observe that these conditions are not sufficient observe
that any two variables whose extended weight matrices do not satisfy the orthogonality
condition, it is still possible that the resultant be zero.

Using Theorem 6.5.4 with we therefore have that

Theorem 6.8.1. For fast-fading channel, the maximum rates possible for a full-diversity

single-symbol decodable STBC using N transmit antennas is 4/ L.

Proof. The proof is straight forward as we can only have twice the number of matrices as

for single-symbol decodable codes; given in Theorem 6.5.4. O

Towards characterizing such codes we consider the two cases of Corollary 6.5.3 sepa-
rately.
Case 1: Ay has L non-zero rows Yk. The number of matrices that satisfy Proposition
6.5.1 are 2, and the maximal rate is R = 2/L. A possible realization of such STBCs is
given by its equivalent transmission matrix S = xqAg + x1 A1, where Aq is of the form
given in (6.11) and A; = ApU where U is a unitary matrix. Observe that we have not
presented the sufficient condition for such codes to achieve diversity N. Towards this end
we present a construction of maximal rate double-symbol decodable codes whose coding
gain is equal to that of (-distance defined in Definition 5.4.1 for QODs.

Construction 6.8.2. Let L = N for N even and L = N +1 N odd. Let the i-th row of
identity matriz of size L be denoted as I%). Let Ay, Ay be as defined in (6.11) such that
A(()i) =19 and AZ@ = (=1)"D. Then S = xgAg+ 1A, defines a double-symbol decodable
STBC for fast-fading channels.
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Observe that for the STBC of construction 6.8.2 det{S"S} = (22 — 23)%/2. Tt is
therefore it is clear that the performance of the constructed STBC is decided by the
minimum-( distance. Hence these codes can be thought of as an analogous of GQODs.
Case 2: Ay has less than L non-zero rows for some k. As Lemma 6.5.2 requires Ao, Aogi1
to have L non-zero rows, we can assume that Ay, has | non-zero rows and A1 has non-
overlapping L — r; non-zero rows. The number of such matrices that satisfy Proposition
6.5.1 are 4, and hence the maximal rate is R = 4/L. But in analogy to the Case 1) codes
we can observe that although these codes higher rate but lower performance due to lower

coding gain.

6.9 Discussion

In this chapter, we considered the use of designs for use in fast-fading channels by giving
a matrix representation of the multi-antenna fast-fading channels. We first characterized
all linear STBCs that allow single-symbol ML decoding when used in fast-fading channels.
Then, among these we identify those with full-diversity, i.e., those with diversity L when
the STBC is of size L x N, (L > N), where N is the number of transmit antennas and L
is the time interval. The maximum rate for such a full-diversity, single-symbol decodable
code is shown to be 2/L from which it follows that rate 1 is possible only for 2 Tx.
antennas. The co-ordinate interleaved orthogonal design (CIOD) for 2 Tx (introduced in
Chapter 2) is shown to be one such full-rate, full-diversity and single-symbol decodable
code. (It turns out that Alamouti code is not single-symbol decodable for fast-fading
channels.) This code performs well even when the channel is varying in the sense that
sometimes it is quasi-static and other times it is fast-fading. We then present simulation
results for this code in such a scenario. For sake of completeness, we also consider double-
symbol decodable STBCs for fast-fading channels.



Chapter 7

Conclusions and Perspectives

In this thesis we have characterized all single and double symbol decodable space-time
block codes (STBCs), both for quasi-static and fast-fading channels. Further, among the
classes of single and double symbol decodable designs, we have characterized those that
can achieve full-diversity.

As a result of this characterization of single-symbol decodable codes for quasi-static
fading channels, we observe that when there is no restriction on the the signal set then
STBCs from orthogonal design (OD) are the only STBCs that are single-symbol decodable
and achieve full-diversity. But when there is a restriction on the signal set, that the co-
ordinate product distance is non-zero (CPD # 0), then there exists a separate class of
codes, which we call Full-rank generalized restricted designs (RFSDD), that allows single-
symbol decoding and can achieve full-diversity. This restriction on the signal set allows
for increase in rate (symbols/channel use), coding gain and maximum mutual information
over STBCs from ODs except for two transmit antennas. Significantly, rate 1, STBCs
from RFSDDs are shown to exist for 2,3,4 transmit antennas while rate 1 STBCs from
while rate 1 STBCs from ODs exist only for 2 transmit antennas. The maximal rates of
square RFSDDs were derived and a sub-class of RFSDDs called generalized co-ordinate
interleaved orthogonal designs (GCIOD) were presented and their performance analyzed.

A similar characterization of double-symbol decoding STBCs was carried out of which
the Quasi-orthogonal designs are a proper sub-class. Significantly, maximal rates of square
QODs were derived and various high rate (>1/2) double-symbol decodable codes were

presented.
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An important contribution of this thesis is the novel application of designs to fast-
fading channels, as a result of which we find that the CIOD for two transmit antennas is
the only design that allows single-symbol decoding over both fast-fading and quasi-static
channel.

Other contributions are the unified perspective for quasi-static and fast-fading channels
(Chapter 6) and also the development of differential schemes for Full-rank single-symbol
decodable designs that are themselves single-symbol decodable.

It is also worth mentioning that most of the gains obtained in this thesis can be thought
of as being obtained by applying co-ordinate interleaving across the space-dimension and
not time only as is clear seen from the intuition given in Chapter 3. The starting point
of this intuition was the application of co-ordinate interleaving to bit and co-ordinate
interleaved coded modulation [55].

Although we have rigorously pursued square STBCs, much is left to be desired in
non-square STBCs. Although non-square STBCs are shown to be useless for fast-fading
channels there Su and Xia [22] have shown for STBCs from ODs that higher rates can be
obtained. A complete characterization of such codes in terms of achievable rates and their

constructions is an open problem for all single and double symbol decodable designs.



Appendix A

A construction of non-square

RFSDDs

In this appendix, we present a method of obtaining non-square RFSDDs from square
CIODs whose coding gain is greater than CPD. We also present a construction derived
from construction 3.1.3 whose coding gain is still given by GCPD but the difference
between Np, N, is small. These codes do not belong to the class of GCIODs.

A.1 Non-square RFSDDs from CIODs

Recall from Chapter 3 that we can obtain non-square GCIODs from CIODs by dropping
columns. But the coding gain of such GCIODs is a power of GCPD, whose value is not
known for any class of signal sets. Here we present a construction that gives non-square
RFSDDs whose coding gain is greater than CPD and has higher MMI than GCIOD codes.

Construction A.1.1. Let

O(Zo, -+ s Tr/2-1) Oz~

S(l’o,"' er—l) == (A].)

Oz~ O(Txya, - Tr-1)
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be a 2L x 2N CIOD where 0 is the L x N zero matriz, then

. O (%o, -+, Tx/2-1) OL,N—n
S(x0,~-~ ,xK_l) = (A2)

Or,N—n O(Txya, - Tr-1)

is a 2L x 2N — n non-square RESDD for 2N —n antennas, n < N.

Now we present some examples of the above construction.

Example A.1.1. Let © be the Alamouti scheme, then we have

Tor +iTag  Tir +jT3g 0
—Zir +JT3Q  Tor — jT20 0
S(x0,---,23) = (A.3)
0 Tor +JTog w31 +jT10
0 —Z3r +jT1g  Tar — jTog

then S is a rate 1, RFSDD for three transmit antennas, as

x%l%—xﬂ—i—x%Q%—x%Q 0 0
SMS = 0 S8 0 : (A.4)
0 0 T3o + Tig + x5 + 23,

Observe that this code is quite different from that of CIODs in that both the in-phase and

quadrature component of the variables see the second transmit antenna. Towards finding
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the coding gain, let S, S be two codeword matrices that differ in only xo. Then

A = det ((S — $)M(S — §)>1/3 = [(xor — Zor)*(zog — #0q)*(|mo — &0|*)]"* (A.5)
= CPD*3|Vg|¥? (A.6)
using |zo — Zo|*> > 2|zor — Zor||Tog — Fog|, we have
> 2'3[(zor — Zor)(2oq — Z0g)] (A7)
> 2'3CPD (A.8)

As another example consider the construction for N = 5. Using the rate 3/4 design

(2.10), we have rate 3/4 non-square RFSDD for 5 transmit antennas which is given by

g_ Ou(xor + jr3q, T1r + jTag, Tar + j250) 04,1 7
041 O4(xsr + jrog, Tar + jT10, Tsr + jT20)
(A.9)
such that

Zi:o(wiz + $%+3Q) 0 0 0 0
0 Yhoolaxl 0 0 0
SMS = 0 S0 o lznl? 0 0
0 0 0 > heo |7k [? 0

I 0 0 0 0 Zi:o(sz +2757) |

The improvement in coding gain is apparent for these cases. Next we show that the

coding gain is greater than CPD for the general case.

Theorem A.1.2. The coding gain of non-square RFSDDs of construction A.1.1 with the

variables taking values from a signal set, is greater than CPD of the signal set.
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Proof. Consider S defined in (A.2), then

I (2le ™ |l 0 0
578 = 0 LS5 lef?) 0 (A.10)
0 0 In-n(Xkrs [T4l*)

where #; = Re{x;} + jIm{z(4k/2), } and where (a)x denotes a (mod K). Observe that

the total number of transmit antennas is 2N — n.
Now consider the codeword difference matrix B(S,S’) = S — S’ which is of full-rank

for two distinct codeword matrices S, S’, we have

In—n (S50 N = 4 2) 0 0
B(S,8")B(S,8") = 0 L(SK ok —212) 0
0 0 In-n(Sir /2 |76 = T4%)
(A.11)
where at least one xj, differs from ), k = 0,--- , K — 1. Clearly, all the three terms in

the determinant of the above matrix are minimum iff x; differs from x} for only one k.
Therefore assume, without loss of generality, that the codeword matrices S and S’ are
such that they differ by only one variable, say x( taking different values from the signal

set A.

Then, the coding gain is given by

1 (N—-n) (N—-n) n
A = min det {B™(S,S)B(S,8)} 7 = |xos — or| 7 |20 — 2ag| N n |Viag| W

oA

> Qﬁ Hlln/ ‘330] - xloijOQ - .CL’IOQ|
TOF£T|

= 2= CPD (A.12)
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where we have used |zg — &[> > 2|zor — Zos||Z0g — Zog|- The additional factor 228 is
due to the additional power transmitted on n antennas as compared to GCIOD and on

normalizing the transmission matrices, vanishes. O

Another important property of these non-square RFSDDs is that they have higher
MMI as compared to the corresponding GCIOD.
Towards this end observe that the RFSDDs of construction A.1.1 consists of two ODs

of size N that are separated in time. Proceeding as in Section 3.5 we have
K
Cr(2N —n, M, p) = EC(NM,l,Mp) (A.13)

where CF is the MMI of RFSDD and the number of transmit antennas is 2N — n and
the number of receive antennas is M. Comparing with C'p in (3.68) it is easily seen that

these codes have higher MMI as compared to the corresponding GCIODs.

A.2 Non-square RFSDDs from GCIODs

Here we present a construction of non-square RFSDDs from GCIODs whose coding gain
depends on GCPDy, n,(z,y) but the difference between z,y is smaller as compared to
the corresponding GCIOD.

Construction A.2.1. Let

O1(Zg, - - - TR /2-1) 0z, N,
S(flfo,"' ,l’K_l) = (A14)

N

Or,,Ny Oo(Try2, -+ s Tr—1)

be a (L1 + L) x (N1 + N2) GCIOD constructed in construction 3.1.3 where O,y is the
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L x N zero matriz, then

. O1(Zo, -, Ex/2-1) OL,No-N,
S(ao, - ia) = | 1) Qe (A.15)

O Tk, Tr—1)
is a Ly + Ly X Ny non-square RFSDD for Ny antennas, Ny > Nj.

We illustrate the working of Construction A.2.1 by constructing another rate 2/3
GCIOD in the next example which has better coding gain than the GCIOD of example
3.14.

Example A.2.1. For a given N, Let ©1 be the Alamouti code. Then Ny =2 and Ny = N.
Let ©4 be the rate 1/2 GLCODN transmit antennas (either using the construction of [13]

or [19]). Thenry =1/2. Then ©1, 0, are constructed as in construction 3.1.3. Using the

construction A.2.1, the rate of the RFSDD constructed is given by

That the coding gain of the constructed RFSDD is greater than the coding gain of the

GCIOD can be seen by the fact that first two entries of S™S are o lzel?

A.2.1 Comparison of coding gains of ACIOD and OD

We first define a normalized the ACIOD, S, such that,

o ~ ) 0 In_p, 0 0

" Lo, ", & _ _n

S(I'O, T 7$K—1) =a 0 Kj2-1 ~ LN ~ 0 %In 0 y
OL,N—n O(Try2, "+, Tr-1)
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where a is a constant for normalization. S € C2*2N=7 has the property that E [{] S7S} =
%[2 ~N_n, Where the K variables of S take values from a unit average energy constellation.
Now the total average transmit power constraint is given by E {tr <§HS ) } = 2L. There-
fore normalizing the ACIOD, to satisfy the the total average transmit power constraint,
we have a = \/K(;]\%_n) = \/3(213/—71)7 where R is the symbol rate of ACIOD (recall that
2N —n is the number of transmit antennas and 2L is the code length). For a bit rate of r
bits/sec/Hz, the variables of ACIOD choose symbols from a 27/%-QAM signal set, rotated

to maximize the CPD. Following, Theorem A.1.2 the coding gain after normalization for

a spectral efficiency of r bits/sec/Hz is given by,

2 d2 (2T‘/R)
R(2N —n) /5

ACIOD = (Al?)

where d?(M) is the minimum Euclidean distance of M-QAM of unit average energy. Note

that for square QAM ;

M-1

d*(M) =

For a OD, © in variables g, - ,2x_1 of size N we have E[{] 070} = KIy. Proceeding
as for ACIOD, the coding gain of OD after normalization for a spectral efficiency of r
bits/sec/Hz is given by,

_ L 2 (or/R
Nop = pxd (2771 (A.18)

where N is the number of transmit antennas and R is the rate of the OD.
Example A.2.2. Consider for example three transmit antennas. For CIOD N = 2,n =

1,R =1, using (A.17), the coding gain using rotated QAM for a spectral efficiency of r

bits/sec/Hz is
2R

(A.19)

For OD N =3, R =3/4, using (A.18), the coding gain using QAM for a spectral efficiency
of r bits/sec/Hz is

Aop = ng (247/3) . (A.20)
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Table A.1: Comparison of coding gains of ACIOD and OD for N =3

spectral efficiency Aciop Aop
(bits/sec/Hz)
6 0.028/ 0.0105
12 4.86x107* | 4.06x107°
18 6.28x1075 | 1.59x1077

Table A.1 gives comparison of coding gains for spectral efficiency of 6i bits/sec/Hz such

that both OD and CIOD use square QQAM.
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