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Abstract

Discrete Fourier transform (DFT) is the most widely used tool in any field of electrical
engineering. In the name of Mattson-Solomon polynomials, the DF'T was used in the
context of linear cyclic codes in the early history of coding theory. From then on, it has
become a very useful tool for investigating structural properties of many different families

of codes over different alphabets.

Codes with rich algebraic structure are of strong interest to coding theorists due to the
ease of design and decoding. Classical families of linear cyclic codes like BCH codes and
Reed-Muller codes were the center of attraction for a long time. Though rich algebraic
structures like linearity and cyclicity make design and decoding easier, they restrict the
freedom of choice of long good codes. No asymptotically good family of cyclic code
is found and it is known that BCH codes are not asymptotically good. So, successful
attempts have been made to slacken the restrictions of linearity and cyclicity to look for
good codes. However, to keep the problem of designing and decoding tractable, neither

of the structural restrictions is completely given away.

Compromising linearity gives codes which are linear over some subfield F; of the
alphabet field Fim but not necessarily linear over Fym. Different good classes of Fj-
linear cyclic codes (F,LC) over Fym like twisted BCH codes and subspace subcodes of
Reed-Solomon (SSRS) codes are found by different authors [1, 2]. A part of this thesis
characterizes the Fj-linear cyclic codes over Fym in DF'T domain when length is relatively
prime to g. With respect to any given Fi-basis of Fim, every n-length Fi-linear cyclic codes
over Fym can be considered as a linear m-quasi-cyclic code of length mn over F,. A way
is given to derive a lower bound on the minimum Hamming distance of the corresponding

quasi-cyclic code using the DF'T domain characterization of an F,LC code.

Slackening the cyclicity gives the quasi-cyclic codes. For a length n code, it is called
an [-quasi-cyclic code (where [ divides n) if it is closed under the [-times cyclic shifts.
So, cyclic codes are nothing but 1-quasi-cyclic codes. Refining the works of Chen, Peter-
son and Weldon [3], Kasami [4] proved that 2-quasi-cyclic codes asymptotically meet a
slightly loose version of Gilbert-Varshamov bound. Many quasi-cyclic codes were found,
which are best known codes of their lengths. The structural properties and enumeration
of quasi-cyclic codes were discussed using different approaches in [5-7]. The algebraic

structure of the [-quasi-cyclic codes of length n is investigated in this thesis with the help
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of conventional DFT of length n. A way is given to derive a lower bound on the minimum
Hamming distance of a quasi-cyclic code Using the DF'T domain characterization of the
code. Since DFT is defined only when the length n is relatively prime to the character-
istic of the field, the scope of this treatment is restricted to the same case. Under the
action of the co-ordinate permutation ‘/-times cyclic shift’, there are [ equal length cycles
of the co-ordinate positions. A parallel work by Ling and Solé [8] effectively takes the

DFT cycle-wise and investigates the structure of quasi-cyclic codes. Their approach is

n
T

the approach presented here.

restricted to the case: (Z,q) = 1, a weaker restriction than that ((n,q) = 1) needed in

The classes of codes like cyclic codes, abelian codes, quasi-cyclic codes [9] and abelian
codes are defined by certain restrictions on their permutation groups. Cyclic codes of
length n are those codes, whose permutation groups contain a transitive cyclic subgroup.
Similarly, [-quasi-cyclic codes of length n are those, which are closed under a fixed point
free (for | # n) permutation with equal cycle lengths or equivalently which are closed
under the action of a permutation group generated by such a permutation. All these
classes of codes are defined to be with their permutation group containing a certain type
of abelian subgroup. So, it could be interesting to find a general common way of treating
these codes. Precisely that is done in a part of this thesis. Given any abelian subgroup G
of the permutation group of the co-ordinates such that the exponent is relatively prime
to q, G-invariant codes are investigated with the help of a suitably defined DFT. Du-
als of G-invariant codes and self-dual G-invariant codes are characterized in transform
domain. A general formula of enumeration of self-dual G-invariant codes is found using
this characterization. A way to derive a lower bound on the minimum Hamming distance
of a G-invariant code is outlined. Karlin’s decoding algorithm for a systematic quasi-
cyclic code with single row of circulants in the generator matrix is extended to the case
of systematic quasi-abelian codes. In particular, this can be used to decode systematic
quasi-cyclic codes with columns of parity circulants in the generator matrix. Note that
the part of the work mentioned in the last paragraph does not follow as corollary to this
part, since a conventional DF'T of length n is used in the previous case. Here, the DF'T is
defined so as to ‘fit’ the group G and it’s restriction to the case of quasi-cyclic codes will
result in a DFT as used by Ling and Solé [8]. As a result, the enumeration formula for
self-dual G-invariant codes gives all their existence and enumeration results on self-dual

quasi-cyclic codes as corollaries.
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For the next part of the works of this thesis, the field structure of the alphabet is
compromised and more general structures namely Galois rings are taken as alphabet.
Though coding theorists have for a long time had theoretical interest on codes over integer
residue rings [10, 11], codes over integer residue rings and more generally over Galois rings
have received serious attention [12-18] after it was shown [19] that some important families
of nonlinear binary codes can be obtained by Gray map from linear codes over Z,4. A part
of this thesis generalizes the transform domain study of G-invariant codes (G is as in the

previous paragraph).

The automorphism/permutation groups of codes over finite fields are known to be
useful for decoding (see [20-26] for examples) Recently, Blackford and Ray-Chaudhury
[27] used transform domain techniques to permutation groups of cyclic codes over Galois
rings. Here, their technique is extended to permutation groups of abelian codes over

Galois rings.

A code is called affine invariant if it is invariant under the affine permutations. Often it
is comparatively easier to determine the full permutation groups of affine invariant codes
[28-32]. The conditions for extended cyclic codes over finite fields and integer residue
rings to be affine-invariant were derived by respectively Kasami, Lin and Peterson [33]
Abdukhalikov [34]. Blackford and Ray-Chaudhuri [27] used transform domain approach to
characterize affine invariant extended cyclic codes of length 2™ over subrings of GR(4,m)
and using this characterization, they found new classes of affine invariant codes over Galois
rings from BCH codes. Their approach is extended to extended cyclic codes of length 2™
over any subring of GR(2¢,m) for m > e — 1 and also to extended cyclic codes of length
p™ over GR(p?,m) (where m > 1) for arbitrary prime p. New classes of affine invariant

codes are found using these results.
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Chapter 1

Introduction

1.1 Cyclic Codes in Transform Domain

Discrete Fourier transform (DFT) is the most widely used tool in any field of electrical
engineering. In the name of Mattson-Solomon polynomials, the DFT was used in the
context of linear cyclic codes in the early history of coding theory. From then on, it has
become a very useful tool for investigating structural properties of many different families
of codes over different alphabets. Some classical works in this context is due to Mattson
and Solomon [35] and Blahut [36]. A lot more work has been done and [37-41] are but to

mention a very few.

In this section, the most widely studied family of codes, namely cyclic codes, is dis-
cussed with discrete Fourier transform as a groundwork for the next chapters. A detailed
treatment on cyclic codes is available in any standard book on coding theory (e.g. [20, 42—

46)).

A cyclic code C of length n over Fj is such that cyclic shift of any codeword is also a
codeword. That is, if a = (ap, a1, -+, a, 1) € FJ, then (a1, az,+,a, 1,00) € FJ'. The

vector (ag, a1, *,a,-1) € Fy is also represented by the polynomial
CL(X) = qg + a X + a2X2 4o+ an_anfl'

In polynomial form, the cyclic shift is equivalent to multiplication (modulo (X™ — 1)) by
X. So, a linear cyclic code can be considered as a subset of all polynomials of degree at

most n — 1 which is closed under multiplication (modulo (X™ — 1)) by any polynomial.

Fo[X] Fq[X]
(Xn-1)" (Xn-1)

In other words, a cyclic code is an ideal of the ring Since is a principal

ideal ring, any cyclic code has a generator polynomial g(X) of minimum degree and it

7



Chapter 1. Introduction 8

is easy to see that g(X) divides X™ — 1. So, the set of roots (in appropriate extension
field) of g(X) is a subset of the roots of X™ — 1 with multiplicities, less than or equal to
that in X™ — 1 and the code is fully and uniquely determined by the this set of roots of
g(X) with their multiplicities. When n is relatively prime to g, X™ — 1 does not have any
multiple root and we’ll be interested only in this case. When n is not relatively prime to
g, the cyclic codes of length n are referred to as repeated root cyclic codes [47-50]. For

the rest of the section, n is assumed to be relatively prime to gq.

Let 7 be the smallest positive integer such that n|(¢" — 1). Then All the roots of
X" —1 are in Fy. Let a € Fy be an element of order n. The DFT of the vector
a = (ap,a1,**,a,-1) € Fy is defined to be A = (Ag, Ay, -+, An_1) € Fj;, where

n—1
Aj:Zo/jai forj=0,1,---,n—1 (1.1)

=0

and the inverse transform is given by

n—1
ai:n_IZa_ijAj fori =0,1,---,n— 1. (1.2)
=0

For any j € [0,n — 1], the g-cyclotomic coset modulo n of j, denoted by [j]¢, is defined as
[7]2 = {i € [0,n — 1]|j = iq" mod n for some nonnegative integer ¢}.

The superscript [7]2 will sometimes be omitted when it is obvious.

Example 1.1.1. Table 1.1 shows cyclotomic cosets modulo 15 and 63 for different gq.

August 5, 2002 Bikash Kumar Dey
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Table 1.1: Cyclotomic Cosets modulo 15 and 63

(a) Cyclotomic Cosets modulo 15
{1,2,4,8} | 13,6,9,12}
[ 4
{2, 8} [ {3,12} ]
2 | 2 |
|

{7,13,11, 14}
1

{0} I
[ {14,11y ]
| 2 |
|
|

2/23_cyclotomic cosets
cardinality

{5, 10}
3

|

|

{6,9} [ {5} [ {10} {7,13}
2 [ 2 2

cardinality

[ {3} ]
I

{0}

2% _cyclotomic cosets
cardinality

| [ {0} |
| [ © ]
| 22 _cyclotomic cosets | {0} |
| [ T ]
| [ {0} |
| [ © |

-~
—
~
[~

—— |~

{8} {6y [ {9y [ {12} [ {53 | {10y [ {7} |
1 1 [ 1 [ 1 [T 1 [ 1 1

13y [ {11y | {14}
[ 1 [ 1 | 1

(b) Cyclotomic Cosets modulo 63

2/2° cyclotomic casets [{0] {1,2,4,8,16,32] {3,6,12, 24,48, 33} 15, 10,20, 40, 17, 34} {9, 18, 36}
1 6 6 6 3

cardinality

{7,14, 28,56, 49, 357 {11,22,44, 25,50, 377 113,26,52,41,19,38F | {27,54,45]
6 6 3

uorponpoxyuy ‘1 1eydery)

115,30, 60,57, 51,397
6

6
123,46,29, 58,53, 431
6

131, 62,61,59,55,47]
6

{21, 42}
2

22 /24 _cyclotomic cosets

{1,4,16}
3

12.8,32]
3

{3,12,48]
3

16,24, 331
3

15,20, 17}
3

{10,40, 34}
3

19,18, 36]
3

17,28, 497
3

{14,56,35]
3

{11,44,50}
3

{22,25,37}
3

{13,52,19]
3

126,41, 38]
3

{27,54, 45}
3

{15,60,511
3

130,57, 397
3

123,29, 531
3

146,58, 431
3

[31, 61,551
3

162,59, 477
3

{2142}

2 cytoromic comes {0} {18} | {2,16} | {4,32} | {3,24} | {6,48 [{12,33} | {5,40} {10, 17} [{20, 34} [{9}] [{18}{36}

cardinality

[7.567 |1, 497 | {28, 357 [ {11, 257 | {22, 50T | {44, 37F | {13, 41T [ {26, 197 {52, 381 {27154

2
115,577 [{30,51F | {60, 39} | {23, 587 [ {46,537} | 129,43} [{31,59} [62,55} |{61,47} [{21,42}
2 2 2 2 2 2 2 | 2 2 p

(T [{SL {21 0N 4T {32 {31 {240 {0F {4 T 1233 F (5] (40T 1011 TE 20N {347 {9 {8301

26_cyclotomic cosets

0

cardinality

[TY [58H{141,{297{28 (351 {1 TH251 {22501 (A1 {3 TR {13} [AT]{26] (191 {52 H {38 L2145}

{115} {57TH{30 {51 {60 {39 {23 {58 }{46 {53 {29 }{43 {31 {59 {62 }{55}{61 {47 }H{21} {42}

Ao rewny] yseyiqg
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The DFT defined by (1.1) is a Fj-linear map satisfying the following two properties:

Conjugacy Constraint : A € F is DFT of some vector a € F! if and only if A;, = Aj-
for all j € [0,n — 1]. Clearly, this constraint restricts A; to be in the subfield F;, where
r; is the length of [j],. Note that a specific value for A; uniquely specifies the value of all

the transform components Aj for j' € [j],.

Cyclic Shift Property : If A = DFT (a), b € F} such that b; = a; 1, and B = DFT (b),
then Bj = O,/jAj.

The roots of X™ — 1 are {a’|j € [0,n — 1]}. Tt is clear from the definition of DFT
that o/ is a root of g(X) if and only if A; = 0 for all codewords a € C. So, the set
T ={j € [0,n— 1]|A; = Ofor alla € C} is called the defining set of C. Due to conjugacy

constraint, 7" is union of some g-cyclotomic cosets modulo n.

The following bound on the minimum Hamming distance of a cyclic code is the most

important property of cyclic code.

BCH Bound: The minimum Hamming distance of a cyclic code C is more than the

length of the longest cyclically consecutive sequence of numbers in 7.

So, to obtain a code with minimum distance at least 4 1, one needs to take a § -length
sequence S in [0,n — 1] and T = [S]2. The resulting codes are called BCH codes. When
n=gq—1,[S]2 =S and the cyclic codes with defining sets of the form 7" = {1,2,---,d}
are called Reed-Solomon codes and are famous as a class of MDS (maximum distance
separable) codes [20] and for the ease of decoding. Other popular cyclic codes include

Reed-Muller codes and quadratic residue codes.

1.2 Quasi-cyclic Codes and F,LC codes

Though rich algebraic structures like linearity and cyclicity make design and decoding
easier, they restrict the freedom of choice of long good codes. No asymptotically good
family of cyclic code is found and it is known that BCH codes are not asymptotically
good, that is, keeping the normalized rate fixed, as the length increases the normalized
minimum Hamming distance goes towards zero. So, successful attempts have been made
to slacken the restrictions of linearity and cyclicity to look for good codes. However, to

keep the problem of designing and decoding tractable, neither of the structural restrictions

August 5, 2002 Bikash Kumar Dey



Chapter 1. Introduction 11

is completely given away.

Compromising linearity gives codes which are linear over some subfield F; of the
alphabet field F= but not necessarily linear over Fym. Different good classes of Fj-
linear cyclic codes (F,LC) over Fym like twisted BCH codes and subspace subcodes of
Reed-Solomon (SSRS) codes are found by different authors [1, 2]. A part of this thesis
investigates the algebraic structure of the Fj-linear cyclic codes over Fim in DFT domain
when length is relatively prime to g. With respect to any given Fj-basis of Fym, every
n-length F-linear cyclic codes over Fy= can be considered as a linear m-quasi-cyclic code
of length mn over F,. The minimum distance of the corresponding quasi-cyclic code is

investigated.

Slackening the cyclicity gives the quasi-cyclic codes. For a length n code, it is called
an [-quasi-cyclic code (where [ divides n) if it is closed under the [-times cyclic shifts.
So an [-quasi-cyclic code can be viewed as a submodule of the | dimensional free module
(FqC%)l or (%)l Cyclic codes are nothing but 1-quasi-cyclic codes. Refining the
works of Chen, Peterson and Weldon [3], Kasami [4] proved that 2-quasi-cyclic codes
asymptotically meet a slightly loose version of Gilbert-Varshamov bound. Many quasi-
cyclic codes are found, which are best known for their lengths [51-57]. The structural
properties and enumeration of quasi-cyclic codes were discussed using different approaches

in [5-7]. The algebraic structure of the [-quasi-cyclic codes of length n is investigated in

this thesis with the help of conventional DFT of length n.

1.3 Codes over Galois Rings

Though coding theorists have for a long time had theoretical interest on codes over integer
residue rings [10, 11, 58-61], codes over integer residue rings and more generally over
Galois rings have received serious attention [12-18] after it was shown [19] that some
important families of nonlinear binary codes can be obtained by Gray map from linear
codes over Z,. Transform technique was used for cyclic and abelian codes over Z,, in
[27, 62, 63]. A part of this thesis generalizes the transform domain study (in Chapter 4)
of G-invariant codes when G is any abelian group of permutations G for codes over Galois

rings.

August 5, 2002 Bikash Kumar Dey
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1.4 Permutation Group of Codes and Affine Invari-
ant Codes

Let C be an [n, k] over F}, linear code and G a permutation group of degree n. Then G acts
on C in the following way: for a codeword a of C and a permutation = of G, the image
of a under z is obtained from a by permuting the coordinate positions of a according
to x. This action is called the permutation action of G on C. The set (which forms a
subgroup) of permutations in the symmetry group of degree n under which a code C is
closed /invariant is called the permutation group of C. More generally, the set of monomial
automorphisms of F’, under which a code C is closed /invariant is called the monomial
automorphism group of C.

The automorphism/permutation groups of codes over finite fields are known to be
useful for decoding (see [20-26] for examples) Recently, Blackford and Ray-Chaudhury
[27] used transform domain techniques to permutation groups of cyclic codes over Galois
rings. Here, their technique is extended to permutation groups of abelian codes over

Galois rings.

Permutations of F,m (where p is a prime) of the form = +— axz + b, where a,b €
Fym, a # 0, are called the affine permutations. These permutations form a subgroup of
the symmetric group of order p™ and is denoted as AGL(1,p™). A code of length p™ with
components indexed by elements of F,~ is said to be affine invariant if it is invariant under
the affine permutations. Clearly, affine invariant codes, after the 0’th component deleted,
are cyclic codes. Kasami, Lin and Peterson [33] found a necessary and sufficient condition
on the defining set of any cyclic code, under which the extended cyclic code is affine
invariant. As corollaries, they showed that the famous extended BCH and generalized
Reed-Muller codes are affine invariant. Often it is comparatively easier to determine
the full permutation groups of affine invariant codes [28—-32]. The conditions for extended
cyclic codes over integer residue rings to be affine-invariant were derived by Abdukhalikov
[34]. Blackford and Ray-Chaudhuri [27] used transform domain approach to characterize
affine invariant extended cyclic codes of length 2™ over subrings of GR(4,m) and using
this characterization, they found new classes of affine invariant codes over Galois rings

from BCH codes.
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1.5 Contribution and Organization of the Thesis

In Chapter 2 of this thesis, the algebraic structure of the Fi-linear cyclic codes over Fym
is investigated in DF'T domain when length is relatively prime to g. With respect to any
given Fj-basis of Fym, every n-length F,-linear cyclic codes over Fym can be considered
as a linear m-quasi-cyclic code of length mn over F,. The minimum distance of the

corresponding quasi-cyclic code is investigated.

In Chapter 3, the linear quasi-cyclic codes are studied in conventional DFT domain. A
way is given to derive a lower bound on the minimum Hamming distance of a quasi-cyclic

code Using the DFT domain characterization of the code.

In Chapter 4, the algebraic structure of codes closed under any arbitrary abelian
subgroup G of S, (group of permutations of n elements) is investigated in a suitable
transform domain. These codes are precisely those which have G as a subgroup of their
permutation groups. When special types of G are taken, G-invariant codes coincide with
the class of quasi-abelian codes and thus with the classes of quasi-cyclic codes and abelian
codes. Tanner’s approach for getting a bound on the minimum distance from a set of
parity check equations over an extension field is extended and how it can be used to get a
minimum distance bound for G-invariant codes is outlined. Karlin [64] showed a way to
decode a class of one-generator quasi-cyclic codes. Heijnen and van Tilborg [65] proposed
another decoding technique for the class of one-generator quasi-cyclic codes, which uses
the same basic idea but achieves some computational advantages by better usage of the
quasi-cyclic property of the code. Karlin’s approach is extended to a class of quasi-cyclic
codes, not necessarily one-generator. When restricted to one-generator quasi-cyclic codes,
this method reduces to Karlin’s method. Moreover, our method also applies to a class of
quasi-abelian codes specified in subsection 4.8.1. Chapter 5 extends the results of Chapter
4 to codes over Galois rings and Blackford and Ray-Chaudhury’s transform technique to
[27] permutation groups of cyclic codes over Galois rings is extended to permutation

groups of abelian codes over Galois rings.

The conditions for extended cyclic codes over integer residue rings to be affine-invariant
were derived by Abdukhalikov [34]. Blackford and Ray-Chaudhuri [27] used transform
domain approach to characterize affine invariant extended cyclic codes of length 2™ over

subrings of GR(4, m) and using this characterization, they found new classes of affine
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invariant codes over Galois rings from BCH codes. In chapter 6, their approach is extended
to cyclic codes of length 2™ over any subring of GR(2¢,m) for m > e — 1 and also to
extended cyclic codes of length p™ over GR(p?,m) (where m > 1) for arbitrary prime p.
Classes of affine invariant BCH codes and GRM codes over Zje and over Z,: are found

using these conditions.

Chapter 7 concludes the thesis with some possible further directions of research.
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Chapter 2

Fy-Linear Cyclic Codes over F;m

2.1 Introduction

A linear code over Fym, (¢ is a power of a prime p) is closed under addition, and multi-
plication with elements from Fim. In this chapter, the class of nonlinear codes over Fym
that are closed under addition, and multiplication with elements from F; is considered
and are called Fy-linear codes. Such codes have found practical applications in deep-space
communication [2] and computer memory systems [66-70]. Among the F,-linear codes,
we restrict ourselves to cyclic codes. This class of codes are referred as Fj-linear cyclic
codes. Henceforth Fi-linear codes over Fym and Fj-linear cyclic codes over Fym will be
written as FyL. and F,LC codes. The class of F,LC codes includes the following classes

of codes as special cases:

1. Group cyclic codes over elementary abelian groups: When ¢ = p the class of
F,LC codes coincides with the class of group cyclic codes defined over an elementary
abelian group CJ* (a direct product of m cyclic groups of order p). A length n
group code over a group G is a subgroup of G" under component-wise operation.
Group codes constitute an important ingredient in the construction of geometrically
uniform codes [71]. Hamming distance properties of group codes over abelian groups
are closely connected to the Hamming distance properties of codes over subgroups
that are elementary abelian [72]. Group cyclic codes over C}" constructed using
nonsingular circulant matrices over F,» have been studied and applied to block
coded modulation schemes with phase shift keying [73]. It is known [74, 75] that

the class of group cyclic codes over C}' contains MDS codes that are not linear over

15
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Fym.

2. SSRS codes: Given a Reed-Solomon code of length n = ¢™ — 1 over Fym, the
subcode obtained by taking all the codewords with components from an Fj-subspace
of Fym is called a subspace subcode of the Reed-Solomon (SSRS) code. These codes
are also F,LC codes and were discussed by Hattori, McEliece and Solomon in [2].
The authors derived dimension formula for this class of codes and codes with larger
number of codewords than any previously known code with the same length and
minimum distance have been reported. The class of SSRS codes is a subclass of

subgroup subcodes, discussed in [76].

3. Linear cyclic codes over finite fields: Obviously, with m = 1, the class of F,,LC

codes coincides with the extensively studied class of linear cyclic codes over finite

fields [38, 77].

4. Twisted BCH codes: Consider a code obtained by taking the coordinate-wise
image of a BCH code over F» under an F-linear map ¢ : Fr — F;" for some
m < r. Twisted BCH codes, constructed as F, dual (see Section 4) of such codes,
were introduced in [1] and is a subclass of F;, LC codes. Large number of good codes
were constructed in [1, 78, 79] as twisted BCH codes and as combinations of twisted

BCH codes with other codes.

A code is m-quasi-cyclic (m-QC) if the cyclic shift of components of every codeword by
m positions gives another codeword [20]. Structural properties of quasi-cyclic codes were
investigated in [5-7]. There is a 1-1 correspondence between the class of F,LC codes of
length n over Fim and the class of m-QC codes of length mn over Fy. If {5y, 1, -+, Bm—1}
is an Fy-basis of Fym, then any vector (ag, a1, +,an_1) € Fyn can be seen with respect
to this basis as (ag,0, 0,1, *, @om—1,"* "5 Un-1,0, Gn-1,1,"* *, An_1,m—1) € F;*", where a; =
Z;.n:_ol a; ;5. When seen this way, any F,LC code of length n over Fym corresponds to an

m-QC code of length nm over Fj.

In this chapter,

e the DFT domain characterization of F;,LC codes over Fym is obtained.

e transform domain condition for two vectors to be F,-dual of each other is given.

This is used to prove nonexistence of certain self dual F;, LC codes and equivalently

August 5, 2002 Bikash Kumar Dey



Chapter 2. F,-Linear Cyclic Codes over Fym 17

nonexistence of the corresponding self dual QC codes. These results for self dual

QC codes are also available in [8] and also follows from the results in Chapter 4.

e the transform domain characterization of F,LC codes is used to derive minimum

distance bound for the corresponding QC codes.

The content of this chapter is organized as follows : In Section 2.2, some new termi-
nologies are introduced and linear cyclic codes over a finite field are described in DFT
domain using these terminologies. In Section 2.3, the main result of this chapter, i.e., the
DFT domain description of F,LC codes is given. The characterization is in terms of any
decomposition of the code into subcodes, for which each nonzero transform component’s
values are from certain minimal invariant subspaces of the extension field. In Section 2.4,
transform domain condition for two vectors to be F,-dual of each other w. r. t. a self
dual basis of Fjm is derived and used to prove the nonexistence of self dual F;,LC codes
and self dual QC codes of certain parameters. In Section 2.5, it is shown how one can
obtain a set of parity check equations over an extension field for the corresponding QC
code and thus can get a bound on it’s minimum distance using an approach similar to
Tanner’s [80]. Several directions for further research and concluding remarks constitute
Section 2.6.

2.2 Preliminaries

g-cyclotomic coset modulo n was defined in Section 1.1. In this chapter, ¢"-cyclotomic

cosets modulo n are also needed which are defined in the similar way.

Clearly, a g-cyclotomic coset modulo ;- is union of some g-cyclotomic cosets modulo n.

If J C [0,n—1], it’s cyclotomic cosets are defined as [J], = Ujes ], and [J]» = Ujes [4]

In the following, for a subset I = {i1,42,---,ix} C I,, (A;)icr denotes the ordered
tuple (A;,, Ai,, -+, A;,) where an arbitrary fixed order in [ is assumed. For some ordered
tuples 71 = (ti1,- -+, t15,), -+ L1 = (ti1,- - -, t,;,) the concatenated tuple
(ti1, -5ty s tias -, tyy,) is denoted as (T3, ---,T)).

Definition 1. Let I1, I, - - -, I; be some disjoint subsets of I, and suppose R;; = {(Ai)ielj la €
C} for j =1,2,---,1. The sets of transform components {A;|i € I;}; 1 < j <[ are called
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unrelated for C if {((4;);c;, > (4:) -, (Ai)ier,) [a € C} = Ry, X Ry, X - -- X Ry, They

are called related if they are not unrelated.

i€I2’-.

Now, the extensively studied linear cyclic codes over Fym can be characterized as

follows:

e A cyclic code is the set of inverse DFT vectors of all the vectors of an F;m-subspace
of DFT(Fj.) C Fj.., in which transform components in [7]9", j € I, take either
only the zero value or all the values of Fy»r;, and transform components in disjoint

[J1]2" and [J5]9" are unrelated.

From the above characterization, it is clear that to specify a cyclic code, it is sufficient
to specify the set [J]¢" in which the transform components of all the codewords is zero.
It is important to note that the transform components A; and A, are not related by the
conjugacy constraint of the DFT unless [j]¢" =[k]Z". One of the results of this chapter
is that in an F,LC code, transform components take values from appropriate invariant
subspaces (introduced in the following subsection). Moreover, the transform components
from different ¢™-cyclotomic cosets within a ¢-cyclotomic coset modulo n can be related
for F,LC codes by appropriate Fy-homomorphism (discussed in the next section) and
all F,LC codes are describable in terms of these relations along with the appropriate

invariant subspaces.

2.2.1 Invariant subspaces of F}

In this subsection the notion of invariant subspaces required for the characterization of
F,LC codes in transform domain is introduced. For any element s in a finite field F, the
set [s]9 = {s,59,s7,---, s}, where e is the smallest positive integer such that s = s, is
called the g-conjugacy class of s. Note that, if o € F; is of order n and s = o’ then there

is a 1-1 correspondence between [j]¢ and [s]?, namely jg* +— s7". So, |[s]?] = [[j]%] = e;-

Definition 2. For any element s € Fj;, a subset U of Fj; is called s-invariant if sU = U.
In addition, if U is an Fj-subspace, then it is called an s-invariant F- subspace. For
brevity, “[s, g]-subspace” will be written instead of “s-invariant Fj-subspace”. An [s, |-

subspace of Fy; is called minimal if it contains no proper s, g]-subspace.
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If U and V' are two [s, g|-subspaces of F, then so are UNV and U + V. If s and
s’ are in the same g-conjugacy class, then s’ = s? and s = (s')¢ for some i and j. So,
[s, g]-subspaces and [s', ¢]-subspaces are the same.

Ezxample 2.2.1. Consider ¢ = 2, m = 2, n = 15 and r = 2. Let « be a primi-
tive element of Fig. Since [@°]* = [a!°]?, we have [a°,2]-subspaces to be the same
as [a!?, 2]-subspaces. The minimal [o®,2] subspaces of Fy are V; = {0,1,0%,a'%}, V, =
{0,a,a8,att}, V3 = {0,a%,a",a!?}, V4 ={0,a3,a%,0®}, and Vs = {0,a%,0% a!*}. These are
also minimal [a!?, 4]-subspaces. The [aF, 2]-subspaces, for k& # 0,5,10 are {0} and Fi.
Every subset consisting of two elements {0, z};z € F} is a minimal [a?, 2]-subspace and
none of these is an [a?, 4]-subspace. Observe that {1,a? af o a'?} is an a3-invariant
subset and not an [a?, 2]-subspace. The corresponding [a?, 2]-subspace, obtained as Fy-

span of the set is Fig.

One can also talk about [s, ¢*]-subspaces of F; when A|l. The [s, ¢*]-subspaces are
useful when one considers Fx-linear codes over Fym. However, in such cases one can take
¢ to be ¢’ and treat them as Fj-linear codes over Fq,%. So, we’ll be concerned with only

[s, g]-subspaces throughout the chapter.

Let s be an element of order ¢ in F. Then, it is well known that Spang, {s'|i =
0,1,---,t — 1} >~ Fje, where e is the exponent of [s]?. So, [s,g]-subspaces are nothing
but the Fy-subspaces of Fj; and the minimal [s, g]-subspaces are the one dimensional

Fie-subspaces of F.

2.3 Transform Domain Characterization of F'qL.C Codes

Throughout, length n codes over Fym are considered, where n and ¢ are relatively prime

and o will denote the n® root of unity, used as the DFT kernel.

From the cyclic shift property it follows that in an F,LC' code C, the set of j? transform
components constitutes an [a/, g]-subspace of Fym-. However, a code need not be an F,LC

code even if each DFT component A; takes values from an [o/, g]-subspace.

Ezample 2.3.1. Consider length 15, F,L codes over Fig = {0,1,a, a?,---,a'*}. We have
g=2,m =4 and r = 1. In Table 2.1, the code C3 is not cyclic, though each transform

component takes values from appropriate invariant subspaces. Other five codes in the
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same table are F, LC codes. We have chosen o with the minimal polynomial X2 + X + 1.

Table 2.1: Few Length 15 F,-Linear Codes over Fig

[Only nonzero transform components are shown. The nonzero elements of Fig are
represented by the corresponding power of the primitive element and 0 is represented by

1]
ag a1 az ag aq ap ag a7 ag ag a1g a11 12 313 314|A5 A1g ap a1 az ag aq a5 ag a7 ag ag a1 @11 @12 313 a14|Ap A1g
1 -1-1-1-1-1-1-1-1-1 -1 -1 -1 -1 -1]-1 -1 1 -1-1-1-1-1-1-1-1-1 -1 -1 -1 -1 -1]-1 -1
Chb |10 28 0280280 2 8 0 2 8|1 4 Cy |4 3 743 7 437 4 3 7T 4 3 7|1 0
8 02 8 0 28028 0 2 8 0 2|6 14 7 4 3 7 43 7 437 4 3 7T 4 3|6 10
2 80 2802802 8 0 2 8 0]11 09 3 7 437 43743 7 4 3 7 4|11 5
1-1-1-1-1-1-1-1-1-1-1 -1 -1 -1 -1]-1 -1 1 -1-1-1-1-1-1-1-1-1 -1 -1 -1 -1 -1]-1 -1
Ci |4 9144 9144 9144 9 14 4 9 14|-1 4 C3 |02 80280280 2 8 0 2 8|1 4
144 9144 9144 914 4 9 14 4 9 [-1 14 5 7135 7135 7135 7 13 5 7 13|6 9
9144 9144 9144 9 14 4 9 14 4 |-1 9 1012 3 1012 3 1012 3 10 12 3 10 12 3 [11 14
1-1-1-1-1-1-1-1-1-1-1 -1 -1 -1 -1]-1 -1 1-1-1-1-1-1-1-1-1-1-1 -1 -1 -1 -1]-1 -1
4 9144 9144 9144 9 14 4 9 14|-1 4 4 3 7 437 4374 3 7 4 3 7|1 0
144 9144 914 4 914 4 9 14 4 9 [-1 14 7 437 437437 4 3 7 4 3|6 10
9144 9144 9144 9 14 4 9 14 4 |-1 9 3743743743 7 4 3 7 4|11 5
0280280280 2 8 0 2 8|1 4 0280280280 2 8 0 2 8|1 4
Cy |1116 1116 1116 1 11 6 1 11 6|1 -1|/Cs |1 6111 6111 6111 6 11 1 6 11|-1 1
= (31012 31012 3 1012 3 10 12 3 10 12|1 9 = (9101391013 9 1013 9 10 13 9 10 13|11 2
Co |7135 7135 7135 7 13 5 7 13 5|1 14| Co [1412 5 1412 5 1412 5 14 12 5 14 12 5 |6 8
+ |8 028028028 0 2 8 0 2|6 14| + |8 02 8 0280228 0 2 8 0 2|6 14
C; |5 7135 7135 7135 7 13 5 7 13|6 9 Co |5 1412 5 1412 5 1412 5 14 12 5 14 12|11 3
6 1116 1116 1116 1 11 6 1 11|6 -1 111 6111 6111 611 1 6 11 1 6 [-1 11
12 31012 3 1012 3 1012 3 10 12 3 10|6 4 13 91013 9 1013 9 1013 9 10 13 9 10|1 12
2 802802802 8 0 2 8 0]11 9 2 8 0 2802802 8 0 2 8 O0]11 9
1012 3 1012 3 1012 3 10 12 3 10 12 3 [11 14 1013 9 1013 9 1013 9 10 13 9 10 13 9 |6 7
135 7135 7135 713 5 7 13 5 7 |11 4 12 5 1412 5 1412 5 1412 5 14 12 5 14|1 13
116 1116 1116 111 6 1 11 6 1 [11 -1 6111 6111 6111 6 11 1 6 11 1 |-1 6
1-1-1-1-1-1-1-1-1-1 -1 -1 -1 -1 -1]-1 -1
Ce |[0105 0105 0105 0 10 5 0 10 5|0 -1
5 0105 0105 0105 0 10 5 0 10|5 -1
105 0105 0105 010 5 O 10 5 O |10 -1

The code C3 in Table 2.1 is not cyclic, since A5 and A;q are related by an isomorphism
which does not correspond to cyclicity in the time-domain. In the rest of this section all the
possible relations that correspond to cyclicity in the time domain are identified, leading
to a characterization of F,LC codes in the transform domain. The characterization is in
terms of the component codes of a decomposition of the code under consideration. In the

following subsection, the decomposition of F,;,LC codes is discussed.

2.3.1 Decomposition of F;,LC Codes

Suppose A; takes values from V' C Fymr, V # {0} for an F,L code C. Let 1} be an
F,-subspace of Fym-. Let us call C' = {ala € C,A; € 1} as the F,L subcode obtained
by restricting A, in V;. For example, the subcode C; of Table 2.1 can be obtained from
C4 by restricting As to {0}. If C” is a complement of C' in C and A; takes values from
Vo in C”, then V, is a complement of V' (V] in V. Clearly, if C is cyclic and V] is an
[/, q]-subspace, then C' is also cyclic. If S C I,,, then the subcode obtained by restricting
the transform components A;; j ¢ S to 0 will be called the S-subcode of C and will be
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denoted as Cg.

Lemma 2.3.1. Suppose in an Fy,L code C, A; takes values from a subspace V. C Fymr.
Let V1,Va C V be two subspaces of V' such that V = Vi + V5. (i) If C; and Cy are the
subcodes of C, obtained by restricting A; in Vi and V, respectively, then C = C; + Cq. (ii)
If Vi and Vy are [o7, q]-subspaces, then C 1is cyclic if and only if C; and Cy are cyclic.

Proof: Let us prove (i), then (ii) is obvious. It is sufficient to show that C C C; + Cs.
Consider a codeword c3 € C. Suppose A; = vs € V for c3. Since V=V, +V,, Jv; € 1}
and vy € V5 such that v3 = v; +vy. Let ¢; € C; such that A; = v, for ¢;. Now, for the
codeword ¢y = c3—c1, Aj =v3—v; = v € V5. So, ¢3 € Cy and thus c3 = ¢1 +¢2 € €1 +Co.

Notice that Co need not be a complement of C; in C even if V5 is a complement of V;
since the intersection of C; and Cy in that case is precisely the subcode obtained from C

by restricting A; to {0}.

Suppose in an FyL code C, a nonzero transform component A; takes values from a
nonzero Fy-subspace V of Fymr, and V intersects with more than one minimal [/, g]-
subspaces. Then, we have ¢ > 1 minimal [o/, g]-subspaces V;, Vs, -+, V; such that V C
@ _,Viand VNV, # ¢ for i = 1,2,---,t. Then, we can decompose the code as the
sum of ¢ smaller codes Cy,Cy, - - -,C; obtained by restricting A; to Vi, V5,---,V;, ie., C =
C1 4+ Cy+ ---+ C;. So by successively doing this for each j, C can be decomposed into a
set of subcodes, in each of which, for any j € I, transform component A; takes values
from an F,-subspace of a minimal o/, g]-subspaces. In particular, if the original code
was an FyLC code, each of the subcodes obtained this way will have A; from a minimal
[a?, q]-subspaces or zero. The following are immediate consequences of this observation

and Lemma 2.3.1.

1. In a minimal F;,LC code, any nonzero transform component A; takes values from
a minimal [o/, g]-subspace of Fymr. For example, the codes C; and C, in Table 2.1
are minimal F5LC' codes and the nonzero transform components As and Ay take

values from minimal [o®, 2]-subspaces.

2. A code is F,LC if and only if all the subcodes obtained by restricting any nonzero

August 5, 2002 Bikash Kumar Dey



Chapter 2. F,-Linear Cyclic Codes over Fym 22

transform component A; in minimal [o/, g]-subspace of Fymr are F,LC. The state-

ment is also true without the word ‘minimal’.

Codes with Spectral Base

Definition 3. Suppose in an FyL code C, transform components A;, j € I, take values
from Fj-subspaces V; of Fymr. A set of transform components {4;|l € L C I,,} is called a
spectral base if they are nonzero and unrelated for C and any other transform component
Ay, k & L can be expressed as Ay = Y, ., oxA; such that oy is an Fj-homomorphism of
V, into V.

A code may not have a spectral base, since though we can always find a maximal
subset of transform components which are unrelated, values of other components may
not be determined by the values of those transform components. As example, consider
the code C = C5 + Cg where C5 and Cg are from Table 2.1. Clearly, C5 and Cg have Fj-
dimensions 4 and 2 respectively and C has dimension 6. In C, both A5 and Ay take
values from Fig. So, {As, A1o} is not a spectral base for C and neither of A5 or Ay alone

constitutes a spectral base. So, This code does not have a spectral base.
If a code has a spectral base, then it will be called a code with spectral base.

If some sets of transform components are unrelated in two codes C' and C”, then it is
unrelated in the code C' 4+ C". However, the converse is not true. For instance, consider
the two F5LC codes Cy and C; and their sum C4 shown in Table 2.1. Clearly in Cy and
Ci, A5 and Ao are related. But they are unrelated in C,.

Theorem 2.3.2. IfC is an F,LC code over Fym where any nonzero transform component
A; takes values from a minimal [o7, q]-subspace V; of Fymr, then there is a spectral base

{Al e LC I,} for C

Proof: L is constructed iteratively as follows. First assign L = ¢, L = {j € I,|A; =
0 in C} and do the following repeatedly until L U Ly = I,,.

e Take any j € I, \ (L U L;). Consider the subcode C; of C obtained by restricting
{Ai|]l € L} to zero. Clearly, in that subcode C;, either A; = 0 or A, takes values
from Vj. If A; = 0 in Cy, then in C, A; can be expressed as A; = >, 0;A; for some
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F,-homomorphisms o; : V; — V; and thus put j in L'. Otherwise, {4;]l € LU{j}}

is a set of unrelated components in C. So, put j in L.

Clearly, after all the iterations are over, the set L will be the indexes of a spectral base.

Observe that the spectral base is not unique. [ ]

Clearly, for a code C as described in Theorem 2.3.2, if [ € L, the subcode C; obtained
by restricting all the transform components {A,|j € L,j # } to zero is a minimal F,LC
code. Moreover, C can be decomposed as C = @;cC;. We have already seen that, any
code can be decomposed as a sum of subcodes with nonzero transform components taking
values from minimal invariant subspaces. Each of those subcodes can now be further

decomposed as direct sum of minimal subcodes. So we have,

Theorem 2.3.3. Any F,LC code of length n, (n,p) =1 over Fym can be decomposed as

direct sum of minimal FyLC codes.

This theorem implies that, any m-QC code of length nm over F;, can be decomposed

as direct sum of minimal m-QC codes, if (n,q) = 1. This was first proved in [5].

2.3.2 Linearized Polynomials and Induced Maps

Unlike linear cyclic codes, transform components in different ¢"-cyclotomic cosets may
be related in an F,LC code as will be shown in next subsection. In particular, transform
components may be related by F,-homomorphisms. But two transform components can
not be related by some arbitrary homomorphism. The allowed homomorphisms will be
characterized in the next subsection in terms of linearized polynomials. In this subsection,
linearized polynomials and their induced maps are discussed as a preparation to the next

subsection.

Definition 4. [81] A polynomial of the form f(X) = S/ ¢ X7 € F,[X] is called a

g-polynomial or a linearized polynomial over Fi;.

Each ¢g-polynomial of degree less than ¢' induces a distinct Fj-linear map of Fy. So,

considering the identical cardinalities, we have

Endp,(Fp) = {of:zm f(z)|f(X)= icini € Fu[X]} (2.1)
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For any y € Fj, \ {0}, the map = — yz induced by the polynomial f(X) = yX
is an Fy-automorphism of Fj; and will be denoted from now onwards by o,. The subset
{oy|ly € Fu\{0}} forms a cyclic subgroup of Autp, (F;), generated by g, where By € Fy
is a primitive element of Fj;. In this subgroup, a; = oy:. This subgroup will be denoted
as Sg; and S,; U {0} as S;,;, where 0 denotes the zero map. Clearly, S,; forms a field

isomorphic to F.

The map oxa : y — y? of Fjy onto Fy, induced by the polynomial f(X) = X7 will be
denoted as 0. Clearly, 0,,0, = 020,,1.e., 9q7l0$0;l1 = ol forallz € Fj;. The map induced

by the polynomial f(X) = X¢ is 6! ,. So, for any f(X) = S e X oy =000,

Q!
So we have

Endp, (Fp) = @g;gsq,log,l. (2.2)

That is, any endomorphism o € Endg, (F,) can be decomposed uniquely as o = Zé;(l) o (i)

where o(;) € Sq,l%,l. This decomposition will be called as canonical decomposition of o.

2.3.3 Transform Domain Characterization

The following theorem gives the basic condition that a homomorphism should satisfy to

qualify for a possible relating homomorphism.

Theorem 2.3.4. Suppose, in an F,LC code, A; and Ay, take values from the [o?,q]-
subspace Vi and [aF, q|-subspace Vy respectively. Suppose Ay, is related to A; by an F,

homomorphism o : Vi +— Vs i.e. Ay = 0(A;). Then o satisfies

o(cadv) = o*o(v) V wvel. (2.3)

Proof: Consider any v € Vi. There is a codeword with transform pair (A4, 4;) =
(o(v),v). Since the code is cyclic, the cyclic shift of this vector with transform pair
(Ax, 4;) = (afo(v),a’v) is also a codeword. But, since Ay, = o(A;) holds for any code-

word, o*o(v) = o(adv). ]

Clearly, kernel of such a homomorphism is an [o/, ¢] subspace. However, for an F,LC
code, two related transform components may not be related by a homomorphism. But
when each nonzero transform component A; takes values from a minimal [o/, g]-subspace,

then relations are by isomorphisms. To see that, let C be such an F,LC code where each
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nonzero transform component A; takes values from a minimal [o/, g]-subspace V; of Fymr
and let {4l € L C I,,} for C be a spectral base of C. For any k & L, Ay, = ). ok 4;,

where oy, is an Fy-homomorphism of V; into Vj, satisfying
ori(@v) = dFoy;(v) Vv eV (2.4)

Without loss of generality, we can assume that, A[k]%m and AU}%m are the only nonzero
components in the code. Now, consider the cyclic subcode C; obtained by restricting
A =0in C. In Cy, A; takes values from V3 = Ker{oy;}, an o/ -invariant subspace. V3
can not be same as Vj; since then Vi, = Im (oy;) = {0}. So, V3 = {0} and thus oy; is an

isomorphism.

In what follows, a sequence of results is presented in terms of lemmas and theorems

which leads to the transform domain characterization (Theorem 2.3.11).

Lemma 2.3.5. Suppose x1,2o € Fu. Then, [x1]? = [x2]? if and only if there exists

o € Autg, (Fy) such that o(z12) = z90(x) Vo € Fy.

Proof: (= ): [21]7 = [22])? © 25 € [11]7 & i s. t. 2, = 27 . Now, clearly o = 0o €
Autp, (Fy) satisfies the condition o(z12) = z20(x) V2 € Fy.

(«<): The given condition is equivalent to ooy, = 04,0. Let 0 = Zé;(l) o) be the
canonical decomposition of ¢. Then,

-1 l

—1

200w = ) 0n0)
i=0 i=0

= 00z, = Og,0(i) for 0<i<[-1

= agia(i) = 05,04 for 0<e<[—1

= x‘{i:xz or oj)=0 for 0<:<[1—1.

At least for one i, o(;y # 0 since 0 # 0 and thus z; is in the g-conjugacy class of z;. =

Lemma 2.3.6. Let Vi, C Fy be a minimal [x1, q]-subspace and o : V| — Fy be a nonzero

homomorphism satisfying
o(z1v) = xao(v) YV v e Vi (2.5)

Then [x1]? = [z2]7.
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Proof: Since Ker(o) C V; is an [z1, q] subspace, V; is a minimal [z, ¢]-subspace and
o is nonzero, Ker(o) = {0}. Let Im(o) = V. Then, o is an isomorphism of V; onto V5

satisfying

o(z1v) = z90(v) YV v e Vi (2.6)

V4 is an zo-invariant subspace, since for any v = o (vy) € Vo, o0 = 290 (v1) = o(z1v1) € Va.

Clearly, o~ ! satisfies

o Hzw) =210 Y (v) V vE Vi (2.7)

If V5 is not a minimal zo-invariant subspace, then it can be decomposed as direct sum
of some minimal ze-invariant subspaces and restriction of o~ ! to at least one of the
minimal Z.-invariant subspaces (say V3) is nonzero. Then o~1(V3) # V] is a proper ;-
invariant subspace of Vi: contradiction to minimality of V;. So, V5 is a minimal z, -
invariant subspace. So, the size of the minimal z; - invariant subspaces and minimal z-
- invariant subspaces are same i.e., e;, = |[z1]?| = |[x2]?| and z;-invariant subspaces and
To - invariant subspaces are same. Suppose Vo = 4 Fiez; and V) = yoFes; . Then, define
the map o1 : Fyeay — Fyeey by y — y; '0(yoy). Clearly, oy is an F,-automorphism and

it satisfies o1 (21v) = 2201(v) V v € Fjeei. So, by Lemma 2.3.5, [21]? = [z2]9. u

The fact that, the codes under consideration are Fy,LC, does not allow any arbitrary
sets of transform components to be related. The following theorem tells which components

can be related in an F,LC codes.

Theorem 2.3.7. In an F,LC code, the transform components of different q-cyclotomic

cosets are unrelated.

Proof: By Theorem 2.3.3, it is sufficient to show that the statement is true for minimal
F,LC codes. Suppose in one such subcode, A; and Ay are related as A; = oy;A; where
0y; is nonzero and it satisfies eqn. (2.4). So, by Lemma 2.3.6, [o/]? = [o*]? = [j]2 = [k]2.

That is, 7 and k are in the same g¢-cyclotomic coset modulo n. [ ]

Corollary 2.3.8. (i) Any minimal F,LC code has nonzero transform components only

in one q-cyclotomic coset. (ii)Any minimal F,LC code which has nonzero transform
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components in [j]2 with exponent e has size q°. (iii)Let Jy, Jo,- -, Jy be the distinct g-
cyclotomic cosets of [0,n—1]. Then any F,LC code C can be decomposed as C = ®L_,Cy,,

where the direct sum is over Fy.

For a given F,LC code, when the corresponding m-quasi-cyclic codes are considered,
Cj, 1 =1,---,t, give the primary components [7] or irreducible components [5] of the
code. But these primary components are not uniquely decomposable into minimal quasi-
cyclic codes (or cyclic irreducible submodules, as is called in [5, 7]). If a € F}., then the
intersection of all the F,,LC codes containing a is called the F;,LC code generated by a.
Such F,LC codes are refered as one-generator F;,LC codes, whereas the corresponding
quasi-cyclic codes are known as one-generator quasi-cyclic codes. For a one-generator
F,LC code C, each component Cj, is minimal, since otherwise, suppose C;, is not minimal
and b € C;, such that B; = A; Vj € J, and B; = 0Vj ¢ J;, (by definition of C;,, such
a b exists). Since C,, is not minimal, we can decompose C,, as C;, = C; @ Cs, such that
b € C; and C; # {0}. Then clearly, C' = C; @, C,, contains a : a contradiction, since
C' is a proper subcode of C. So, C;, ;i =1,---,¢, are minimal for any one-generator code
C. Moreover, if for an F,,LC code C, Cy, is direct sum of ¢; minimal F, LC codes, then the

code is generated by mazi<;<it; vectors and the Fj-dimension of the code is 2221 ti| ;|-

Once we know which components can be related, we would like to know in what ways
they can be related. The following lemma specifies all possible homomorphisms by which
a transform component A, can be related to A;, when A; takes values from a minimal
o’-invariant subspace. As example, for a minimal F,LC code, any nonzero transform
component is a spectral base and it takes values from a minimal invariant subspace.
The other transform components will be related by homomorphisms, specified by Lemma
(2.3.9). For 1-generator F,LC code, a set containing one nonzero transform component
from each nonzero g-cyclotomic coset of transform components forms a spectral base
and each transform component in the spectral base takes values from minimal invariant
subspace. So, Lemma (2.3.9) gives the relations for 1-generator F;, LC codes also. In fact,
any F,LC code, where nonzero transform components takes values from minimal invariant
subspaces, the relations of the other transform components with those in a spectral base

are given by this lemma.

Lemma 2.3.9. For some fized y € Fy, a homomorphism o : x1Fpey — x9F gy satisfies

o(yzr) = yqta(m) Vo € x1Fpy iff 0 is induced by a polynomial f(X) = cX? for some
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. _at
unique constant ¢ € xoxy ! Fey.

Proof: Backward implication is trivial. For the forward implication, clearly o satisfies
the above condition if and only if o' : Fyey — Fpey ; o — 1, 'o(z12) satisfies o' (yz) =
yqto’(ac) Vz € Fgpy. Suppose, f1(X) = Z;Zgl c;Xqi induces the map o’. Then, for any
A E quy,

o'(yz) =y o' (x)

ey—1 ey—1
4 gt — ot !t
& E cyla? =y c;x? Vx € Fiey
i i t i .
& dytz? =yica? Vo € Fpey fori=0,--,¢e,—1

& Yl =yi's? Vo€ Fy whenever ¢ # 0

< i=1t whenever ¢, # 0.

So, there is at most one nonzero term ¢X?¢ in f1(X) where ¢ € Fiey. So, the map
o is induced by the polynomial f(X) = zofi(2,'X) = :Egc’achtht = ¢X? where ¢ =

, 7qt 7qt
ToC'x" € Toxy " Fiey. |

For y = o/, this theorem specifies all possible homomorphisms by which Ajqt can
be related to A; for an F,LC code when A; takes values from a minimal o/-invariant

subspace.

Ezample 2.3.2. Clearly, in the minimal F,LC codes Cy and C; in Table 2.1, A5 is related
to Ajp by homomorphisms. Suppose As = o(A19) where f(X) is a g-polynomial over
F24.

For Cp, f(X) = a®X2.

For Cy, f(X) = aX?
Ezxample 2.3.3. Consider an Fy,LC code with same parameters as in Table 2.1, where
Ay, Ag, A5 take values freely from Fig, Fig, and o F)y respectively and other nonzero trans-
form components A,, Ay, and Ajy are related to them as A, = a?A? + a®A§, Ay =
Al + o’ A§, and Ay = o?A2. This code is F,LC but neither minimal nor 1-generator.

But here the spectral base {A;, Ag, A5} take values from minimal invariant subspaces and

thus the other transform components relations with them are dictated by Lemma (2.3.9).

Even if a transform component does not take values from some minimal invariant

subspace, another transform component may be related to it by homomorphism. The
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following theorem specifies all such homomorphisms. In particular, for a code with spec-
tral base, the other transform components are related to those in the spectral base by
homomorphisms, even though the transform components in the spectral base do not take
values from minimal invariant subspaces. For codes with spectral base, the invariant sub-
spaces of the components in a spectral base and the polynomials inducing the relating

homomorphisms for other components specify the code completely.

Theorem 2.3.10. Suppose V' C Fy is a y-invariant subspace and V = EB;-;%)VJ- where V;
are minimal y-invariant subspaces. Then, for any o € Homg, (V, Fy) satisfying o(yz) =
y?o(x) Vo € V, there is a unique polynomial of the form f(X) = Z;;E anqjeyH; a; € Fy
such that o = oy.

Proof: By Lemma 2.3.9, there exists a unique f;(X) = b;X ¢ b; € F, which induces
oly, ie., oly, = oyly;.

Let us consider any polynomial f(X) = Z;;t a; X7 where a; € F,. Now, 0 =
op & oly, = oyl Vi

Suppose V; = xjFpey; 2; #0, for 5 =0,1,---,¢ — 1. For any v € V}, v = z;s for some

s € quy. SO,
oflvi =05 lve & flzks) = fu(zgs) Vs € Fey
t—1 o '
) qJBy‘H qi . q* qi
& g a; Ty sT = byx) s Vs € Fey
j=0
til . . .
. qJEy-‘rl _ qz
& E a;Ty = b},
j=0
So i
’ Qg boxg
i
aq by x?
1
o=o0r M = (2.8)
a q*
=1 b1y
where
i ey+i 2eqy +i (t—l)ey+i
oy S xg ceeoxd
qi qey+z q25y+i q(t—l)ey+i
ry T Ty ]
M = )
qi qey+i q2€y+i q(t—l)ey+i
Ty1 Ty Ty ERR
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Now, {z¢,z1,---,z; 1} are linearly 1ndependent over Fie, since V is the direct sum of
ToFgev, x1Fgey, + -+, Ty_1Fey. So, {xo ,xl e T 1} are linearly independent over Fye, =
M is nonsingular [81] = there exists unique solution of (2.8) for ag,ay, -, a;—1. n

If A; takes values from an o/-invariant subspace V = @f;éVl and A, is related to A,
le;+1i
by homomorphism, then the relation can be expressed as Ay = l 0 c]Aq "™ for some

constants ¢; € Fyi. If ji,-- -, j,, € [k]% and Ay is related to A; ,-- -, A;, by homomorphisms
e, if Ay = 01(Aj,) + -+ + ow(4; -w), where o1, --,0, are homomorphisms, then the

relation can be expressed as A, = Y14 ¢ hlAthekHl T Cuhe Aqhweﬁtw where
kzjfti modn fori=1,---, w.

Ezample 2.3.4. In the code Cs in Table 2.1, Aj is related to A;q by a homomorphism
induced by the polynomial f(X) = a!*X? + o8 X3,

Ezxample 2.3.5. Consider a code with the same parameters as in Table 2.1, where A4, A3
and A, take values freely from Fig which is not a minimal o'%-invariant subspace. Suppose
the other nonzero transform components are related to these as A;; = oA}, + o*A42;,
A7 = o"AY, + oM A}, and A5 = a'A%) + 'A%, Tt can be checked that the code
constructed this way is an F,LC code. {Ai4, Ai3,A10} is a spectral base of the code
and so the other transform components are related to them by the homomorphisms as

specified by Theorem 2.3.10.

In general, an F;,LC' code may not have a spectral base and thus the relations between
the transform components are not given by Theorem 2.3.10. For such codes, transform
domain characterization can be given in terms of a decomposition of the code into F;,LC
codes with spectral base. One such way of decomposing is by restricting the transform
components to minimal invariant subspaces. From Theorem 2.3.2, Theorem 2.3.7 and

Lemma 2.3.9, transform domain characterization of F;,LC codes can be stated as follows:

Theorem 2.3.11 (Transform Domain Characterization). C is an F,LC-code iff for
any j € I, the transform components in [j|2 and I, \ [j|¢ are unrelated and for each
[7]2-subcode Cpjje the subcodes obtained by restricting the nonzero transform components

to minimal o -invariant subspaces satisfy

e A; is zero or takes values from a minimal o’ -invariant subspace.

e There is a maximal set L of unrelated components such that

Ai=>"cr cle;’t for any nonzero A;, where cj; € Fyg; and j = lg* mod n.
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2.3.4 Special Cases

In this subsection several special cases arising out of restrictions on the values of n, ¢ and

m are discussed.

1. No related components: Recall that for a given n, the exponents of [j]¢ and
[j]9" are denoted by, respectively, e; and 7. If e; = r; for 0 < j < (n — 1),
then no two ¢™-cyclotomic coset modulo n can be within one ¢-cyclotomic cosets
modulo n, since every g¢-cyclotomic coset modulo n is also a ¢™-cyclotomic coset
modulo n. In this case, no two or more transform components with indexes from
different ¢™-cyclotomic cosets can be related. In such cases, the F,LC codes are
completely specified by the invariant subspaces from which the nonzero transform
components take values. Two such cases are n = 15, = 2and m = 3 and n =
63,¢ =2 and m = 5.

This special case is obtained if e; is a prime then for all values of m. For example

n =31 and ¢ = 2.

2. m=1: When m = 1, the codes under consideration are conventional linear cyclic
codes over F. This case is also the special case of the previous one i.e., the case for

which no related components are possible.

2.4 Dual Codes of F,LC Codes

In this section, the equivalent condition in transform domain for two codes being dual
of each other is derived, and nonexistence of self dual F,LC codes for certain cases is
proved. Unlike linear codes, dual of an F,LC code has been defined as Fj-dual w. r. t.
an Fy-basis of Fim [1]. That is, if {71,792, -+, Ym} is an F-basis of Fym, then two vectors
a,b € Fj, are called orthogonal to each other, if Zf;ol Z;n:l a;;bij = 0, where a;; and b;;
denote the j-th components of a and b respectively. Henceforth, ‘¢r’ will always denote
the Fym /Fy-trace.

Definition 5. [81] An Fj-basis {71,72,- -, Ym} of Fym is called a self dual basis if

tr(viy) = 1 ifi=7j
— 0 ifi#]
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Clearly, the j-th component of x € Fm w. r. t. a self dual basis is given by tr(v,z).
It is known [82] that a self dual basis exists if and only if ¢ is even or ¢ and m are both
odd.

We consider only the cases where a self dual basis of Fj= exists and in which case
define F, duality with respect to such a basis. The following theorem gives the transform

domain condition for two vectors to be F,; dual of each other.

Lemma 2.4.1. For any a,b € F., a L b if and only if

tr <§A—k3k> = 0. (29)

Proof: Suppose {71,72,*+,Tm} is a self dual basis of Fym.

n—1 m
alb & Z Zaijtr(’yjbi) =0
i=0 j—1
n—1 m
& tr Z Z aij’yjbi> =0
i=0 j=1
n—1 m n—1
& tr ZZaiﬂJ-Za szk> =0
=0 j=1 k=0
n—1 n—1 m
& tr Z By Z a * Z aZ]’yJ) =0
k=0 1=0 7=0
n—1 n—1
& tr ZBk Za‘ika,) =0
k=0 =0
n—1
& tr ZBkA—k) =0.
k=0

Theorem 2.4.1 specializes to the case of m =1 as: a | b iff Zz;é A_; By =0.

Since for an F,LC code C, transform components in different g-cyclotomic cosets are
unrelated, using Theorem 2.4.1, we can write C* as (note that Jy, Jy, - - -, J; are the distinct

g-cyclotomic cosets of I,):

ct = {bEFq"m\tr (ZBkAk) =0fore=1,---,t and VaEC}

keJ;
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and the J;-subcode of C* obtained by restricting A;; j € J; to zero can be written as

ch, = {b € Fl|tr (Z BkA_k) =0and B,=0fork ¢ J; Va € c}

2
ked;

= {b € Fyultr (Z BkAk> =0and By =0for k & J;Va € le}(2.10)

keJ;

So, (C*) ;. is the biggest code with zero transform components outside —J; = {—j mod n|j €

J;} which is orthogonal to C_,.

Using Theorem 2.4.1, the following nonexistence result for self dual F;,LC codes is

obtained.

Theorem 2.4.2. There is no self dual F,LC code over Fym when (n,q) = 1 and m is
odd.

Proof: For the cases under consideration, there is always a self dual basis {v1, 2, - - -, Ym }
of Fym. Suppose, in the F,LC codes C and it’s dual C*, Ay takes values from the F-
subspaces V' C Fym and V; C Fym respectively. Since Ay is not related to other transform
components, for any v € V| there is a codeword in C with Ay = v and all other transform
components zero. So according to Theorem (2.4.1), Vi = {v; € Fym|tr(vv;) = 0 Vv €
V} = V+. Where V+ is the trace dual subspace of V. If C is a self dual code, then

V =V" = dimg,(V) =m — dimg, (V) which is impossible since m is odd. |

Note that the theorem is independent of the choice of the basis, though a self dual
basis is used to prove it. If a self dual code exists w. r. t. any basis of Fj=, then by

change of basis one can get another code which is self dual w. r. t. a self dual basis.
Corollary 2.4.3. There is no self dual m-QC code over Fy of length mn if m is odd and

(n,q) = 1.

Suppose ¢ and m are even, n is odd and g-cyclotomic cosets modulo n are all singletons.
Then, by equation (2.10), Ay should take values from one self dual subspace of Fym i.e.,
a subspace V such that

V = {v & Fml|tr(vu) =0 for each u € V'}. (2.11)

With respect to a self dual basis of Fym, such a subspace is image of a self dual code of

length m over F,. Since number of self dual codes of length m over Fj, is HEII(qZ +1)
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(see [20]), V can be chosen in Hﬁ;l(qz + 1) ways. For any other k € I,, Ay can be
chosen to take values from any subspace Vi of Fym and A_j should take values from
it’s dual subspace. So, the number of ways in which subspaces for A; and A_; can be
chosen is N(m, ¢)= number of distinct subspaces of Fym. So, the total number of self dual

quasi-cyclic codes with these parameters is N(m, q)"T_1 z;l(qi +1).

Remark: Cor. 2.4.3 and the above expression for the total number of quasi-cyclic self

dual codes is also available in [8] and also follows from the results in Chapter 4 as corollary.

2.5 Parity Check Matrix and Minimum Distance of
Quasicyclic Codes

For linear codes, Tanner [80] used parity check equations over an extension field to derive
minimum distance bound in terms of minimum distance of certain cyclic codes. Given a
binary parity check matrix of a binary QC code, Tanner used block-wise DFT or block-
wise linearized polynomial transform or Kronecker product of the two to get a set of parity

check equations over an extension field of F5.

An n-length F,LC code over F;m can be considered as an m-QC code of length nm
over I, by expanding each component as Fj-linear combination of an Fj-basis of Fym.
Similarly, any nm-length m-QC code can be considered as an n-length F;,LC code over
Fym. Here it is described how in some cases one can directly get a set of parity check
equations of a QC code over an extension field of F, from the transform domain structure
of the corresponding F, LC code. Before doing so, we first give a theorem (Theorem 2.5.1)
for the distance bound. This is in a slightly different form from Tanner’s related theorems
(80, Theorems 6,8 and 10] and the proof is also similar. Power of a vector will mean

component-wise power.

Theorem 2.5.1. Suppose, the components of the vector v € F. are nonzero and distinct.
If for each k = ko, ky,---,ks_o, the vectors v¥ are in the span of a set of parity check
equations over Fy, then the minimum distance of the code is at least that of the cyclic
code of length " — 1 with roots B*, k = ko, k1, -+, ks—o where B is a primitive element of
Fy.

Proof: Let C be the code, which has v*, k = kg, k1, - - -, ks_o in the span of it’s’ parity

check equations. Let the corresponding cyclic code be C..
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Suppose v = (v, vy, -+, v, 1) with v; = 8%, where \;’s are distinct.
For any a € C with weight wy(a) = d, we’ll show that 3a’ € C, , s. t. wy(a’) =d.
We construct a’ as

ay, = a; fori € [0,n —1]

a; =0 when j # \; Vi € [0,n— 1]

Clearly, wy(a') = d.

Now,

n—1

acC = > awf=0 for k=kho ki, ks_s

1=0

n—1

= 3B =0 for k=ko ki, ks
1=0
q" =2

= S AT =0 for k=ko ki, ks s
7=0
= a' eC..

The idea behind this theorem is that, if a code has certain powers of v as parity check
vectors, then the code can be seen as a shortened code (that is, the code obtained by
taking the codewords with certain positions zeros and then deleting those positions)[20]
of a cyclic code of length ¢" —1. Not only is the minimum distance of the code guaranteed
to be at least that of the cyclic code, the decoding algorithm for the cyclic code can also be
used to decode the shortened code. The decoder only have to pad zeros in the truncated

positions and decode from the resulting ¢" — 1 length vector.

If k;, = kg+1i in Theorem 2.5.2, by the BCH bound one can conclude that the minimum

distance of the n length code is at least 0.

Here is a natural generalization of the results using which some minimum distance can

be guaranteed by viewing the code as a shortened code of an abelian code.

For s vectors vy, vy, -+, vy over Fyr of lengths ny, ng, - - -, n, respectively, let vi Kvy X

.-+, Xv, denote the ny; x ng X - - - X ng array with (i1, 42, - - -, i5)-th element vy ;, v, - - - Vs ;.

Theorem 2.5.2. Let r be an arbitrary positive integer and the components of each of the

vectorsvy; L =1,---,s of lengths ni,ng, - - -, ng respectively be nonzero and distinct. If the
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components of the code can be arranged in an ny X ny X - - - X ng array, such that for each
ki = kio,kii, -, kig—2 forl =1,---,s, the arrays v’fl X v§2 X ... XK vk are in the span
of a set of parity check equations over Fy, then the minimum distance of the code is at
least that of the s-dimensional cyclic code of length (q" — 1)* with roots (3%, B*2, ... gke),

where 8 is a primitive element of Fir.

Proof: Let C be a code having v¥'Xvk2X. . .Kvks in the span of it’s’ parity check equations
for k; = ko, ki1, -+, kig—2 for I = 1,--+,s. Let the corresponding s-dimensional cyclic
code be C,.

Suppose v; = (1,0, Vi1, ", Uppy—1) With vy; = Bri, where Aii # Ny fori# 55 Vi
For any a € C with weight wg(a) = d, we’ll show that 3a’ € C, , s. t. wy(a') =d.

We construct a’ as

I p— . . 1 e o )
@y, i, ey = Qiryeie £OT (61,77 + 1 4s) € Tnyxng,xoo xng

a’jl,"',js =0 when (jl: Tt 7js) # ()‘l,ila Tty )‘s,is) V(il, T, Zs) € In1><n2,><---,><ns

Clearly, wy(a') = d.

Now,
ni—1 ns—1
E E k1 ks __ _
aEC = ail,...,isvl’il ""Us,sis =0 fOT kl = kl,Oakl,la"'ukl,Jlf% e,
11=0 ts=

ks - ks,O; ks,la Tty ks,Jsz

ng—1

ni1—1
§ : E : ! A1,iq k1 As,isks "
:> P a}\l‘il’m’)\s’isﬁ 1 “ e ﬁ s,igfvs — O

11=0 1s=0

71 q”lfl
! jik1 | .. Risks _ "
=YY B f =0
Jjs=0

Though Theorem 2.5.2 gives a way to get minimum distance bound of any linear code,
for which a set of parity check equations over an extension field is known, it is very difficult
to know which arrangement of the code components in how many dimensions with what
choice of v;’s will give the maximum bound on the minimum distance. Even for the one-
dimensional (s = 1) case, it is very difficult to choose the best vi and arrangement of

code components because of the huge possibility of choices.
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Recall that the correspondence between FyLC' codes over Fym and m-QC codes over
F, is with respect to an Fi-basis of Fim. Let us take a basis {fo, 81, -+, fm—-1}. By our
characterization of F;,LC codes in DFT domain, we know that for any j € [0,n — 1], A;
can take values from any o/-invariant subspace of Fmrj. In particular, A; can take values
from subspaces of the form ¢! F, where e;|l and {[mr;. Such a DFT domain restriction

gives a parity check equation of the corresponding QC code over Fymr as follows.

Aj € C_qul <~ CAj e F

1
n—1 m—1 q n—1 m—1
7 7
S CE ot E Oiz P =c§ a” g Oiz Pz
1=0 =0 1=0 =0
n—1 m—1 n—1m-—1
.. l l
& ! E g a;za”? [l :CE E izt By
i=0 =0 1=0 =0
n—1 m-—1
Z 2
& a; ( id ,Bq coﬂﬁm) =0
=0 =0

This gives a parity check vector h = (hoo, R0, Rom—1," " Pn—1,0,"** s Pn—1,m—1)
with h;, = (cqlaiquﬁgl — ca"jﬁac). If A; = 0, it gives a parity check vector h with
hi,z = aij/Bm-

Now, for an F,LC code, Aj can be related to several other transform components

Aj, A, -+, Aj, by homomorphisms, where ji,-- -, j, € [k]Z. Then, for some constants
Cz,h, E qu'r’
-1
hieg+t1
Ak = E Cl,hlAg'l +
h1=0
lw—1
hwepg+tw
q
+ E Cw,thjw
hyw=0
thek+t1

-1
n—1 ik _
& Doy G0t E €1y E a;o + -
h1=0
lw—l qhwek-‘rtu)
+ E Cw, by E a; ¢

hy=0
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n—1_ ik — gheRti ijighiekth
= Do aiod = C1,hy a; o +
h1=0 =0
ly—1
hwek-i-tw Z hweg+tw
E E Jwq
+ Cy Jha
hyw=0
n—1m—1 h—1
k _ hieg+t1 i1 hieg+t1
& Y 4 = iz Y 1B ot +
=0 =0 h1=0
n—1 m—1 lw—1
hwep+tw i ghwepttw
E E E q Jwq
+ Qg Cw,hwﬁz (e
=0 =0 hyw=0
n—1m—1 -1 lw—1
ik thek+t1 i'thek+t1 qhwek+tw i qhwek+tw
= E E iz | Bo™ — E 1, Oy o't - Cuw,hoy B ot
=0 =0 h1=0 hyw=0

This gives a parity check vector h with h; , =
ik I1—1 thek+t1 ijlthek+t1 lw 1 qhwek+tw 2] qhw€k+tw
(ﬁwa’ — 2 h1=0 cl,h15z @ - Zhw—o w hwﬂ o .

The component wise conjugate vectors of the parity check vectors obtained in these
ways and the vectors in their span are also parity check vectors of the code. However, in
general for any F, LC' code, the components may not be related simply by homomorphisms
or components may not take values from the subspaces of the form C_quz. In those
cases, the parity check vectors obtained in the above ways may not specify the code
completely. But still those equations can be used for estimating a minimum distance

bound by Theorem 2.5.1 or Theorem 2.5.2.

Since the DFT components in different g-cyclotomic cosets modulo n are unrelated,
the set of parity check equations over Fy, are union of the check equations corresponding
to each ¢-cyclotomic coset modulo n. In a minimal code, any nonzero DFT component
A; takes values from a minimal o/-invariant subspace and all other nonzero components
(which are in the same g-cyclotomic coset modulo n) are related to A; by an isomorphism.
So, for any minimal code, a set of parity check vectors completely specifying the code
can be obtained. Since for any one-generator code, [j]?-subcode is minimal or zero for
each j, a set of parity check vectors completely specifying the code can be obtained
for one-generator codes also. There are however other codes for which complete set
of parity check vectors can be derived. In fact, codes can be constructed by imposing
simple transform domain restrictions and thus allowing derivations of a complete set of

parity check equations over Fym-. We illustrate this with the following two examples.
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If B is a primitive element of Fymr, then o = 5# is used as the DFT kernel and

{1,8,5%---,8™ '} is taken as the basis.

Ezample 2.5.1. We consider the F5, LC code of length n = 3 over Fj4 given by the transform
domain restrictions Ag = 0 and A, = 3*A? + 5943, With the chosen basis, these two

restrictions give the parity check vectors of the corresponding 4-QC code

h(l) = (1:/87ﬁ27/33717ﬁ:/82763:17ﬁ7/827ﬁ3)
and h(2) = (58’B57ﬁ12,ﬁ6,ﬂ3’ 17ﬁ77ﬂ7513aﬁlouﬁ27ﬁ11)

respectively. Component-wise conjugates of these vectors are also parity check vectors.
Moreover,

h(2)3 = (8°,1, 5, 8%, 3°, 1, 8%, 3%, 8%, 1, 8%, %) = Bhyy) + 68h(1)2 + 56h(1)4 n h(l)s and
hp' = (1,1,1,1,1,1,1,1,1,1,1,1) = B%hy) + f7hyy® + B%hqy* + 3h)®. So, five
consecutive powers of h() are parity check vectors of the corresponding QC code. Clearly,
the dimension of the code is 4 since A; € Fy. So, the corresponding QC code is a [12,4, 6]

code.

Ezample 2.5.2. Consider the F,,LC' code of length n = 3 over Fys given by the transform
domain restriction A; € $%2Fy2, where the DFT is taken over Fys. With the chosen basis,
this restriction in DFT domain gives the parity check vector of the corresponding 3-QC
code of length 9 :

h = (554, ﬁ14, 535,ﬁ55, 515,536, B56aﬁ167 B37) ]

The components of this vector are nonzero and distinct. Since h and it’s conjugate h? are
both parity check equations of the QC code, this gives a minimum distance lower bound
of 3. If the vector h® = (1,1,---,1) is included as a parity check vector, a minimum

distance bound of 4 is obtained.

2.6 Discussion

The class of Fy-linear cyclic (F,LC) codes over Fym have been characterized using the
DFT defined over an extension field of Fjm. The characterization is used to get minimum
distance bound for m-quasi-cyclic codes of length mn. The characterization is also used
to prove a nonexistence result for self dual quasi-cyclic codes. Some interesting special

cases have been identified and discussed.
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Chapter 3

Quasi-cyclic Codes

3.1 Introduction

A code is called [-quasi-cyclic if cyclic shift of every codeword by [ positions gives another
codeword [20]. The class of quasi-cyclic codes is a generalization of cyclic codes (I=1)
and has been studied by several authors in various context. The connection between
quasi-cyclic codes and convolutional codes have been studied in [83] and [84]. The class
of quasi-cyclic codes contain good codes in the sense of meeting a version of the Gilbert-
Varshamov bound [4]. With restrictions on the parameters, quasi-cyclic codes have been
investigated in [51-56, 77, 85—88]. Some of the early works on quasi-cyclic codes are done

using the properties of circulant matrices by Karlin [64, 89].

There has been renewed interest in quasi-cyclic codes due to their close relationship
with tail-biting representation of general block codes [90]. For instance, motivated by the
64-state quasi-cyclic representation of the (24, 12, 8) Golay code, reported in [83], theory of
tail-biting representation of block codes is initiated in [90] and minimal tail-biting trellises

for several codes including the Golay code are reported.

For studying [-quasi-cyclic codes, quite often [4, 6, 7, 51-56, 80, 83-87] co-ordinates of
a codeword a = (ag, a1, -+, a,_1) are permuted and blocked as ((ag, a;, ag, - - -, a(%—m),
(a1, a141,09141, "+ -, a(%_l)lﬂ), oo (a1, a9-1,03-1, ++,ay_1)). With this co-ordinate or-
dering, generator and parity check matrices (with possibly some redundant rows) can be
written as matrices with 7 X} circulant matrices as elements. It specializes to cyclic codes
with [ = 1 resulting in only one block in the codewords and circulant matrices as genera-

tor and parity check matrices. In the recent literature [7], Lally and Fitzpatrick consider
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the codewords in the blocked polynomial form as (¢ (X), e (X),a®(X),---,a="D(X))

where a®) (X) = a; + @iy X + aip X2+ -+ ai+(%_1)1X%_1) and view a quasi-cyclic code
1

as a submodule of (%) . The authors then investigate the structural properties of

quasi-cyclic codes with the help of Groebner bases of modules over F,[X]. Essentially

the same module structure was imposed by Conan and Seguin in [5, 6] in unblocked
form of codewords. They imposed an F,[X]-module structure on the code by defining

f(X).a = f(T")(a), where T is the cyclic shift operator. Since (X7 — 1) C F,[X] an-

Fy[X]
(xT-1)
form of a codeword can be obtained from the blocked polynomial form of a codeword as

a(X) = a@O(X") + XaW(X!) + X2 (XY + - - + X1al=D(XY).

nihilates the code, the code can be seen as an module. Unblocked polynomial

Tanner in [80] gives ways to transform block circulant binary parity check matrix into
a parity check matrix over an extension field by block wise DFT or linearized polyno-
mial transform. He gives an interesting way to estimate minimum Hamming distance
bound from such parity check matrix. For using block wise DFT, one need the condition
(7,2) = 1, whereas linearized polynomial transform does not need any such condition to
be satisfied. Using block wise DF'T, Ling and Solé [8] showed that in some cases quasi-
cyclic codes can be constructed by well known construction methods from lower length

codes.

In this chapter the structural properties of quasi-cyclic codes are investigated in trans-
form domain using n-length DFT of the unblocked codewords. This needs (n,q) =1, an
even stronger condition than (%, ¢) = 1. In a similar way as in [80], our approach is shown

to give useful minimum Hamming distance bound.

The content of this chapter is organized as follows: In the next section, quasi-cyclic
codes are characterized in DFT domain. Construction of parity check equations over
an extension field from transform domain structure of quasi-cyclic codes is studied in
Section 3.3. How such parity check equations can give minimum distance bounds are
also discussed in this section. Finally in Section 3.4, the chapter is concluded with some

possible directions of further investigation.
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3.2 Quasi-Cyclic Codes in Transform Domain

Let F, denote the finite field of cardinality ¢g. Linear codes over F, of length n are
considered where (n,q) = 1. Let [ be a positive integer dividing n. A code is called
l-quasi-cyclic if the code is closed under cyclic shift by [ symbols. Obviously, I=1 gives

cyclic codes. Throughout the chapter only linear quasi-cyclic codes are discussed.

Let 7 be the smallest positive integer such that n|(¢" — 1) and o € F» be an element

of order n. Then DFT and inverse DFT of n-length vectors are defined in usual manner.

For any j € [0,n — 1], the residue class modulo 7 of j, denoted by (j)n,, is defined as
(f)ny = {i € [0,n —1]|j = mod 2}.

Cardinality of (j),,; is [ for all j € [0,n — 1]. If a vector is cyclically shifted [ times, every

transform component in a residue class modulo 7 is multiplied by same scalar.

Like g-cyclotomic coset modulo n, on the same set [0,n — 1], let us define g-cyclotomic

coset modulo 7 of j, denoted by [j]=, as
[j]= = {i € [0,n — 1]|j = ig" mod } for some non-negative integer ¢}.

Let us define the length of [j]% as the number of elements in it that are less than 7. The
length of [j], is same as it’s size and will be denoted by r;. Note that the length of [j]% is
the same as the length of [jI], and hence is denoted by ;. Clearly, ri; = ry, if [j]2 = [k]=

7
a cyclotomic coset modulo 7 of [0,7 —1]. Suppose S = [j]= N[0, 7 —1]. Then clearly

Jla =SUS+F)U---U(S+ (I —1)%)- So, [[jlz| =1[S] = Iry.

and r; = ry if [j], = [k],. Each cyclotomic coset modulo 2 of [0, — 1] corresponds to

Clearly, a g-cyclotomic coset modulo 7

n. If J C[0,n — 1], we write [J], = Uje, [j],, and [J]% =Ujeys [j]%

is union of some g-cyclotomic cosets modulo

Ezample 3.2.1. In {0,1,2,3,4,5,6, 7,8}, the cyclotomic cosets modulo 9 and modulo % =3

[0]o = {0}; [1]s = {1,2,4,5,7,8};[3]p = {3, 6}

and
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[0]s =40,3,6};[1]3 = {1,2,4,5,7,8} .

The length of the cyclotomic cosets modulo 9 are same as the size of these sets, whereas
the length of [0]; is 1 and not same as it’s size. Similarly, the length of [1]3 is 2 whereas

it’s size is 6.

Let C be a linear [-quasi-cyclic code and Cp = {DFT(a)|a € C}. From the definition
of linear quasi-cyclic codes and the cyclic shift property, it follows that Cp should satisfy

the following two properties:
1. Cp is a vector space over Fj,.
2. If A € Cp and B € F} such that B; = o¥A; for j =0,1,---,n — 1, then B € Cp.
The second property above leads to

Theorem 3.2.1. Let J = {j1,J2,- -, 51} C In be a residue class modulo 7 with j; < jp <
--- < 7;. The set of ordered tuples of transform components Ay of all the codewords of a

linear I-quasi-cyclic code is an F i, -subspace of Firiy X Fyriy X -+ X F .

However Aj; can not take values from arbitrary F ;i -subspace. The subspace should
conform with the conjugacy constraints on the components. As an example, consider
binary 3-quasi-cyclic codes of length 9. The set {0, 3,6} is a residue class modulo 3. The
3-tuple (A, A3, Ag) should take values from an Fy-subspace V' of Fy x F; x F; such that

any vector = (11,19, 23) € Fy X Fy x F satisfies z3 = 3.

If C is m-quasi-cyclic and S C Fjr is a/-invariant, then clearly the subcode obtained
by restricting the ;™ transform component to S is also m-quasi-cyclic. If the nonzero
transform components can be partitioned into two mutually unrelated and disjoint subsets,
then clearly, the code is the direct sum of the two subcodes obtained by restricting each
subset of transform components to zero. In particular, for two mutually unrelated subsets
of the form S and S¢ where S¢ = [0,n — 1]\ S, we have C = Cs @ Csc. A quasi-cyclic

code is called minimal if it does not contain any proper nonzero quasi-cyclic subcode.

Note that when specialized to [=1, Theorem 3.1 reduces to the well known fact for
cyclic codes: the set of values taken by A; is either {0} or F,;. In the case of cyclic codes
components of transform vectors from two different [j;], and [js], can never be related to
each other. Whereas for [-quasi-cyclic codes they can be related provided [j1], and [j2],

are in the same cyclotomic coset modulo 7 [Theorem 3.2.4]. Notice that when m=1, the
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set of cyclotomic cosets modulo n and modulo - are identical and there is no room to

relate transform components of different cyclotomic cosets.

In the following subsection minimal quasi-cyclic codes are discussed and the general

case is discussed in the next subsection.

3.2.1 Minimal Quasi-Cyclic Codes

In a minimal quasi-cyclic code, for any j € [0, n—1], A; should take values from a minimal
oY-invariant subspace, since otherwise, A; can be restricted to a minimal aM-invariant

subspace to get a proper quasi-cyclic subcode.

Now, consider any j,k € [0,n — 1] such that none of A; and Ay are zero for all the
codewords of a minimal /-quasi-cyclic code C. Suppose A; and A take values from the
minimal o/-invariant and o/*-invariant subspaces Vi; and Vj;, respectively. Since the code
is minimal, if A; is restricted to {0}, then the subcode obtained is the zero code. Since
the code is linear, for any other element g in Vj;, there is only one codeword in C with
A; = B. This is true for any nonzero transform component in C. So, A; and A are
related by a linear invertible map of Vj; onto Vj;. But because the code is quasi-cyclic,

arbitrary linear invertible map can not relate two nonzero transform components.

The following two lemmas will help to identify the possible linear invertible maps,

connecting two nonzero transform components in a minimal quasi-cyclic code.

Lemma 3.2.2. Let 0 : Fyp — Fyp be an Fy-linear invertible map and B and (' two
elements of Fy with cardinality of their conjugacy classes t. If o(Ba) = f'o(a) Va € Fy,

then, B' = B¢ for somet <t and o : a —> ca?' Va € Fy for some unique ¢ € Fy.

Proof: Any map of Fy into Fy is induced by a unique polynomial over Fy: of degree
at most ¢ — 1 [81]. Let the polynomial f,(X) = Zg;l ;X' € Fp[X] be such that
o(a) = f,(a) Va € Fy. In this case, ¢y = 0 since f,(0) = o(0) = 0.

For any s € Fj:, define the permutation A\ : Fix — Fyt as A\; : a — sa.

By hypotheses,

O')\ﬂ = )\/3/0' (31)
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Clearly,
q'—1
fors(X) =D e X
i=1
and

gt-1
Froe(X) =) af X
=1

Equation (3.1) implies

B = ¢Bf for i=1,2,---,¢ -1

= 3 = [ whenever ¢; #0

If, for some i; < ¢* — 1, we have ¢;, # 0, then f,(X) = ¢;, X" +---.

Since o is Fi-linear, we have

o(sa) = so(a) Vs € F, and Va € F
= oXs = A0 Vs € Iy
= ;8" =sc¢, Vs€F,
= s=s" Vs€eF,
=

i1 = g™ for some t; < t.

Suppose, di; = ¢'' | iy = ¢*2, t1,ty < ¢, such that ¢;,,¢;, # 0. Then,

go= p"=p"
= t|(t2 —t1)

= ta=1;

So, there is only one nonzero term in f,(X) and that is of degree ¢ for some positive

integer ¢’ < ¢t and thus the lemma follows. u

Lemma 3.2.3. Let 3 and ' be two elements of Fp such that lengths of their conjugacy
classes are both t, and sFy: and s'Fj be two B and [B'-invariant subspaces in Fy-. Suppose
0 :sFy — s'Fy is an Fy linear invertible map. Then o satisfies o(Ba) = B'o(a) if and

only if ' = ﬁqt’ and fo(X) = X for some unique ¢ € §'s~d" Fp andt <t.
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Proof: The reverse implication is trivial. So only the forward implication is proved here.

1

Let us define a map o' : Fp — Fyp as 0’ : a —> (s')"'o(sa). Clearly, ¢’ is an Fj-linear

map and

o'(Ba) = (s")"'o(sBa)
= (s)'Bo(sa)
— ﬁlal(a/)
So by lemma 3.2.2, 5’ = Bqt’ for some t' < t and f(X) = ¢ X for some ¢ € Fy.

By definition of o', 0(a) = s'0'(s™'a); Va € sFy and so, f,(X) = s'fn(s7'X) =

it ¢! ¢! _ ot
§'s71 X9 =cX? where c=s's77 (. n

The following theorem identifies the relations between transform components of dif-

ferent cyclotomic cosets modulo n that give minimal /-quasi-cyclic codes.

Theorem 3.2.4. In an n-length minimal l-quasi-cyclic code, transform components in
only one cyclotomic coset modulo 7, say [j]%, s nonzero and any two nonzero transform
components Aj, and Aj,, where ji, j2 € [j]» and [ji]n # [ja]n, are related by an isomor-
phism o with f,(X) = cX? for some unique ¢ € Fy, where t is such that j, = j1¢* mod 7

If A, and Aj;, take values from sF,; and s'Fpy respectively, then c is from s’s‘thqnj.

Proof: In a minimal quasi-cyclic code, if A;, and Aj, are nonzero, then A; and Aj;, take
values from minimal o' and o//?-invariant subspaces of F,r;, and Fr;, respectively, and
Aj, is dependent on A; by an Fi-linear invertible map o, i.e., A;, = 0 A;,. Since the code
is [-quasi-cyclic, o should satisfy o(a¥'a) = a?0(a). So, by using Lemma (3.2.3) with
B =Y and 8" = o¥2, we see that ljo = [,¢" mod n for some ¢ < ry;,, i.e., ljo and lj; are
in same cyclotomic coset modulo n or equivalently, jo and j; are in same cyclotomic coset
modulo 7. So, in a minimal quasi-cyclic code, transform components are nonzero only in
one cyclotomic coset modulo . Moreover, again by Lemma (3.2.3), if jo = ji¢" mod %,

then the isomorphism o is given by f,(X) = cX 4" for some ¢ € Fyr. [

Ezample 3.2.2. Consider length n=9, binary (¢=2), 3-quasi-cyclic codes(! = 3). The
cyclotomic cosets modulo n are {0},{3,6} and {1,2,4,5,7,8} and the cyclotomic cosets

modulo » = 3 are {0,3,6} and {1,2,4,5,7,8}. The number of minimal a-invariant

1
N
. s . q J -1
subspaces in Fr; is given by .

“mi—- For the example under consideration these values

are tabulated in Table 1 for all cyclotomic cosets. (The double vertical lines demarcate
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cyclotomic cosets modulo 7 and the single vertical lines further demarcates cyclotomic
cosets modulo 7 in the cyclotomic cosets modulo 7.) The minimal codes with non-zeros
only in the cyclotomic coset {1,2,4,5,7,8} can not be connected to any other cyclotomic
cosets and there are 21 such codes each corresponding to one o3-invariant subspace in
Fy. Table 3.3 in page 50 shows all other minimal 3-quasi-cyclic codes possible. There is
one minimal 3-quasi-cyclic code (C; in Table 3.3) with DFT coefficients taking nonzero
values only in the cyclotomic coset {0} modulo 9, and there are three (Cy,Cs,C4 in Table
3.3 with DFT coefficients taking nonzero values only in {3,6}. There are three minimal
3-quasi-cyclic codes in which DFT coefficients in {0} and {3,6} are nonzero and related.
These are Cs,Cq,C7 in Table 3.3, and the relations are given by A3 = cA%t where t = 0

2

and the value of ¢ are respectively 1, o®' and a*2. For comparison the total number of

minimal cyclic codes (I=1) is given at the bottom of the table.
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Table 3.1: Details pertaining to Examples 3.2.2 and 3.2.3

Cyclotomic Cosets
modulo -

{0,

3,6}

{1,2,4,8,7,5} {0,5,10}

{1,2,3,4,6,7,8,9,11,12,13,14}

{0,

3,6,9,12}

{1,2,4,5,7,8,10,11,13, 14}

Length of [j]s;
= ’]"3]

2

1

4

1

2

Cyclotomic Cosets
modulo n

{0}

{3,6}

{172’47877’5}

{0}

{5,10}

{1,2,4,8}{3,6,12,9}| {7, 14, 13,11}

{0}

{3,6,12,9}

{1,2,4,8} [{7,14,13,11}{{5, 10}

Length of [j]g
ne =rj

6

2

4 4 4

4

4 4 2

Number of min.
o3/ -invariant
subspaces in

.
o g7-1
FqT] g% 1

21

15

# of min.
quasicyclic codes
with unrelated
transform
components

21

15

# of min.
quasicyclic codes
with related
transform
components

270

15

330

Total# of min.
quasicyclic codes

28

280

372

Total# of min.
cyclic codes

Sopoy) oIpoAo-1send) ¢ reydey)
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The relations in the above example for codes with related transform components turn
out to be simple and straightforward. To exemplify more than two cyclotomic cosets

modulo n being related the following example is given.

Ezample 3.2.3. Consider binary codes of length 15. We have [-quasi-cyclic codes for (=3
and [=5. For both these values the cyclotomic cosets and possible minimal quasi-cyclic
codes are classified in Table 1. In Table 3.4 in page 50, the codewords and their transform
vectors for four minimal 5-quasi-cyclic codes with different cyclotomic cosets modulo n
related are listed. For the code C;, the cyclotomic cosets {7,11,13,14} and {1,2,4,8}
are related and the relation is A7 = o”A;, that is t = 0 and ¢ = . The relations for
the codes Cy and Cj are respectively A5 = a®A? and A; = o®AZ. The code C4 has been
obtained by relating the three cyclotomic cosets {1,2,4,8}, {5,10} and {7,11,13,14}.

The relations are A5 = o' A? and A; = o3A;.

Clearly, any nonzero vector is contained in a minimal quasi-cyclic code if and only

n

if DFT of the vector is nonzero only in one cyclotomic coset modulo 7. That minimal

quasi-cyclic code is spanned by the [-shifts of the vector.

3.2.2 Arbitrary Quasi-Cyclic Codes

Let C be an arbitrary quasi-cyclic code and suppose A; is nonzero for C and takes values
from an oY-invariant subspace V of Fyi. Let Vi and V5 be two a¥-invariant subspaces
of V such that V. = Vi + V5. If C; and C, are the quasi-cyclic subcodes obtained by
restricting A; in the subspaces V; and V5 respectively, then clearly, C = C; +C,. (However
if V=V, &V, then C = C; & Cy need not be true. In fact, C; N Cy is the subcode of C
obtained by restricting the transform component A; to {0}.) By successively doing this,
we can decompose the code as sum of a family of subcodes, each of which has any nonzero
transform component A; taking values from some minimal aM-invariant subspace. Now,
let us consider one such code (which is a subcode of the original code). Let {ji, jo,- - -, ji}
be a set of representatives of different cyclotomic cosets modulo n, where transform com-
ponents are nonzero in the code. We construct a subset L of {ji,72,---,j:} as follows.
First assign L = {j,}. Suppose A; takes values from the minimal o/’-invariant subspace
Vj,. In the subcode obtained by restricting A; to 0, A;, will take values from either VJ,

or 0. If it takes values from 0, then clearly, A;, is related to A;, by an isomorphism.

J2

Otherwise, A;, and A;, take values independently and in that case keep j, in L. Next
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Table 3.3: Minimal 3-quasi-cyclic codes of Example 3.2.2

DFT
Ay

As A7 Ag

As

A Ay Aj

Ao

Codewords

a3

as G¢ Gr as

Q4

ay az

Qo

Ci

Co

Cs

Cy

Cs

Ce

Cr

Table 3.4: Codes of Example 3.2.3

DFT

a’? «

0
0 0 o™ 0 a o't

0 0 ot

0a®* 0 0 a® of

a12 aﬁ

0

0 0 0 O

0 o

[0}

0 0 0 O

1

0

1 0 0 af

0 o

alz ab

0
0 ald 0 0 0510 0514 0 C“7 all

0a> 0 0 1 &

1

0

alO 0 a5 alO

a 0 1
0a10

1 0 o

1

alO Oé5

0
0

1

0 1 af

Codewords
Qo G1 G2 A3 G4 Q5 Gg G7 Gg Qg 10 G11 A12 13 G14[Ag A1 Ap Ag Ay As Ag A7 Ag Ag A1g A1 A1z A1z Ars

0ooo0oo0o0000000000O0O0O0OOOOOOOOOOTGOTGO0OCO0OO0

000110111101 10 0[0 aa?

0111101100000 1 1[{0a%a20a 0 0a3a°

1 1{0aa” 02 0 0 2a®0 0 &°

01100000110 11

0oooo0o000000000O0O0O0OOOOOOOOOOTGOTUO0OCO0OO0

11111011101 000 1[/0a®a®0a®a¥0 0

1 1{/0a"a™®0a®a®> 0 0700 0 0 O

1
1 0[0a'2a’
0000000O00OO0OOOOUO|OO O0OOOOOOO®OO©O O OO

1

10001111110 11

01110100011

1 0(0 0 0 0 O

11111100010 1 1

0111011111100 O0 1|00 000

1 1{/0 0 0 0 0a'®0a® 0 0 a® of

1
0oo0o00000000000O0O0O0O0O0OOOO0OOOOO0OOO0OTO0OUO0CO0O0

1

10001011101

01111001110 100 0[0a%a*®0af

1 1[/0a2a” 0 a® a°

01000011110 01

1 1[0 a"a™ 0 a®al® 0 a'®a!t 0 a® o

00111010000 1 1

G

Cy

Cs

Cs

Bikash Kumar Dey
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restrict all the transform components indexed by elements of L to 0 and check a transform
component Aj, not yet considered. If its values vary over Vj,, then put j; in L. Continuing
this way, we’ll get a set L such that all the transform components indexed by its elements
takes values independently and values of all other transform components are determined

by them.

Note that in the process of construction of L, the minimality of V},’s are used and
consequently such a subset L may not exist when V},’s are not minimal o/!-invariant
subspaces. Now, we can decompose the subcode as direct sum of |L| codes, each one of
which is obtained by restricting all but one transform components indexed by L to zero.
Clearly, each subcode thus obtained is a minimal code. So, any quasi-cyclic code can be
decomposed as sum of some minimal quasi-cyclic codes. Just taking a minimal family of
such minimal subcodes such that their sum is the original code, we can express the code

as direct sum of some minimal quasi-cyclic codes. So we have,

Theorem 3.2.5. Any quasi-cyclic code can be decomposed as direct sum of some minimal

quasi-cyclic codes.

Theorem 3.2.5 was first proved in [5]. Note that decomposition of a quasi-cyclic code
in terms of some minimal quasi-cyclic codes is not unique, though for /=1, that is for

cyclic codes such a decomposition is unique.

For a minimal /-quasi-cyclic code, transform components in different cyclotomic classes
modulo 7 are unrelated. So, by Theorem 3.2.5 it is also true for any I-quasi-cyclic code.

This gives the following characterization of [-quasi-cyclic codes in transform domain.

Theorem 3.2.6. A code C is l-quasi-cyclic iff

n

e Transform components in different cyclotomic cosets modulo 7

lated.

are mutually unre-

e Foranyje€l0,7—1], Ay, takes values from an Fyr;-subspace of Fyrj X Fqu+% X

T X Fq’j+(l—1)%-

Though the decomposition of an [-quasi-cyclic code is not unique in general, by first
part of Theorem 3.2.6, any G-invariant code can be decomposed uniquely as direct sum
of some [-quasi-cyclic codes, each having nonzero transform components only in some

distinct cyclotomic class modulo 7. So we have,
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Theorem 3.2.7. Let A;, @ = 1,2,---,¢ be the distinct cyclotomic cosets modulo 7 of
[0,n — 1]. Then,

t
C= @CAZ- (3:2)
i=1

The unique subcodes Cy,’s in (3.2), obtained by considering each cyclotomic coset
modulo 7 are actually the primary components [7] or irreducible components [5] of the

code. In [7], primary components of C were obtained as % C, where f,( ) are the

irreducible factors of X 7 —1. To see the bridge, note that 7-length DFT of X i is nonzero

(X)
in exactly one cyclotomic coset modulo 7, say [0, 7] N [j]=. So, n-length DF'T of ¥ 2 (X, Lis
nonzero in exactly one cyclotomic coset modulo 7, namely [_]]%, because if £ = lg* mod 2 7
Xn_1 - kn_1 lqtn_l . l)lqt%_l . "
then k-th component of n-length DFT of X IS fy = %(alqtl) = f(j((al)lqt) = lg'-

th component of 7-length DFT of X é So, multlplylng ( )1 to C, which is same as
multiplying < W to C in unblocked form, is equivalent to 'zeroing out’ the transform
n

components in all but one cyclotomic coset modulo 2, that is []] . Thus C,,’s are the

primary components of the code.

Let us consider one subcode Cy;. Let j; 1, ji2, -, jJik; be the representatives of the dif-
ferent cyclotomic cosets modulo n in A;. Now, in any quasi-cyclic code, this set of repre-
sentatives can be uniquely partitioned into some subsets such that transform components
corresponding to these subsets are mutually unrelated and any subset can not further be
partitioned in the same way. Let {j;1,7i2, -, Jik;} = U;L;Aiy be the partition. Then
Ca Ca,

the code Cy, can further be decomposed as direct sum of s; subcodes Cp tog?
where Cy,, is obtained by restricting all the transform components of C,, except those

i,19 i,29 3

indexed by elements of [A;;] to zero. Then, we have the unique decomposition

= é @CA (3.3)

i=1 [=1

Notice that in the unique decomposition of C in (3.3), the subcodes C,;, are not
necessarily minimal and moreover these are not necessarily uniquely decomposable into
minimal quasi-cyclic codes. For example, consider the three length 9 binary 3-quasi-cyclic
codes Cy, Co and Cj listed in Table 2. Direct sum of any two of these three give the same
code, which has nonzero transform components in one cyclotomic coset modulo 7 and is
decomposable in three different ways. In [7], the authors give a systematic way to get a

decomposition of the subcodes Cy, using Groebner bases.
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Given any subset S C F', the intersection of all the quasi-cyclic codes containing .S
is called the quasi-cyclic code generated by S. A code generated by a single vector is
called a one-generator quasi-cyclic code [7, 54, 55]. Note that for a one generator quasi-
cyclic code, each component Cy, (see equation (3.2)) is either zero or minimal, since it is
generated by the vector whose DFT components in the corresponding cyclotomic coset

modulo 7 are same as that of a and all other DF'T components are zero.

If a minimal quasi-cyclic code takes nonzero DFT values in [j]=, then it’s dimension

is 7;. Suppose there are t cyclotomic cosets modulo %. If j is in the i-th cyclotomic

coset modulo 7, then let us denote r;; as ;. Considering the dimension, Cy; can be
direct sum of at most [ minimal quasi-cyclic codes (or cyclic irreducible codes as is called
in [5, 7]). The number of ways Cj, of dimension /;#; can be chosen is thus given by
Hﬁz_é (;1% - qht , where empty product is assumed to be 1. So, the total number of distinct
l-quasi-cyclic codes of length n is given by ZIO:O Ellzo th -0 H, 1 (Hﬁ;_é qqlltzl (i;htl)

This formula was originally derived in [5]. From the values of [;’s for a code, lot of
structural informations can be known. As example, if max; [; = [, then one needs at least
[ generators to generate the code. So, for one-generated code, I; = 1 or 0 and at least one [;
is 1. A one-generated code is minimal iff the generator has nonzero transform components
in exactly one cyclotomic coset modulo 7. Dimension of a one generated code is given by
>_ti where the summation is over the cyclotomic cosets modulo 7 where DF'T components
of the generator are not all zeros, that is, where corresponding primary components of the
code is nonzero. In [6, 7], the dimension of the quasi-cyclic code generated by the single
generator in blocked polynomial form (¢(®(X), ¢ (X),---,¢¢ V(X)) is derived to be
n —deg(ged(g(X), g (X), -+, g (X), X7 —1)). The fact that both the formulas are
actually same can be realized just by noting that ¢;’s are actually degrees of the irreducible

factors of X7 — 1.

3.3 Parity Check Matrix and Minimum Distance Bound

As discussed in the previous two chapter, a lower bound on the minimum Hamming
distance of a code can be obtained from a set of parity check equations over an extension
field. In the following, it is shown how one can get a set of parity check equations over

an extension field from the transform domain description of a quasi-cyclic code.
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For an arbitrary j € Iz, suppose Agj),, takes values from an Fir;-subspace V' of
Fpi x FqTH—% X oee X quH(,_l)%. Then V' is the null space of a system of F;-linear

equations of the form

-1
> " Tri(ciAjiin) =0 (3.4)
=0

where T'r; is the quHi% /Fynij-trace:

TTZ : Fq”‘j+i% — qulj
1.
T r+a?+--- 42

where [; = TJ%% Now equation (3.4) can be rewritten as
J

This gives a parity check equation over F;- for the code.

The component wise conjugate vectors of the parity check vectors obtained in these

ways and the vectors in their span are also parity check vectors of the code.

Example 3.3.1. Consider an | = 3-quasi-cyclic code of length n = 9 over F; given by the
frequency domain restriction A; € 873F,, where 8 = X is a primitive element (Fy4 is
constructed as F[X]/(X®+ X + 1) and the DFT is defined over Fg4 with the DFT kernel
a = 7). Note that conjugacy constraints allow A; to take any value from Fg4. But in
this particular quasi-cyclic code, A; takes values from a minimal a3-invariant subspace.

The restriction 4; € 373F, gives the parity check vector:
h = ((530/)4 _ 530/’)
=0 to 8
= (B%,8%,87,8°% 8", 87,87, 5%, 87)

Components of h are distinct and nonzero and h2, being a component wise conjugate of

h, is also a parity check vector of the code. So, Theorem 2.5.1 guarantees a minimum
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Hamming distance at least 3 for the code. So, it is a [9,5,> 3] code. If we impose the
further condition Ay = 0, then we get another parity check vector h® = (1,1,---,1) and

as a result we get a [9,4, > 4] code.

3.4 Discussion

In this chapter, a generalization of the well known DFT domain characterization of cyclic
codes over finite fields is obtained. It is shown that for minimal /-quasi-cyclic length n

codes, transform components in different cyclotomic cosets modulo n are related (not

n

1
have identified all possible relations. For non-minimal quasi-cyclic codes the decomposi-

possible for cyclic codes) provided they are in the same cyclotomic cosets modulo 2, and
tion in terms of minimal quasi-cyclic codes is discussed. A way to get minimum distance
bound for quasi-cyclic codes in terms of the minimum distance of a BCH code is shown.
Decoding algorithm for a corresponding BCH code can be used to decode the quasi-cyclic
code upto that minimum distance. However, this technique is difficult to apply for long

codes.
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Chapter 4

Codes Closed under Arbitrary
Abelian Group of Permutations

4.1 Introduction

Codes with rich algebraic structure are of strong interest to coding theorists due to the
ease of design and decoding. Classical families of cyclic codes like BCH codes and Reed-
Muller codes were the center of attraction for a long time. For a cyclic code, the code’s
permutation group contains a cyclic subgroup generated by the cyclic permutation. A
linear cyclic code can also be viewed as an ideal of the group algebra on the cyclic group
of order n (length of the code). More generally, ideals of group algebras on abelian groups
are known as abelian codes. Alternatively, the abelian codes on an abelian group G can
be considered as the linear codes closed under the action of a transitive abelian group
of permutations, which is isomorphic to G. Abelian codes were studied using DFT in
(37, 91].

A different direction of generalization gives another class of codes: quasi-cyclic codes.
A code of length n is said to be I-quasi-cyclic for some [|n if every [ times cyclic shift of a
codeword is also a codeword. The permutation group of an /-quasi-cyclic code contains a
cyclic group (of order 7) of permutations generated by ‘I times cyclic shift’. For any vector
(ag, a1, -+, an_1), if every l-th position is blocked together to rearrange the symbols as
((ao, ap, -+, (1(%_1)1), (a1, Gry1, - ,a(%_l)lﬂ), coe (a1, a9, e ,an_l)), then the code is
l-quasi-cyclic if block-wise cyclically shifted version ((a;, aq, - - -, ao), (@141, Gore1, - -+, @1),
-+, (ag 1,031, --,a, 1)) of every codeword ((ag, ay, - - -, a(%,l)l), (a1, 141, -, a(%,l)lﬂ),

oo (ag_1,a9-1, " +,an_1)) is also a codeword. So an [-quasi-cyclic code can be viewed as

26
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G - Invariant Codes
G : Abelian

G - Quasi—abelian
Codes

G - Invariant Codes
G : Arbitrary

Abelian
Codes

(t=1)

Quasi-cyclic
Codes

(G:cyclig

Figure 4.1: Different families of codes and their defining groups of permutations

a submodule of the | dimensional free module (F,C= )" over the group algebra F,C where

C’% is a cyclic group of order 7. Clearly, if an [-quasi-cyclic code has the additional struc-

ture that it is also closed under the cyclic shift of the blocks, i.e. ((a1, a1, -, a(%_l)lﬂ),
(a9, ary9, - -, a(%—1)1+2), - (ao, apy -, a(%_l)l)) is also a codeword for every codeword
((a'Oa ag, - -+, a’(%fl)l): (a'17 App1, "y a’(%fl)l—kl)’ T (al—lv ag1—1,"" ", an—l))a then the code is

an abelian code on the abelian group C; x C'».

A more general but not so popular class of codes is the class of quasi-abelian codes [9].
For an abelian group G and it’s subgroup H, a subspace of the group algebra F,G which
is closed under the action of elements of H, i.e. which is an F,; H module, is called a quasi-
abelian code. In fact, for an abelian group H and any positive integer ¢, any submodule
of (F,H )t can be considered as a quasi-abelian codes. In that case, any abelian G O H
with |G| = t|H| can be used to define quasi-abelian code as in [9]. So, we’ll call such
codes as H-quasi-abelian codes. When ¢ = 1, this class specializes to abelian codes and

when H is a cyclic group, it specializes to quasi-cyclic codes.

In this chapter, the algebraic structure of codes closed under any arbitrary abelian
subgroup G of S, (group of permutations of n elements) is investigated. We call this
class as G-invariant codes. These codes are precisely those which have G as a subgroup of
their permutation groups. When special types of G are taken, G-invariant codes coincide

with the class of quasi-abelian codes and thus with the classes of quasi-cyclic codes and

August 5, 2002 Bikash Kumar Dey



Chapter 4. Codes Closed under Arbitrary Abelian Group of Permutations 58

G - Invariant Codes
G : Arbitrary

‘ G - Invariant Codes

G : Abelian
Quasi — Abelian
Codes
Abelian  Codes Quasi — Cyclic Codes
t=1 G: Cyclic
Cyclic Codes
t=1; G: Cyclic

Figure 4.2: Different families of codes and their defining groups of permutations

abelian codes. Figure 4.1 and Figure 4.2 show the relations between different types of
codes. Figure 4.1 shows special cases as subsets of the general cases using Venn diagram,
whereas Figure 4.2 shows the special cases below the general cases. Note that a G-quasi-
abelian code is also H-quasi-abelian for any subgroup H C G. If a cyclic subgroup H is
taken, then G-invariant codes are also ‘”?'—quasi—cyclic codes. So, G-quasi-abelian codes
for any GG are quasi-cyclic codes for some index. But by considering them only as ﬁm-quasi-
cyclic codes, neglect some known additional structure of the codes would be neglected.
The figures show different classes of codes as G-invariant codes for specific types of G. In
the figures, ¢ denotes the number of orbits of the co-ordinate positions under the action
of G. The type of GG, for which G-invariant codes can be seen as G-quasi-abelian codes

will be specified in Section 4.8.

The following are the examples of different types of permutation groups G shown
in Figure 4.1 and 4.2. The corresponding figures show the cycle structure of a set of
generators of the permutation groups. Whenever the set of generators consists of two
generators oy and o5, the solid lines with arrows represent the cycles of o, and the dashed

lines with arrows represent the cycles of .

Ezample 4.1.1. For any a,b € F; a # 0, let 0, denote the permutation o4 :  — ax + 0.
Then G = {o4pla € Fy,b € Fy} is a subgroup of S; (the symmetric group on ¢ letters)
and is called the group of affine permutations. For ¢ > 2, this group is non-abelian and

the corresponding G-invariant codes are known as affine invariant codes.
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Figure 4.3: Cycle structure of the generators of G in Example 4.1.2

Example 4.1.2. Figure 4.3 shows cycle structure of the generators o; and o, of a permu-
tation group G = (01, 09) C Sys. Here G is abelian but G-invariant codes can not be seen

as (G-quasi-abelian codes.

Example 4.1.3. Figure 4.4 shows cycle structure of the generator o; of a permutation
group G = (07) C Sig. For the time being, ignore the dashed boxes in the figure. Here G
is abelian with exponent 15. The index set has 4 orbits under the action of G. Here also

G-invariant codes can not be seen as GG-quasi-abelian codes.

Example 4.1.4. Figure 4.5 shows cycle structure of the generators o; and oy of a permu-
tation group G = (01,09) C Ss4. Here G is abelian and G-invariant codes are same as

(G-quasi-abelian codes.

Example 4.1.5. Figure 4.6 shows cycle structure of the generator o; of a permutation
group G = (01) C Sy;. For the time being, ignore the dashed boxes in the figure. Here G

is abelian and G-invariant codes are same as [-quasi-cyclic codes.

Example 4.1.6. Figure 4.7 shows cycle structure of the generators o; and o5 of a permuta-
tion group G = (01, 09) C So7.Here G = (01) X (09) = Z3 X Zy is abelian and G-invariant

codes are same as GG-abelian codes.

Example 4.1.7. Figure 4.8 shows cycle structure of the generator ¢; of a permutation

group G = (01) C Ss. Here G is abelian and G-invariant codes are same as cyclic codes.
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293

393

Figure 4.4: Cycle structure of the generator of G in Example 4.1.3

It is known that all cyclic codes of length n are decomposable as direct sum of minimal
cyclic codes if and only if n is relatively prime to ¢. Similarly all abelian codes on an
abelian group is decomposable as direct sum of minimal abelian codes if and only if the
exponent of the abelian group is relatively prime to ¢q. Same is true for /-quasi-cyclic
codes if and only if 7 is relatively prime to ¢ [5]. In all these cases, the condition for
decomposability turns out to be the mutual prime-ness of ¢ and the exponent of the
defining abelian group of permutations under which the code is closed. We’ll show that
this is true for any G-invariant code (G abelian), i.e., for an abelian subgroup G C S,
any G-invariant code of length n can be decomposed as direct sum of minimal G-invariant

codes if and only if the exponent of G is relatively prime to gq.

Karlin [64] showed a way to decode a class of one-generator quasi-cyclic codes. Heijnen

and van Tilborg [65] proposed another decoding technique for the class of one-generator
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Figure 4.7: Cycle structure of the generators of G in Example 4.1.6
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Figure 4.8: Cycle structure of the generator of G in Example 4.1.7

quasi-cyclic codes, which uses the same basic idea but achieves some computational ad-
vantages by better usage of the quasi-cyclic property of the code. In this chapter, Karlin’s
approach is extended to a class of quasi-cyclic codes, not necessarily one-generator. When
restricted to one-generator quasi-cyclic codes, this method reduces to Karlin’s method.
Moreover, our method also applies to a class of quasi-abelian codes specified in subsection

4.8.1.

In Section 4.2, the DFT on abelian group is discussed which is used in Section 4.3
to define a DFT for G-invariant codes for any abelian group G of permutations with
exponent relatively prime to g. Such G-invariant codes are characterized in the transform
domain and their structural properties are investigated in section 4.4. Dual codes of G-
invariant codes and self dual G-invariant codes are characterized in section 4.5 and 4.6.
The number of G-invariant self dual codes for any abelian group G is also found. In
section 4.7, Tanner’s approach for getting a bound on the minimum distance from a set of
parity check equations over an extension field is extended and how it can be used to get
a minimum distance bound for G-invariant codes is outlined. Characterization of quasi-
abelian codes is obtained as a special case of the characterization of G-invariant codes
in Section 4.8. Karlin’s approach [64] for decoding systematic quasi-cyclic codes with
parity circulants in single row is extended to the case of systematic quasi-abelian codes.
In particular, this can be used to decode systematic quasi-cyclic codes with columns of
parity circulants in the generator matrix, i.e. systematic quasi-cyclic codes which are
not necessarily 1-generated, the case which was left open by Kerlin. In Subsection 4.5.3,
all the results in [92] regarding the existence/number of self-dual quasi-cyclic codes are

shown to follow as special cases of the results in Section 4.5.
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4.2 Review of the DFT for Abelian Codes

In this section, the DFT for abelian codes is revisited. There are more than one equivalent
ways of presenting it. Here, the DF'T is presented in terms of character tables for the
sake of notational simplicity in the later sections, where the DF'T for abelian codes will

be extended to study abelian group invariant codes.

Let v be the exponent of G and r be the smallest integer such that v|(¢" — 1), i.e
such that Fj contains a primitive v-th root of unity. Then the group of all distinct Fr
characters is isomorphic to G. In fact an isomorphism z + %),y can be chosen (see for
example [37] and the references in it) such that 9, (y) = ¥)(x). We denote 15 (y) as
Y(z,y), considering it as a map 9 : G x G — F. It satisfies the following properties:

Y(z,y2) = Pz, y)d(,2) (4.1a)

v(z,y) = Py, (4.1b)

(W(z,y) =v(a'y), Ve @) <= z=1a (4.1c)
(q), ify=1

> plxy) = {0’ ifz;«é X (4.1d)

Lt
where |G| and 1 denote respectively the cardinality of G and the identity element in G.

The DFT of any element a = ) _.a,v € F;G is defined as A € F»G such that
Ay =3 cq¥(x,y)ay. The inverse DFT is given by a, = |G| 3 o ¥(z,y) " Ay

This DFT satisfies the following two properties:
1. Conjugacy Constraint: For any a € F;G, it’s DFT A satisfies Ay = Al

2. For some fixed y € G, if b € F,G such that b, = a,,, then the DFT B is given by
B, = 7ﬁ($, y)_lAz-

Definition 6. For any x € G, the subset [z]? = {y € G|y = 2z for some non-negative ¢}
is called the ¢g-cyclotomic coset (or simply cyclotomic coset) of z. For any subset

S C G, define [S)? £ U,cs]s]e.

Clearly, [2]? = {z,29,---,29" "'}, where r, is the smallest positive integer satisfying
7" = x and is called length or exponent of [z]?. The cyclotomic coset [z 1]? will be
called the inverse or reciprocal cyclotomic coset of [z]?. If [z]? = [z7!]¢, then it will

be called a self inverse or self reciprocal cyclotomic coset.
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Example 4.2.1. In Example 4.1.6, the components can be reindexed with elements from
G ~ Zy x Z3. With this indexing, the self reciprocal and other cyclotomic cosets for

different ¢ are as follows.

g=2or5mod9 [e.g ¢ =2, 32] The cyclotomic cosets in G for this case are shown in

Table 4.1.

Cyclotomic cosets in G Type

{(0,0)} self-reciprocal
{(1,0), (2, ),{ ,0),(8,0),(7,0), (5,0)} | self-reciprocal
(2, ),
(4

} self-reciprocal
,(7,1),(5,2)} | self-reciprocal
: ), (1,2)}
{
{
{

self-reciprocal
Table 4.1: Cyclotomic cosets of different types for ¢ = 2 or 5 mod 9 [e.g ¢ = 2, 32]

<
8

?

Y

(4,0
0,1
(4,1
2), (8,1
(3,1
(3,2
(3,0

NN N A N —

v

)

} self-reciprocal
} self-reciprocal
} self-reciprocal

Y

NN DD N O~

)
)
)
)
)
)

Y

g =1 mod 9 [e.g ¢ = 64] All the cyclotomic cosets of G are singletons and all except (0, 0)

are not self-reciprocal.

g=4or7mod9 [e.g ¢ =4, 16] The cyclotomic cosets in G for this case are shown in

Table 4.2.

g =8 mod 9 [e.g ¢ = 8] The cyclotomic cosets in G for this case are shown in Table 4.3.

For any element in F;G, the DF'T components in a g-cyclotomic coset are related by
the conjugacy constraint and A, € Fir. For an abelian code, i.e., any ideal of F,G, A,

is zero or takes all possible values from Fi..

4.3 DFT for G-Invariant Codes

We consider codes over Fy of length n. Suppose the code symbols are indexed by a
finite set I, where |I| = n. Let G C Perm(I) be an abelian subgroup of the group of
permutations of /. We shall denote by p, the cardinality of the prime subfield of Fj.

Let I ,---,1; be the orbits of I under the action of GG, that is, G acts on each of
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Cyclotomic cosets in G | reciprocal cyclotomic coset Type Te
{(0,0)} {(0,0)} self-reciprocal 1
{(1,0),(4,0),(7,0)} {(2,0),(8,0),(5,0)} not self-reciprocal | 3
{(2,0),(8,0),(5,0)} {(1,0),(4,0),(7,0)} not self-reciprocal | 3
{(0,1)} {(0,2)} not self-reciprocal | 1
{(0,2)} {(0,1)} not self-reciprocal | 1
{(1,1),(4,1),(7,1)} {(2,2),(8,2),(5,2)} not self-reciprocal | 3
{(2,2),(8,2),(5,2)} {(1,1),(4,1),(7,1)} not self-reciprocal | 3
{(2,1),(8,1),(5,1)} {(4,2),(7,2),(1,2)} not self-reciprocal | 3
{(4,2),(7,2),(1,2)} {(2,1),(8,1),(5,1)} not self-reciprocal | 3
{(3,1)} {(6,2)} not self-reciprocal | 1
{(6,2)} {(3,1)} not self-reciprocal | 1
{(3,2)} {(3,2)} not self-reciprocal | 1
{(6,1)} {(3,2)} not self-reciprocal | 1
{(3,0)} {(6,0)} not self-reciprocal | 1
{(6,0)} {(3,0)} not self-reciprocal | 1

Table 4.2: Cyclotomic cosets of different types for ¢ =4 or 7 mod 9 [e.g ¢ = 4, 16]

I, ---, I transitively and I = Iy U I, U --- U I;. Let us denote
Gr={¢®lge Gy fork=1,--- t.

where g*) 2 g1, € Perm(Iy) is the permutation g restricted to . Since Gy is abelian
and Gy, acts on Iy faithfully and transitively, stabilizer of any ¢ € I} is {1} (15 denotes
the identity element of G}). Because, if H is the stabilizer of i € I}, then the stabilizer of
any other element iy = ¢(i), g € Gis gHg ' = H. So, H = {1}, since Gy, acts faithfully
on Iy. So, for any i; € I, there is a unique g € Gy, such that i; = ¢(i); that is, the
action of G, on I is sharply 1-transitive. This defines a 1 —1 correspondence between Gy,
and I;. Using this, the symbols can be indexed by elements of G instead of I by first
associating a fixed element 7 € I with the identity element 1. Hence, the code symbols
are indexed by elements of G 2 Uf-:lGi instead of I. Then the element g of G acts on G
as 5 ¢®)z when z € Gy. For any a € Fl~FJ geGactsonaasa s b = g(a) such
that b, = G (=1 where x € Gy. Henceforth, we’ll use the letters f, g and h, possibly
with subscripts, to denote elements of G' and the letters z, y and z to denote elements of

g.

Any abelian group can be decomposed as direct product of some cyclic subgroups of
prime power order. For any prime p; dividing order of G, let p! be the highest power

of p; such that there is a cyclic subgroup of G of order p}. Then p! is the maximum

August 5, 2002 Bikash Kumar Dey



Chapter 4. Codes Closed under Arbitrary Abelian Group of Permutations 66

Cyclotomic cosets in G Type Ta
{(0,0)} self-reciprocal | 1
{(1,0),(8,0)} self-reciprocal | 2
{(2,0),(7,0)} self-reciprocal | 2
{(4,0),(5,0)} self-reciprocal | 2
{(0,1),(0,2)} self-reciprocal | 2
{(1,1),(8,2)} self-reciprocal | 2
{(2,2),(7,1)} self-reciprocal | 2
{(4,1),(5,2)} self-reciprocal | 2
{(2,1),(7,2)} self-reciprocal | 2
{(4,2),(5,1)} self-reciprocal | 2
{(8,1),(1,2)} self-reciprocal | 2
{(3,1),(6,2)} self-reciprocal | 2
{(3,2),(6,1)} self-reciprocal | 2
{(3,0),(6,0)} self-reciprocal | 2

Table 4.3: Cyclotomic cosets of different types for ¢ = 8 mod 9 [e.g ¢ = §]

power of p; which divides the exponent of G. Let g be a generator of that cyclic subgroup
and h = gpll_1 be an element of order p; in that cyclic subgroup. There is at least one
k such that h®) #£ 1,, since G acts faithfully on G. Then h%) = (g(’“))plf1 has order
p1 and thus ¢®) has order p!. So, p\ divides exponent of Gj. So, the exponent of G,
exp(G) = lem ({exp(Gr)|k =1,---,t}).

Let the exponent of G be relatively prime to ¢. Then on each orbit, DFT can be
defined as discussed in the last section. For any a € Fqg, DFT is defined orbit wise. That
is, the DFT of a is defined as A, where

Ay, = Z Y(z, y)ay Vz € Gy, Vk.
yeGy,
Here 1), is as defined in the last section, for G}. For any code C C Fqg , let us denote
Dc = {DFT(a)la € C}. Clearly, the DFT components A, are in Fj», where r is the
smallest positive integer such that exp(G) divides ¢" — 1.

Definition 7. For any two z,y € G, define

U(z,y) = Yr(z,y), when z,y € Gy for some k
Y= 0, when z € Gy, and y € Gy, s. t. ki # ks

With this notation, the DFT can be re-written as

A, = Z U(z,y)ay, Vz €G. (4.2)

yeG
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Definition 8. For any h € G, and z € G Let us define the symbol

(h,x) £ Ur(h®, ) when z € Gy. (4.3)

It follows from this definition that the DFT of b = h(a) is given by B, = (h, z)A,.

Lemma 4.3.1. Suppose hi,hy € Gy. Then {(g,h)* = (g,h2) Vg € G if and only if
hll - hg.

Proof: Trivial using (4.1a) and (4.1c). u

For any element x € G, it is in G, for some k and so cyclotomic coset of z is defined in
. . . A )
the same way as in the previous section as [z]? = {y € G|y = 27 for some non-negative ¢}.

Similarly, 7, will denote the cardinality of [z].

Corollary 4.3.2. For any x € G, 1, is the smallest positive integer such that (g, z)?" =
(9,x) Vg € G.

So, 7, is the lem of the lengths of the conjugacy classes of (g,z); Vg € G.

Definition 9. The residue class of 2 € G is defined as

= {z1 € G|{g, 1) = (g, x) for each g € G}. (4.4)

We’ll denote the cardinality of = by e,. Clearly, all the elements of a residue class
are from different orbits. But there may not be elements from all the orbits in a single

residue class.

Ezample 4.3.1 (Continuation of Example 4.1.3). The index set has 4 orbits under the
action of G and G| ~ Gy ~ Z3 and G35 ~ G4 ~ Z5. Let a set of generators of the groups
G1,G2, G5 and G4 be g1, g2, g3 and g4 respectively. If a € Fy» is an element of order 15,
then we define DFT in F}® ~ FJ with respect to the maps 1, defined by:

Y191, 01) = @
¥a(g2, 92) = @
¥3(gs, g3) = o’
¥4(9, 94) =

The residue classes in G are shown in Figure 4.4 with dashed boxes.
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For an [-quasi-cyclic code of length ml, the code is closed under the cyclic shift by [
positions. If the permutation ‘cyclic shift by [/ positions’ is denoted by o, after a suitable
co-ordinate permutation, the cycle decomposition of o can be written as (01 --- m —
Dmm+1---2m—1)---({—=1)ym (I—1)m+1 --- ml—1). Clearly, G = (0) ~ Z,,
and Gy ~ Z,, for each orbit. So, the same DFT can be applied to each orbit and then

the residue classes are nothing but the residue classes modulo m.

Ezample 4.3.2. (Continuation of Example 4.1.5) The dashed boxes in Figure 4.6 show the

residue classes modulo 9 for /-quasi-cyclic codes of length 91.

For any subset X = {z1,2s,---,2x} C G, Ax denotes the ordered tuple (A4,,, Ay,,- -, Az,)
where an arbitrary fixed order in X is assumed. In particular, for any residue class
Y1 = {1, Y2, - -, y}, we'll denote by Ay, the ordered [-tuple (A, Ay,, -, A,,) with an
arbitrarily chosen fixed order on y. For some ordered tuples 11 = (t11,---,t15,), -+, 11 =

(ti1,+ -, 1,;) the concatenated tuple (11, -+, ¢1,5,, i1, -+, 415 ) is denoted as (T3, - - -, T}).

Definition 10. The cyclotomic residue class of x € G is defined as

I

{z, € G| for some non-negative t, (g,z,)% = (g,z) Vg € G} (4.5)

= [

()

Clearly, all the residue classes in a cyclotomic residue class are of same cardinality.
Figure 4.9 shows the relations between cyclotomic cosets, residue classes and cyclotomic
residue classes. By the conjugacy constraint, values of DFT components in one residue
class determines values of other transform components in the same cyclotomic residue
class. To be specific, A = Aq; for any a € F qg , where power of the vector Az is taken
component wise. So, values of transform components in one representative residue class

from each cyclotomic residue class specifies a vector completely.

Ezample 4.3.3 (Continuation of Example 4.3.1). The value of ¢ mod 3 determines the
cyclotomic cosets in the first two orbits and the value of ¢ mod 5 determines the cyclotomic

cosets in the last two orbits.

In the following, cyclotomic cosets, the residue classes and the cyclotomic residue
classes are elaborated for different g. For all the cases, the corresponding figures show the
cyclotomic cosets with solid boxes and the cyclotomic residue classes with dotted boxes

and the residue classes with dashed boxes.
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bt

(X" DXl x4

Figure 4.9: A generic cyclotomic residue class ()4

g=2mod 3,¢g=2or3mod 5 and 3=5mod p (e.g. ¢ =2,8): See Figure 4.10

g=1mod 3,¢g=1mod 5 and 3 =5 mod p (e.g. ¢ =16): See Figure 4.11

g=1mod 3, ¢g=4mod 5 and 3 =5 mod p (e.g. ¢ =4): See Figure 4.12

g=2mod 3, ¢g=4mod 5 and 3 # 5 mod p (e.g. ¢ =29,59): See Figure 4.13

g=1mod 3, ¢g=2or3mod5 and 3% 5 mod p (e.g. ¢ =7,13): See Figure 4.14

Like inverse cyclotomic coset, the inverse cyclotomic residue class of (z)? is defined
as (z71)? and call a cyclotomic residue class, a self inverse cyclotomic residue class
if it is it’s own inverse cyclotomic residue class. Note that a cyclotomic residue class (z)?

is self inverse if and only if the cyclotomic coset [z]? is self inverse.

In the following, for any subset S C Fi» \ {0}, we’ll denote the multiplicative subgroup
of Fr \ {0} generated by S as (S) and the smallest extension field of Fj containing S as
Fy[S]. Clearly, Fy[S] = F,; where [ is the smallest positive integer such that s¢ =s:Vse
S. So for any x € G, Corollary 4.3.2 gives

Fy[{{g,z)lg € G}] = Fe. (4.6)

Il
>

Lemma 4.3.3. For any subset S C Fyr \ {0}, Spang, ({S)) alS]-
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R R
||
\4;3\'434

Figure 4.11: The case : ¢ =1 mod 3, ¢ =1 mod 5 and 3 =5 mod p (e.g. ¢ = 16)
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Figure 4.13: ¢ =2 mod 3, ¢ =4 mod 5 and 3 # 5 mod p (e.g. ¢ = 29,59)
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49, 49,

Figure 4.14: ¢ =1 mod 3, ¢ = 2 or 3 mod 5 and 3 % 5 mod p (e.g. ¢ =7,13)
Proof: Let us denote Spang,((S)) by V. Clearly, V' C Fy[S]. It is now sufficient to prove
that Spang, ((S)) is a subfield of F». Clearly, V' is closed under multiplication and 1 € V.
For any s € V' \ {0}, s.V =V and thus 3s; € V, such that ss; = 1. So, s; = s ' € V.

So, inverse of every nonzero element of V' is in V' and thus V is a field.

4.4 Transform Domain Characterization of G-Invariant
Codes

A linear code C C Fqg is G invariant if for every codeword a € C and h € G, h(a) € C.
The equivalent condition in transform domain is: for any » € G, A € D, and B € Fqg;,
B, = (h,x)A, Vz € G = B € D¢.

For any ordered tuple (z1,22,---,2;) on G, we say, (Ag,, Agy, -+, Ag,) takes values
from
{(Azy, Agy, -, Ag) la € C} for C. If for C, (Ag,, Agy, - -5 Ag,) takes values from V C F),
and U C V, then the subcode {a € C| (A4, As,, -, Ay) € UL will be referred as the
subcode obtained from C by restricting (A,,, Ag,, -+, Ag,) to U.
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Lemma 4.4.1. For any G-invariant code C and for any x € G, Az takes values from a

subspace of F, .

Proof: Suppose Az takes values from an Fy-subspace (since the code is linear) V' C F,
for C. When any element g € G acts on a codeword a, the e, -tuple Az of transform
components is multiplied by (g, x). Since the code is G-invariant, (g,z)v € V for each
g € Gand v € V. So, V is closed under multiplication by (g, z); ¢ € G and thus under
multiplication by elements from Spang, (({(g,2)|lg € G})) = F;[{{9,2)|g € G}] = Fyp.

So, V' is a subspace of F7,. [

For any G-invariant code C and z € G, suppose Az takes values from a subspace
V C Fj# . Then for any subspace U C V, the subcode obtained by restricting Az to U is

also a G-invariant code.

Definition 11. Let X, Xs,---, X; be some disjoint subsets of G and suppose Rx, =
{Ax;laeC}forj=1,2,---,1. The sets of transform components {A;|z € X;};1 < j <1
are called unrelated for C if {(Ax,, Ax,, -+, Ax,) |[a€ C} = Rx, X Rx, X+ -+ x Rx,. They

are called related if they are not unrelated.

By Lemma 4.4.1, for any z; € x, A,, is zero or A,, takes values from the whole of
Fy. for C. Moreover, if A, is not zero for C and Az takes values from a one dimensional
subspace of Fy,, then any other nonzero transform component A;, in the same residue
class are related to A,, by constant multiplication, that is A,, = cA,, ; Va € C for some
constant ¢ € Fy.. If however, zo € (z)? i.e. x4 is in the cyclotomic residue class of z,
then z, € afc\q/" for some 7. In that case, if A,, is not zero for C and Az takes values from
a one dimensional subspace of F7,, then A, is related to A;, as A, = cAgi1 for some

constant ¢ € Fyr.. However, this type of relation is the simplest. In general, some related

transform components may not be related only in this way.

Let z1,x9,---,2; be a set of representative residue classes of all the distinct cyclo-
tomic residue classes. Suppose we fix arbitrary subspaces V;; ¢ =1,2,---,1 of F;f;i 11 =
1,2,---,1 respectively and consider the code C = {a € FJ|Az € V;fori=1,2,---,1}.
Clearly, the code is G-invariant. But it is not clear whether any G-invariant code can be
obtained this way by choosing suitable V;; 7 =1,2,.--,1. That is, are Az ;i =1,---,1
unrelated for any G-invariant code ? Theorem 4.4.8 ahead answers this question in affir-

mative.
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Lemma 4.4.2. For a linear code C, suppose, Az takes values from a subspace V C F7,,
and V = Vi + Va. If the subcodes obtained by restricting Az to Vi and Vs are respectively
C1 and Cq, then C = C1 + Cs.

Proof: Trivial. m

In Lemma 4.4.2, if V is direct sum of V; and V5, then C need not be the direct sum
of C; and Cy, i.e. C; NCy need not be {0}. In fact, C; N C; is the subcode obtained by
restricting Az to Vi NV, = {0}.

4.4.1 Minimal G-invariant Codes

We call a G-invariant code minimal if it does not have any proper G-invariant subcode.
In a minimal G-invariant code, any nonzero A, should take values from a 1-dimensional
F . -subspace, since otherwise, we can restrict A, to a 1-dimensional Fi-.-subspace to get

a proper G-invariant subcode.

Now, consider any «,y € G such that none of A, and A, are zero for all the codewords
of a minimal G-invariant code C. Suppose A, and A, take values from the 1-dimensional
Fy. and Fjry -subspaces Vi and V5, respectively. Since the code is minimal, if A, is
restricted to {0}, then the subcode obtained is the zero code. Since the code is F-linear,
for any other element 3 in Vi, there is only one codeword in C with A, = . This is
in fact true for any nonzero transform component in C. So, A, and A, are related by a
linear invertible map of Vi onto V5. But because the code is G-invariant, arbitrary linear

invertible map can not relate two nonzero transform components.

Suppose in a G-invariant code, two transform components A, and A, take values from
Vi and V; respectively. If A, is related to A, by a homomorphism o : V; — V5, then ¢
satisfies

o({g,z)v) = (g,y)o(v) Vg € G, Yv € V} (4.7)

The following lemmas will help to identify the possible relations among transform
components for a minimal G-invariant code. For a map o of a finite field, we denote by

f+(X), a polynomial which induces o, that is, o(a) = f,(a).

Lemma 4.4.3. Let o and 8 be two elements of Fy and let the length of the Fy-conjugacy

class of a be ly. Suppose a € Fq"‘, and o : aFy, — Fyu 1s an Fy linear nonzero map. Then
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o satisfies o(ab) = Bo(b) ;Vb € aFy, if and only if B = a? and fo(X) = cX? for some

unique ¢ € d'a~? Fy, and j < ly.
q

Proof: (=): Clearly, kernel of o is invariant under multiplication by a. So, it is either
{0} or Fu. Since o is nonzero, the kernel is {0}. So, o is an isomorphism or aF,, onto
it’s image. Now, I'm(o) is S-invariant F-subspace, i.e, it is an F1,-subspace, where [, is
the length of the conjugacy class of 3. Then, the map o~" : Im(o) — aF, is invertible
satisfying o 1(8b) = ac*(b) Vb € Im(o). Now, if I'm(c) is not a minimal S-invariant F-
subspace, then there is a minimal S-invariant F-subspace V' C Im(o) and then o=*(V)
is a proper nonzero a-invariant Fg-subspace of aFy,: a contradiction. So, Im(o) = a'Fp,

for some a’ € Fji. Since o is invertible, [; = Is.
Rest of the proof follows from Lemma 3.2.2. [ ]

Lemma 4.4.4. Let o, 8 and Iy be as in Lemma 4.4.3 and V' be an h dimensional Fy, -
subspace of Fu. Suppose o : V — Fy is a nonzero Fy-linear map. If o satisfies o(ab) =
Bo(b) ;b € V then = a? and fo(X) = Z?:_OI & X7 for some unique ¢; € Fysr for
0<i:<h—-1.

Proof: Suppose V = @?;01‘/; where V; = s;F,,. Since o is nonzero, it’s restriction on at
least one of V;;0 < i < h — 1 is nonzero, and thus by Lemma 4.4.3, the first statement

follows. Suppose o; = oly;. Then, f,.(X) = ¢,X¢ for some unique ¢,. So,

h—
fg(X) _ Z wly+j
c;-(s,-a)qj =

1
Cp X7
0
h—1 '
> cul(sia)™ " Va € Fp,, Vi€ [0,h—1]

-
=0
h—1 wly
'@ g @\ @y Fo. Vi h
& csia® = Cw | ] at Va € Fy,, Vi€ [0,h—1]
w=0
. h—1 . qwll
e ds? = ch (s?]) Vi e [0,h— 1]
w=0
h—1 l ‘
e det =Y ¢y (s)? Vie[0,h—1] where s, = (s;)"
w=0
Co oS0
N
s M _ = _ (4.8)
Ch-1 Ch-15h—1
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where
, gt g2 1q(h=Dl1
%0 Sol %0 21 B (h—1)1
! 1g°1 1g°'1 g\t
M _ 81 81 Sl A 81
, gt 1g21 1q(h=Dl1
Sh—1 Sh—1 Sp-1 7" Spa
Now, {s¢, 51,52, -, 541} are linearly independent over F, since V; = Gafz_olsinzl. So,
{56, S, Sy S;l_1} are also linearly independent over F;; = M is nonsingular = there
exists unique solution of (4.8) for ¢y, ¢y, - - -, cp—1. (For the first implication, see [81, Chap.
3].) n

Lemma 4.4.5. Let a;; 0= 1,---, k be some elements of Fy with length of their conjugacy
classes l;; 1 = 1,-- -, k respectively. Suppose l' = lem(ly,---,l;) and o : Fp —Fpisa

nonzero Fy-linear map. If o satisfies
o(aib) = Bio(b) Vb € Fu (4.9)

for some B; € Fu ;i = 1,---,k, then there exists a non-negative integer j such that

Bi = agj foralli=1,---k and f,(X) = cX? for some unique c € Fy.

Proof: Suppose [} = %; 1=1,---,k. By Lemma 4.4.4, §; = ag“ for some non-negative
Now, 3 a unique polynomial f,(X) of degree < ¢"'. Applying Lemma, 4.4.4 for each i
we see that, o is induced by

1-1

fi(X) = Z Ci,hinh”””

hi=0

where ¢p, ; 0 < h; <1} — 1 are some unique constants.
Since all the polynomials f;(X) are of degree < ¢*, they have to be same. In particular,
their smallest degree terms are same and that means hyl; + j; = - - - = hgli + Ji, = j(say).

Now, if there is any other nonzero monomial than X7, then such a monomial is of degree

Pl + jv = --- = hile + ji = j'(say). So,

My =h)li=-- = (b — he)li
=1 = lcm(ll, cee lk) ‘ (hll — hl)ll
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This is a contradiction to the fact that (k] — hy) < I} = % So,

fr(X) = cX? (4.10)

. i
for some unique constant ¢ and o; = g} ;i =1,--,k. [ ]

The following theorem characterizes minimal G-invariant codes in transform domain.

Theorem 4.4.6. C is a minimal G-invariant code if and only if transform components in
only one cyclotomic residue class is nonzero and Az for any x in that cyclotomic residue

class takes values from a one-dimensional subspace of Fy, .

Proof: The reverse implication is trivial. In a minimal G-invariant code C, if Az and Ay
are nonzero, then Az and Ay take values from one dimensional Fy-. and Fjr-subspaces
of F and F, ;fy respectively since otherwise we can restrict them to one dimensional
subspaces to get proper G-invariant subcodes of C. Moreover, if A, and A, are nonzero,
then A, is dependent on A, by an Fi-linear invertible map o, i.e., A, = 0A;. Since the
code is G-invariant, o should satisty o({g,x)b) = (g,y)o(b) Vb € Fp. ,Vg € G. So by
using Lemma 4.4.5, there is a j such that (g,x)qj = {g,y) Vg € G = y € (x)9. So,

transform components in only one cyclotomic residue class are nonzero. [ ]

Clearly, any nonzero vector a € Fqg is contained in a minimal G-invariant code if and
only if the DFT of the vector is nonzero only in one cyclotomic residue class and the

minimal G-invariant code is Fj-spanned by the vectors {g(a)|g € G}.

4.4.2 Arbitrary G-Invariant Codes

Let C be an arbitrary G-invariant code and suppose Az is nonzero for C and takes values

from a subspace V of F:2 . Let Vi and V5 be two subspaces of V such that V = V] + V5.

e -
If C; and Cy are the G-invariant subcodes obtained by restricting Az in the subspaces V;
and V5 respectively, then clearly, C = C; + C5. By successively doing this, the code can
be decomposed as sum of a family of subcodes, each of which has any nonzero transform
components Az taking values from some one dimensional subspace of Fz . Now, let us
consider one such code (which is a subcode of the original code). Let {7, Zs, -, T} be a
set of representative residue classes of different cyclotomic residue classes, where transform

components are nonzero for the code. We construct a subset L of {z1,Zs,---, %} as

follows. First assign L = {z1}. Suppose Az ;i = 1,---,k take values from the one

August 5, 2002 Bikash Kumar Dey



Chapter 4. Codes Closed under Arbitrary Abelian Group of Permutations 78

dimensional F-.-subspaces V;;¢ = 1,---,k respectively. In the subcode obtained by
restricting Az to {0}, Az will take values from either Vo or {0}. If it takes values
from {0}, then clearly, Az is related to Az by an isomorphism. Otherwise, Az and
Agz; take values independently and in that case add z5 in L. Next restrict the transform
components in all the residue classes indexed by elements of L to {0} and check Az not
yet considered. If it’s values vary over V;, then put z; in L. Continuing this way, we’ll get
a set L such that the residue classes of transform components indexed by it’s elements

are unrelated and the values of all other transform components are determined by them.

Now, subcode can be decomposed as direct sum of |L| subcodes: C;; i € L, where C;
is obtained by restricting Az;; j € L to zero. Clearly, each subcode thus obtained is a
minimal G-invariant code. So, any G-invariant code can be decomposed as sum of some
minimal G-invariant codes. Just taking a minimal family of such minimal subcodes such
that their sum is still the original code, the code can be expressed as direct sum of some

minimal G-invariant codes. So we have,

Theorem 4.4.7. If the order of an abelian group G s relatively prime to q, then any

G-invariant code can be decomposed as direct sum of some minimal G-invariant codes.

However, the decomposition of a G-invariant code in terms of some minimal G-
invariant codes is not unique, though for the special case of abelian codes, such a de-

composition (as direct sum of minimal abelian codes) is unique.

It is known that if the exponent of an abelian group is not relatively prime to ¢, then
there are abelian codes on that group, which can not be decomposed as direct sum of
minimal abelian codes. If the exponent of GG is not relatively prime to ¢, then for some
k, the exponent of GGy is not relatively prime to k. Then an abelian code on G} can
be taken, which can not be decomposed as direct sum of minimal abelian codes. That
code can be padded with zeros on all other orbits to get a G-invariant code, which is not

decomposable as direct sum of minimal G-invariant codes.

For a minimal G-invariant code, transform components in different cyclotomic residue
classes are unrelated. By Theorem 4.4.7, so is true for any G-invariant code. This fact
together with Lemma 4.4.1 gives the following characterization of G-invariant codes in

the transform domain.

Theorem 4.4.8 (Transform Domain Characterization). Let G be an abelian group
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of permutations with order relatively prime to q. Then a code is G-invariant if and only
if
1. For any z € G, Az takes values from a subspace of F, .

2. If x1,- -+, xp are representatives of the distinct cyclotomic residue classes of G, then
AE{, el
Agz; are unrelated.

Ezample 4.4.1 (Continuation of Example 4.3.3). Consider the case
g=2mod 3,¢g=2or 3mod 5 (e.g. ¢ =2,8). The following table shows the allowed

vector spaces for a set of representative residue classes of the cyclotomic residue classes.
For any G-invariant code, the transform components in those residue classes take values
from some subspaces of the mentioned vector spaces. Moreover, those subspaces com-

pletely determine the G-invariant code.

Cyclotomic residue classes rs | €z | Allowed vector space
{01, 02,03, 04} 1|4 F;
{91, 92,291,292} 2 |2 2
{93, 91,293, 294, 393, 391,493,494} | 4 | 2 FZ

Table 4.4: The allowed vector spaces for transform components of representative residue
classes of different cyclotomic residue classes

Though the decomposition of a G-invariant code is not unique in general, by second
part of Theorem 4.4.8, any G-invariant code can be decomposed uniquely as direct sum of
some G-invariant codes, each having nonzero transform components only in some distinct

cyclotomic residue class. So we have,

Corollary 4.4.9. Let (z;)?;i = 1,2,---,k be the distinct cyclotomic residue classes.
Then,

k
C=EPCue (4.11)

i=1
where Cz;ya denotes the subcode of C obtained by restricting all the transform components

outside (z;)? to zero.

For quasi-cyclic codes, this gives the primary components of the code [7] and for cyclic
and Abelian codes these subcodes, when nonzero, are minimal cyclic and abelian codes

respectively.
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4.5 Duals of G-Invariant Codes : The Case |G| =
|G| = -+ = |G| mod p

For two vectors a,b € Fqg, the Euclidean inner product of them is defined as

E(a,b) =) asb, (4.12)

z€G
The Euclidean inner product of a and b will also be denoted by a.b. For two vectors
a,b € Fq%, their Hermitian inner product is defined as
H(a,b) =) a,b! (4.13)
z€G
Two vectors are called orthogonal w. r. t. Euclidean or Hermitian inner product, if
respectively the Euclidean or Hermitian inner product of the vectors is zero. Two codes
Cy and Cy, are called Euclidean dual of each other if C;, = {b|E(a,b) =0; Va € C;}.
Similarly Hermitian dual codes are defined. Euclidean duality will be simply referred as
duality and explicitly mention Hermitian duality when needed. A code is called self dual
when it is dual of itself. Similarly a code is called Hermitian self dual when it is Hermitian

dual of itself.
Clearly, dual of a G-invariant code is also G-invariant.

In this section, only the case when all the orbit cardinalities are same modulo p is
considered. This case gives fairly simple characterization of dual and self dual G-invariant

codes and all the special cases fall under this case.

Theorem 4.5.1. Let G be such that |G1| = ... = |G| mod p. For a G-invariant code C,
a vector b € Fqg s orthogonal to C if and only if for all a € C,

Z AyBy-1 =0  for all cyclotomic residue classes (x)? (4.14)

YET

Proof: Clearly, b is orthogonal to C if and only if

alb;VaeC <= > ab,=0 VYacC

YyeG

= ZAyBy—l =0 VaeC(C since |Gi| = ... = |G| mod p
yeg

= Z AyB,-1 = 0 for each cyclotomic coset (z)?, Va € C(4.15)
y&(z)
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rz—1
< Z ZquiB(yqi)fl =0 ”
=0 yezx
Tz—1
= ) ZquiB(y_l)qi =0 7
1=0 yezx
re—1 ]
= > Y A'BT, =0
=0 yex
re—1 ¢
= > D AB~| =0 "~
1=0 YyET
= T’I'qu /Fy Z AyBy—l =0 7
YyET
= Y ABi=0 7 (4.16)

YyEeT

The fact that transform components in different cyclotomic residue classes are unrelated
for G-invariant code is used to get (4.15), and (4.16) is obtained by using the fact that

Az takes values from a subspace of F7, . [ ]

Note that if (4.14) is satisfied for a residue class = then it is also satisfied for any
other residue class in the same cyclotomic residue class. So, it is sufficient to consider
only one representative residue class in each cyclotomic residue class. When two residue

classes T and z~! are considered, compatible orders are taken in them, i.e. if Az =

(Ag, Agy,- -+, Ay, ), then A~ = (Az_l,A%_l,---,Aﬁ_l_l).
Let {x1, o, -+, 2;} be a set of representatives of the distinct cyclotomic residue classes

of G. Suppose, for the codes C; and Cqy, Az takes values from V, and U, respectively. Then
Vz and U, can also be considered as linear codes of length e, over Fir.. Using Theorem

4.5.1, the following characterization of the dual code of a G-invariant code is obtained.

Theorem 4.5.2. Let G be such that |G1| = ... = |G| mod p. Suppose {x1,xq,-, 2} is
a set of representatives of the distinct cyclotomic residue classes in G. Two G-invariant
codes C1 and Cy are dual of each other if and only if for each z;; i =1,2,---,1, V. and

U,-1 are dual codes of each other.
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4.5.1 Self Dual G-Invariant Codes

For characterizing self dual G-invariant codes, the cyclotomic residue classes are classified

into three categories:

1. Self inverse cyclotomic residue classes (z)? with = z7!: In this case, suppose

x =21 € Gy, ie 22 = 1;. Then either z = 1, or order of G}, is even = ¢ is odd
( Since (¢, |Gg|]) =1) = 29 =z = r, = 1. This type of cyclotomic residue classes
are called as Type A cyclotomic residue classes and the cyclotomic cosets in them

as Type A cyclotomic cosets.

2. Self inverse cyclotomic residue classes (z)? with = # 2 ': In this case, z ! = ¢
A\ 1 i i .
for some i < 141 # 0. So, z = (z7}) " = (qu) = @) =2 = r2 =

2|ry and ¢ = 7. This type of cyclotomic residue classes will be called as Type B
cyclotomic residue classes and the cyclotomic cosets in them as Type B cyclotomic

cosets.

3. Cyclotomic residue classes which are not self inverse: This type of cyclotomic residue
classes is called as Type C cyclotomic residue classes and the cyclotomic cosets in

them as Type C cyclotomic cosets.

Let us denote the distinct self inverse cyclotomic residue classes as (z1)9, - - -, (x;,)?, (y1)9,
-+, (yi,)? and the other distinct cyclotomic residue classes as (21)7, (27)7- - -, (2;5) 7, (2,11,
where z; = a:z-_l for i =1,---,4; and y; # yz-_l for : = 1,---,15. The following theorem

gives the transform domain characterization of self dual G-invariant code.

Theorem 4.5.3. Let G be such that |G1| = ... = |G| mod p and C be a G-invariant
code, where Ag,, Ag;, Az and A;k,vl take values from the subspaces Vi, Vy., V., and ‘/Zk—l
respectively forvi=1,---,11; 7 =1,---,ig; k=1,--+,13. The code s self dual if and only
if

1. V,, s a self-dual code fori=1,---,1;.

2. Vy; 1s a Hermitian self-dual code for j =1, 1a.

3. V,, 1s the dual code of Vz;1 fork=1,---is.

August 5, 2002 Bikash Kumar Dey



Chapter 4. Codes Closed under Arbitrary Abelian Group of Permutations 83

Proof: If the code is self dual, then by Theorem 4.5.2, V,, is dual of V-1. Now,
J

Vyj is dual of Vy;l
eyj

= V@:{UGF?HE:WW=OVUGV%}

i=1
i 4
Now, V;/j_lz{(u‘{ SEN )|uEVyj}. So,

Vy; is dual of ‘/yj—l
. ©yj ry;
vi vj
— V,=qvE FqT;j\Zviuf =0 VYuel,
i=1

<= V;,j is Hermitian self dual.

The rest of the proof follows directly from Theorem 4.5.2. |

Corollary 4.5.4. Let G be such that |G| = ... = |G| mod p. Suppose [f1]9,-- -, [fi,]% [g1]%,
-+, 195,]9 are the self-inverse q-cyclotomic cosets in G such that f[l =fi; for1 <1<
and g;' # gi; for 1 <i <iy and [h]% [h71]%, - - -, [hi,)?, [hi,']7 are the other g-cyclotomic
cosets in G. Then a G-quasi-abelian code C of length t|G| over Fj is self-dual if and only
if

1. Vy, is a self-dual code fori=1,---,4.

2. V,, is a Hermitian self-dual code for j =1,--- is.

3. Vh, 1s the dual code of thl fork=1,---13.

The number of self dual codes and Hermitian self dual codes of any length is known
[93, 94]. Let us denote by Ng(g,!) and Ng(g,!), the number of self dual and Hermitian
self dual codes of length [ over Fj. If [ is odd, then both these numbers are zero. Also, let
N(q,!) denote the number of subspaces of Fé. The exact values of N(q,1), Ng(q,l) and
Ng(q,1) are as given below.

I -1

Nigl) = )

i=0 j=0

L _ g
;_; (4.17)

Ly
f:ll (¢* +1), for q and I even

=1 4 —
Ne(q,)) = 2Hif_11(q. +1), for ¢=1mod 4, 1even (4.18)
2114, (¢ +1), for ¢ =3 mod 4, lis devisible by 4
0, otherwise
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L1, .1 .
Np(g,l) = { 2o (T2 +1), when Z.IS even (4.19)
0, otherwise

Theorem 4.5.3 directly gives:

Theorem 4.5.5. Let G be such that |G1| = ... = |G| mod p. Number of self dual G-
invariant codes over Fy is Hzlzl Ng(q™i, eg,) H;; Nu(q"i,ey,;) 23:1 N(q"#,e,,), where

the empty product is 1 by convention.

In the above theorem, the first factor is contributed by the Type A cyclotomic residue
classes, the second factor is contributed by Type B cyclotomic residue classes and the

third factor is contributed by the Type C cyclotomic residue classes.

Ezample 4.5.1 (Continuation of Example 4.3.3). In the following, the number of self-dual
G-invariant codes is found for different ¢’s for which |G{| = |G2| = -+ = |G4| mod p
holds.

g=2mod 3,¢g=2or3mod5and 3=5modp (e.g. ¢=2,8):

Different types of cyclotomic residue classes are shown in Table 4.5. So, the number

Cyclotomic residue classes Type | 5 | €x
{01, 02,03,04} A 1] 4

191, 92, 291,292} B | 2]2

193, 94,293,294, 393, 394,493,494} | B | 4 | 2

Table 4.5: Different types of cyclotomic residue classes for ¢ = 2 mod 3, ¢ = 2 or 3 mod
5and 3 =5 mod p (e.g. ¢ =2,8)

of self-dual G-invariant codes over F} is Ng(q,4)Ng(¢% 2)Nu(q*,2).

g=1mod 3,¢g=1mod 5 and 3 =5 mod p (e.g. ¢ =16):

Different types of cyclotomic residue classes are shown in Table 4.6.

From Table 4.6, clearly the number of self-dual G-invariant codes over F, is Ng(q,4) (N(g,2))".

¢g=1mod 3, ¢g=4mod 5 and 3 =5 mod p (e.g. ¢ =4):

Different types of cyclotomic residue classes are shown in Table 4.7.

From Table 4.7, clearly the number of self-dual G-invariant codes over Fj is

NE(Qa 4)N(q, 2)(NH(q2’ 2))2
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Cyclotomic residue classes | Type | r, | €;
{01, 02,03,04} A 1|4

{gl, gg} C 1 2

{291, 292} C 1 2

{93, 94} C 112
{293,294} C 1] 2
{393,394} C 12

{4g3, 494} C 1 2

Table 4.6: Different types of cyclotomic residue classes for ¢ = 1 mod 3, ¢ = 1 mod 5 and
3 =5 mod p (e.g. ¢ =16)

Cyclotomic residue classes | Type | r | e,
{01,04,05,04} A 114

{91, 92} C [1]2
{291,290} C [1]2
{293,294, 393, 394} B |22
{93, 94, 493,404 } B |22

Table 4.7: Different types of cyclotomic residue classes for ¢ = 1 mod 3, ¢ = 4 mod 5 and
3=5modp (e.g. g=4)

Corollary 4.5.6. If G is such that |G1| = ... = |G| mod p and there is a self-inverse

cyclotomic coset [x]? C G with e, odd, then there is no self-dual G-invariant code over Fy,.

Proof: If [z]? is a self-inverse cyclotomic coset, it contributes Ng(¢'=, e;) or Ny (¢™, es)
to the product in Theorem 4.5.5. Both these numbers are 0 when e, is odd and thus

result follows. ]

Ezample 4.5.2 (Continuation of Example 4.1.2). G has exponent 45. Let o € Fi» be an
element of order 45. The set of indexes has two orbits under the action of G and G; ~ Zi5
and Gy ~ Zy. Let g; and g, be generators of G; and GG5. The co-ordinate positions can
be indexed by elements G as shown in Figure 4.15. The DFT in F (124 ~ Fqg is defined with
respect to the maps 1, defined by:

¢1(91;g1) =a’

¢2(92; 92) =a’.

So,

V1(01]Gysi01) = ¥1(10g1,ig1) = o for 0 < i < 15
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/692 792 8 80,
Figure 4.15: Re-indexing the components as in Example 4.5.2

Y1(02] 61, 191) = ¥1(691,ig1) = &' for 0 < i < 15
Va(01]a,, 592) = ¥1(392, 5 92) = at® for0<i<9

V2(02|Gyy 192) = P1(g2,792) = @™ for 0 < < 9.

ig1 and jgo are in the same residue class if and only if 11 (01|q,, 191) = Y2(01]|G,, 7 92) i-€.
®% = 1% and ¥y (09|gy,191) = V2(02]g,, jge) ie. ¥ = ad ie. i =4 =0. So, all the

residue classes of G except {01,02} are singletons.

When ¢ = 2 mod 9 and 9 = 15 mod p, there is no self-dual G-inverse code over
F,, since [g2]? = {92, 292,492,802, 792,592} is a self-inverse cyclotomic residue class with

€g, = 1.

Corollary 4.5.7. If G is such that |G| = ... = |G| mod p and the number t of orbits is

odd, then there is no self dual G-invariant code.

Proof: For any k, 0, = {0;[j = 1,---,t} and [04]¢ = {04} is a self-inverse cyclotomic

coset. So, applying Corollary 4.5.6 on this cyclotomic coset, the result follows. [ ]

Corollary 4.5.8. Let G be an abelian group with order relatively prime to q. Sup-

pose [f1]%, -+, [fi,]? are the Type A q-cyclotomic cosets, [91]%,- -, [9:,]? are the Type B

g-cyclotomic cosets and [hi]%, [h7 ]9, - - - [hi,]7, [hi,']7 are the Type C g-cyclotomic cosets

in G. Then the number of self-dual G-quasi-abelian codes of length t|G| is [['L, Nu(q"*, 1)
o N0 1) [Tz N(a™. ).
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Ezample 4.5.3 (Continuation of Example 4.1.4). There are two orbits and G; = Gy =
G = Zy x Z3. In the following, the cyclotomic cosets and the number of self-dual G-quasi-

abelian codes of length 54 are discussed for different cases.

g=2or 5mod9 [e.g ¢ =2, 32] The cyclotomic cosets in G are shown in Table 4.8. Number

Cyclotomic cosets in GG Type | 74
{(0,0)} A 1
{(1,0),(2,0),(4,0),(8,0),(7,0), (50} | B |6
{(0,1),(0,2)} B 2
{(1,1),(2,2),(4,1),(8,2),(7,1),(52)} | B | 6
{(2,1),(4,2),(8,1),(7,2),(5,1), (1,2)} | B | 6
{(3,1),(6,2)} B 2
{(3,2),(6,1)} B 2

{(3,0), (6,0)} B 2

Table 4.8: Different types of cyclotomic residue classes for ¢ = 2 or 5 mod 9 [e.g ¢ = 2, 32]

of self-dual G-quasi-abelian codes of length 54 is Ng(q,2) (Nu(¢2,2))" (Nu(¢®,2))°.

g =1 mod 9 [e.g ¢ = 64] All the cyclotomic cosets of G ~ Zy x Z3 are singletons and all

except (0,0) are of type C. Number of self-dual G-quasi-abelian codes of length 54 is
NE(q7 2) (N(Q7 2))26'

g=4or7mod9 [e.g ¢ =4, 16] The cyclotomic cosets in G are shown in Table 4.9. Number
of self-dual G-quasi-abelian codes of length 54 is Ng(g,2) (N(g,2))" (N (¢?,2))°.

g =8 mod 9 [e.g ¢ = 8] The cyclotomic cosets in G are shown in Table 4.10. Number of
self-dual G-quasi-abelian codes of length 54 is N (g, 2) (Ng(¢2,2))".

For any group G of permutations, let 0 denote the residue class {04,---,0;}, where
. . . . . A
0 denotes the identity element of G;,. For any G-invariant binary code, the code Cy =

{Agla € C} will be called as the binary component of C.

Any binary self-dual code in which Hamming weight of every codeword is divisible by
4 is called a Type II code or doubly even self-dual code. In the following, we have the

characterization of Type II G-invariant code.

Theorem 4.5.9. Let G be a group of permutations of odd exponent. Then a G-invariant

binary self-dual code C is Type II if and only if it’s binary component Cqy is Type IL

Proof: Size of each orbit is odd since G has odd exponent.
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Cyclotomic cosets in G | Type | 7,
{(0,0)} A 1
{(1,0), (4,0),(7,0)} C 3
{(2,0),(8,0),(5,0)} C 3
{(0,1)} C 1
{(0,2)} C 1
{(1,1), (4,1),(7,1)} C 3
{(2,2),(8,2),(5,2)} C 3
{(2,1),(8,1),(5,1)} C 3
{(4,2),(7,2),(1,2)} C 3
{(3,1)} C 1
{(6,2)} C 1
{(3,2)} C 1
{(6,1)} C 1
{(3,0)} C 1
{(6,0)} C 1

Table 4.9: Different types of cyclotomic residue classes for ¢ = 4 or 7 mod 9 [e.g ¢ = 4, 16]

(=) : Since the code is Type II and each orbit size is odd, 4 divides t.

For any v € Cy, there is a codeword a € C such that Ay =v and A, =0Vz ¢ 0.

wtg(a) = Y |Gyl

k=1t0 ¢
vk;ﬁo

Since 4|wtg(a) and |G| is odd for each k, wty(v) is also divisible by 4. So, Cy is Type
II.

(<) : Suppose, Cy is Type II. Then 4 divides t.
For any a € C, suppose A = v € (.

Exactly wty(v) orbits of a has odd weights. Since wty(v) and (¢ — wty(v)) are both
divisible by 4, weight of a is divisible by 4. [ ]

4.5.2 Self Dual Quasi-cyclic Codes

For [-quasi-cyclic codes, G ~ G ~ Z%. and Z% denotes the quotient group Z/%Z ~

{0,1,--- T — 1} with modulo 7 addition. In this case, the g-cyclotomic cosets in Z%
n

are the g-cyclotomic cosets modulo 7, which play an important role in case of cyclic

codes of length 7. Each residue class contains one element from each orbit. It is well
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Cyclotomic cosets in G | Type | 7,
{(0,0)} A 1
{(1,0), (8,0)} B 2
{(2,0),(7,0)} B 2
{(4,0), (5,0)} B 2
{(0,1), (0,2)} B 2
{(1,1),(8,2)} B 2
{(2,2),(7,1)} B 2
{(4,1), (5,2)} B 2
{(2,1),(7,2)} B 2
{(4,2), (5,1)} B 2
{(8,1),(1,2)} B 2
{(3,1),(6,2)} B 2
{(3,2),(6,1)} B 2
{(3,0), (6,0)} B 2

Table 4.10: Different types of cyclotomic residue classes for ¢ = 8 mod 9 [e.g ¢ = §]

known that there is a 1 — 1 correspondence between the prime factors of the polynomial
Y7 — 1 and the g-cyclotomic cosets modulo 7. The degree of a prime factor of Yi—1is
same as the cardinality r; of the corresponding g-cyclotomic coset [j]?. Moreover, the self
reciprocal cyclotomic cosets in Z n correspond to the prime factors f(Y') whose reciprocal
polynomial f*(Y") is an associate of f(Y"). Such polynomials will be called as self reciprocal

polynomials.

For any k EZ%, if —k = kmod 7, then 2k = O0mod 7 = k = Omod 7 or k =

[~I1s

£ mod 7 for even 7. So,

. J1 if 7isodd
=12 if I is even -
Theorem 4.5.9 specializes to the case of quasi-cyclic codes as following.

Corollary 4.5.10. A self-dual binary code C is a Type II l-quasi-cyclic code of length n
(7 odd) if and only if it’s binary component Cy is of Type II.
Proof: Putting G = (o) where o represents the permutation ’[-times cyclic shift’. |

This corollary gives Propositions 7.1 and 7.3 of [92] as special cases as following.

Corollary 4.5.11. [92, Proposition 7.1] A self-dual binary code C is a Type II l-quasi-
cyclic code of length 3l if and only if it’s binary component Cy is of Type II.
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Proof: Putting 7 = 3 in Corollary 4.5.10. ]

Corollary 4.5.12. [92, Proposition 7.8] For 7 = 5 or 7, a self-dual binary code C is a
Type II l-quasi-cyclic code of length n if and only if it’s binary component Cy is of Type
11

Proof: Putting 7 =5 or 7 =7 in Corollary 4.5.10. ]

Corollary 4.5.8 specializes for quasi-cyclic codes as following.

Corollary 4.5.13. Let 7 be a positive integer relatively prime to q. Suppose [x1]9,- - -, [x4]?
are the Type A q-cyclotomic cosets modulo 7, [y1]?, - -+, [yi,]? are the Type B q-cyclotomic

cosets modulo  and [21]9, [~21]7, - -+, [235]%, [~ 2i5] are the Type C q-cyclotomic cosets mod-

n
R

T2, Nu(q™, ) TIE, N(a™+, D).

ulo ™. Then the number of self-dual l-quasi-cyclic codes of length n is [['L, Nu(q"=,1)

Ezample 4.5.4 (Continuation of Example 4.1.5). The g-cyclotomic cosets in Zg for ¢ = 2
are shown in Table 4.11. So by Corollary 4.5.13, the number of binary [-quasi-cyclic codes

2-Cyclotomic cosets in Zy | Type | 7,
{0} A 1
{1,2,4,8,7,5} B 6
{3,6} B 2

Table 4.11: Different types of 2-cyclotomic classes in Zg

of length 91 is Ng(q,!)Ng(q® )Ny (q?,1).
The number of [-quasi-cyclic codes of length 9/ over F;, for any other ¢ can be calculated

similarly from the ¢-cyclotomic cosets in Zy.

All the results of [92] regarding existence/nonexistence and number of self-dual quasi-
cyclic codes of specific parameters are obtainable as special cases from Corollary 4.5.13.
To be specific, Propositions 6.1, 6.2, 6.3, 6.6, 6.9, 6.10, 6.12, 6.13, 6.15 and 6.17 of [92]
are direct consequences of Corollary 4.5.13. Those are explained in details in Subsection

4.5.3.

4.5.3 Some Corollaries

Corollary 4.5.14. [92, Proposition 6.1] Let 7 be relatively prime to q. Then self-dual
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2-quasi-cyclic codes over Fy of length 2% exist if and only if ezactly one of the following

conditions is satisfied:

1. q is a power of 2.
2. q = p°, where p is a power congruent to 1 mod 4; or

3. ¢ = p?®, where p is a prime congruent to 3 mod 4.

Proof: Here [ = 2. So, for any self-inverse cyclotomic coset [k]?; & € Z=, such that
= —k mod I, Ng(q"*,2) > 0 if and only if either ¢ is even or ¢ = 1 mod 4. So, the result

follows. u

Corollary 4.5.15. [92, Proposition 6.2] Let q be a prime power satisfying one of the
conditions in Corollary 4.5.14 and let 7 be an integer relatively prime to q. Suppose
that YT — 1 = 8g1---gj,hah}---hjk, in Fy[Y], where § is a nonzero element of F,
91,75 Gjr» hay B, - -+ by B, are monic irreducible polynomials such that g; are self-reciprocal
and hj and h} are reciprocals. Suppose further that g1 =Y —1 and if 7 is even, go = Y +1.
Let the degree of g; be 2d;, and let the degree of h; (hence also h;) be e;. Then the number

of distinct self-dual 2-quasi-cyclic codes of length 27 over Fy is given by

4H21:3(qdi +1) §2:1 N(q%,2) if % is even and q is odd
2 Hglﬁ(qdi +1)[ iN(q%,2) if } is odd and q is odd
(g% +1) ZiN(g,2)  if 7 is odd and q is even

Proof: The prime factors gi,- -, g;, of Y7 — 1 corresponds to the self-inverse cyclotomic
cosets modulo 7 in Z». The factors Y —1 and Y +1 (when 7 is even) corresponds to the
cyclotomic cosets [0]? = {0} and [g]q = {%} respectively. The other cyclotomic cosets,
which are not self-inverse, correspond to the factors hy, hi,---, hj,, hj,. So, the result
follows. |

Corollary 4.5.16. [92, Proposition 6.3] Let 7 be relatively prime to q and let | be odd.
Then no self-dual l-quasi-cyclic codes over Fy of length n exist. Moreover, when q =

3 mod 4, self-dual l-quasi-cyclic codes over Fy of length n exist only if | = 0 mod 4.

Proof: Trivial. m
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Il

Corollary 4.5.17. [92, Proposition 6.6] Suppose ¢ = 1 mod 4 and [ is even, or q
3 mod 4. The number of distinct self-dual l-quasi-cyclic codes of length 2l over F, is

i1 .
4Hz'2:1 (qZ + 1)2

Proof: Here 7 = 2, | even. The cyclotomic cosets are [0]? = {0} and [1]? = {1}, both of
Type A. So the result follows from Corollary 4.5.13 and expression (4.18). |

Corollary 4.5.18. [92, Proposition 6.9] Suppose that q and [ satisfy one of the following:

1. ¢ =11 mod 12 and | =0 mod 4; or

2. ¢q =2 mod 3 but ¢ Z 11 mod 4, and | is even.

Then the number of distinct self-dual l-quasi-cyclic codes over F, of length 3l is given by
Ly, . .
b(g+1) Z?:ll(qz +1)(¢* + 1), where b =1 if q is even, 2 if q is odd.

Proof: In the cases under consideration, the cyclotomic cosets modulo 3 are

Type A | {0}
Type B | {1,2}
Type C | none
Thus the result follows. [ ]

Corollary 4.5.19. [92, Proposition 6.10] Let q and [ satisfy one of the following:

1. =7 mod 12 and l =0 mod 4; or

2. q=1mod 3 but g 7 mod 4, and [ is even.

Then the number of distinct self-dual I-quasi-cyclic codes over Fy of length 3l is given by
Ly
b ( Z?:ll(ql + 1)) N(q,l), where b=1 if q is even, 2 if q is odd.

Proof: In the cases under consideration, the cyclotomic cosets modulo 3 are

Type A {0}
Type B none
Type C | {1},{2}

Thus the result follows. [
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Corollary 4.5.20. [92, Proposition 6.12] Let q be an odd prime power such that —1 is not
a square in Fy and let | = 0 mod 4. Then the number of distinct self-dual l-quasi-cyclic

[ .
codes over Fy of length 4l is 4(q + 1) [125 (¢ + 1)2(¢® 1 + 1),

Proof: In this case, Y* — 1 factors into prime factors over F, as (Y — 1)(Y +1)(Y? +1).

So, the cyclotomic cosets modulo 4 are

Type A | {0}.{2}
Type B | {1,3}
Type C | none

So the result follows from Corollary 4.5.13. [ ]

Corollary 4.5.21. [92, Proposition 6.18] Let | be even and let g be an odd prime power
such that —1 is a square in F,. Then the number of distinct self-dual I-quasi-cyclic codes

[
over Fy of length 4l is (4 Hlel (¢" + 1)2) N(q,1),

Proof: In this case, Y*—1 factors into prime factors over F, as (Y —1)(Y+1)(Y —) (Y +7),

where vy € F} is such that v = —1. So, the cyclotomic cosets modulo 4 are

Type A | {0}.{2}
Type B none

Type C | {7}, {=7}

So, the result follows from Corollary 4.5.13. ]

Corollary 4.5.22. [92, Proposition 6.15] Let | be even and let q be such that Y* +
Y3+ Y24Y 41 is irreducible in F,[Y]. If ¢ = 3 mod 4, suppose further that

0 mod 4. Then the number of distinct self-dual l-quasi-cyclic codes over Fy, of length 5l is
Loy .
b(¢* + 1) i2:11 (¢" +1)(¢**2 + 1), where b=1 if q is even, 2 if q is odd.

Proof: For the case under consideration, Y® — 1 factors into prime factors over F as

(VY -1)(Y*+Y3®+Y2+Y +1). So, the cyclotomic cosets modulo 5 are

Type A | {0}
Type B | {1,2,3,4}
Type C none

So, the result follows from Corollary 4.5.13. [ |
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Corollary 4.5.23. [92, Proposition 6.17] When [ is even, 7 is an integer and q is a
prime power relatively prime to 7 such that YT —1 factors completely into linear factors
over Iy, with the additional constraint that | = 0 mod 4, the number of distinct self-dual

l-quasi-cyclic codes over Fy of length n is equal to

b-1,, (3-1 o
i3 (¢" + 1)) N(g,1)~ > if q is even
L . (Z-1)
(2 [ (@' + 1)) N(g,)) 5" if2 is odd and q is odd

Lo, 2 (7-2)
(2 Hf:Ql(qZ + 1)) N(q,1)= if 7 is even and q is odd

Proof: For the case under consideration, the cyclotomic cosets modulo 7 are

Type A {0}
and {ZT} when 7 is even and ¢ is odd
Type B none
Type C all the other cyclotomic cosets
So, the result follows from Corollary 4.5.13. [ |

4.6 Duals of G-Invariant Codes : The General Case

To characterize duals of G-invariant codes, some generalizations of Euclidean and Hermi-
tian dual codes are needed. Let v = (vy,---,v;) C Fé be a vector with each component
nonzero. For any two vectors a,b € Fé, the v-weighted Euclidean inner product (or Ey

inner product) of a and b is defined as

!
Ey(a,b) = Z Vg gy (4.20)
=1

Similarly for any v € Fé, v-weighted Hermitian inner product or Hy-inner product of

ac F;2 and b € Féz is defined as

I
H,(a,b) = vaawbg (4.21)
=1
Note that, since v € F}, Hy(a,b) = 0 if and only if H,(b,a) = 0 since H,(a,b) =
Hy(b,a)l.

For any = € G, we’ll denote by i,, the cardinality of the orbit containing x. For any

residue class z, 7z will denote the e,-tuple with components 4, ; y € Z in the same order
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as A,’s in Az. With missuse of notation, i~ ! will denote the component-wise inverse (in

Fp g Fq) of ’ii.
Now, Theorem 4.5.1 can be generalized to:

Theorem 4.6.1. For a G-invariant code C, a vector b € Fqg s orthogonal to C if and
only if for all a € C,

Zi;lAyBy—l =0  for all cyclotomic residue classes (x)? (4.22)

YyET

So in general, two G-invariant codes C; and C, are duals of each other if and only if
for each z;; 1 =1,2,---,1 (see Theorem 4.5.2), V,.. and U,, are E 1-duals of each other.
This gives a modified versions of Theorem 4.5.3 and 4.5.5 as bellow Here N By (g,1) and
Nu_ o (g,1) denote the number of respectively E -1-self dual codes and H -1- self dual codes

of length l over F,. Note that if i 1~ is a scalar (1n F,) multiple of v, then two subspaces
VCF é and U C F é are Eigl—duals of each other if and only if they are F,-duals of each
other. Similarly V C F (52 and U C F 52 are Higl—duals if and only if they are H,-duals
of each other. So, when all components of iz are same, Eii—l—duality and Higl—duality are

same as Euclidean and Hermitian duality respectively.

Theorem 4.6.2. Let C be a G-invariant code, where Ag,, Ag;, Az and A;:l takes values
from the subspaces V., Vy., V, and V 1 respectively for 1=1,---,01;5=1,---,19; k=
1,---,13. The code s self dual if and only if

1. Vg, is a E;i_-self-dual code for i =1,---,1;
2. Vy, is a Hi_-Hermitian self-dual code for j =1,---is.
3. Ve, is the Ey_-dual code of Vo fork=1,---,is

Theorem 4.6.3. Number of self dual G—im}ariant codes over Fy s
HZIZI Ng,_ (q", eq;) H NHl~ (g™, ey,) w_  N(q"#*, e, ), where the empty product is 1

by convention.

It is easy to see that if [ is odd, then Ng,(q,l) = Ng,(¢*,1) = 0 for any v € F}. So,
Corollary 4.5.6 and 4.5.7 are valid even in the general case, i.e. even when |G| = |G2| =

= |G}| mod p is not true.
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Though values of Ng(q,1) and N(q, 1) are known, the values of Ng, (g, 1) and Ny, (¢?,1)
are not known for arbitrary v. The following theorem allows computation of these quan-

tities for certain cases.

Theorem 4.6.4. If either all components of v € Fé are quadratic residues in Iy or all

components are quadratic non-residues in Fy, then

1. Ng,(g,1) = Ng(q,1) and

2. Nu,(¢*1) = Nu(q*,1)

Proof: If all the components of v are quadratic non residues in F, then we can divide
this vector by one of it’s components to get a scalar multiple of the vector, in which each
component is quadratic residue. So, it is sufficient to assume that the components of v

are quadratic residues. Suppose v = (vy,---,v;) = (8%, -+, s?).

We shall give a 1-1 correspondence between the Ey-self dual codes and the Euclidean
self-dual codes to prove the first part of the result. For the second part, we shall give a

1-1 correspondence between the H,-self dual codes and the Hermitian self-dual codes.

Let U C Fé be a Ey-self dual code of length [ over Fj. Then we’ll show that the
subspace W = {(s1a1,- -+, siq;)]a = (a1,--+,a;) € V} is a Euclidean self dual code.
Suppose (s1a1,+ -, S1a;), (s1b1, -+, s;b;) € W. Then,

l

Z viaibi =0

i=1
l
= Z(szaz)(szbz) =0
i=1
= (s1a1,---,80;) and (s1b1,-- -, s;b;) are orthogonal w. r. t. Euclidean inner product

So, any two vectors in W are orthogonal w. r. t. FEuclidean inner product and since

L W is a Euclidean self dual

dimension of W is same as dimension of V', which is 3,
code. Similarly, it is easy to check that for any Euclidean self dual code W, the code
U2 {(si'ar, -, s;'a)]a = (a1, --,a;)) € W} is a Ey - self dual code. This proves the
first part of the theorem.

Proof of the second part is similar, noting that v = (vy,---,v) = (s%,---,s?) =

1 1\ o :
(st -+, 87" since s; € F, and thus s! = s; Vi. ]
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This theorem not only gives the number of weighted Euclidean self-dual and weighted
Hermitian self-dual codes in terms of the numbers of Euclidean and Hermitian self dual
codes respectively in the mentioned cases, but the proof also shows how to construct those

codes from Euclidean and Hermitian self-dual codes.

Ezample 4.6.1 (Continuation of Example 4.5.1). In the following, the number of self-dual
codes are found for different ¢’s for which |G| = |G3| = - -+ = |G| mod p does not hold.

g=2mod 3, ¢ =4 mod 5 and 3 # 5 mod p (e.g. ¢ =29,59):

Different types of cyclotomic residue classes are shown in Table 4.12.

Cyclotomic residue classes | Type | r; | e,
{01,04,05,04} A 114

{91, 92,291,292} B 212

{93, 94, 493,404 } B |22
{293,294, 393, 394} B |22

Table 4.12: Different types of cyclotomic residue classes for ¢ = 2 mod 3, ¢ = 4 mod 5
and 3 Z 5 mod p (e.g. ¢ = 29,59)

For ¢ = 59, 112 = 3 mod 59 and 82 = 5 mod 59. So, the number of self dual G-invariant
codes over Fsg is Ny(59,4)(Ng(59%,2))3 = 120 x 603.

For ¢ = 29, 5 = 112 mod 29 but 3 is not a quadratic residue modulo 29. 3 x 10 = 1
mod 29 i.e. 37! =10 in Fy and 5 x 6 =1 mod 29 i.e. 5~! = 6 in Fyg So, the number of
self dual G-invariant codes over Fyg is N, 0.6 (29,4) (N (29,2))°.

¢g=1mod3,¢g=2or3modb5and 3#5modp (eg. ¢q=7,13):

Different types of cyclotomic residue classes are shown in Table 4.13.

Cyclotomic residue classes Type | 5 | €x
{01, 02,03,04} A 1] 4

{91, 92} C 1] 2

{2g1, 292} C 1 2

193, 94,293,294, 393, 394,493,494} | B | 4 | 2

Table 4.13: Different types of cyclotomic residue classes for ¢ = 1 mod 3, ¢ = 2 or 3 mod
5and 3 # 5 mod p (e.g. ¢ =7,13)

For ¢ = 7, both 3 and 5 are quadratic non residues in F%. So, the number of self dual
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G-invariant codes over Fy is Ng(7,4)(Ng(74,2))N(7,2) = 16 x 50 x 10.

For ¢ = 13, 3 = 42 mod 13 but 5 is not a quadratic residue modulo 29. 3 x 9 = 1 mod
13ie. 371 =9in Fi3 and 5 x 8 = 1 mod 13 i.e. 5! = 8 in Fi3 So, the number of self
dual G-invariant codes over Fi3 is Ni,, (13,4)Nu(13%,2)N(13,2).

4.7 Minimum Distance of GG-Invariant codes

As discussed in the previous two chapters, a lower bound on the minimum Hamming
distance of a code can be obtained from a set of parity check equations over an extension
field.

If (21)7,---, (xx)? denote the distinct cyclotomic residue classes, then we know that
any G-invariant code C is specified by the subspaces V,,,---,V,, of F;f;l R F;fm’“k re-
spectively, from which Az, ---, Az take values. Now, each of V,; o = x,---, 2, can be

considered as a linear code over Fy., of length e;. So, V, is determined by a set of parity
check equations. As shown below, for any such parity check equation, we can get a parity

check equation over F. of C.

Suppose T = {y1,- -, Y}, where z = y; for some i and [ = e,. Let 25:1 ciAy =0 be
a parity check equation of V,. Then,

l
Z CiAy,- =0
i=1

!
= CiZ‘I’(y,yi)% =0
=1

= yeg
!
33 0 SZETN) P
yeGg i=1
Clearly, this gives a parity check equation of C over Fir.. The component wise conjugate
vectors of the parity check vectors obtained this way and the vectors in their span are

also parity check vectors of the code.

4.8 Quasi-abelian Codes

For any abelian group G, the G-quasi-abelian codes of length |G| (which are submodules

of (F,G)") are closed under the action of G on the co-ordinates. So such codes are invariant
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under the co-ordinate permutations induced by elements of G. However, this case has a
more organized structure that, all the orbits of the co-ordinates under the action of G are
of same size |G| and there are ¢ such orbits. This raises a natural reverse question: for
a given abelian group G of permutations on code co-ordinates, when can the G-invariant

codes be viewed as (G-quasi-abelian codes. The following theorem answers this question.

Theorem 4.8.1. The G-invariant codes are G-quasi-abelian codes i.e. they can be viewed

as submodules of (F,G)" for some t if and only if |G| = |Gy|; Vk.

Proof: We need to prove the reverse implication only. If |G| = |G|, then g — ¢ is an
isomorphism of G onto GG. So, any G-invariant code can be viewed as a submodule of
(F,G)". u

Note that to see the G-invariant codes as G-quasi-abelian codes, G, ~ Gy, ; Vki, ko €
1; is not sufficient. Each of them also have to be isomorphic to the group G, which is not

the case in general. The following is such an example.

Ezample 4.8.1. Consider the group of permutations G = ({01, 05}) of Iys = {1,2,-- -, 54},
where cycle decompositions of o1 and oy are as below.

o1 =(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13, 14, 15) (16, 17, 18)(19, 20, 21)(22, 23, 24) (25, 26, 27)
(28,29, 30,37,38,39, 46,47, 48) (31, 32, 33, 40, 41, 42, 49, 50, 51) (34, 35, 36, 43, 44, 45, 52, 53, 54);
oo =(1,4,7,10,13, 16, 19, 22, 25)(2, 5,8, 11, 14, 17, 20, 23, 26) (3, 6,9, 12, 15, 18, 21, 24, 27)
(28,31,34, 37,40, 43, 46,49, 52) (29, 32, 35, 38, 41, 44, 47, 50, 53) (30, 33, 36, 39, 42, 45, 47, 51, 54)

The cycles are shown in Figure 4.16. The solid lines with arrows represent the cycles of
o1 and the dashed lines with arrows represent the cycles of g,. It can be checked that the
order of the group G is 81, whereas the two groups GG; and G of restricted permutations
are isomorphic to each other and of order 27 and thus are not isomorphic to G. So,

G-invariant codes can not be seen as (G-quasi-abelian codes in this case.

For GG-quasi-abelian codes, the co-ordinates in different orbits can be indexed by copies
Gy, -,
G, of the same group G. So, for any element g € G, we have an element ¢() € G; for each
1. So every residue class is of the form {g(l), e g(t)}. We’ll denote it by ¢ instead of gf(vz)
For G-quasi-abelian codes, every cyclotomic residue class has same number of elements

in each orbit.

The transform domain characterization of G-invariant codes specializes for the G-

quasi-abelian codes as:
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Figure 4.16: Cycle structures of o; and o, of Example 4.8.1
Theorem 4.8.2. Let G be an abelian group of permutations with order relatively prime

to q. Then a code C C (F,G)" is G-quasi-abelian if and only if

1. For any g € G, Ay takes values from a subspace of thrg.

2. If [g1]9, - - -, [gk]? are of the distinct g-cyclotomic cosets in G, then Ag,---, Ag; are

unrelated.

Definition 12. If for a G-quasi-abelian code, symbols in some orbits form a set of infor-
mation symbols and the symbols in the other orbits are the parity check symbols then

the code is called a systematic (G-quasi-abelian code.

For a systematic G-quasi-abelian code C C (F,G)" of dimension k|G| (k < t), without
loss of generality we can assume that the first k£ orbits are information symbols and the rest
are parity check symbols. Then there exist some ¢;; € F,G;l=1,---,t—k,;j7=1,---,k
such that each codeword is of the form (ai,as, - - -, a, 25:1 ajcij, Zle ajCaj, -+
Z?Zl ajci_x;) € (F,G)". If the DFT of a; and ¢; ; are denoted by A; and C; ; respectively,
then each codeword in transform domain is of the form (Aj, Ao, - - -, A, Z?Zl A; 0 Cyy,
Z?zlAj ® Coj, -- ',Z§:1Aj ® Cik;) € (F,G)", where '@’ represents component-wise
product.
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4.8.1 Decoding of Systematic Quasi-Abelian Codes

For a systematic G-quasi-abelian code with one information orbit, there are c¢;; j =

1,---,t —1 € F,G, such that every codeword is of the form (a, c1a,c2a,- -+, ¢—1a). For
quasi-cyclic codes, i.e., for cyclic G and when ¢; is a unit in F,G for j = 1,---,t -1,
Karlin [64] used alternate syndromes based on ¢;; j = 1,---,t — 1 and their inverses to

gain considerable reduction in decoding operations. The same technique can be used to

decode this class of systematic G-quasi-abelian codes.

In the following, Karlin’s approach is extended for systematic G-quasi-abelian codes
with multiple information orbits. This is a two-step generalization of Karlin’s algorithm,
one step is from quasi-cyclic codes to quasi-abelian codes and the other is from one

information orbit i.e. 1-generated codes to multiple generated codes.

For a systematic G-quasi-abelian code C C (F,G)" of dimension k|G| (k < t), there
exist some ¢ ; € FyG;l =1,---,t —k,;j=1,---,k such that each codeword is of the

form a = (ay, ag, -, Ak, ags1, -+, 1) € (F,G)" where apy; = Z?zl

a;c; ;. We restrict our
attention to the case where ¢;j; 7 =1,---,t —k,; j=1,---,k are such that any £ x k

submatrix of the transposed generator matrix

1 0 0
/ 0 1 0 \
0 0 - 1
M =
C1,1 Ci1,2 Tt Cik
C2,1 C2,2 Tt Cok
\Ct—k,l Ct—k2 ' Ci—kk )

is invertible over FyG. That is, any k orbits form a set of information symbols. For
any subset X C [1,t], the | X| X k submatrix comprising of the corresponding rows of M
is denoted by Mx. Similarly ay will denote the vector of length | X| comprising of the
components a; € F,G; i € X. The complement [1,] \ X is denoted by X. So, if we
know k components of a codeword (ay, a9, -, a;) i.e., ay for some X of size k, then we
can solve uniquely for the others as ag = My M ax.

Suppose a = (ay, a9, -+, a;) is the transmitted codeword and the received vector is

a' = (a},al,---,a;). Let e = (e, eq,---,e;) = a' —a denote the error vector. Suppose the
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code’s known minimum distance is 2/ + 1 and a vector is received with at most [ errors.
That is, the Hamming weight of the error, >>¢_, wtz(e;) < I. Then the transmitted vector
is the only vector of the form (al, ao, -+, ay, 25:1 a;ci j, Z?Zl ajCoj," ", Z;?:l ajct_k,j)

having distance from the received vector < /.

Given a received vector a’, for each X C [1,¢] of size & we can compute a syndrome
Sx = MgMy'aly +ay = MgMy'(ax +ex)+ag+ex = MgMy'ex +ex. So, given ey,
we can calculate eg as ex = Sx — Mg My'ex. Now, if the error is of weight less than I,
then there is at least one subset X of size k£ such that weight of ex is at most [%J So, if
we presume an ex of weight at most [%J, and wty (eX, Sx — MXM)}leX) < [, then ex

and ex = Sx — MgMjy'ex give the actual error.

Now, any ex € (F,G)X! can be considered as a vector of length |X||G| over F,.
If egp,eg) € (F,G)*! are such that egp = eg?)g for some g € G, i.e. one is obtained
from the other by a permutation induced by an element of G, then we call them to be
equivalent. Let us call the equivalence classes as the (G-quasi-abelian equivalence classes.
All the elements of an equivalence class clearly has same Hamming weight. If we compute
MM )}le x for one representative of an equivalence class, then for any €y = exg in the
same equivalence class, MXM)}le’X = gMXM)}leX can be computed from MXM)}leX

just by permuting it’s components.
Using these concepts, the decoding algorithm can be put as follows.

1. For each subset X C [1,] of size k calculate Sy.
2. For i =0 to %]
3. For each subset X C [1,1] of size k

4. For each (G-quasi-abelian equivalence class of Hamming weight 7, take a represen-

tative ex. Compute MXM)}leX

5. For each g € G
5. Compute ex = Sy — gMXM;eX
6. Check if Hamming weight of ey is less than or equal to

t—i. If so, take (ex, ex) as the error and quit. Otherwise,
continue with the loops.

Number of syndromes (in (F,G)'~*) calculated by this algorithm is (}). If k = 1 and G is
cyclic, then it specializes to the algorithm proposed by Karlin [64] and Heijnen and van
Tilborg [65] for decoding systematic quasi-cyclic codes with single row of circulants in

the generator matrix, i.e. 1-generator systematic quasi-cyclic codes.. For ¢ = 2, it further
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specializes to the single parity circulant case.

4.9 Discussion

The class of codes considered in this chapter is a generalization of cyclic codes, quasi-
cyclic codes, abelian codes and quasi-abelian codes. All these special families of codes are
defined as codes closed under one or more permutations of the code components. Algebraic
structure of these special families of codes were investigated by different authors and in
all the cases, there seemed to have some common structures. For example, when all the
aforesaid permutations has orders relatively prime to ¢, those codes are decomposable as
direct sum of minimal codes. It is shown in this chapter that, such structures are not
anything special to those codes, but it is present in the family of G-invariant codes for

any abelian group G of permutations with order of G relatively prime to q.

Also, a two-fold extension of Karlin’s decoding algorithm for quasi-cyclic code is given.
It is an extension from the case of one generator systematic quasi-cyclic codes to arbitrary
systematic quasi-cyclic codes and also from the case of quasi-cyclic codes to quasi-abelian
codes. However, since the algebraic structure of G-invariant codes for any arbitrary
abelian G (with order relatively prime to ¢) is only as complex as that of quasi-cyclic codes
and quasi-abelian codes, it would be interesting to see whether this decoding algorithm

can be extended to cover this general class of codes.

The results of Section 4.5 give as special cases all the results of [92] regarding self-dual
quasi-cyclic codes. Theorem 4.6.3 gives the number of self-dual G-invariant codes in terms
of the number of weighted self-dual codes and weighted Hermitian self-dual codes when
|G1| = |G2| = -+ = |G| mod p does not hold. Theorem 4.6.4 enables computations of
these numbers in terms of the known numbers for some special cases of weight vectors. It
remains an open problem to compute the values of Ng, (¢,!) and Ng,(q,l) for arbitrary
weight vector v and thus enable computation of the number of self-dual G-invariant codes

for arbitrary abelian group G of permutations.

In Chapter 3, the quasi-cyclic codes were studied using conventional DFT. Since DFT
is defined only when the length n is relatively prime to the characteristic of the field,
the scope of this treatment is restricted to the same case. Under the action of the co-

ordinate permutation ‘/-times cyclic shift’, there are [ equal length cycles of the co-ordinate
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positions. A parallel work by Ling and Solé [8] effectively takes the DFT cycle-wise and
investigates the structure of quasi-cyclic codes. Their approach is restricted to the case:
(7,9) = 1, a weaker restriction than that ((n,q) = 1) needed in our approach. Restriction
of the DFT defined in this chapter to the cyclic group G generated by the permutation
‘l-times cyclic shift’ gives their DFT.
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Chapter 5

Codes Closed under Arbitrary
Abelian Group of Permutations :
Galois Rings

5.1 Introduction

In this chapter, the work of the previous chapter is extended for codes over Galois rings.
Other than cyclic codes, work on codes over more general commutative rings have been
very limited. Like the previous chapter, works in this chapter includes cyclic codes,quasi-

cyclic codes, abelian codes and quasi-abelian codes as special cases.

In Section 5.2, basic properties of Galois rings and the DFT for abelian codes over
Galois rings are discussed as a preparation to the later sections. Section 5.3 defines DFT
for codes over Galois rings which are closed under arbitrary abelian group of permutations
in a very similar way as in the previous chapter for codes over finite fields. Codes over
Galois rings which are closed under an arbitrary abelian group G of permutations are
characterized in DFT domain in Section 5.4. Dual code of any G-invariant code and the
self-dual G-invariant codes are characterized in DF'T domain in Section 5.5 and 5.6. The
special case of abelian codes over Galois rings is discussed in Section 5.7. Subsection 5.7.1
generalizes the results of [27] on permutation groups of cyclic codes over Galois rings to
abelian codes. The minimum distance of G-invariant codes over Galois rings is discussed
in Section 5.8. The number of Submodules of (GR(p¢, m))" is derived in Section 5.9.
Section 5.10 concludes this chapter.
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5.2 Preliminaries

5.2.1 Galois Rings

Some basic important properties of Galois rings are discussed here. For details on these

properties and their proofs, the reader is referred to [95].

Let ¢(z) € Zye[x] be a basic irreducible polynomial of degree r (such a polynomial

exists by Hensel’s lemma). The Galois ring GR(p®, ) is defined as the quotient (qu(ew[z)c)] If

m is a positive integer such that m|r, then GR(p¢, m) is a subring of GR(p¢, r). Moreover,
any subring of GR(p®, ) is of the form GR(p¢, m) for some m|r. The ring GR(p®,r) is a

finite chain ring i.e., it is a finite ring whose ideals can be linearly ordered by inclusion. It’s

GR(P®yr)
pGR(pe,r) — TP

For any element v € GR(p®, r), let us denote by u, the image of u under the canonical
homomorphism of GR(p®,r) onto F,-. All the ideals of GR(p®,r) are ordered as

only maximal ideal is given by (p) = pGR(p,r) and the quotient field is

{0} = p°GR(p%,r) C p 'GR(p% 1) C --- C P’ GR(p%, 1) C pGR(p%,r) C GR(p*(%)1)
Any element v € GR(p®, r) can be expressed as
u= piu/

where v/ € GR*(p®,r) and i is unique in this expression. v’ is unique upto modulo p® *.
The abelian group GR*(p®,r) is direct product of two groups H; and H,, where H; is
cyclic of order p™ — 1 and H, is of order p(®=")". Suppose H, = {1,£,£2,---,&” =2}, Then
the set 7, = H; U {0} = {0,1,&,&2,---,£P" =2} forms a set of coset representatives of
GR(p®,r) modulo pGR(p®, 7). Every element u € GR(p®, r) can be uniquely expressed as

u=ug+pus + -+ P Uy (5.2)
where ug, u1,- -+, ue_1 € T,. The Frobenius map on GR(p®,r) is defined as

0:GR(p%r) — GR(p° 1)

Ug+pus + -+ ey = ub +pub + -+ p¢ b

This is an automorphism of GR(p®, r) and fixes only the elements of Z,.. For e = 1, this

map reduces to the well known Frobenius automorphism of F,-.
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For any divisor m of r, the map 6,, 2 9™ is an automorphism of GR(p®, r) and fixes
only the elements of GR(p®,m). This map generates the Galois group of GR(p®,r) over
GR(p®,m). The trace map of GR(p®,r) into GR(p®, m) is defined as

Trperm) : GR(p*,r) — GR(p®,m)

a — a+0n(a)+--+05 "

(a)

Clearly, the map induced by T'7(ye r,m) on the quotient field F)r is the usual trace map

Of Fpr over Fpm.

Lemma 5.2.1. Suppose u € GR(p®,mr). If T7(pe pmm)(au) = 0 Va € GR(p®, mr), then

u = 0.

Proof: Let H; be the subgroup of GR*(p®, mr) of order p™ — 1. Then Ja € Hy, such
that 77 (pe mrm) () & PG R(p°, mr), since otherwise Vo € Hy,

r—1

T (pe smr,m) Q) = Zaqz € pGR(p®, mr)
i=0
r—1 )
iz&ql = OV&EFqT
i=0
But the left hand side is the usual trace of & over F,. This gives a contradiction, since

the usual trace of Fi» over Fj is a nonzero map.

S0, T (pe mr,m) is & nonzero map and hence if Tr e imrmy(au) = 0 Va € GR(p®, mr),
then u € p'GR(p®, mr) for some 7 > 0. Let 7 be the maximum positive integer satisfying

this. Suppose u # 0. Then i # e. So, uGR(p®, mr) = p"GR(p¢, mr) and thus
Trpemrmy(w) = 0 Yw € p'GR(p®, mr). (5.3)

Suppose, a € Hy is such that T e mrm)(e) & pGR(p¢, mr). Then Trme pmrm)(p'e) =
P'TT (e mr,my () # 0 - contradiction to (5.3). ]

This lemma shows that the kernel of the map T'r e mrm) does not contain any nonzero

ideal of GR(p®, mr) as subset.

5.2.2 DFT for Abelian Codes over Galois Rings

The DFT for abelian codes over Galois rings can be taken as straight forward extension of

the known DFT for abelian codes over Z,. [63] or DFT for cyclic codes over Galois Rings
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[27] or DFT for abelian codes over finite fields [37, 91]. In the last chapter, the DFT for
abelian codes over finite fields was discussed using group characters. In this section, the
approach is extended to define DFT for abelian codes over Galois rings. Though DFT can
be equivalently defined without using the concept of group characters, usage of character

tables will simplify notations in the later sections.

Let us consider the Galois ring GR(p®,m) and the abelian group G with exponent
v relatively prime to p. Let us denote p™ as ¢. Similar to an Fj-character of G, a
GR(p®, m)-character of G is defined as a homomorphism of G into GR*(p®, m). Since
exponent of G is relatively prime to p, the image of any GR(p¢, m)-character of G is a
subgroup of H; C T,,. The set of all GR(p®, m) characters also forms an abelian group.
If r is the smallest positive integer such that v divides ¢" — 1, then GR(p®, mr) is the
smallest extension of GR(p®, m) which contains a v-th root of unity. Then the group of

GR(p®, mr)-characters of G is isomorphic to G.

The following lemma, which is well known for finite fields, is also valid for Galois rings

and can be proved similarly as it’s counterpart for finite fields.

Lemma 5.2.2. [91] If a € GR(p®,r) has order I, relatively prime to p, then
-1
; L ifj=0
ij )
;“ {0, ifj #0 (5.4)

This lemma allows us to choose a map ¥ : G x G — Fj, which satisfies the equations
(4.1a)-(4.1d).

DFT of any element of a € GR(p®, m)G is defined as A € GR(p®, mr)G such that
Ay =3, cq¥(®,y)ay. The inverse DFT is given by a, = [G|™' Y o ¥(z,y) A,

Theorem 5.2.3 ( Conjugacy Constraint ). For any a € GR(p®,m)G, it’s DFT A
satisfies Aga = O (Ayz).

Proof:

em(Am) = Om (Z 1/)($,y)ay>

yeG

= 3 (W(@,9)" Omlay) since Y(z,y) € H,

yeG

— Zw(xq,y)ay since a, € GR(p®, m)

yeG

= A
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Lemma 5.2.4. If a,b € GR(p®, m) such that b = ga i.e., b, = a,-1,, Yo € G for some

g € G, then the corresponding DFT components are related as

B, = ¥(g,2)A, Yy G (5.5)

5.3 DFT for Codes Closed under Arbitrary Abelian
Group of Permutations

Let us consider codes over GR(p®, m) (p™ = q) of length n. Suppose the code symbols
are indexed by a finite set I, where |I| = n. Let G C Perm(I) be an abelian subgroup of
the group of permutations of I. The DFT for G-invariant codes over Galois rings can be

defined in the same way as in chapter 4 (for codes over finite fields).

Let the exponent of G be relatively prime to q. Then on each orbit, we can define
DFT as discussed in the last section. For any a € (GR(p®,m))Y, the DFT is defined orbit
wise. That is, the DFT of a is defined as A, where

A= (. y)ay Vz € Gy, Vk.

yEG

Here 1)y is 1 (as defined in the last section) for Gy. Clearly, the DFT components A, are
in GR(p®, mr), where r is the smallest positive integer such that exp(G) divides ¢" — 1.

Definition 13. For any two z,y € G, let us define

U(z,y) = Yr(z,y), when z,y € Gy for some k
“Y = o, when z € Gy, and y € Gy, s. t. k1 # ko

With this notation, the DFT can be re-written as

A = Z U(z,y)ay, Vr € G. (5.6)

yeg

Definition 14. For any h € G, and = € G let us define the symbol

(h,z) 2 1 (h® z) when z € Gy. (5.7)

It follows from this definition that the DFT of b = h(a) is given by B, = (h, z)A,.
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For any element x € G, it is in G, for some k and so cyclotomic coset of z is defined in

: ) . A )
the same way as in the previous section as [z]? = {y € G|y = 27 for some non-negative ¢}.
Similarly, r, will denote the cardinality of [z]?. By the same argument as in Corollary

5.2.3, the DFT components in a cyclotomic coset are related by Aze = 6,,(Az).

Corollary 5.3.1. For any x € G, 1, is the smallest positive integer such that (g, z)?" =
(9,7) Vg € G.

So, 7 is the lem of the lengths of the conjugacy classes of (g, z); Vg € G.

The residue class and cyclotomic residue class are defined in the same way as in the
previous chapter. And they have the same structure as before i.e., as depicted in Figure
4.9.

Ezample 5.3.1. Consider the same permutation group G of Example 4.3.1. Let H; be the
subgroup of GR*(p¢, mr) of order p™" — 1. If & € H; is an element of order 15, then DFT
in (GR(p®, mr))'® ~ (GR(p?, mr))¢ is defined with respect to the maps ), defined by:

Y191, 91) = @
¥a(92, 92) = @°
¥s(gs, g3) = o’
¥4(gs, 1) = o

The residue classes in G are shown in Figure 4.4 with dashed boxes.

Definition 15. The Cyclotomic residue class of x € G is defined as

{z, € G| for some non-negative t, (g,z,)? = (g,z) Vg € G} (5.8)

= [7]%

()

By the conjugacy constraint, values of DF'T components in one residue class determines
values of other transform components in the same cyclotomic residue class. To be specific,
A~ = ¢ (Az) for any a € (GR(p®,m))Y, where the action of 6, on Az is component
wise. So, values of transform components in one representative residue class from each

cyclotomic residue class specifies a vector completely.

In the following, for any subset S C GR*(p®, mr), we’ll denote the multiplicative sub-
group of GR*(p®, mr) generated by S as (S) and the smallest extension ring of GR(p®, m)
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containing S as GR(p®, m)(S). Clearly, GR(p®,m)(S) = GR(p®, ml) where [ is the small-
est positive integer such that s = s; Vs € 5. So for any z € G, Corollary 5.3.1 gives

GR(p*,m) ({{g,2)lg € G}) = GR(p®, mra). (5.9)

Lemma 5.3.2. For any subset S C GR*(p®, mr), Spangrpe,m)((S)) = GR(p®, m)(S).

Proof: Let us denote Spancgr(pem)((S)) by V. Clearly, V' C GR(p®,m)(S). It is now
sufficient to prove that V is a subring of GR(p®, mr). Clearly, V is closed under multipli-
cation and 1 € V. So, V is a subring of GR(p®, mr). [ |

5.4 Transform Domain Characterization of GG-Invariant
Codes

If in a G-invariant code, two transform components A, and A, are unrelated, then consider
the subcodes C; and C; obtained by restricting respectively A, and A, to {0}. Clearly, the
original code is sum of the codes C; and Cy. Suppose Si,---,S; are some disjoint subsets
of the index set such that z,y € U!_,S;. Then the transform components in Sy, - - -, S are
unrelated in C if and only if they are unrelated in C; and C3. We can continue this process
on C; and C, and repeatedly on the resulting subcodes to get a set of subcodes whose
sum is C and in each of which either there is only one nonzero transform component or
any pair of nonzero transform components is related. So, if the transform components in
S1,---,5; are related in C, then there is a G-invariant subcode of C where two transform

components Az, A, ; x € S;,y € S5; ;1 # j are related.

Lemma 5.4.1. Let V' be a one dimensional vector space over Fu and W be a vector

space over Fy(B,,-++,B;). If 0 : V — W satisfies
o(ab) = B;o(b) Vb eV (5.10)

then there exists a non-negative integer j such that B; = agj foralli=1,---k.

Proof: Using Lemma 4.4.5. ]

Lemma 5.4.2. Leto;;i=1,---,k and B;; i =1,---, k be some elements of GR(p®, mr)*
with order relatively prime to p. Suppose GR(p®,m)(c1,---,ax) = GR(p%, mly) and
GR(p®,m)(ay,---,ar) = GR(p®,mly). If R C p""GR(p®, mly) xp"GR(p®, mly); r1,79 < €
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is a GR(p®,m) module with {a|(a,b) € R for someb} = p"GR(p°, ml;), {b|(a,b) €
R for some a} = p">GR(p®, mly) and

(a,b) € R= (a,Bb) € R; fori=1,--- k, (5.11)

then there exists a non-negative integer j such that 5; = agj foralli=1,---k.

Proof: For any V' C p"*GR(p®,ml;), we shall call {(a,b) € Rla € V'} as the subset
of R obtained by restricting a to V. Similarly for any V' C p™GR(p®, mls), we shall call
{(a,b) € R|b € V'} as the subset of R obtained by restricting b to V.

Without loss of generality, we can assume that {b|(a,b) € R;a € p""*GR(p®,mly)} =
p*GR(p°, mls) for some r3 > ry. Since otherwise, we can take the smallest r4 > 7; such
that {b|(a,b) € R;a € p"GR(p®, ml;)} = p"*GR(p°, mly) for some r3 > ry and instead of
R, we can consider the subset of R obtained by restricting a to p™~'GR(p¢, ml).

Now, consider the subset

P GR(p¢, mly) p"GR(p®, mls) -
= b b)e R 5.12
prl—HGR(pe’mll) X pr2+1GR(pe’ml2) {(U,, )|(U,, ) € } ( )

R

N

PILGR(pCml) . PT2GR(p®miy)
p"1 TG R(pe,mly) p"2 G R(pe,mlz)

respectively. R # pf:i?ézgz;’einrf;l)l) xpf’;i?ézgz;ﬁffll) since {b|(a,b) € R;a € p""*GR(p*,miy)} C

p? " GR(p%, mly). Now, z%m is a GR(p®, ml;) module with anihilator pGR(p¢, ml;)

and % is a GR(p®, mly) module with anihilator pG R(p¢, mls). So, %

induced by R. Here @ and b denote the images of a and b in

. GR(p*ml1) iy . s o .
is a JEpeey ™ GF(p™1)-vector space. Since it’s cardinality is p"™!, it’s dimension is
1 GR( ,ml2

D 2GR( ,mlz) . . .
DT GR(pe,miy) 1S @ One dimensiona DGR(pmls)

Since {b[(0,b) € R} = {0}, for any @ € %, there is a unique b such that
prlGR(pe’mll) pTZGR(peale)
p" 1 TF1GR(pe,ml1) p 21 GR(pe,ml2)

one. Similarly ~ GF(p™2)-vector space.

(@,b) € R. This defines a map o : satisfying equation

(5.10). So by Lemma 5.4.1, there exists a non-negative integer j such that a; = B;” =
of =57, fore=1,--,k. m

2 1 )

Theorem 5.4.3 (Transform Domain Characterization). Let G be an abelian group of

permutations with order relatively prime to q. Then a code over GR(p¢, m) is G-invariant

iof and only of
1. For any x € G, Az takes values from a submodule of (GR(p®, mr,))®"

2. If x1,---, x} are representatives of the distinct cyclotomic residue classes of G, then

Az, -+, Ag; are unrelated.

August 5, 2002 Bikash Kumar Dey



Chapter 5. Codes Closed under Arbitrary Abelian Group of 113
Permutations : Galois Rings

5.5 Duals of G-Invariant Codes : The Case |G| =
|G| = - = |Gy| mod p°

For two vectors a,b € (GR(p®, m))¢, the Euclidean inner product of them is defined as

E(a,b) =) asb, (5.13)

z€G
The Euclidean inner product of a and b will also be denoted by a.b. For two vectors

a,b € (GR(p% 2m))¢, their Hermitian inner product is defined as

H(a,b) =) a0 (b,) (5.14)

z€G

Two vectors are called orthogonal w. r. t. Euclidean or Hermitian inner product, if
respectively the Euclidean or Hermitian inner product of the vectors is zero. Two codes
Cy and Cy, are called Euclidean dual of each other if C;, = {b|E(a,b) =0; Va € C;}.
Similarly Hermitian dual codes are defined. Euclidean duality will simply be referred as
duality and explicitly mention Hermitian duality when needed. A code is called self dual
when it is dual of itself. Similarly a code is called Hermitian self dual when it is Hermitian

dual of itself. A code is called self-orthogonal if it is a subcode of it’s dual.
Clearly, dual of a G-invariant code is also G-invariant.

In this section, only case when all the orbit cardinalities are same modulo p is con-
sidered. This case gives fairly simple characterization of dual and self dual G-invariant

codes and all the special cases fall under this case.

Theorem 5.5.1. Let G be such that |G1| = ... = |G| mod p¢. For a G-invariant code C,
a vector b € (GR(p®,m))Y is orthogonal to C if and only if for all a € C,

ZAyBy—l =0  for all cyclotomic residue classes (x)? (5.15)

YyET

Proof: Clearly, b is orthogonal to C if and only if

alb;VaeC <= Y ab,=0 VacC

yeG

= ZAyBy—l =0 VaeC(C since |Gi| = ... = |G| mod p°
yeg

= Z AyB,-1 = 0 for each cyclotomic coset (z)?, Va gE.16)
ye(z)?
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re—1

= Y AuBy =0

1=0 yezx

re—1

= ) ZquiB(y_l)qi =0 7
1=0 yezx

re—1

= D) 6.(A)6,(B)=0 7

1=0 yezx

re—1

= > 0> AB-|=0 "
1=0

YET

!

TT(pE,mrz,m) Z AyBy—l =0 »

YyET

> AyBy =0 7 (5.17)

YyET

!

The fact that transform components in different cyclotomic residue classes are unrelated
for G-invariant code is used to get (5.16), and (5.17) is obtained by using Lemma 5.2.1
and the fact that A; takes values from a submodule of (GR(p®, mr;))®. m

Note that if (5.15) is satisfied for a residue class z then it is also satisfied for any
other residue class in the same cyclotomic residue class. So, it is sufficient to consider
only one representative residue class in each cyclotomic residue class. When two residue
classes 7 and 2! are considered, the compatible orders are taken in them, i.e. if Az =
(Agy Agyy-- -, Ag.,_,), then A~ = (Azfl,Aql, A )

ex—1

Let {z1, s, -+, x;} be a set of representatives of the distinct cyclotomic residue classes
of G. Suppose, for the codes C; and Cq, Az takes values from V, and U, respectively. Then
V; and U, can also be considered as linear codes of length e, over Fir.. Using Theorem

5.5.1, the following characterization of the dual code of a G-invariant code is obtained.

Theorem 5.5.2. Let G be such that |G| = ... = |Gy| mod p¢. Suppose {x1,Z2, -, ;} 18
a set of representatives of the distinct cyclotomic residue classes in G. Two G-invariant
codes C; and Cy are dual of each other if and only if for each z;; 1 =1,2,--- 1, V;, and

U,-1 are dual codes of each other.
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5.5.1 Self Dual G-Invariant Codes

Let us denote the distinct self inverse cyclotomic residue classes as (z1)%, - - -, ()9, (Y1), - - -
(vi,)? and the other distinct cyclotomic residue classes as (21)7, (21 )7, (2i5), (2;,")"%,
where z; = :cz-_l for e =1,---,4; and y; # yz-_1 for t =1,---,15. The following theorem

gives the transform domain characterization of self dual G-invariant code. This theorem
and the other subsequent results in this section are stated without proofs, since their finite
field versions are already present in Chapter 4 and their proofs for codes over Galois rings

are similar to those for codes over finite fields.

Theorem 5.5.3. Let G be such that |G| = ... = |G| mod p® and C be a G-invariant code
over GR(p®, m), where Az, Ag;, Az and A;k_vl take values from the submodules Vi, V.,
V., and ‘/;;1 respectively forv =1,--- 1157 =1,---,io; k =1,--- 13. The code is self
dual if and only if

1. V,, s a self-dual code fori=1,---,1;.
2. Vy; 1is a Hermitian self-dual code for j =1, 1s.
3. V. s the dual code of ‘/2;1 fork=1,--- 3.

Corollary 5.5.4. Suppose [f1]9,- -, [fil%, [91]%, - - -, [9i,]? are the self-inverse q-cyclotomic
cosets in G such that f[l = fi forl <1 < 4 and g[l # gi; forl < i < iy and
[ha]9, [hT1]9, -+, [hig)?, [hi,']7 are the other g-cyclotomic cosets in G. Then a G-quasi-
abelian code C of length t|G| over GR(p®, m) is self-dual if and only if

1. V4, is a self-dual code fori=1,---,4;.

2. Vg, 1is a Hermitian self-dual code for j =1,-+-,ia.

3. Vi, 1is the dual code of Vh;1 fork=1,---13.

The number of self dual codes and Hermitian self dual codes of any length over finite
fields is known [93, 94] and are given in the last chapter. Let us denote by Ng(p¢, m,1)

and Ny (p°, m, 1), the number of self dual and Hermitian self dual codes of length [ over
GR(p®,m). Also, let N(p®,m,l) denote the number of submodules of (GR(p¢, m))". The
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exact values of Ng(p®, m,l) and Ng(p®, m,l) are not known for arbitrary p,e and m. In
[96], the value of Ng(22,1,1) is computed and it is
L
2 i(i41)
Np(2®,1,0) = ) o(li)2 2 (5.18)
i=0
where o(l, ) is the number of binary self-orthogonal [/, 7] codes with all weights divisible

by 4 and is equal to 1 if # = 0 and otherwise given by

if k=41 (mod 8)

if k=43 (mod 8)

o 21+l — 1 ’
‘]:
(12 gk2j-2 4 glili-t 1] [ 1 ok g ob-i o]
2+l _ 1 ' 9i—1 + 2 _ 1 ; if k=40 ( mod 8)
[ j=0 ] | ]
[i—2 . k1_; 7 r i - -
2k—2j—2 _ 2[5}—1—1 -1 1 2k—2z — 95—t _9 .
2i+1 -1 : 2,571 + 2’L 1 , lf k = :t4 ( mOd 8)
[ j=0 i L i

It is shown in the appendix that the number of submodules of (GR(p®, m))l of type
(kO, kl: ) kefl) is

ez Lhi 1 (e—iym(i—k|_—j) _ ,(e—i—1)m(l—k]_;—j)
p : p !
Niko ks ko) (P55 1) = H H mni; — pm(ni,;—ki+i) (5.19)
i=0 j=0 p p

where k', =0,k = ki_,+k; for k> 0,andn,; = (ki—j)(e—i)+kit1(e—i—1)+- - -+k._1.
The number of submodules of (GR(p¢,m))" is then

N(p®,m,l) = Z Nko,ke_r) (0%, M, 1) (5.20)

(kOa"'ake—l)
ko4 A kot <1

Theorem 5.5.3 directly gives:

Theorem 5.5.5. Let G be such that |G1| = ... = |G| mod p°. Number of self dual G-
invariant codes over GR(p®,m) is [\, Nu(p®, mrs,, €s,) ;2:1 Ny (p®,mry,, ey,)

23:1 N(p®,mr,, e, ), where the empty product is 1 by convention.
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In the above theorem, the first factor is contributed by the Type A cyclotomic residue
classes, the second factor is contributed by Type B cyclotomic residue classes and the

third factor is contributed by the Type C cyclotomic residue classes.

Corollary 5.5.6. Let G be an abelian group with order relatively prime to p. Sup-
pose [f1]%,---,[fi,]? are the Type A q-cyclotomic cosets, [¢1|%,---,[9i,]? are the Type B
g-cyclotomic cosets and [h1]9,[h7']9, - - -, [hi,]9, [h;,']? are the Type C q-cyclotomic cosets
in G. Then the number of self-dual G-quasi-abelian codes of length t|G| over GR(p®, m)
is TT2Ly No(0, 0 ) T2 Nit 0, gy, ) TLy NG, g, 1)

For [-quasi-cyclic codes, G ~ G, ~ Z%. In this case, the g-cyclotomic cosets in Z% are
the g-cyclotomic cosets modulo 7, which play an important role in case of cyclic codes of
length 7. Each residue class contains one element from each orbit. It is well known that
there is a 1 — 1 correspondence between the prime factors of the polynomial Y7 — 1 and
the g-cyclotomic cosets modulo 7. The degree of a prime factor of Y7 —1is same as the
cardinality r; of the corresponding g-cyclotomic coset [j]?. Moreover, the self reciprocal
cyclotomic cosets in Z= correspond to the prime factors f(Y) whose reciprocal polynomial

f*(Y) is an associate of f(Y). We’ll call such polynomials as self reciprocal polynomials.

For any k£ € Z», if —k = kmod 7, then 2k = Omod 7 = k = Omod 7 or k =
%

+ mod 7 for even 7. So,

. J1 if%isodd
=39 if 2 is even -

Corollary 5.5.6 specializes for quasi-cyclic codes as following.

Corollary 5.5.7. Let 7 be a positive integer relatively prime to q. Suppose [1], - - -, [z;,]?
are the Type A q-cyclotomic cosets modulo 7, [y1]?,- -, [yi,]? are the Type B q-cyclotomic
cosets modulo 7 and [z1]%, [—21]%,- -+, [23]%, [~ 2i;]? are the Type C g-cyclotomic cosets
modulo 7. Then the number of self-dual I-quasi-cyclic codes of length n over GR(p°®, m)

is TIiLy Ne(q=, ) T Nu (g™, 1) TIE, N(g™, 1).

5.6 Duals of G-Invariant Codes : The General Case

To characterize duals of G-invariant codes, some generalizations of Euclidean and Her-

mitian dual codes are needed. Let v = (vy,---,v;) C (GR(p, m))" be such that each
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component is invertible. For any two vectors a,b € (GR(p®,m)), let us define the v-

weighted Euclidean inner product (or Fy inner product) of a and b as

l
b) =3 0,050 (5.21)
=1

Similarly for any v € (GR(p® m))!, v-weighted Hermitian inner product or H,-inner
product of a € (GR(p¢,2m))! and b € (GR(p®, 2m))! is defined as

l

Hy(a,b) =) v,0,0(bs) (5.22)

=1
Note that, since v € (GR(p% 2m))!, Hy(a,b) = 0 if and only if H,(b,a) = 0 since
H,(a,b) = 0,,(Hy(b,a)).

For any x € G, let us denote by i,, the cardinality of the orbit containing x. For any
residue class 7, iz will denote the e;-tuple with components i, ; y € T in the same order

as A,’s in Az. With missuse of notation, 4= ! will denote the component-wise inverse (in
Zye C GR(p®,m)) of i5.

Now, Theorem 5.5.1 can be generalized to:

Theorem 5.6.1. For a G-invariant code C, a vector b € (GR(p®,m))Y is orthogonal to
C if and only if for alla € C,

Zi;lAyBy_l =0 for all cyclotomic residue classes (x)? (5.23)

YyET

So in general, two G-invariant codes C; and C, are duals of each other if and only if
for each z;; i =1,2,---, (see Theorem 5.5.2), V,.. and U,, are E 1-duals of each other.
This gives a modified versions of Theorem 5.5.3 and 5.5.5 as bellow Here Ng_, (p%, m,1)
and N, H_: (p®, m,l) denote the number of respectively E -1-self dual codes and H,-1-self

mz

dual codes of length [ over GR(p®, m).

Theorem 5.6.2. Let C be a G-invariant code over GR(p®,m), where Az, Az, Az

and A-—= takes values from the submodules Vy,, V., V,, and Vzk_l respectwely for 1 =
%k

1,--<01;7=1,---,i9; k=1,---13. The code is self dual if and only if

1. Vy, is a B _-self-dual code fori=1,---,4

2. Viy; is a Hi_-Hermitian self-dual code for j =1,
J
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3. V,, is the Eizg—dual code of ‘/2;1 fork=1,--- is.

Theorem 5.6.3. Number of self dual G-invariant codes over GR(p®, m) is
H:lzl NEiE«_ (pe? Mrg,, el‘z’) ;2:1 NHi?T, (pe’ MTy;, e?/j) 23:1 N(pe’ M7, ezk)f where the empty
i J

product is 1 by convention.

For some special cases, the following theorem allows computation of the number of

weighted self-dual codes in terms of the number of self-dual codes.

Theorem 5.6.4. If either all components of v € (GR*(p®, m))" are quadratic residues or

all components are quadratic non-residues, then Ng, (p¢,m,l) = Ng(p¢,m,1).

Proof: Like the case with finite fields, ratio or product of two quadratic non-residues in

GR*(p°®, m) are quadratic residues. So, the same proof (see Theorem 4.6.4) holds. [

5.7 Abelian Codes in Transform Domain

In this section, the special case: abelian codes over Galois rings is discussed. In [27],
the authors characterized cyclic codes over Galois rings in terms of Mattson-Solomon
polynomial or DFT. Our DFT domain characterization of codes closed under arbitrary
abelian group specializes to abelian codes and gives a similar description of any abelian

code in DFT domain.

The G-invariant codes are exactly the abelian codes on the group G if and only if
there is only one orbit of the index set under the action of G. So, the code components
are usually indexed by the elements of G. The transform domain characterization of G-
invariant codes gives as a special case, the following transform domain characterization

of abelian codes on any abelian group G with exponent relatively prime to p.

Theorem 5.7.1. Let G be an abelian group of order relatively prime to q. Then a code

of length |G| (and components indezed by G) over GR(p¢, m) is G-abelian if and only if

1. For any x € G, A, takes values from an ideal of GR(p®, mry).

2. Ifxq,-- -, xy are representatives of the distinct cyclotomic cosets of G, then Ag,,---, Ay

are unrelated.
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So, any abelian code on G is completely specified by the ideals of the transform
components, in particular by the ideals of the transform components A, ,---, A;,. But
any ideal of GR(p®, mr,) is of the form p/ GR(p®, mr;) for some j. So, for any j; 0 <
J < e, there is a maximal subset T; C G, such that for all z € T}, A, takes values from
p*GR(p®, mr;) for some k > j. Clearly, for any j, T} is a union of g-cyclotomic cosets,
since all the transform components in a particular cyclotomic coset take values from the

same ideal. 7T}; 0 < j < e are ordered as:

T.CT..C---CTh CTh =G.
Similar to cyclic codes, (T1,---,T,) will be called the defining sets of the abelian code.
The type of the code (ko, -, ke_1) is given by k; = |T;| — |T;41| for 0 <i<e—1.
From Theorem 5.5.1, any codeword b of the dual code C* satisfies

AzB,-1 =0V e G, VaeCl.

If A, takes values from p*G R (p¢, mr,) for C, then for C1, A, takes values from p¢ *GR(p®, mr,).
Suppose the defining sets of C* is (1%, ---, 7). Suppose for C, A, takes values from
p*GR(p¢, mr;). Now, In C+, A, takes values from

{B € GR(p®, mr,)|AB = 0 VA € p*GR(p®, mr,)}
= p“*GR(p°, mr,)
So,
T € TjL & e—k>j

& k<e—j

& k<e—j+1

< kE€Te ju
Hence the defining sets of the dual code are given by

I ={zeGla™ ¢ Toin}.

!

By using the decomposition (5.2) component-wise, the DFT of any a € (GR(p®, m))

can be decomposed as
A=A L pAD 4.y el (5.24)

such that for 0 < i < e — 1, each component of A® is in 7,,,.
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Theorem 5.7.2. Let C be an abelian code over GR(p®,m) on the abelian group G with
defining sets (Ty,---,T,). For any a € C, AY is nonzero only if v=' € T,)-,.

Proof:
AD £
= A, ¢ p""'GR(p®, mr)
= ¢ T

1ol i
= v €T gy =T,

e—1i

Any abelian group G can be decomposed as direct sum of some cyclic groups:
G:CnI@...@CnT ZZm@"'®ZnT

where C),,, is the cyclic group of order n;. With this decomposition, any element of

G has an unique representation as (iy,---,i,;) where i; < n; for 1 < j < 7. So the

GR(p®,m)[X1,,X,]
(X7 =1, X727 —1)

(ir, - yi7) € L, ® -+ ® Ly, to Xi*--- X', For any a € GR(p®, m)G, let us denote

The isomorphism takes

group algebra GR(p®,m)G is isomorphic to

the corresponding polynomial as a(X7y,---,X;). We also denote (iy,---,i,), (X1---X;)
asiand X --- X/ as i, X and X' respectively.

If aq,---,a, are respectively nq,---,n, 'th roots of unity in GR(p®, mr), then ¢ can
be chosen as ¥((i1,- -, iz), (i, -, jr)) = @' ---airi~. With this 1, the DFT can be
expressed as

A(J'l,"',jr) = Z a?jl T a’iTjTa(il,"',iT) = a(a{l, Ty alT)
(i1,ir)
The Mattson-Solomon (MS) polynomial of a is defined as
A(Zl’ R ZT) - Z A(nl_jl"";nr_jT)Z’lil T Z;L'T
(jla'",jr)
Theorem 5.7.2 gives the following corrolary, which corresponds to [27, Theorem 3.3| for

cyclic codes.

Corollary 5.7.3. The MS polynomial of any codeword a € C 1is of the form

Z A§0)Zi+p Z Agl)zi_i_._._i__i_pe—l Z Age—l)zi

—iETe _iETe—l _iETl

where —1i denotes (ny —iy,---,n; — i,).
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5.7.1 Permutation Groups of Abelian Codes

In [27], permutation groups of primitive length cyclic codes over Galois rings were inves-
tigated using transform technique. In this subsection, the same approach is generalized

for abelian codes on an abelian group G with exponent relatively prime to p.

Any permutation of G' acts on any element GR(p®, m)G naturally. The maximal
subgroup of Per(G) which keeps a code C invariant is called the permutation group
Per(C) of C. That is, Per(C) = {0 € Per(G)|o(a) € C; Va € C}.

Lemma 5.7.4 ([27]). If C is a linear code over GR(p®,m), then Per(C) = Per(Ct).

The following lemma is stated in [27] for primitive length cyclic codes and is valid by

the same argument.

Lemma 5.7.5. If my|my and Ry = GR(p®,my), Ry = GR(p®,my), T. C T,y C --- C

Ty C G are unions of p™ -cyclotomic cosets, and if C; is the abelian code over R; on the

abelian group G with defining sets (11, - -, Te) for i = 1,2, then Per(Cy) = Per(Cy).

Note that, G ~ Z,, ®---® Z,, and Z,, can also be realized as (@;), the cyclic subgroup
of Fjn. of order n;. Any permutation o of G has 7 component maps 0; : G — Z,,; 1 <
i < 7 such that o(a',---,0ai7) = (oy (e, -, a7),- -+, 0.(a,---,a)). Now, o; can be
described by a unique polynomial f,, in Fyms [ X1, -+, X, ]/(X7" —1,---, X —1) so that
foi(@dt, v air) = g;(alt, -+ ai7). So, the 7-tuple (f,,, - - -, f»,) specifies the permutation

o.
Since G ~ (@) ®- - - ® (@, ) is isomorphic to {a;) & - - - ® (@), any permutation o of G
induces a permutation ¢’ on (@) ®--- @ (e,). For any g(X1,---, X;) € Fypmr [ X1, -+, X/,
define g™ (X, -+, X;) € Toe| X1, -+ -, X;] by lifting each co-efficient of g(X1,---,X,) to
it’s representative in 7,,,.
In the following results, like [27], we use the fact that, if mr +1 > e, then for any
r € GR(p®,mr), r*"" € T,m. Proofs of both the following lemmas and Theorem 5.7.8 are

similar to their version (in [27]) for primitive length cyclic codes and thus are omitted.

Lemma 5.7.6. If R = GR(p*,mr), e < mr + 1, and if the map 0 € Per({(a1) ® -+ @
(&;)) has the permutation polynomials (fs,,- -, f5.), then o lifts to a permutation o' of

(o) @ - - ® (), which is calculated as
W)= (I FPW)) s vela) oo (o)
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With abuse of notation, we’ll let o act on (a1) @ --- @ («,) directly as o(y) =
o'(y); Vy € (o) & & (o).

Lemma 5.7.7. Suppose, e < mr+1,0 € Per(G) and f;,(X1,- -+, X;) € Fym [ X1, -+, X;]/(X]" =
L---, X" —1); 1 < i <7 are the corresponding polynomials. If a € GR(p®,m)G has
MS polynomial A(Zy,---,Z;) € GR(p®,mr)[Zy,---, Z.|/(Z]* —1,---,Z7 —1), then o(a)
: (1) P (1) P n
has MS polynomial A (f(Il (Zl,---,ZT)> A (fUT (Zl,---,ZT)) mod (Z{" —
1,---, 2% —1).

Theorem 5.7.8. Let e < mr + 1 and C be an abelian code over GR(p®, m) with defining
sets (T1,---,T.). If o € Per(GQ) and (fs, -, fs,) are the corresponding polynomials,
then o € Per(C) if and only if for all j,1 < j <e,s=(s1,---,5;) € T},

P (0 ) (P 2) )

= Zpeil Z a’s,l,iZil ... Z:;r mod (Z'lnl _ 1’ . Z,?T . 1)

=1 i:(zlale)E’Tl
5.8 Minimum Distance of GG-Invariant codes

In the previous chapters, a way was shown to determine minimum Hamming distance of a
linear code over a finite field from a set of parity check equations over an extension field.

In this section, that result is extended to codes over Galois rings.

Theorem 5.8.1. Suppose, the components of the vector v € (GR(p®, mr))"™ are distinct
(¢" — 1)-th roots of unity and T, C --- C 17 C Ty = [0,4" — 1]. If for each k =
ko, k1, -+, ks—a, the vectors p=Iv¥; j € T} are in the span of a set of parity check equations
over GR(p¢, mr), then the minimum Hamming distance of the code is at least that of the

cyclic code of length q" — 1 with defining sets T, - -+, Te.

This theorem can be generalized like the version Theorem 2.5.2 for finite fields. Though
the theorem is stated for Hamming distance only, it remains valid for Lee distance (when-
ever defined) as well. If a lower bound on the minimum (Hamming or Lee) distance is
known for a code using Theorem 5.8.1, then the code can be decoded upto that minimum
distance by using a decoder for the corresponding cyclic code (of Theorem 5.8.1). Detailed

treatment on decoding can be seen in [15, 19, 97-100]. Decoding algorithms for specific
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classes of linear quaternary codes were given in [19] and [100] for Lee metric. Decoding
algorithm for Reed-Solomon and BCH codes over integer residue rings was given in [15]
and the decoding of cyclic codes over Z, was discussed in [62, 101] for Hamming dis-
tance. Greferath and Velbinger [97] gave an algorithm to decode spliting codes over Z,
(i.e. codes which are free submodules of sz) by repeated use of any algorithm to decode
codes over the residue field Z,. Byrne extended this to codes over arbitrary Galois rings
and Babu and Zimmermann [98] extended it to any linear code (not necessarily spliting

codes) over arbitrary Galois rings.

If (21)9,- - -, (zx)? denote the distinct cyclotomic residue classes, then we know that any
G-invariant code C is specified by the submodules V,,,---,V,, of (GR(p®, mry,))%,- -,
(GR(p®, mry,))=* respectively, from which Az, - - -, Az take values. Now, each of V, ; z =
x1,- -, Tx can be considered as a linear code over GR(p®, mr;) of length e,. It is known

that any such code has (upto some co-ordinate permutation) a parity check matrix of the

form
Iy Moy Moo -+ Mye Mo,
(.) Pf'kl pj\'fm ' pM%,e—l le,e (5.25)
0 0 0 - P, pIM,
Any row of this matrix is of the form p/v.
Suppose T = {y1,-- -,y }, where = = y; for some i and | = e,. Let Zizl v; Ay, =0 be

a parity check equation of V. Then,

!
ZUZ'A:W =0
i=1
!
= Zvi Z U(y,yi)ay, =0
=1

— ved

!

- 5 (S0 -0
yeG \i=1

Clearly, this gives a parity check equation of C over GR(p®, mr;). The component wise

conjugate vectors of the parity check vectors obtained this way and the vectors in their

span are also parity check vectors of the code.
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Though Theorem 5.8.1 gives a way to get minimum distance bound of any linear code,

it’s application is at least as difficult as it’s version for codes over finite fields.

5.9 Number of Submodules of (GR(pe,m))l

Any submodule V of (GR(p°, m))l, upto permutations of columns, has a generator matrix

of the form:
Iyy Moy Moo -+ Moe Mo,e
M = 0 pI.lq PM1,2 pM%,e—l pMLe (5.26)
Lol Lo P pe_lMe_l’e

where I denotes the k x k identity matrix over GR(p®, m) [102]. Such a matrix is said
to be of type (ko, k1, - -, k.). Moreover, the (e + 1)-tuple (ko, k1, - -, k) is unique for the
submodule, where k, = Z—Zf;é k;. The submodule V' is said to be of type (ko, k1, - - -, k).
A submodule of type (ko, k1, - -, ke) has size p™" where

n = D ke (5.27)

Suppose, V is a submodule of (GR(pe,m))l of type (ko,k1,---,k.). The following

algorithm chooses a matrix, if exists, of type (k{, k1, - -, k.) with rows from V.

Algorithm I
1. Let L =A0,---,1 —1}.
2. Fori=0toe—1
21: For j=0tok—1
2.2: Let W be the submodule of V' containing all the elements of V'
whose all the components outside L are zeros. Check if W has at

least one element with at least one component not in p"*'GR(p®, m).

If YES,
then take such an element as a new row after normalizing the

first such component to p*t!. Remove the index of that compo-
nent from L.

If NO,
then there is no matrix of type (k{, k{,---,k.) with rows from

V.

Generator matrix of the form (5.26) for any submodule V' can be chosen in many ways.
In fact, many different generator matrices can be obtained by Algorithm I itself by taking

ki = k; for 0 < i < e. To see how many different generator matrices can be chosen for V,
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let us consider Step 2.2 at any iteration of the 7 and j loops. Already ko+k1+---+ki 1+
rows are selected for the generator matrix M. Consider all complete standard generator
matrices with those rows as the first ko + k1 + --- + k;_1 + 7 rows. Clearly, the last
ke—1 4+ -+ kiz1+k; —j rows of any of those generator matrices span the same submodule

of type (0,--+,0,k; — j, kiy1,-- -, ke). This submodule has p™-i elements, where
Mg = (ki —7)(e—1) +kip(e—i=1) + -+ ke (5.28)

and p™{(ki—i)e—i-)tkitr(e—i—1)t++thke—1) — pmimi;—kiti) of them have all the components
from p""'GR(p®,m). So, an element with at least one component not in p'"'GR(p®, m)
can be chosen in p™%.i — p™®i.i—kiti) ways. But by normalization, ple=9m — ple—i-him

distinct elements will give the same row of the generator matrix. So, the new row can be
mn;, _pm(w,j*kﬁj)

chosen in 2 ways. Hence, the number of generator matrices of V' that can

p(e—i)m_p(e—i—l)m
be chosen by Algorithm I is

e—1 1 k;—1
Mg _ (1, —kitd) 29
. — || @ p )) : (5.29)
g ((p(e—z)m _ p(e—z—l)m) QI:IO
Similarly, the number of matrices of type (kg,k1,---,k.) that can be chosen with rows

from (GR(p%,m))" is

e—1 1 k@'—l
H ( _ H (p(efi)m(lfkg_lfj) _p(eil)m(lk;_lj)>) . (5.30)

Pl (p(efi)m _ p(efifl)m) s

So, the number of submodules of (GR(p®, m))l of type (ko, k1,-- -, ke) is

e—1k;—1 p(e_i)m(z—k;_l—j)

N(ko,kl,---,ke)(pe’ m, l) = H H

i=0 j=0

- p(e—i—l)m(l—ké_l—j)

pmm‘,j _ pm(ni,j—ki-l-j) (531)

5.10 Discussion

Algebraic structure of codes over Galois rings which are closed under arbitrary abelian
group G of permutations is investigated. Dual of G-invariant codes and self-dual G-
invariant codes are characterized. Number of self-dual G-invariant codes is expressed in
terms of the number of self-dual and Hermitian self-dual codes of certain lengths and the
number of submodules of (GR(p®, m))!. However, unlike the codes over finite fields, these
numbers are not known for arbitrary length and any Galois ring. Only the number of
self-dual codes of any length over Z, is known. The number of submodules of (GR(p¢, m))!

of any type is derived in Section 5.9.
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Chapter 6

Affine Invariant Extended Cyclic
Codes over (alois Rings

6.1 Introduction

In this chapter the transform technique of Blackford and Ray-Caudhuri is extended to
find necessary and sufficient conditions under which cyclic codes over GR(p®, m) are affine
invariant for arbitrary e when p = 2 and for arbitrary p when e = 2. Two new classes of

affine invariant codes are found using these conditions.

6.2 Preliminaries

Let n be a positive integer relatively prime to p. If any ¢ = (¢cg, -+, cn1) € (GR(p®,m))"
is associated with a polynomial ¢y +¢; X + - - - + ¢,-1 X™ 1, then a cyclic code of length n
over GR(p®, m) is an ideal of the modular algebra %. Any cyclic code of length n
over GR(p®,m) is [14] of the form (fo,pf1,---,p* " fe 1), where f; are monic irreducible
divisors of X" — 1 and fy|f1]---|fe_1. If r is the smallest positive integer such that n
divides p™ — 1, then GR(p®, mr) is the smallest extension ring of GR(p®, m) where there
is a primitive n-th root ( of 1 and over which X™ — 1 factors into distinct linear factors.

The defining sets 7171, - - -, T, of the code are defined as
Ty ={s €[0,n —1][f;-1(¢*) = 0}

By definition, T, C --- C T, C T7. It is also easy to see that each defining set is union of

p™-cyclotomic cosets modulo n.
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For any ¢ = (cg, -+, ¢, 1) € (GR(p®, m))™, the Mattson-Solomon (MS) polynomial of
c is defined [27] as

n—1
cZ)=)>» ¢n—-i)z
1=0
where .
e(i) = e(¢) =) ei¢?
§=0
for 0 <i<n.
If ’fe C.---CT C [0,n] are unions of g-cyclotomic cosets (where ¢ = p™) modulo

n, then the extended cyclic code C over GR(p®,m) of length n + 1 with defining sets
(T, - --,T,) is the set of vectors a € (GR(p¢, m))"", such that

ZamxsEOmodﬁ;VsETj

T€Tm

Clearly if 0 € T,, then C is the extension of the cyclic code C via a parity check, where C

has defining sets
T; = {s mod n|s € T; \ {0}}

Let us assume n ¢ 77, since otherwise the code is over pGR(p®,m). The MS polynomial

of a codeword is defined to be that of the corresponding codeword of the cyclic code.

In the following, two important classes of cyclic (and extended cyclic) codes are dis-

cussed.

BCH Codes: BCH codes over Z,. was first defined by Shankar [10]. Generalization to
BCH codes over Galois rings is very straight forward and natural. But Blackford and
Ray-Chaudhuri [27] gave a more general definition of BCH codes over Galois rings. For
(n,p) =1, suppose 1 < 6, < 01 < --- < 6; <n—1. Then the BCH code B(n,dy,---,0d)
of length n over GR(p®, m) with designed distances i, -- -, d. is defined to be the cyclic

code with defining sets
Tj = Usepg;-nld)*.

Similarly, extended BCH code B(n, 01, -+, 0) of length n + 1 is defined as the extended

cyclic code with defining sets

T ={0}uT,
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Shankar’s definition of BCH code is obtained by assuming d; = d, = - - - = d.. Note that,
if p = 2, we can always take each designed distance to be odd, since if §; — 1 € T; is odd,

then §; is also in Tz and so we can take J; + 1 to be the 7’th designed distance as well.

Generalized Reed-Muller Codes over Z,: Suppose 0 < 7} <1y < -+ <1, <
(p—1)m. The Generalized Reed-Muller code of length p™ and orders (71, --,7,) over Zye
is defined [27] as the extended cyclic code with defining sets

Tj={s € [0,p™ — 1] : wty(s) <m(p— 1) —r;}

where wt,(s) denotes the p-adic weight of s: wt,(s) = 375! 5;. GRM codes of length p™
and orders (r,---,r) were well known as the Hensel lifts of GRM codes of order r over Z,

19, 34].

For any permutation o of Fj, there is a unique polynomial f,(X) over F}, of degree at
most ¢ — 1. Clearly, there is an 1-1 correspondence between F, and 7, via the canonical
homomorphism of GR(p®,m) onto Fj,. For each polynomial f(X) € GR(p®, m)[X], the
lifted polynomial f¥)(X) € 7, (X) is obtained by lifting each coefficient of f(X) to
it’s representative in T,. If m > e — 1, then for any u € GR(p®,m), u? € T,. So,
any permutation o of F, has a corresponding permutation ¢’ induced by the polynomial

<L) (X) as
o'(u) = (f{(w)" , Vue T

Clearly, the lifted permutation polynomial corresponding to any affine permutation of 7,,

is of the form aX + b where a,b € T, and a # 0.

The following result from [27] will be very useful in the later sections.

Theorem 6.2.1. [27, Theorem 4.2] Letn = p™—1, wherem > e—1. LetC be the extended
cyclic code over any subring of GR(p%, m) of length n with defining sets (Ty,---,T,), with
0eT,. Ifo € Sym(p™), and f,(X) € F,[X] is the corresponding permutation polynomial,
then o € PeT((f) if and only if for all j, 1 < j<a, s € Tj,

J
P (FPX)T =YY aaa X (mod X" 1)
=1

Ty

where as; € T,
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6.3 Affine Invariant Codes over Galois Rings

In [30], a partial order <, for the set [0,p™ — 1] was defined. For any two elements
s,t € [0,p™ — 1], they can be uniquely decomposed as s = Z?Z)l s;p' and t = Z?Z)l tip',
with 0 < s;,t; < p—1. Then s <, tif s; < ¢t for 0 < ¢ < m — 1. The m-tuples
(Sm—1,-+,50) and (t;,—1,- - -,%o) are called the p-ary representations of the integers s and

t respectively. It should be noted that for any s € [0,p™ — 2], ps mod (p™ — 1) has the

p-ary representation (S,_2, -, So, Sm_1). Any subset T'C S is called a lower ideal of S if
teT,s=,t=seT.Itis known that ( f; ) = ( io )---(im_l ) So,
0 m—1

Lemma 6.3.1 (Lucas). for s,i € [0,p™ — 2], < j ) % 0 mod p if and only if i <, s.

6.3.1 p=2 and Arbitrary e

Let us consider p = 2 and define Mf,?Q (s,k); i >0, s,k €[0,2™ — 2] recursively as

MO)(S,k):{l lfkaS

m,2 0 otherwise
Mrr:?Q(sa k) * Mr(rz,)Q(Sa k) = Z Mf;?Q(Sa kl)Mfrz,)Q(Sa ks)

0<kqy,ko<n—1
2/ k1 4+2tko=k mod n
ky<kg if i=j

2o My (s, k) % My (s, ) if i is odd
and M, (s,k) =¢ _ "

. . i i 2
S i MUR(s, )+ MU (s, k) + (M5, 27 1K) ) if s even
0<iy<in<i—1 ’ ’
i1 +ig=i—1

By this definition, Mr(,i)z(s, k) is same as M,,(s, k) in [27], i.e.,

MO),(5,k) = [{(i.4)]i < 433, <2 s;i+j = k mod n}|.

Let us also define the following numbers for i > 0, s,k € [0,2™ — 2].
Ka(5,k) = My (s, k)

i i LG - :
and K )72(3,k) = an?Q(s,k) + [inn,Ql)(s, k2™ 1| fori > 1
Here |.| denotes the largest integer less than or equal to the number inside.
Parity of any integer 7 is defined as

P(i) = {0 if 7 is even

1 if71is odd
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Lemma 6.3.2. If m >e— 1 and s,k € [0,2™ — 2], then

1. Fori>0, 0<j<m, MOy(s,k) = M, (27s,20k)
2. Fori>0, 0<j<m, KP(s,k) = K{0y(275,27k)
3. MPy(s,k) # 0=k <2s—1 fori >0
b KDy (s,k) 20 =k <2s—1 fori>0
Proof: 1) For i = 0, the result is obvious. For ¢ > 0 also, the proof is trivial by induction.
2) Trivial using the definition of KT(:BZ(S, k) and the first part of this lemma.
3) First, note that for i = 0, MT(,?Z(S, k) # 0=k < 2's = s. For i = 1, the result is same
as [27, Lemma 5.1(3)]. Suppose it is true for (i — 1) and smaller integers (where 7 > 2)
and MSBQ(S, k) # 0. Then either of the following cases hold.
Case I: iy, d9; 41 < d9; 4y +19+ 1 = 4, such that Ik, ks, satisfying 22k, + 2 ky = k mod
n, M,(;IQ)(S, k1) # 0 and M,(,?Q) (s, ko) # 0. Clearly, io # 0. By induction hypotheses,
]{31 S 2i18
ky <2%2s—1
So,
k= 22k + 29k,
20 lg 4ot lg —on

IN

2ig — 2n

I

2 — 1

IN

Case II: 7 is even and

(MBS

(5,2 2k) # 0
(285,k) #0
22 955 —1=2s—1

M

3

)
2
)
2

—~
(SIS

= M

3

’

>
IA

=

4) For i = 1, Kfn{é(s, k) = Mr(nlé(s,k) So, the claim is true for ¢ = 1. Suppose it is
true for i — 1 and KT(,QQ(S,]C) # 0. Then either MT(,?Q(S, k) # 0 or Kg;l)(s, 2m=1k) #£ 0.
In the first case, the claim follows from third part of this lemma. In the second case,
K9V (25,k) 0= k<2725 — 1 = 25 — 1. n
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Lemma 6.3.3. Suppose m > e — 1 and x,y € GR(2¢,m). Then (z + 2y)*" = 2",

Proof:

(z+29)”" = (2®+22fi(z,y)*" where fi(z,y) = 2y + 3

= (2% +2°fo(z,9)?" " where fo(z,y) = 22 fi(z,y) + 2f2(2,y)

= @ 42" f(2,9)” whete fu(@,y) = 27 fu (@) + 277 2 ()

= 22" in GR(p®, m)

Lemma 6.3.4. If m>e—1 and x,b € T, C GR(2%,m), then

2m

(.7) +b)s.2m — Z l‘ibs_i

0<i<s
1298

Proof: Taking binomial expansion, we have

(x+0)*"" = (0;5 ( ‘: ) xibs—i> B

If i <5 s, then < j ) = 1 mod 2. Otherwise ( j ) = 0 mod 2. So the result follows by

Lemma 6.3.3. m

Lemma 6.3.5. Suppose z,b € GR(2¢,m). Then

2m1
s mi1—1%,9mq o__ mi—1i
§ :xzbs ) E :ZZE :M(Z) 8 k) k.2™1 bQ 15—k.2™M1 mod 2m2—|—1
0<i<s =0 k=0
i<9s

for any m1 > 0, my < mjy.

Proof: By induction on m,. Clearly, the result is true for m; = 0. Suppose it is true for

my — 1 for some m; > 1. Then we need to prove it for m;.

Obviously, the result is true for my = 0. Suppose m; > ms > 0. By induction

hypotheses,

2m1—1
mao—1 n—1

Z 2 Z QZZM 2m1*1*ib2m1*157k.2mr1*i mod 2™

0<i<s 1=0
i<9s8
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om] 1
since my — 1 < my — 1. So, (Zo<z<s x5~ Z) can be expanded in the form
i<9s

gmy—1

Z v = 2t MT(;?Q(S, k)xmml_l_ibwl_ls_k'le_l_i 4+ 2M2y,

0<i<s =0 k=0
i<9s

for some u € GR(2¢,m). By squaring both sides, we get

2™M1

2
— n—1

§ xibsfi § : ZE :M'L) S k‘) k.2m1—1- ’b2m1 lg_f.2m1—1—1i mod 2m2+1

0<i<s = k=0

i=9s

ma
= : (“) (i2) R 2T Tk 2 T2 9 s (g 27T 1Tk 2 T2
=52 ¥ E:M (5, k1) MY (s, ky)a b2 )

i=0 0<i1<ig<i—1 0<kq,kp<n—1
i1 +igF1=i k1<k2 if iy=i

mo—1

n Z 2212 (M(z ) X I

’
i=0 0<i1<ig<i—1 0<kq,ko<n—1
i1 +igFl=i ki<kg if i1=iy

mao—1

n Z zzzz (M(z ) k2T sk 2mm g gmatl
1=0

m -1
=>2 ¥ z(M,szrg<s,k>*M;;f3<s,k>) A

i=0  0<i<ig<i—1 k=0

i1+ioFl=i
(3) 2 pomi—homig g omi—} ma+1
E M, 25(s, k)) =™ b ' mod 2
§1§m2 =0
Vi Il
m2 —1
_ i1) i2) om1 i 9m1 g_9m1—if
= E E Mm,Q(s k) *Mm,Q(s,k)> x b
1=0 k= 0<11<12<z
i1 +ig+1l=i

2 . )
/ mi1—1 m I omq—1
E ( 8 2m= k,)) .Z'k 2™ b2 ts—kL2m mod 22 1

where k&' = k.27 mod n

ma n—1
mi1—1i M «__OM1—1
EE: E: Sk)21 kb21321 kmod2m2+1
| |

Theorem 6.3.6. If m >e—1, z,b € T, C GR(2¢,m), n =2™ —1 and s € [0,n — 1],
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then
(x+b)° Z 2! Z MO, ( (s, k) g2 kT2 Tk
=0 =
Proof: Trivial using Lemma 6.3.4 and Lemma 6.3.5. ]

Lemma 6.3.7. Supposem >e—1, z,b € T,, CGR(2°,m), n=2"—1 and s € [0,n—1].
Then for any j; 0<j<e—1,

j—1 n—1
(iE + b)s.2m — 21 ZP(KT(:Z)’Q(S’ k))l,2ml—”'kb2m1572ml—”‘k
i=0 k=0
n—1
+97 K(J) (s k) 21Tk 2™ s—2m Tk
k=0
+ Z QZZM 2’"1_%62’“15—2’"1_%
1=7+1 =

Proof: By induction on j.
Clearly the statement is true for j = 0. Suppose it is true for j(< e — 1). Then it needs
to be proved for j + 1. It is trivial by using the fact:

KS(5,k) = P (KGy(s, ) + 205 K (s, F).

Taking 7 = e — 1, we get the following corollary.

Corollary 6.3.8. Supposem > e—1, z,b € T, C GR(2°,m), n =2"—1 and s € [0,n—1].
Then

e—1 n—1
(33 + b Z 21 Z P 2m1—lkb2m1 3—2’"1—%'
i=0 k=0

Theorem 6.3.9. If m > e—1, then an extended cyclic code over any subring of GR(2¢,m)
of length n + 1 = 2™ with defining sets Tl, “e e ,Te s affine invariant if and only if for all
1= 172:"'56; .7: 1a23"'72.7

seT;,P (ng;j)(s, k)) =1= 2" D T (6.1)
Proof: By Theorem 6.2.1, the code is affine invariant if and only if for s = 1,---,e and

o € AGL(1,2™), each polynomial in the set

{27 (1(2)™ |s e T}
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is of the form

Zerzas]ka mod Z" —1

keT;
where a;;, € Tn,. Since the code is extended cyclic, it is sufficient to consider the
polynomials féL) (Z)=Z+1b; be Ty, Now, by Corollary 6.3.8, for any i = 1,---,e, b €
Trns s € T},

%

9¢=i(z + b)* Z 9e=i Z P (K @ )) p(207 s k)2 (D gham oD g g,

So, the code is affine invariant if and only if for all : =1,2,---,e; j =1,2,---,71,

s € i},P(K},j;j)(s,k)) =1= 2m0=) ke T).

For 7 < e, the necessary and sufficient conditions can also be put as

A

s €T\ Tiyy, P (Kf,ﬁj;)(s, k)) —1= om0 D peT

since for s € Tjy; C T}, P (ng;j)(s, k)) —1=P (Kﬁﬁf;”‘(j“”(s, k)) —1=om (i) g =
om—((i+1)=(+1)) | ¢ T(j+1) C TJ
For j =i, the necessary and sufficient condition in the Theorem 6.3.9 says, TI, e Te

are lower ideals in [0, n|. For 7 = 2,5 = 1, the condition is equivalent to
s e Ty, M,(,},)Q(s, k)20 mod 2= 2"t ke,

So, for e = 2, the theorem gives [27, Theorem 5.1] as a special case.

Note that if the code is over the subring GR(2¢,m;) of GR(2¢,m), then 2™ Lk € T; &
o(m—t) med mi} ¢ T, by conjugacy constraints. So, if m; = 1, then 2™ Lk € T; & k € T.

Theorem 6.3.10. Let B(n, 01, ,0¢) be the extended BCH codes of length n+1 = 2" over
Zoe with designed distances 6y,--+,0c. If fori=1,---,e, 1 =0,---,i—1, & ; > 2/(6; —2),

then B(n, 01, -+, 0¢) 1S affine-invariant.

Proof: As mentioned earlier, without loss of generality, we can assume each designed
distance to be odd. We need to prove that, under the conditions, for : = 1,--- e, [ =
0,---,i—1,

s<8i—1land KUy(s,k) #0=> k<& 1

August 5, 2002 Bikash Kumar Dey



Chapter 6. Affine Invariant Extended Cyclic Codes over Galois Rings 136

By Lemma 6.3.2(2), it sufficient to check only for the odd values of s. Since §; — 1
is even, it is sufficient to consider s < §; — 2. For | = 0, it is trivial. For [ # 0,
s<8&—2and Ky(s, k) #0= k<25 —1 <26, —2) —1 <6 — L. n

The following corollary gives stronger conditions for pairs of the consecutive designed
distances, under which a BCH code is affine invariant. If these stronger conditions are
satisfied by the designed distances, then one need not check for the other conditions

required by Theorem 6.3.10, since, then they are automatically satisfied.

Corollary 6.3.11. Let B(n, 6, --,6,) be the extended BCH codes of length n +1 = 2™
over Z§ with designed distances 0y, ---,0e. If 6,01 > 20; — 2 for 1 < i < e, then the code

B(n, d1,---,0¢) 1s affine invariant.

Proof: We shall show that if B (n,d1,---,0.) satisfies these conditions, then it also satisfies
the conditions of Theorem 6.3.10. For i =1,---,e, [ =0,---,7 — 1.

Oi—t > 20i—141— 2
> 2(20i-142 —2) — 2

v

2(2(-+-2(26; — 2) — 2)---2) — 2
= 25 —2(14+2+---+271
= 206, —2(2"' = 1) = 24(6; — 2) + 2 > 2/(6; — 2)

The GRM codes over Z, were proved to be affine invariant in [27]. However, it was
pointed out with an example that the same is not true for GRM codes over Z, for e > 2.
In the following, we proceed towards finding a class of affine invariant GRM codes over
Zige.

Lemma 6.3.12.

wiy (k) < 27 wty(s)  fori >0

(%)
Knp 7 0= { wiy (k) < wiy(s) fori=0

Proof: Proof by induction on i: For i = 0, obvious. For i = 1, KT(,?,Q # (0 = there are
integers k1, ko <o s such that k1 + ky = k& mod n. So, wtz(k) < wis(s).
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Suppose the claim is true for 7 and smaller integers, where 7 > 0. Then it needs to be

proved for ¢ + 1.
K& (s, k) # 0= MYV (s,k) # 0 or K2y(s,2™ k) #0 (6.2)

If K,(:;?Q(sjm_lk) # 0, then by induction hypotheses, wty(k) < 27 wiqy(s) < 2'wiq(s). If

Mfrf?)( k) # 0, then either Jiy,i9, k1, ko; 1 + G2 = 1,41 < 19,22k + 2ky = k mod n,

such that M(“)(s k1) # 0 and M(Z2 5(s,k) #0or (i+1)iseven and M,,5 (5,2™ 2 k) #

0 & M (2(“51)5 k) # 0. In the second case, by induction hypotheses, wiqs(k) <
+

25t )wt2(2 s mod n) = 2“5—1)11]152(5) < 2'wty(s). In the first case, the following sub-

(i+1) (1+1)

cases can hold.

Case I: 31 = 0:
U)tg(k') = wt2(2i2k1 + Qil kg)
S U)tg(?izkl) + wt2(2i1k2)
= ’u]tg(kl) + ’U)tz(kg)
< (@ 4+ Duty(s)
< (27 4 Dwty(s) < 2Mwty(s)
Case II: 73 # 0:
wtz(k) = wt2(2i2k1 + Qile)
S wt2(2i2k1) + wt2(2i1k2)
= ’U)tQ( ) + wtg(kg)
< 27wty (s) 4 22 hty (s)
< 2 Nwty(s) 4+ 20 twty(s)
< 2hwty(s)

Theorem 6.3.13. A GRM code GRM (r1,- -+, 7e,m) is affine invariant if either e =1 or
fori=2---e;l=1,---,i—1,r,; <m-—2"Ym—r).

Proof: Clearly for i = 1,---,e, T} is a lower ideal. This completes the proof for e = 1.

Now, we need to prove (6.1) fori=1,---,e; [=i—j=1,---,i— 1. For these values of
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1 and [,
s € Ty and KT(,QQ(S,k) #0
= wiy(s) < m —r; and wiy(k) < 2l_1wt2(s)
= wity(k) <27 m —ry)
= wta(k) <m —riy
= keT,
So, the code is affine invariant. [ ]

Ezample 6.3.1. For any e > 1, let us consider the code GRM (ry, - -+, 74, m) over Zge with
re=m—1landr,=m—2"1fori<e Fori=2---,e,
r; > m — 20"
= 2 > m—ry
= m-2"12 " <m — 25 Y (m —1y)
So, forl=1,---,1—1,
ri = m— 201
= m—2"12%7"
< m—2"Y(m —r)

So, the code is an affine invariant code.

6.3.2 Arbitrary p and e = 2

In this subsection, extended cyclic codes over GR(p?, m) is considered for arbitrary p and
investigate the affine invariant codes among them. For any 41,49, -+, #x with 4y +494-- -+
i < s, let us define the quantity ( . 5

21 7;2 SR A8
subsets S1, Sz, -+, Sg C [0,n — 1] can be chosen with |S;| =i, for 1 < j < k. It’s value is

to be the number of ways the disjoint

given by
(ot )= () C50) 7))
1112 - g 41 12 (2]
Lemma 6.3.14. Suppose s, i1, -, i € [0,p™ — 2] have the p-ary representations
(805 * Sm=1)s (31,0, * * s T1m=1)s** *» (Tk,05 * *  , Ukym—1) TESPectively. Then
s g S;
( i1 Gg e ) = ]-1;[0 ( i1,j 2,2,j J_.. ik,j )
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This gives the following generalization of Lucas’ lemma.

Lemma 6.3.15 (Generalized Lucas Lemma). Suppose s,iy,- -, i € [0,p™ — 2] have

the p-ary representations (So, - - - Sm—1)s (31,05 * 5 41,m=1), = *» (Tk,0, * * * » Thym—1) TrESpectively.

Then(i ; 5 ; );—fO mod p if and only if i1 j+---+ig; <sj for0<j<m-—1.
1% 0

For any s,k € [0,p™ — 2], let us define the quantity

1 s 21 s ts—1
st x () ())
(iO:"'ais)
>ioty =D; i #pYj
J =p s whenever 7; # 0

> i—0Ji; =k mod p™ — 2
For p = 2, it reduces to M,,(s, k) as defined in [27]: M,,2(s,k) = M, (s, k) = |{(3,j)]i <

Jii,J 22 830+ j =k mod n}|.

Lemma 6.3.16. I[fn=p" —1,1<i<m and s,k € [0,n — 1], then

1. Mypy(s,k) = M p(p's, p'k)
2. My y(p's, k) = My (s, p™ k)

3. Mpyp(s,k)#0=>k<ps—1

Proof: 1) It is sufficient to assume ¢ = 1. For any s,k € [0,n — 1], let us define the

A . . . : . . .
set Sy = {((io,-++,95)| D509 = p;i; # pVj;j =p s whenever i; # 0;)°_ji; =
k mod p™ — 1}. By definition,

My (s, k) :;—) 3 ( Sl ) < : ) ( o ) (6.3)

(i07"'ais)€‘s(s,k)
1 p ps \" ps )"
My p05, k) = 2 <io SR - ) ( 1 ) ”'<p8—1> (04
(Zoy"'vzlps)es(?s;pk)

where multiplication by p is modulo n. Note that multiplication modulo n by p cyclically
shifts the p-ary representation of any integer. The inverse operation is multiplication

modulo n by p(™m-1).
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For any (ig,---,is) € S(sx), whenever i; # 0, j <, s = pj( mod n) <, ps( mod n)

and so pj( mod n) < ps( mod n). This gives a 1-1 correspondence

S(sk) = Sps,pk)

(g, +,15) +> (ig""’ilps mod ”)
given by
i;j mod » = % whenever i; # 0
i; = 0 otherwise .
Such a (i, - -, ) satisfies all the conditions to be in M,, ,(ps, pk).

DS mod n
Clearly, under this 1-1 correspondence, the corresponding terms in (6.3) and (6.4) are

same. S0, M, ,(s, k) = My, ,(ps, pk).
2) Directly follows from (1).
3)

Mm,p(s, k) # O
= (lo,+*,is) € Mmp(s, k)
S
= k= Zjij mod n
j=0
S
= k<(s—1)1+s.(p—1) since Zjij is maximum when is =p—1, i, 1 =1
§=0
= k<ps—1

In [33], the authors proved that, an extended cyclic code of length p™ over F,m is affine
invariant if and only if it’s defining set is a lower ideal of [0, p™ — 1]. It was shown in [27]
that an extended cyclic code of length p™ over GR(4, m) is affine invariant if and only if
Ty, T, are lower ideals in [0,2™ — 1] and s € Ty, My, p(s,k) #Z 0 mod 2 = 20" Dk € Ty.
In the following, we show that the same conditions are valid for codes over G R(p?, m) for

any prime p.

Lemma 6.3.17. Ifx,b € 7,, C R= GR(p*,m), m > 1 and s € [0,n],n = p™ — 1, then

p™ n—1

(e +0)"" = ( i ) I+ p Y My (s, k)ak? ™ pes R

JZps k=0
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Proof: Let x,b € 7,,. Then

(z+b)*" = (8

a p s 10 s i1 s is—1 S i (s) plm—1)
0 di Y (s3]
+Z. z’o---is_1>(0>(1> (s) [“”“b“”

Yol =D; i # PV
J =p s whenever ¢; # 0

m

=y ( ; ),, b

J=ps

p s 1 s 1s—1 ZS . ZS o p(m—l)
—0 5 pPS—2 7 —0 15
= (Wl ) () (L) e

(7:0) e ais)
s . . .
Y il =D; ij #FPVJ
J =p s whenever z; # 0

m

P n—1
s e (m=1)  (ps—k)p(m—1)
= Y ( . ) DT 4P Myy(s, k)P premk
k=0

J=ps
[ |

Theorem 6.3.18. Let C be an extended cyclic code over a subring GR(p*, m1) of GR(p*,m)
of length p™ with defining sets (Tl,Tg). C is affine invariant if and only if

1. Ty, Ty are lower ideals in [0,n).
2. 5€ Ty, My (s, k) 20 mod p=p™ VkeT

Proof:
Case I: 0 & Ty:  Let Cy be the extended cyclic code of length p™ over Z, with defining
set Tg. Then

pCy ={a € C | all components of a are in pZ,:}

So,

A

Per(Cy) C Per(C)
= (, is affine invariant
= T 5 is a lower ideal

= T} is empty since 0 ¢ Ty

August 5, 2002 Bikash Kumar Dey



Chapter 6. Affine Invariant Extended Cyclic Codes over Galois Rings 142

The code C; C F;Jll obtained from C by taking component-wise image under the canonical
homomorphism R — pﬂ ~ Fpm, has defining set TI. Clearly, C; is also affine invariant if
C is affine invariant. So, 7} is a lower ideal. Hence the condition (1) holds and condition

(2) holds vacuously. Case II: 0 € Tp: By [27, Theorem 4.2], C is affine invariant if and

only if the polynomials in the set
{(fD(2))7"|s € Ty} U {p(fP(2))*"" s € T1}

are MS polynomials of C Vo € AGL(1,p™). Since C is extended cyclic, it is sufficient to
check this only for permutations given by f{" (Z)=Z+b, be Ty \ {0}

If se Tl, then

pm
p(Z4+b)*" =p Z ( j ) b*'Z" mod Z" — 1

1=p s
This is an MS polynomial of Cific T1 Vi <, s, ie. Tl must be a lower ideal.

If se Tg, then by Lemma 6.3.17,

m

p
Z+b)" = Y ( j ) A
i=p s
n—1
Y My y(s, k)b PPz pod (27 — 1)
k=0

This will be an MS polynomial of C if i € T, whenever i =<p s (ie. T, is a lower ideal)
and if M,, (s, k) #Z 0 mod p = kp™Y € Ty. Thus conditions (1) and (2) must hold for

C to be affine invariant and vice versa. ]

The following theorem gives some sufficient conditions under which extended BCH

codes of length p™ over Z,» are affine invariant.

Theorem 6.3.19. Let B(n,d1,08,) be an estended BCH code of length p™. If either (i)
p|(62 — 1) and 6, > p(6s — 2) or (ii) 6, > p(6s — 1), then B(n,éy,8,) is affine invariant.

Proof: The defining sets of the code are

T1 = Uielo,a,) 1]

Tz = Uie[o,5) 4]
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Clearly, both these are lower ideals. We need to check that, k& € T} whenever M, ,(s, k) #
0 mod p and s € T,. By Lemma 6.3.16(2), it is sufficient to consider s < 3 — 1 which are
not divisible by p.

Suppose condition (ii) holds and s € Ty, My, »(s, k) # 0 mod p. Then

§<dy—1

ps—1<p(dy—1)—1=pby—p—1

k < pdy —p — 1 whenever M, ,(s,k) Z 0 mod n (by Lemma 6.3.16(3))
k < &, — 1 whenever M, ,(s,k) # 0 mod n

k € Ty whenever M, ,(s, k) # 0 mod n

I

If condition (i) holds, then it is sufficient to consider s < d, — 2 since by Lemma

6.3.16(2), we need not consider s, which are divisible by p. Then

§ <y — 2

ps—1<p(dy—2)—1=pdy —2p—1

k < pdy — 2p — 1 whenever M, (s, k) # 0 mod n (by Lemma 6.3.16(3))
k < 6, — 1 whenever M, (s, k) # 0 mod n

R

k € T, whenever M, (s, k) # 0 mod n

6.4 Conclussion

A set of necessary and sufficient conditions were derived for extended cyclic codes of
length p™ over any subring of GR(p®, m) to be affine invariant for p = 2 with arbitrary
e and for e = 2 with arbitrary p. Classes of affine invariant BCH codes and GRM codes
over Zg. and over Z,> are found using these conditions. However, necessary and sufficient

conditions for any BCH or GRM code to be affine invariant remain open.
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Chapter 7

Conclusion

In chapter 4 and 5, the permutation groups considered are abelian. Though it covers
many important classes of codes, this approach does not apply to the cases when G is
nonabelian. As example, famous class of affine invariant codes are not tractable by this
approach. Another limitation of this approach is the restriction that the exponent of G

has to be relatively to prime to q.

Though Chapter 2 shows one way to investigate algebraic structure of F,LC codes,
it does not give the much wanted information on minimum Hamming distance of these
codes. Even the bound on the minimum Hamming distance of the corresponding quasi-

cyclic codes is also not easy enough to apply for long codes.

The necessary and sufficient conditions for extended cyclic codes over Galois rings to
be affine invariant was derived in Chapter 6. Some necessary and sufficient conditions were
first derived in group algebra method by Abdukhalikov [34] for the more general alphabet
of p-adic integers. Though the conditions derived in Chapter 6 or those derived in [27]
don’t appear to be same as those derived by Abdukhalikov, a few example calculations
showed the restrictions on the defining sets required by those sets of conditions to be
same for those examples. The classes of affine invariant codes found using the conditions

derived in this thesis are however completely new.

7.1 Scope for Further Work

All Fym-linear cyclic codes over Fym are F,LC codes and not conversely. It is worth

investigating to obtain a criteria/conditions under which a code can be seen as a linear
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code over Fiym w. 1. t. a different multiplication structure in Fym. In particular, this
problem, when special ized to the class of group cyclic codes over elementary abelian

groups is important since MDS group cyclic codes which are not linearizable have been

reported [74, 75].

It would be interesting to investigate the best choice of basis for a given F,LC code
for maximizing the minimum distance (or it’s bound) of the corresponding quasi-cyclic

code.

All the transform techniques discussed in this thesis are valid only when the character-
istic of the alphabet field or Galois ring is relatively prime to the exponent of the defining
permutation group for the particular class of codes. Works on transform technique for
the general case (i.e. when the above condition is not necessarily satisfied) is very limited.
The resulting class of cyclic codes over finite fields is known as repeated root cyclic codes.
Satisfactory structural analysis is done on this class of codes [47-50, 103, 104]. Though
the technique using Groebner basis [7] handles the general case for quasi-cyclic codes,
the suitable transform domian technique may give interesting insights. More generally,
codes closed under arbitrary abelian group G of permutations, when G’s exponent is not
necessarily relatively prime to the characteristic of the alphabet field (and Galois ring in

general) is untouched and is an interesting direction to persue.

In chapter 2, 3, 4, 5, the defining permutation group of the classes of codes considered
are abelian groups. Available work on non-abelian codes and codes closed under non-
abelian group of permutations is very limited. MacWilliams [105] investigated algebraic
structure of codes defined over dihedral groups using group algebra method. This sug-
gests that, codes closed under at least some nonabelian groups G of permutations may

be tractable with some suitably defined DFT.
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