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Abstract

It is well known that communication systems employing multiple transmit and multiple

receive antennas provide high data rates along with increased reliability. It has been shown

that coding across both spatial and temporal domains together, called Space-Time Coding

(STC), achieves, a diversity order equal to the product of the number of transmit and

receive antennas. Space-Time Block Codes (STBC) achieving the maximum diversity are

called full-diversity STBCs. An STBC is called information-lossless, if the structure of it

is such that the maximum mutual information of the resulting equivalent channel is equal

to the capacity of the channel.

This thesis deals with high-rate and information-lossless STBCs obtained from certain

matrix algebras called Crossed-Product Algebras. First we give constructions of high-rate

STBCs using both commutative and non-commutative matrix algebras obtained from

appropriate representations of extensions of the field of rational numbers. In the case

of commutative algebras, we restrict ourselves to fields and call the STBCs obtained

from them as STBCs from field extensions. In the case of non-commutative algebras, we

consider only the class of crossed-product algebras.

For the case of field extensions, We first construct high-rate, full-diversity STBCs for

arbitrary number of transmit antennas, over arbitrary apriori specified signal sets. Then

we obtain a closed form expression for the coding gain of these STBCs and give a tight

lower bound on the coding gain of some of these STBCs. This lower bound in certain cases

indicates that some of the STBCs from field extensions are optimal in the sense of coding

gain. We then show that the STBCs from field extensions are information-lossy. However,

we also show that the finite-signal-set capacity of the STBCs from field extensions can be

improved by increasing the symbol rate of the STBCs. The simulation results presented

show that our high-rate STBCs perform better than the rate-1 STBCs in terms of the bit

error rate performance.

Then we proceed to present a construction of high-rate STBCs from crossed-product

algebras. After giving a sufficient condition on the crossed-product algebras under which
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the resulting STBCs are information-lossless, we identify few classes of crossed-product

algebras that satisfy this sufficient condition and also some classes of crossed-product

algebras which are division algebras which lead to full-diversity STBCs. We present

simulation results to show that the STBCs from crossed-product algebras perform better

than the well-known codes in terms of the bit error rate.

Finally, we introduce the notion of asymptotic-information-lossless (AILL) designs and

give a necessary and sufficient condition under which a linear design is an AILL design.

Analogous to the condition that a design has to be a full-rank design to achieve the point

corresponding to the maximum diversity of the optimal diversity-multiplexing tradeoff,

we show that a design has to be AILL to achieve the point corresponding to the maxi-

mum multiplexing gain of the optimal diversity-multiplexing tradeoff. Using the notion

of AILL designs, we give a lower bound on the diversity-multiplexing tradeoff achieved by

the STBCs from both field extensions and division algebras. The lower bound for STBCs

obtained from division algebras indicates that they achieve the two extreme points, i.e.,

zero multiplexing gain and zero diversity gain, of the optimal diversity-multiplexing trade-

off. Also, we show by simulation results that STBCs from division algebras achieves all

the points on the optimal diversity-multiplexing tradeoff for n transmit and n receive

antennas, where n = 2, 3, 4.
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Chapter 1

Introduction

In a multipath wireless environment, due to the severe attenuation of the transmitted

signal, it becomes very difficult for the receiver to detect the transmitted signal. One way

of overcoming this difficulty is to introduce multiple replicas of the transmitted signal at

the receiver. The chances that at least one replicated signal is received by the receiver

with a low attenuation are very high and hence the receiver can detect the transmitted

signal. This method of providing multiple replicas of transmitted signal to the receiver is

called as diversity. There are mainly three forms of diversity:

(i) Time diversity - several replicas of the information signal are transmitted at different

time instants. The disadvantage of this diversity is that there is reduction in the trans-

mission rate.

(ii) Frequency diversity - if the channel is frequency selective, then the information is

transmitted over several frequencies. The disadvantage of this method is that it occupies

more bandwidth.

(iii) Space diversity (also known as antenna diversity) - spatially separated antennas are

used to provide the receiver with replicas of the transmitted signal. This technique does

not need extra bandwidth and there is no loss in the data rate.

Till early 1990s receive antenna diversity was extensively studied and more recently trans-

mit antenna diversity has gained more importance because of the fact that it is easier and

more cost effective to use multiple antennas at the transmitter (base station) to achieve
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Chapter 1. Introduction 2

diversity for down-link (base station to the mobile) than to use multiple antennas at

the receiver (mobile). Communication systems employing multiple transmit and receive

antennas are called Multiple Input Multiple Output (MIMO) communication systems.

In this thesis, we deal with construction of signal sets/codes for MIMO communication

systems that provide maximum diversity and at the same time support high data rates.

1.1 The System Model

In this section, we derive the system model based upon several assumptions. Figure 1.1

shows a communication system with nt transmit and nr receive antennas. For every

channel use, nt complex symbols are transmitted using the nt transmit antennas simulta-

neously. The channel is assumed to be flat, Rayleigh and quasi-static fading with additive

white Gaussian noise at the input of each receive antenna.

nt +

+

+

nr

nr

1,1h

1,2h

2,1h

2,2h

nt ,2h

nr2,h

nt ,1

nr1,

n  ,t nr
h

n t

x
Tx

x
Tx

x

w

y
Rx

w

y
Rx

w

y
Rx1 1

2 2

Tx

h

h

nr

1

1

1

2

2

2

Figure 1.1: System model

Since we assumed the channel to be frequency-flat, we can model each wireless link

between a pair of transmit and receive antennas as a complex scaling with the gain given

by a complex number hi,j. Note that this assumption is valid when the signal bandwidth is

very narrow so that the entire signal frequency spectrum goes through a common fading.

The assumption of Rayleigh fading on the channel means that the channel coefficients hi,j
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are independent and identically distributed (iid) with zero mean, unit variance circularly

symmetric complex Gaussian CN (0, 1). This assumption is valid only if the antennas

are well separated and the environment has large number of scatters. Thus, for a given

environment, there is a limit on the number of antennas that we can use, such that there

is no correlation between the channel coefficients hi,j. The channel is modeled as quasi-

static fading channel, i.e., the channel remains fixed for a certain number of channel uses,

called the ‘coherence time of the channel’ and then changes to something independent for

the next coherence time of the channel. At the receiver, all the faded signals from the

transmitter are added together along with an iid additive white complex Gaussian noise

with zero mean and variance per real dimension 1/2.

Throughout the thesis, we assume the number of channel uses used to transmit a code-

word, denoted by l is less than the coherence time of the channel. With this assumption,

every codeword transmitted experiences only one channel realization. With all the above

assumptions, the received nr × l signal matrix Y is

Y =

√
SNR

nt
HX + W (1.1)

where H is the nr × nt channel matrix, X is the nr × l transmitted signal matrix and W

is the additive white Gaussian noise. The matrix X is such that the average power used

to transmit it is ntl, i.e.,

E
[
tr
(
XXH

)]
= ntl.

The above condition makes the average received signal-to-noise power ratio (SNR) at each

receive antennas equal to SNR.
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1.2 Capacity and Outage Probability

First, let us assume that the transmitted nt-length vectors are independent across the

channel uses, i.e., there is no coding across time. Then, we have the received vector

y =

√
SNR

nt

Hx + w.

For a given realization of H, the channel capacity, i.e., the maximum rate at which we

can achieve reliable communication, is [1, 2]

C(nt, nr, SNR,H) = log2

[
det

(
Inr +

SNR

nt

HHH

)]
. (1.2)

The input distribution is assumed to be circularly symmetric complex Gaussian ran-

dom vector with each entry zero mean and unit variance. Since, the transmitter has no

knowledge of the channel, this distribution on the input vectors maximizes the mutual

information between the received and transmitted vectors. However, if the transmitter

knows the channel, the distribution on input which maximizes the mutual information

could be different.

Notice that the capacity of the channel is a random variable. Thus, taking expectation

of (1.2) over the channel realizations H, we obtain the ergodic or mean capacity of the

channel given by

C(nt, nr, SNR) = EH
[
log2

[
det

(
Inr +

SNR

nt
HHH

)]]
. (1.3)

Since, the transmitter does not know the channel and hence cannot adjust its transmission

rate accordingly, we assume that the transmission rate is fixed to R bits per channel use.

Thus, when the channel capacity, which is a random variable, is less than the transmission

rate R, the probability of error is bounded away from zero even for the best codes, i.e., we

can not have a reliable communication. We call these events of the channel realizations

for which the channel capacity falls below the transmission rate as outage events and the
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probability that an outage occurs is called the outage probability, given by

Pout(R, SNR) = P (C(nt, nr, SNR) < R) . (1.4)

The number of transmit and receive antennas is understood according to the context and

hence, we do not use them in the notation of outage probability. Thus, when the coding is

done over only one channel realization, the error probability of the particular code is lower

bounded by the outage probability. Figure 1.2 shows the outage probabilities for a date

rate of 2 bits per channel use for n transmit and n receive antennas, where n = 2, 3, 4.

Notice that as the SNR increases, the slope of the outage probability curve tends to 4 for

2 transmit and 2 receive antennas, 9 for 3 transmit and 3 receive antennas, and 16 for

4 transmit and 4 receive antennas. It has been shown recently [50] that the slope of the

outage probability curve for nt transmit and nr receive antennas, at high SNRs is equal

to ntnr. We will discuss more about this in Chapter 5. Figure 1.3 shows the achievable

data rates as a function of SNR when the outage probability is 5%, i.e., 5 × 10−2 for n

transmit and n receive antennas, n = 2, 3, 4. It is clear from the curves that to double

the achievable data rate we, either, have to double the number of transmit and receive

antennas or double the SNR dB level.

1.3 Performance Analysis and Signal Design Criteria

Signal design for taping the promised capacity discussed in the previous section is called

Space-Time Coding (STC). There are two ways of space-time coding: (i) Space-Time

Block Codes (STBCs) and (ii) Space-Time Trellis Codes (STTCs). Though, it was STTCs

which were constructed first, STBCs gained more popularity because of the availability

of good decoding algorithms. Throughout the thesis, we deal with STBCs only.

Definition 1.3.1 A nt × l space-time block code (STBC) for nt transmit antennas is a

finite set of nt × l matrices with entries from the complex field C, where l is a positive

integer such that the coherence time of the channel is an integral multiple of l.
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Figure 1.2: Outage probability as a function of the number of transmit and receive an-
tennas, and SNR.

Towards deriving the performance of an STBC in terms of the pair-wise error probability

(PEP), let C be an nt×l STBC. Assume that there are only two codewords X and X′ in C,
and X is transmitted. With maximum likelihood decoding at the receiver, the conditional

probability that the received matrix Y is decoded as X′ is

P (X→ X′/H) ≤ e
− (‖H(X−X)′‖/2)2SNR

nt = e
− (‖H∆‖/2)2SNR

nt

where ∆ = X−X′. Averaging the above expression over all the channel realizations, the

PEP between X and X′ is [3, 4]

P (X→ X′) ≤
(

Λ∏

i=1

1

1 + λ2
i SNR

)nr
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Figure 1.3: Achievable data rates with outage probability 5 × 10−2, as a function of the
number of transmit and receive antennas, and SNR.

where λi, i = 1, 2, . . . ,Λ are the non-zero singular values of ∆. At sufficiently high SNRs,

the above PEP expression can be approximated as

P (X→ X′) ≤
(

Λ∏

i=1

λ2
i

)−nr

SNR
−nrΛ.

Since at high SNRs, the overall performance, i.e., the actual codeword error probability

is dominated by the worst case PEP, we should design our code such that the worst case

PEP is minimized. The following are the three design criteria based on the PEP:

• As SNR increases, the PEP is dominated by the the term SNR
−nrΛ. The negative

of the SNR exponent nrΛ, called the diversity gain of the code C, indicates the

slope of the fall in the error probability with SNR. So, to obtain a good performance,
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the code should be designed such that for every pair of codewords X,X′, the term

nrΛ is maximized, i.e., the rank of the matrix ∆ = X−X′ is maximized. Since, the

difference matrix ∆ is a nt × l matrix, the value of l should be at least nr, so that

the maximum diversity gain ntnr can be achieved. Once we have l ≥ nt, we should

design our code such that the difference matrix ∆ for every pair of codewords, is

a full-rank matrix and thus obtain a diversity gain of ntnr. We call the code C a

full-rank STBC or a full-diversity STBC if Λ = nt.

• Once we have designed our code such that it achieves a diversity gain of Λnt, the

coefficient of SNR
−nrΛ has to be minimized to reduce the worst case PEP. Hence,

the term min∆6=0

(∏Λ
i=0 λ

2
i

)1/Λ

, called the coding gain of the code C, has to

be maximized. When the code is a full-rank STBC, the coding gain is given by

min∆6=0 det |∆|2/nt.

• The actual error probability is approximately equal to the PEP multiplied with a

positive integer κ, where κ is the average number of the codeword matrices X′ such

that | det(∆)|2/nt is equal to the coding gain of the code. The codeword matrices X′

are called the nearest neighbors of the codeword matrix X. Thus, to minimize the

overall performance, we should minimize the average number of nearest neighbors

for every codeword.

Among the above three design criteria, the first criteria is the most important one as it

indicates the slope of the fall in error probability with SNR. Thus, our main aim is to

construct full-rank STBCs for a given number of transmit antennas nt.

In general, an STBC is described in terms of a matrix called design defined below:

Definition 1.3.2 A rate-k/l, n× l design is an n× l matrix with entries that are complex

linear combinations of k complex variables and their complex conjugates. We obtain an

STBC for n transmit antennas by allowing these k variables to take values from a finite

subset S of the complex field C. We call such an STBC as an STBC over the signal

set S. In particular, if all the entries, which are complex linear combinations of the k
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variables, take values from the signal set S itself, we call the resulting STBC an STBC

completely over S.

Thus, a design and a signal set jointly describe an STBC. The rate of the design corre-

sponds to the symbol rate of the STBC in symbols from the signal set per channel use.

For example, the well-known Alamouti code [5] is an STBC based on the design


 x0 x1

−x∗1 x∗0




where x0, x1 are the complex variables. By restricting x0, x1 to take values from a given

complex signal set we obtain the Alamouti code over the given signal set. If the signal

set is symmetric with respect to both the real and the imaginary axes, then the resulting

Alamouti code is completely over that signal set. Otherwise, it is not completely over the

signal set. For instance, if x0 and x1 in the Alamouti code take values from a symmetric

3-PSK signal set S then the code is over S but not completely over S. It is completely

over S ′ where S ′ denotes the symmetric 6-PSK signal that is the union of S and −S.

It has been shown in [3] that the symbol rate of n× n STBC is upper bounded as

Rs ≤ n− d+ 1

where Rs and d denote the symbol rate and the diversity gain of the STBC respectively.

Definition 1.3.3 An STBC completely over S with rate meeting the upper bound above

is called a full-rate code. A minimal-delay full-rank, full-rate STBC completely over S is

said to be rate-optimal over S.

We use the term ”rate-optimal” to highlight the fact that these codes need not be of

largest coding gain among such codes.
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1.4 State of the Art

In this section, we briefly review some of the well known STBCs like STBCs from or-

thogonal designs and quasi-orthogonal designs, diagonal algebraic STBCs, space-time

constellation rotation codes, threaded algebraic STBCs and linear dispersion codes.

1.4.1 STBCs from Orthogonal Designs

An n × l (n ≤ l) Real Orthogonal Design (ROD) is an n × l matrix Θ with entries

±x0, ±x1, . . . , ±xk−1, where xi are real variables, such that

ΘT Θ = (x2
0 + x2

1 + · · ·+ x2
k−1)In

where In denotes the n×n identity matrix. Similarly an n×l Complex Orthogonal Design

(COD) is an n× l matrix Θ with entries ±x0, ±x∗0,±x1,±x∗1, . . . ,±xk−1,±x∗k−1, such that

ΘHΘ = (|x0|2 + |x1|2 + · · ·+ |xk−1|2)In.

Example 1.4.1 (a) RODs: For n = 2 transmit antennas, we have the following ROD:


 x0 x1

−x1 x0


 .

For n = 3 transmit antennas, the following is one of the known RODs:




x0 −x1 −x2 −x3

x1 x0 x3 −x2

x2 −x3 x0 x1


 .

(b) CODs: For n = 2, we have the well known Alamouti code


 x0 x1

−x∗1 x∗0



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and for n = 4 transmit antennas, the following is one of the known CODs:




x0 x1 x3 0

−x∗1 x∗0 0 −x3

−x∗2 x∗2 x∗0 x1

0 x∗2 −x∗1 x0



.

In [6], both RODs and CODs, and their generalizations have been used to obtain full-

diversity STBCs over arbitrary finite subsets of the complex field. If X is a codeword of

an STBC C obtained from an orthogonal design, and if Y is the received matrix when

the codeword X is transmitted, then the ML estimate is given as

X̂ = argmin
X∈C

trace





(
Y −

√
SNR

nt

HX

)(
Y −

√
SNR

nt

HX

)H


 .

But, since XXH is a scaled identity matrix, the above expression can be written as

X̂ = argmin
X∈C

trace

{√
SNR

nt

(
|x0|2 + |x1|2 + · · ·+ |xk−1|2

)
HHH −HXYH −Y(HX)H

}
.

Clearly, the LHS of the above expression can be broken into several terms each of which

depend only on one of the k variables and thus the decoding complexity is linear in the size

of the signal set. This property of the orthogonal designs has been termed as single-symbol

decoding in [7]. However, the main disadvantage of the STBCs from orthogonal designs is

that their symbol rates are upper bounded by 1 [13]. It was also shown that for arbitrary

complex constellations, the only possible orthogonal design for 2 transmit antennas is the

Alamouti code. Orthogonal designs were also dealt with in [8] using amicable designs.

In [9], it has been shown that orthogonal designs maximize the SNR at the receiver.

Orthogonal designs have also been constructed in [10] using Clifford algebras. In the

same paper, an upper bound on the symbol rates of the orthogonal designs was obtained.

Some specific orthogonal designs were constructed in [11]. In [12], all the STBCs admitting

the single-symbol decoding were characterized and a class of designs called Co-ordinate
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Interleaved designs were constructed that admit the single-symbol decoding.

1.4.2 STBCs from quasi-orthogonal designs

Since the rates of orthogonal designs were upper bounded by 1, there was a search for

designs which can have better rate with small sacrifices in the decoding complexity and

transmit diversity. A scheme that trades off diversity for simpler ML decoding (double-

symbol decoding) was presented in [14] for four and eight antennas, using quasi-orthogonal

designs (QODs).

Example 1.4.2 The following was the QOD proposed by Jafarkhani in [14] for 4 transmit

antennas: 


x0 x1 x2 x3

−x∗1 x∗0 −x∗3 x∗2

−x∗2 −x∗3 x∗0 x∗1

x3 −x2 −x1 x0



.

The diversity of the above design is 2, but the decoding of the four symbols x0, x1, x2, x3

can be decoupled into decoding of pairs x0, x3 and x1, x2.

While the symbol rates are better than that of orthogonal designs, the decoding complex-

ity is equal to square of that of orthogonal designs, and the diversity gain achieved by

QODs is equal to half the number of transmit antennas. In [15–17], several modifications

to the STBCs from QODs have been proposed to retain the full diversity.

1.4.3 Algebraic Space-Time Block Codes

Using the concept of constellation rotation, Damen et al. in [18] have proposed Diagonal

Algebraic Space-Time Block Codes (DAST) which have a rate equal to 1 symbol per

channel use and achieve full diversity. The signal sets considered were finite subsets

carved from the integer lattice Z[j].

In [20], Xin et al. have proposed STBCs similar to that of DAST, based on certain

algebraic extensions of the rational number field Q. In [21], El Gamal and Damen extended
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the idea of DAST to more general system called Threaded Algebraic STBCs (TAST). The

concept of layering is used here to obtain rates up to nt symbols per channel use without

reducing the diversity gain of the system. Damen constructed a code for 2 transmit

antennas, which is a specific example of TAST codes. The code, however, has the added

property that the code achieves capacity for any number of receive antennas. We will

deal with this specific code in more detail in Chapter 4.

1.4.4 Linear Dispersion Codes

Hassibi and Hochwald [23] introduced codes that are linear in space and time called

“Linear Dispersion Codes” (LD codes) which absorb STBCs from orthogonal designs as

a special case. The construction of these LD codes is done by optimizing the maximum

mutual information between the input to the encoder and the input to the receiver. But

these codes maximize the mutual information only when the number of receive antennas is

greater than or equal to the number of transmit antennas, i.e., nr ≥ nt. In the remaining

cases, there is about 5% loss in the mutual information at 10 dB SNR. The LD codes

do not achieve the full diversity, as the basis of construction was mutual information and

not the diversity. The ML decoding complexity of these codes is exponential but due

to their linear structure, low complexity decoding algorithms like ‘successive nulling and

canceling’, ‘ square-root’ and ‘sphere decoding’ can be used [23].

1.4.5 Other constructions

Constructions of STBCs specific to PSK and QAM modulation have been studied in [24]

and [25] respectively. Design of STBCs using groups and representation theory of groups

have been reported in [26–29] and using unitary matrices STBCs have been studied in

[30–33].

In the next chapter, we survey the construction of STBCs from division algebras [39]

in detail, as we use the same basic principle in this thesis for constructing our codes.
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1.5 Motivation

Most of the full-diversity STBCs constructed so far have symbol rate upper bounded by 1.

There have been very few constructions, like TAST, where the symbol rate is more than

one, but still upper bounded by nt, the number of transmit antennas. Also, these specific

constructions were limited to QAM constellations only. So, it is natural to ask whether it

is possible to obtain capacity approaching, high-rate, full-diversity STBCs over arbitrary

signal sets, with high symbol rates. It is in this context, that we explore the possibility

of constructing such STBCs over arbitrary but apriori specified signal sets.

1.6 Organization of Thesis

In Chapter 2, we give the general principle of construction of STBCs from division algebras

and present in detail the construction of rate-1, full-diversity STBCs using field extensions

and non-commutative division algebras [39].

In Chapter 3, we give a construction of high-rate, full-diversity STBCs using the em-

beddings of both algebraic and transcendental extensions of the field of rational numbers

Q into the matrix algebras. We then, obtain the expression for the coding gain for these

high-rate STBCs and compare with the well known STBCs. Also, we give a detailed anal-

ysis of the mutual information of these STBCs and show that they are information-lossy

(defined in Chapter 2). We then, present the finite-signal-set capacity of these STBCs and

show that the capacity can be increased by increasing the rate of these STBCs. We con-

clude this chapter by presenting some simulations for bit error rate (BER) performance

of these STBCs.

In Chapter 4, we give a general construction of high-rate STBCs from crossed-product

algebras and show that several well known STBCs are special cases of these STBCs. We

also give a sufficient condition under which these STBCs are information-lossless and

identify some classes of STBCs which satisfy the sufficient condition. We also identify

some classes of crossed-product algebras from which the STBCs obtained are full-diversity

STBCs. We obtain an expression for the coding gain of a specific class of these STBCs.
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We conclude this chapter with simulations results comparing the BER performance of

these STBCs with that of some well known STBCs.

In Chapter 5, we give a brief introduction to the recently found [50] tradeoff between

the diversity and multiplexing gain of any given scheme or design. We then introduce

a class of STBCs namely, Asymptotically-Information-Lossless (AILL) scheme and show

that it is necessary for a scheme to achieve the optimal diversity-multiplexing tradeoff.

We then give a necessary and sufficient condition under which a scheme is AILL. Also,

we briefly review the diversity-multiplexing tradeoff of several well known schemes. We

then obtain lower bounds on the diversity-multiplexing tradeoff achieved by the schemes

from field extensions and crossed-product algebras. We will conclude the chapter with

some simulation results which indicate that the schemes from crossed-product algebras

for n transmit and n receive antennas achieve the optimal diversity-multiplexing tradeoff,

where n = 2, 3, 4.

In Chapter 6, we conclude the thesis by presenting some directions for further research

on this topic.

In Appendix A, we give basic preliminaries of the algebraic tools used in this thesis.



Chapter 2

Rate-1, Full-rank STBCs from

Division Algebras

In this chapter, we present the construction of STBCs from division algebras [34–36, 39].

In Section 2.1, we give the general principle which will be used to construct STBCs

throughout the thesis. Construction of rate-1 STBCs over symmetric PSK signal sets and

QAM signal sets, using field extensions is given in Section 2.2. In Section 2.3, we present

the construction of rate-1, full-diversity STBCs using non-commutative division algebras.

2.1 STBCs from Division algebras

In this section we present the basic principle used to construct STBCs using division

algebras. To avoid notational complexity, we assume that the number of transmit antennas

nt = n throughout this section.

A division ring is a ring in which every nonzero element has a multiplicative inverse.

Since every division ring is a vector space over its center, the term “division algebra” is

used instead of division ring. A commutative division algebra, of course, is just a field.

And non-commutative division algebras do exist. For example, the set H of quaternions

16
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over the real field R given by

H = {a + ib + jc+ kd|a, b, c, d ∈ R} ,

where i2 = j2 = k2 = −1 and ij = k, is a non-commutative division algebra. It is easy

to check that ij = −ji and any non-zero element a+ ib+ jc+ kd has an inverse equal to

a−ib−jc−kd
a2+b2+c2+d2 .

The following proposition gives a very broad principle that is used to construct full-

rank minimal-delay codes from division algebras in this thesis:

Proposition 2.1.1 Let f : D →Mn(F ) be a ring homomorphism from a division algebra

D to the set of n×n matrices over some field F . If E is any finite subset of the image of

D under this map, then E will have the property that the difference of any two elements

in it will be of full-rank.

Proof: Since every element in D is invertible, D has no nontrivial two-sided ideals, so

the kernel of f is either all of D or else, f is an injective map. Since f does not map the

unit element of D to zero, f must necessarily be an injection, and therefore, the image

f(D) (which is a subring of Mn(F )) must be isomorphic to D, i.e., f(D) is an embedding

of D in Mn(F ). Now let E ⊂ f(D) be any subset of the image of f . If M1 = f(d1) and

M2 = f(d2) are two distinct elements in E, then M1 −M2 = f(d1)− f(d2) = f(d1− d2).

Since M1 and M2 are distinct and f is injective, d1 − d2 6= 0, so it has a multiplicative

inverse in D. Since D is isomorphic to its image f(D), f(d1 − d2) = M1 −M2 must also

be invertible in f(D) ⊂ Mn(F ). Hence, M1 −M2 must be of full-rank, and our subset E

must therefore have the property that the difference of any two elements in E will be of

full-rank.

2.2 STBCs from Field Extensions

We will recall some well-known facts (see (§7.3, [69]) for instance) about embedding field

extensions into matrix algebras in this section. Let K and F be fields, with F ⊂ K, and
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[K : F ] = n, i.e., K is of dimension n over F . In our application to space-time codes, F

will be a suitable extension field of Q determined by the signal set S over which we want

to construct the code and K a subfield of C, (i.e., Q ⊂ F ⊂ K ⊂ C) but in this section,

F can be arbitrary. Recall that K can be viewed as an n-dimensional vector space over

F , and that we have a natural map L from K to EndF (K), which is the set of F -linear

transforms of the vector space K. This map is given by k 7→ λk, where λk is the map on

the F -vector space K that sends any u ∈ K to the element ku. (That is, λk is simply left

multiplication by k.) As in the discussion in the introduction of this section, L maps K

isomorphically into EndF (K), that is, K embeds in Mn(F ). This particular method of

embedding K into Mn(F ) is known as the regular representation of K in Mn(F ).

For a given choice of F basis B = {u1, u2, . . . , un} of K, one can write down the matrix

corresponding to λk for any k as follows: for any given basis element ui (1 ≤ i ≤ n), and

for any j (1 ≤ j ≤ n), let uiuj =
∑n

l=1 cij,lul. Then, the j-th column of λui
is simply the

coefficients cij,l above, 1 ≤ l ≤ n. Here, we use the convention that the vectors on which

a matrix acts are written on the right of the matrix as a column vector. Once the matrix

corresponding to each λui
, call it Mi, is obtained in this manner, the matrix corresponding

to a general λk, with k =
∑n

i=1 fiui is just the linear combination
∑n

i=1 fiMi. When K

is generated over F by a primitive element α (this is always the case in characteristic

zero, the case we will consider throughout the thesis), the matrices in the particular basis

B = {1, α, α2, . . . , αn−1} are easier to write down. Suppose that the minimal polynomial

of α over F is xn + an−1x
n−1 + · · · + a1x + a0. Then the matrix corresponding to λα is

simply its companion matrix M given by

M =




0 0 ... 0 −a0

1 0 ... 0 −a1

0 0 ... 0 −a2

...
...

... 0
...

0 0 0 1 −an−1




, (2.1)

and the matrices corresponding to the other powers αi can be computed directly as the
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i-th power of M and the general element k = f0 + f1α + . . . fn−1α
n−1 will be mapped to

the matrix f0In + f1M + f2M
2 + · · ·+ fn−1M

n−1. We thus have:

Proposition 2.2.1 Let K = F (α) be an extension of the field F of degree n, and suppose

that the minimal polynomial of α over F is xn + an−1x
n−1 + · · ·+ a1x+ a0. Let M be the

matrix in Mn(F ) defined in (2.1). Then the set of all matrices of the form f0In + f1M +

f2M
2 + · · ·+ fn−1M

n−1, with f0, f1, . . . , fn−1 coming from F is an embedding of K into

Mn(F ). In particular, any finite subset E of such matrices will have the property that the

difference of any two matrices in it will have full-rank.

Proof: The last statement follows from Proposition 2.1.1 above.

When the minimal polynomial of α has the special form xn − γ for some γ ∈ F ∗

(non-zero elements of F ), the form of the matrices simplify considerably. The matrix

corresponding to α is then same as (2.1) with −a0 = γ, a1 = a2 = · · · = an−1 = 0 and

the matrix corresponding to λk, where k = f0 + f1α + · · ·+ fn−1α
n−1, is




f0 γfn−1 γfn−2 . . . γf2 γf1

f1 f0 γfn−1 . . . γf3 γf2

f2 f1 f0 . . . γf4 γf3

f3 f2 f1 . . . γf5 γf4

...
...

...
...

...
...

fn−1 fn−2 fn−3 . . . f1 f0




. (2.2)

These observations essentially prove the following special case of Proposition 2.2.1 above:

Proposition 2.2.2 Let F be a field, and let γ be a nonzero element of F . Suppose that

the polynomial xn − γ (n ≥ 2) is irreducible in F [x]. Then, the set of all matrices of

the form (2.2) above, with f0, f1, . . . , fn−1 coming from F , forms a field, isomorphic

to F ( n
√
γ). In particular, any finite set of such matrices will have the property that the

difference of any two in it will have full-rank.

Proof: Let α be some n-th root of γ in some algebraic closure of F . Then the field

K = F (α) has degree n over F , since the polynomial xn − γ is irreducible in F [x]. The
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discussions above then shows that the set of matrices of the form (2.2) above is isomorphic

to K under the map L. The last statement follows from Proposition 2.1.1 above.

Remark 2.2.1 It is essential in the proposition above that the elements fi all come from

F . For instance, with F = Q and γ = n = 2, we find from the proposition that the set

of matrices of the form


 a 2b

b a


 with a and b coming from Q is isomorphic to Q(

√
2).

However, if a and b are allowed to be arbitrary complex numbers, the set of such matrices

is no longer a field. For instance, taking a =
√

2 and b = 1, we get a nonzero matrix

that is not invertible, so the set of all such matrices with arbitrary complex (or even real)

entries cannot be a field.

Let S be the finite subset of the nonzero complex numbers that we wish to use as our

signal set, and say |S| = m. Write F for the field generated by all the elements of S

over Q. For instance, if S = {1, j,−1,−j}, then F is just the field obtained by adjoining

the elements 1, j, −1, and −j to Q or in other words, F is just Q(j). Let K be a field

extension of F of degree n. Then, by the primitive element theorem, K = F (α), for some

element α ∈ K whose minimal polynomial is xn + an−1x
n−1 + · · ·+ a1x + a0 for suitable

ai ∈ F . We have the following sequence of field extensions:

Q ⊂ Q(S) = F ⊂ Q(S, α) = F (α) = K.

Consider all matrices of the form f0In + f1M+ f2M
2 + · · ·+ fn−1M

n−1, where the f0,

f1, . . . , fn−1 come from the signal set S, and where M is the matrix in Mn(F ) defined in

(2.1). This is a finite set of matrices of cardinality mn, which, by Proposition 2.2.1 is a

full-rank minimal-delay STBC over S. This construction becomes simpler if we know that

there is an element γ ∈ F ∗ that has the property that the polynomial xn−γ is irreducible

in F [x]. (Note that γ need not be in S.) This time, we consider matrices of the form

(2.2), with the fi constrained to be in S. We get a finite set of matrices of size mn, which,

by Proposition 2.2.2 is again a full-rank minimal-delay code, and this code is over S and

the entries of the codeword matrices are from the set S ∪ γS. However, suppose that the
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set S and the element γ have the property that γs ∈ S for all elements s ∈ S. Then,

all elements of the transmitted matrices will actually have their entries in S. Then S is

invariant under multiplication by γ and the resulting code is completely over S. In many

of our examples below, we will choose S and γ so that S is invariant under multiplication

by γ. It is easily verified that a property that the element γ must have if our signal set S

is to be invariant under multiplication by γ is:

Lemma 2.2.1 Let S be a finite subset of the nonzero complex numbers, and let γ be some

nonzero complex number. If S is invariant under multiplication by γ, then γ must be a

root of unity.

2.2.1 Rate-optimal codes over rotationally invariant Signal Sets

We first present the construction of rate-optimal STBCs over symmetric m-PSK signal

set. The number of transmit antennas n is allowed to be any integer that has the property

that the primes that appear in the factorization of n is some subset of the primes that

appear in the factorization of m. For example, with 6-PSK signal set one can use 2i

antennas, or 3j antennas, or 2i3j antennas, with i and j being arbitrary.

Given the integer m ≥ 2 for which an m-PSK code has to be constructed, let ωm

denote e2πj/m, which is a primitive m-th root of unity. Recall that the m-th cyclotomic

field is the field generated by ωm over Q; Q(ωm) is of degree φ(m) over Q, where φ(m) is

the Euler totient function of m, that is, φ(m) is the number of integers i with 1 ≤ i ≤ m

that are relatively prime to m. We denote the m-PSK signal set by Sm, that is, Sm =

{ωi
m, 0 ≤ i < m}. Now let n be any integer such that the primes that appear in the prime

factorization of n is some subset of {p1, . . . , pk}, which is the set of primes that appear in

the factorization of m. We first prove:

Proposition 2.2.3 Let n and m be as above and let l be any integer such that l and m

are relatively prime. Then, any of the polynomials xn − ωl
m, with ωm as in the discussion

above, is irreducible in Q(ωm).

Proof: Let ωmn = e2πj/mn. This is a primitive mn-th root of unity. The element ωl
mn is
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a root of xn−ωl
m. The minimal polynomial of ωl

mn over Q(ωm) therefore divides xn−ωl
m

in Q(ωm)[x]. It is therefore sufficient to show that the minimal polynomial of ωl
mn over

Q(ωm) is of degree n: this will show that xn − ωl
m must be the minimal polynomial of

ωl
mn over Q(ωm), and this will then force xn − ωl

m to be irreducible in Q(ωm)[x]. Note

that ωl
mn is also a primitive nm-th root of unity. Since (ωl

mn)n = ωl
m, we have the natural

containment of cyclotomic fields Q ⊂ Q(ωl
m) ⊂ Q(ωl

mn). Since ωl
m is a primitive l-th root

of unity, Q(ωl
m) = Q(ωm). Similarly, Q(ωl

mn) = Q(ωmn), so our containment of fields

reads Q ⊂ Q(ωm) ⊂ Q(ωmn). The degree of Q(ωmn) over Q is φ(mn), while the degree of

Q(ωm) over Q is φ(m), so because degrees multiply in towers of field extensions, we find

that the degree of Q(ωmn) over Q(ωm) is φ(mn)/φ(m).

It is therefore sufficient to prove that φ(mn) = nφ(m). This will show that the degree

of Q(ωmn) over Q(ωm) is n, and since Q(ωmn) (= Q(ωl
mn)) is generated over Q(ωm)

by ωl
mn, this will show that the minimal polynomial of ωl

mn over Q(ωm) is of degree

n, as desired. We once again invoke the hypothesis that the primes belonging to the

factorization of n appear from the set {p1, . . . , pk} (the result φ(mn) = nφ(m) would be

false without this hypothesis). Suppose that n = pβ1
1 · · ·pβk

k (some of the βi could possibly

be zero). Then φ(mn) = φ(pα1+β1

1 · · · pαk+βk

k ) = pα1+β1−1
1 (p1 − 1) · · ·pαk+βk−1

k (pk − 1) =

pβ1

1 · · ·pβk

k p
α1−1
1 (p1 − 1) · · ·pαk−1

k (pk − 1) = nφ(m), as desired.

Now we construct the code on the signal set Sm = {ωi
m, 0 ≤ i < m} using matrices

of the form (2.2) with the elements of Sm substituted for the fi and with γ = ωl
m. This

is our m-PSK code for n antennas. We get one such code for each l, 1 ≤ l < n, for which

l and n are relatively prime. Note that under this construction, since multiplication by

ωl
m takes an m-th root of unity to another m-th root of unity, the entries of the matrices

transmitted will all be in Sm, i.e., the code is completely over Sm. Moreover, the number

of such matrices is |Sm|n and hence the rate is 1 symbol per channel use, resulting in

rate-optimal codes.

Example 2.2.1 Let us consider the 4 element set S4 = {1, j,−1,−j}. (This set is in-

variant under multiplication by j.) Note that j is a primitive 4-th root of unity. By

Proposition 2.2.3 above, the polynomial x2 − j is irreducible over Q(j). We thus get the
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following set of 16 2× 2 matrices with entries from S4 for our code:
 1 j

1 1


 ,


 1 −1

j 1


 ,


 1 −j

−1 1


 ,


 1 1

−j 1


 ,


 j j

1 j


 ,


 j −1

j j


 ,


 j −j

−1 j


 ,


 j 1

−j j


 ,


 −1 j

1 −1


 ,


 −1 −1

j −1


 ,


 −1 −j

−1 −1


 ,


 −1 1

−j −1


 ,


 −j j

1 −j


 ,


 −j −1

j −j


 ,


 −j −j

−1 −j


 ,


 −j 1

−j −j


 .

The Alamouti code, which is a 2 × 2 complex orthogonal design of size 2 over S4, and

Example 2.2.1 give codes with identical parameters. In the following two examples we

obtain codes with parameters that are not obtainable by orthogonal designs.

Example 2.2.2 Let us consider the 6-PSK signal set S6 = {1, ω, ω2, ω3, ω4, ω5} where

ω = e
j2π
6 is a primitive 6-th root of unity. (This set is invariant under multiplication by

ω.) By Proposition 2.2.3 above, the polynomial x2 − ω and x3 − ω are irreducible over

Q(ω). With x2 − ω we get 36 2 × 2 codewords given by


 a ωb

b a


 where a, b ∈ S6, and

with x3 − ω we get 216 3× 3 codewords given by




a ωb ωc

b a ωb

c b a


 where a, b, c ∈ S6.

Instead of codes from m-PSK signal sets, which are invariant under rotation by ωm, we

will now consider the codes over any signal set invariant under rotation of 2π/k, that is,

invariant under multiplication by ωk = e2π/k. One would start from a set that is a subset

of Q(ωk) and then construct codes for n antennas using the extension given by the n-th

root of ωk. (Of course, n has to satisfy the condition that the prime factorization of n

should only involve primes that appear in the prime factorization of k.) For instance, when

k = 3 (so our angle of rotation is 120◦), we can let S1 be any finite set of nonzero complex

numbers contained in the cyclotomic extension Q(ω3), and let S = S1 ∪ ω3S1 ∪ ω2
3S1.

Then S is invariant under multiplication by ω3, and we can construct a code on S for

n transmit antennas, where n is any power of 3, using matrices of the form (2.2) with

γ = ω3. The following example gives a code over signal sets invariant under 90◦ rotation.
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Example 2.2.3 Let a ≥ b > 2 be odd integers, and let S consist of the union of the

two sets S1 = {(a − 2k) + j(b − 2l)|0 ≤ k ≤ a, 0 ≤ l ≤ b} and S2 = jS1 = {−(b −
2l) + j(a − 2k)|0 ≤ k ≤ a, 0 ≤ l ≤ 2b}. Note that both S1 and S2 are invariant under

multiplication by −1. When a = b, we have a square constellation. When a > b, S is a

cross constellation. In both cases, we can obtain our codes from this signal set S for any

n a power of 2 by taking matrices of the form (2.2) with γ = j, and with the elements fi

chosen from S. Of course, we can construct our codes on just the set S1 using this same

procedure. The entries of the matrices will then come from S1 ∪ S2.

As an another specific example, let us take S = {1, ω3, ω
2
3,−1,−ω3,−ω2

3, ω3 − ω2
3,−1 +

ω2
3, 1− ω3}. Note that S = ω3S = ω2

3S, so S is already invariant under rotation by 120◦.

We can use this set to construct codes for transmission on n = 3l antennas for arbitrary

l as described above.

2.2.2 Rate 1 codes over signal sets derived from symmetric m-

PSK signal sets for arbitrary number of antennas

In the previous subsection for a given m the number of antennas n is restricted to have only

those primes that are in m also only if we need rate-optimal codes. If rate-optimality is not

a constraint then over any finite subset (including Sm) of subfields of C, full-rank STBCs

can be constructed for arbitrary number of antennas, using the following proposition:

Proposition 2.2.4 Let F be a field of characteristic zero, and let z be an indeterminate.

Also, let F (z) be the rational function field over F in the indeterminate z, that is, it is

the set of quotients of polynomials in z with entries from F . Then, for any integer n ≥ 1,

the polynomial xn − z is irreducible in the ring F (z)[x].

Proof: It is sufficient to prove that xn − z is irreducible in F (ωn, z)[x], where ωn is a

primitive n-th root of unity. (Note that the assumption about the characteristic guaran-

tees the existence of a primitive n-th root of unity.) If we let ζ denote an n-th root of

z (in some algebraic closure of F (ωn, z)), then xn − z factors as Πn−1
i=0 (x − ωi

nζ) over the

field F (ωn, z, ζ) = F (ωn, ζ). So, if f is some irreducible factor of xn − z in F (ωn, z)[x],
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say of degree k < n, then over F (ωn, ζ), f must equal the product of some k of these

linear factors (x−ωi
nζ). Studying the constant term of this product, we find that ζk is in

F (ωn, z), or, taking n-th powers, that zk is an n-th power in F (ωn, z). But it is easy to

see that when k < n, this is impossible: if we were to write zk = (g(z)/h(z))n, where g

and h are polynomials in z with coefficients in F (ωn), then, h(z)nzk should equal g(z)n.

Comparing the highest degree (in z) on both sides gives us the contradiction. Hence, k

must equal n, that is, xn − z must be irreducible in F (ωn, z)[x].

We will use this proposition as follows. Let Sm be the set of m-th roots of unity, and

let us pretend that we are working over the field Q(ωm, z), where z is any transcendental

number, for instance, e, or π, or eju, for any algebraic real number u, even u = 1. Then

over that field, the polynomial xn − z is irreducible, since the transcendental element z

acts just as an indeterminate over Q(ωm). (It follows from the well known fact that if z is

transcendental over Q, it remains transcendental over an algebraic extension of Q such as

Q(ωm).) We may then consider the various n× n matrices of the form (2.2), with γ = z.

Note that there is no limitation under this scheme on n: the number of antennas can

therefore be arbitrary. Also note that if we take z to be of the form eju = cos(u)+ j sin(u)

for some real algebraic number, for example, u = 1, then the entries will consist of the

original m equally spaced points on the unit circle, and a copy of these points multiplied

by eju, that is, rotated counter clockwise by u radians.

In the following example we construct a code over such a signal set with 8 elements

shown in Figure 2.1.

Example 2.2.4 In Example 2.2.1 the codewords are


 f0 γf1

f1 f0


 where γ was chosen to

be j corresponding to the irreducible polynomial x2 − j and f0, f1 ∈ S = {1,−1, j,−j}.
Now for some θ that is a real algebraic number we can take the irreducible polynomial

x3 − ejθ, use the same S, and construct code for 3 antennas (note that 3 is a prime

not appearing in the prime power factorization of 4). We obtain the full-rank code over

the asymmetric 8-PSK signal set shown in Figure 2.1, for 3 antennas containing the 64
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Figure 2.1: Asymmetric 8-PSK signal set matched to a dihedral group with 8 elements

codewords given by




a cejθ bejθ

b a cejθ

c b a


 where a, b, c ∈ S, using Proposition 2.2.4.

On the other hand, when the transcendental element z is real, the entries will be the

original m equally spaced points on the unit circle, and these same points shifted radially

to the circle at radius |z|. Note too that by choosing different real transcendentals (for

example, αe for any nonzero rational number α), we can get different radius for the second

circle.

2.2.3 Construction of STBCs using non-cyclotomic field exten-

sions

All our examples in the previous three subsections have arisen from application of Propo-

sition 2.2.2, where the minimal polynomial of the element α was of the form xn − γ. For

the sake of completeness, we will give an example in this section of a code constructed

by applying Proposition 2.2.1, that is, where the minimal polynomial has other terms

besides the constant term and the highest degree term. Of course, the entries of the
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matrices involved, in this general situation, will be linear combinations of the elements of

the signal set.

First, a well-known result that will help us construct irreducible polynomials over fields

other than the rationals:

Lemma 2.2.2 Let f(x) be an irreducible polynomial over Q of degree n. Suppose that

F is an extension field of Q of degree m, and suppose that n and m are relatively prime.

Then, f(x) remains irreducible over F .

Proof: This is standard. If α is a root of f(x), then Q(α) is an extension of Q of degree

n. The field F (α) contains Q(α), so [F (α) : Q] is divisible by [Q(α) : Q] = n. Similarly,

F (α) contains F , so [F (α) : Q] is divisible by [F : Q] = m. Since n and m are relatively

prime, [F (α) : Q] is divisible by nm, and hence, [F (α) : F ] = [F (α) : Q]/[F : Q] is

divisible by nm/m = n. On the other hand, the minimal polynomial of α over F divides

f(x), so the degree of this minimal polynomial is at most n. It follows that [F (α) : F ] is

exactly n, and that f(x) is the minimal polynomial of α over F , and in particular, that

f(x) remains irreducible over F .

We now give a class of codes constructed from minimal polynomials that are one step

more complicated than those of the form xn − γ: Let f(x) be of the form xn − px − p,
for some prime p. By Eisenstein’s Criterion (§2.16, [69]), f(x) is irreducible over the

rationals. Let m be any integer such that φ(m) and n are relatively prime. Let ωm be

a primitive m-th root of unity, and consider Q(ωm), the m-th cyclotomic field. This is

of degree φ(m) over the rationals, so, by the lemma above and the assumption about n

and φ(m), f(x) remains irreducible over Q(ωm). Hence, if M is the matrix (2.1) (with

a0 = a1 = p, and a2 = · · · = an−1 = 0), then, for S equal to the m-th roots of unity,

the set of all matrices of the form s0 + s1M + s2M
2 + · · ·+ sn−1M

n−1, where the si are

allowed to be arbitrary members of S, is an rate-optimal code of size mn.

Example 2.2.5 Consider f(x) = x3 − 2x− 2. This is irreducible over Q by Eisenstein’s

Criterion. Let us work over Q(j), a field extension of Q of degree 2 (note that 2 and 3
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are relatively prime). Then, our code consists of all 3× 3 matrices of the form




s0 2s2 2s1

s1 s0 + 2s2 2s1 + 2s2

s2 s1 s0 + 2s2




where the si are arbitrary members of the set {1, j,−1,−j}. Of course, the same set of

matrices above also forms a code if the si are allowed to come from the set of 2r-th roots

of unity, for any r ≥ 2, since the 2r-th cyclotomic field has degree 2r−1, which is relatively

prime to 3.

2.3 STBCs from non-commutative division algebras

In this section we begin the STBC construction using embeddings of non-commutative di-

vision algebras in matrix rings. First we present the basic structural properties of division

algebras in the following subsection. Then we discuss the left regular representation of

division algebras which is the counterpart of Subsection 2.2 for the case of field extensions.

Given a division algebra D, its center Z(D) is the set {x ∈ D|xd = dx∀d ∈ D}. It

is easy to see that Z(D) is a field; D therefore has a natural structure as a Z(D) vector

space. In this thesis, we will only consider division algebras that are finite dimensional

as a vector space over their center. (Such algebras are referred to as finite dimensional

division algebras.) Good references for division algebras are [53–55, 69].

If F is any field, by an F division algebra, or a division algebra over F , we will mean

a division algebra D whose center is precisely F . It is well known that the dimension

[D : F ] is always a perfect square. If [D : F ] = n2, the square root of the dimension, n,

is known as the degree or the index of the division algebra.

The Hamilton’s Quaternions denoted by H is the four dimensional vector space over

the field of real numbers R with basis {1, î, ĵ, k̂}, with multiplication given by î2 = ĵ2 = −1

and îĵ = k = −ĵ î. That is, H is the set of all expressions of the form {a(= a · 1) + bî +

cĵ + dk̂ | a, b, c, d ∈ R}. The real numbers are identified with quaternions in which the
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coefficients of î, ĵ, and k̂ are all zero. One can check that the multiplicative inverse of the

nonzero quaternion x = a+ b̂i+ cĵ+dk̂ is the quaternion (a/z)− (b/z)̂i− (c/z)ĵ− (d/z)k̂,

where z = a2 +b2 +c2 +k2. Thus, as every nonzero element has a multiplicative inverse, H

is indeed a division algebra. Clearly, the center of H is just the set {a(= a·1)+0î+0ĵ+0k̂},
that is, under the identification described above, the center of H is just R. Notice that H

is four (= 22) dimensional over its center R, that is, H is of degree (or “index”) 2.

By a subfield of a division algebra, we will mean a field K, such that F ⊆ K ⊆ D.

Note that D can have other subfields K such that F 6⊆ K, but we will not consider such

subfields. If K is a subfield of D, then K is a subspace of the F -vector space D, and

[K : F ] divides [D : F ] = n2. It is known that the maximum possible value of [K : F ] is n;

such a subfield is called a maximal subfield of D. It is known that maximal subfields exist

in profusion. If E is any subfield of D, then viewing D as an E-space, we can obtain an

embedding of D into Mne(E) where ne is [D : E]. In particular, we give, in the following

subsections embeddings of D into Mn2(F ) and Mn(K).

2.3.1 Codes From The Left Regular Representation of Division

Algebras

Given an F division algebra D of degree n, D is naturally an F -vector space of dimension

n2. We thus have a map L : D → EndF (D), where EndF (D) is the set of F linear

transforms of the vector space D. This map is given by left multiplication: it takes any

d ∈ D to λd, where λd is left multiplication by d, that is, λd(e) = de for all e ∈ D. It

is easy to check that λd is indeed an F -linear transform of D, that is, λd(f1e1 + f2e2) =

f1λd(e1) + f2λd(e2). (Notice that it is crucial that F be the center of D, otherwise, the

map λd will not be F linear, that is, λd(fe) will not equal fλd(e)!) One also checks that L

is a ring homomorphism from D to EndF (D), that is, λd1+d2 = λd1 + λd2 , λd1d2 = λd1λd2 ,

and λ1 = 1. Since D has no two sided ideals, L is an injection, and on choosing a basis for

D as an F vector space, we will get an embedding of D in Mn2(F ). Notice that the size

of the matrices involved is n2 and not n. (An analogous game can be played with right

multiplication maps ρd, but there we would have ρd1d2 = ρd2ρd1 , and thus we would have
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a ring anti-homomorphism from D to EndF (D). We will not pursue this further here.)

Exactly as in the field case in Subsection 2.2, we write down the matrix corresponding

to λd with respect to a given basis B = {u1, u2, . . . , un2} as follows: For any given basis

element ui (1 ≤ i ≤ n2), and for any j (1 ≤ j ≤ n2), let uiuj =
∑n2

l=1 cij,lul. Then, the

j-th column of λui
is simply the coefficients cij,l above, 1 ≤ l ≤ n2. (Here, we use the

convention that the vectors on which a matrix acts are written on the right of the matrix

as a column vector, so the j-th column of the matrix just represents the image of the j-th

standard basis vector under the action of the matrix.) Once the matrix corresponding to

each λui
, call it Mi, is obtained in this manner, the matrix corresponding to a general λd,

with d =
∑n2

i=1 fiui is just the linear combination
∑n2

i=1 fiMi.

Example 2.3.1 Let us consider the left regular representation of H with respect to the

basis {1, î, ĵ, k̂}. The defining relations î2 = ĵ2 = −1, îĵ = k̂ = −îĵ, etc. show that for

x = a + b̂i + cĵ + dk̂, the matrix corresponding to λx is




a −b −c −d
b a d −c
c −d a b

d c −b a




which is

precisely the 4 dimensional orthogonal real design of the paper [6, §III-A] of Tarokh, et.

al.

In the sections ahead, we will construct other division algebras besides the quaternions,

and we can apply the left regular representation to these algebras to get codes of size mn2

for n transmit antennas, where m is the size of the signal set, and n is the index of the

division algebra.

2.3.2 Cyclic Division Algebras

A cyclic division algebra D over the field F is a division algebra that has a maximal

subfield K that is Galois over F , with Gal(K/F ) being cyclic.

Example 2.3.2 Hamilton’s quaternions H is a cyclic division algebra! For, notice that

the subset {a + 0î + cĵ + 0k̂ | a, b ∈ R} is isomorphic to the complex numbers C. Let us



Chapter 2. Rate-1, Full-rank STBCs from Division Algebras 31

identify the complex numbers with this subset and write (by abuse of notation) C for this

subset. Notice that C is of dimension 2 over the center R, that is, C is a maximal subfield

of H. Now notice that C/R is indeed a Galois extension, whose Galois group is {1, σ},
where σ stands for complex conjugation. This is of course a cyclic group! Thus, H is a

cyclic division algebra.

Now, given a cyclic division algebra D with center F , of index n, and with maximal

cyclic subfield K/F , let Gal(K/F ) be generated by σ. Then σn = 1, of course. D is

naturally a right vector space over K, with the product of the (scalar) k ∈ K on the

vector d ∈ D defined to be dk. (Note the definition: the action of scalars is defined via

multiplication on the right—if one were to define the action of scalars via multiplication

from the left, one would get a different K vector space structure on D.) It is well known

that we have the following decomposition of D as right K spaces:

D = K ⊕ zK ⊕ z2K ⊕ · · · ⊕ zn−1K, (2.3)

where z is some element of D that satisfies the relations

kz = zσ(k) ∀k ∈ K (2.4)

zn = δ, for some δ ∈ F ∗ (2.5)

where F ∗ is the set F excluding the zero element and ziK stands for the set of all elements

of the form zik for k ∈ K. (Note that the element δ above is actually in F , the center.)

Equations (2.3) and (2.4) above provide a very convenient handle into the division

algebra: all the non-commutativity is concentrated just in the way in which the element

z interacts with elements of K: pulling z from the right of k ∈ K to the left just induces

σ on k. Also, the field generated by the element z over F is of a particularly nice kind:

it is given by just adjoining an n-th root of the element δ. It is the existence of such

a decomposition that makes cyclic division algebras a very manageable class of division

algebras.
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The division algebra D, with its decomposition above, is often written as (K/F, σ, δ).

Example 2.3.3 One sees easily that in the case of H, one can regroup the R space de-

composition H = {a + b̂i + cĵ + dk̂ | a, b, c, d ∈ R} as H = C⊕ iC, where, as in Example

2.3.2, we have identified C with the subset {a+ 0î+ cĵ + 0k̂} of H. This gives the decom-

position of H as a right C vector space, with the element î playing the role of “z” above.

Moreover, since î2 = −1, the element δ above is −1 in this example.

Let D be a cyclic division algebra over F of index n, with maximal cyclic subfield

K. As we have seen above, D is a right K space, of dimension n (each summand ziK in

Equation (2.3) above is a one-dimensional K space, and there are n such). To emphasize

the right K structure, let us write DK for D viewed as a right K vector space. Now note

that D acts on DK by multiplication on the left as follows: given d ∈ D, it sends an

arbitrary e ∈ DK to de. Since this action is from the left, while the scalar action of K

on DK is from the right, these two actions commute. That is, d(ek) = (de)k, something

that is, of course obvious, but crucial. Let us write λd for the map from DK to DK

that sends e ∈ D to de. Then, the fact that the action of λd and that of the scalars

commute means that λd is a K-linear transform of DK . In other words, we have a map

f : D → EndK(DK) that sends d to λd. One checks that this is a ring homomorphism,

that is λd1+d2 = λd1 + λd2 , and λd1d2 = λd1λd2 . (For this second relation, note that

λd1d2(e) = (d1d2)e = d1(d2e) = λd1(λd2(e)).)

We thus have an embedding of D into EndK(DK), which, once one chooses a K

basis for DK , translates into the embedding of D into Mn(K) that is needed for Propo-

sition 2.1.1. A natural basis, of course, is given by the decomposition in Equation (2.3)

above: we choose the basis {1, z, z2, . . . , zn−1}. A typical element d = k0 + zk1 + · · · +
zn−1kn−1 sends 1 to d = k0 + zk1 + . . . zn−1kn−1, so the first column of the matrix cor-

responding to λd in this basis reads k0, k1, . . . , kn−1. For the second column, note

that dz = (k0 + zk1 + . . . zn−1kn−1)z = k0z + zk1z + . . . zn−1kn−1z = zσ(k0) + z2σ(k1) +

. . . zn−1σ(kn−2)+δσ(kn−1), where we’ve used the relations in Equation (2.4) to pull z from

the right to the left. So, the second column reads δσ(kn−1), σ(k0), σ(k1), . . . , σ(kn−2). Sim-

ilarly, dz2 = (k0+zk1 + . . . zn−1kn−1)z
2 = z2σ2(k0)+z

3σ2(k1)+ · · · δσ2(kn−2)+zδσ
2(kn−1).
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Proceeding thus, we find that the matrix corresponding to λd is the following:




k0 δσ(kn−1) δσ2(kn−2) . . . δσn−2(k2 δσn−1(k1)

k1 σ(k0) δσ2(kn−1) . . . δσn−2(k3) δσn−1(k2)

k2 σ(k1) σ2(k0) . . . δσn−2(k4) δσn−1(k3)

k3 σ(k2) σ2(k1) . . . δσn−2(k5) δσn−1(k4)
...

...
...

...
...

...

kn−1 σ(kn−2) σ2(kn−3) . . . σn−2(k1) σn−1(k0)




(2.6)

We thus have the following corollary to Proposition 2.1.1:

Corollary 2.3.1 Let F be a subfield of the complex numbers, and let D be a cyclic division

algebra over F of index n. Let K be a maximal cyclic subfield of D. Let δ be defined by

the cyclic decomposition given in Equations (2.3) and (2.4). Then, any finite subset E of

matrices of the form (2.6) above, with the ki coming from K, will have the property that

the difference of any two elements in E will be of full-rank.

Let us go back to the examples of the quaternions: we saw above in Example 2.3.2

that H is cyclic: the subfield C (under the identification described in that example) is

a cyclic extension of R, with Galois group generated by complex conjugation. Let us

write k∗ for the complex conjugate of k ∈ C. In Example 2.3.3, we saw that we have the

decomposition H = C ⊕ iC, as a right C space, with the role of the element “z” of the

discussion above played by the quaternion î. We also saw that since î2 = −1, the element

δ of the discussion above is just −1. Thus, by Corollary 2.3.1 above, any finite set of

matrices of the form
 k0 −k∗1
k1 k∗0


 is a full rank minimum delay code. But these are precisely Alamouti’s

matrices!

Alamouti’s construction has a certain uniqueness from the point of view of division al-

gebras. (Of course, in [6], the authors have also studied the uniqueness of these codes from

the point of view of orthogonal designs.) One has the following: Hamilton’s quaternions

H is the only (non-commutative) division algebra which has C as a maximal subfield.
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This arises from two well known facts: first, the only subfield F (up to a suitable iso-

morphism) of C such that [C : F ] is finite is the R (a theorem of Artin and Schreier,

see [70, Theorem 11.14], and second, the only non-commutative (and associative) division

algebra over the R is the quaternions (a theorem of Frobenius, see [55, Chapter 13, Corol-

lary C] for instance). Thus, the only possible set of matrices of the form (2.6) in which

the ki are allowed to be arbitrary complex numbers that forms a division algebra is the

one corresponding to the quaternions: matrices of the form (2.3.2) where n = 2, δ = −1

and σ given by complex conjugation.

Note that we will come up with several examples below where we will embed suitable

division algebras D into Mn(C) for various values of n other than n = 2 and thus obtain

space time codes for more than 2 transmit antennas. The key distinction is that these

division algebras will not have C as a maximal subfield, and therefore, the entries of

the corresponding matrices will not be allowed to take on arbitrary complex values (in

contrast with Alamouti’s example).

To apply the general machinery of Corollary 2.3.1 above for constructing space time

codes, we need to generate concrete division algebras over suitable subfields of C. A

natural candidate for this is the following technique: Let us take a known cyclic Galois

extension K/F , whose Galois group is generated by some σ. Suppose that [K : F ] = n,

so that σn = 1. Let us pick a nonzero element δ ∈ F ∗, and let us construct abstractly the

algebra

(K/F, σ, δ) = K ⊕ zK +⊕z2K + · · ·+⊕zn−1K,

where z is some symbol that satisfies the two relations given in Equation 2.4, namely,

kz = zσ(k) for all k ∈ K, and zn = δ. It would be tempting to assume that this

technique would automatically give us a division algebra, but unfortunately, this is not

true. What is known is that we get an algebra whose center is F , and which is simple,

that is, it has no nontrivial two sided ideals. Not every nonzero element in this algebra

need be invertible, however. Fortunately, we have the following sufficient criterion to help

us ( [55, Chapter 15, Corollary d], or [70, Theorem 8.14]):
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Proposition 2.3.1 In the construction above,

A = (K/F, σ, δ)

is a division algebra if the smallest positive integer t such that δt is the norm of some ele-

ment in K∗ is n. (The norm of an element k ∈ K∗ is the product kσ(k)σ2(k) . . . σn−1(k);

this is clearly invariant under σ and is hence in F . Note that for any a ∈ F ∗, the norm

of a is just an, and hence, δn is the norm of δ. Thus, n is an upper bound for the integer

t of the proposition above, and the content of the proposition is that if t is the maximum

it can be, then A is definitely a division algebra.)

We can use Proposition 2.3.1 to construct cyclic division algebras very easily over

fields of the form F (δ), where F is a suitable algebraic number field (for instance, when

F is a finite extension of Q), and where δ is some transcendental number, for example,

e, or π, or eju = cos(u) + j sin(u) for any real algebraic number u. (The fact that eju is

transcendental for any real algebraic number u follows from the Lindemann-Weierstrass

Theorem ( [69, pp. 277, vol. 1], see Chapter 4 for the statement of the theorem); Suppose

that F has a cyclic extension K of degree n, whose Galois group is generated by some σ.

We have the following:

Proposition 2.3.2 With F , K, n, z, and σ as above, the algebra

(K(δ)/(F (δ), σ, δ)

is a division algebra.

Corollary 2.3.2 Continuing with the notation of Proposition 2.3.2, any finite subset E

of matrices of the form (2.6) above, with the ki coming from K, will have the property

that the difference of any two matrices in E will be of full rank.

Proof: This follows from Corollary 2.3.1.

In the following subsection we will construct STBCs over certain SPSK signal sets by

way of illustration of Proposition 2.3.2.
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2.3.3 Rate-1 STBCs over SPSK signal sets

Let m = pα, where p is an odd prime, and let n = pβ, for any α > 0 and β > 0. Let

ωm be a primitive m-th root of unity, and let F = Q(ωm). As we saw in Proposition

(2.2.3) above, the polynomial xn − ωm is irreducible in F [x]. If ωmn is a primitive mn-th

root of unity which is a root of this polynomial, then K = Q(ωmn) is of degree n over

F . Moreover, K/F is actually a cyclic Galois extension. This follows from two well know

facts: The Galois group of Q(ωk)/Q, where ωk is a primitive k-th root of unity for some

k, is isomorphic to the group of units of the ring Z/kZ, and when k is a power of an odd

prime (in our case, pα+β), the group of units of Z/kZ is a cyclic group. Hence, the Galois

group of K/F , which is a subgroup of the Galois group of K/Q, is also cyclic.

We may use this field extension K/F to construct our codes: for instance, our signal

set could be the set of mn-th roots of unity, which would be mn equally spaced points on

the circle. For the Galois action on K, note that we have an isomorphism between the

group of units of the ring Z/mnZ and Gal(K/Q) given as follows: one fixes a generator

[l] of the group of units of the ring Z/mnZ (0 < l < n), and one considers the map that

sends ωmn to ωl
mn. One shows that this map is indeed in the Galois group of K/Q, and in

fact, generates the group. Now, since the group Z/mnZ∗ is cyclic, we find that the Galois

group of K/F is the unique cyclic subgroup of this group of order n, and this is generated

by [l]φ(nm)/n = [l]φ(m). (Note that because m and n are both powers of the same prime,

φ(nm) = nφ(m).) Hence, once we fix a generator [l] of Z/mnZ∗, our map σ is the one

that sends ωmn to ωlφ(m)

mn = ωlp
α−1(p−1)

mn .

When n ≤ m (so that ωn is already contained in F ) the map σ is a little easier to

describe. It is easy to see that 1 +m has order exactly n in Z/mnZ∗ (one observes using

the binomial theorem and the fact that n = pβ ≤ m = pα that (1 + m)t = 1 + tm in

Z/mnZ). Hence, our map σ is the one that sends ωmn to ω1+m
mn = ωnωmn.

Example 2.3.4 Suppose that m = 32 = 9, and n = 3. Then, mn = 27, so our signal

set is 27-PSK. Take ω9 == e2πj/9, a primitive 9-th root of unity. The number e2πj/27 is

a primitive 27th root of unity, and satisfies (e2πj/27)3 = e2πj/9. We may take e2πj/27 to be
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our ω27. Note that (e2πj/27)9 = e2πj/3, a primitive 3rd root of unity. Our map σ therefore

sends ω27 to ω1+9
27 = e2πj/3ω27 = e20πj/27, and in general, ωk

27 to e20kπj/27. So, the set of

3× 3 matrices




ωk
27 δ · σ(ω27)

m δ · σ2(ω27)
l

ωl
27 σ(ω27)

k δ · σ2(ω27)
m

ωm
27 σ(ω27)

l σ2(ω27)
k




where δ is any transcendental number, where k, l, and m can be any of {0, 1, 2, . . . , 26},
forms a full rank minimum delay space time code.

In Chapter 4, we will discuss as a special case more about cyclic division algebras and

STBCs from them.



Chapter 3

High-Rate, Full-Diversity STBCs

from Field Extensions

First, we briefly summarize the constructions of STBCs from field extensions discussed in

the previous chapters as follows:

• Rate-optimal codes over rotationally invariant signal sets are constructed using al-

gebraic extensions of the field Q. This includes the case when the signal set is a

finite subset of the field Q(ωm) (which includes symmetric m-PSK signal set) and

n, the number of transmit antennas, is such that the set of prime factors of n are

subset of the set of prime factors of m. Thus, if the signal set is a QAM signal set

or an m-PSK signal set, where m = 2b, then we can construct STBCs for n = 2a

transmit antennas only.

• Rate-1 codes over signal sets derived from symmetric m-PSK signal sets, for ar-

bitrary number of transmit antennas have been constructed using transcendental

extensions of the field Q. The disadvantage of these codes is that it is very difficult

to get the value or a lower bound on the value of coding gain.

• Rate-1 codes over finite subsets of Q(ωm) for n transmit antennas were constructed

using non-cyclotomic field extensions, where n and m are such that (n, φ(m)) = 1.

1Part of the results presented in this chapter are available in publications [37–39].

38
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Since φ(m) is even for m ≥ 3, the number of transmit antennas n can not take

values from the set of positive even integers.

In this chapter,

• We obtain rate-1 codes over m-PSK signal sets for arbitrary number of transmit

antennas, using algebraic extensions (Section 3.1).

• We construct high-rate, full-rank STBCs over arbitrary finite subsets of Q(ωm) for

arbitrary number of transmit antennas, using both algebraic and transcendental

extensions of the field Q (Section 3.2).

• We give an expression for the coding gain of the STBCs from field extensions for

arbitrary number of transmit antennas (Section 3.3).

• We obtain lower bounds on the value of coding gain for some STBCs from field

extensions (Subsection 3.3.1).

• We analyze the mutual information of the STBCs from field extensions, when the

input is a continuous Gaussian random variable (Section 3.4). Also, we show that

the finite-signal-set capacity of the STBCs improves with increase in the symbol

rate of the STBC (Section 3.5).

• Finally, we present simulation results to show that high-rate, full-rank STBCs from

field extensions perform better than the rate-1, full-rank STBCs (Section 3.6).

3.1 Rate-1 STBCs over arbitrary finite subsets of Q(ωm)

for arbitrary number of antennas

In the previous chapter, we have seen that when the number of transmit antennas n and

the size of PSK signal set m are such that the set of prime factors of n is a subset of

prime factors of m, then we can construct a rate-1, full-rank STBC over m-PSK signal

set for n transmit antennas. To obtain a rate-1, full-rank STBC for arbitrary number of
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transmit antennas, we used the transcendental extensions of the rational field Q. It will

be shown in Section 3.3, that it is very difficult to obtain the exact value of coding gain

or a lower bound on it for STBCs obtained using the transcendental extensions. In this

section, we will use algebraic extensions of Q and obtain rate-1, full-rank STBCs over

apriori specified PSK signal set for arbitrary number of transmit antennas.

Suppose we need to construct codes over symmetric M -PSK for n antennas then choose

m such that it contains all the primes of both M and n. Now Q(ωm) contains SM , the

M -PSK signal set, and the conditions of Proposition 2.2.3 are satisfied. Hence we obtain

the code as

C =








f0 γfn−1 · · · γf1

f1 f0 · · · γf2

...
...

. . .
...

fn−1 fn−2 · · · f0



| fi ∈ SM ⊂ Q(ωm), i = 0, 1, . . . , n− 1





(3.1)

where γ = ωl
m with (m, l) = 1, which is a full-rank rate-one code over SM . Clearly, the

code is not completely over SM when m contains a prime that is not in M , in which case

the code is not rate-optimal.

It is important to notice that for S any finite subset of Q(ωm) the code given by

(3.1) with SM replaced by S is a full-rank, rate-one code over S. In particular, if m is a

multiple of 4 then Q(ωm) contains the entire lattice Q(j) and by choosing S to be any

lattice constellation we get full-rank rate-one code over that lattice constellation. The

following examples illustrate these observations.

Example 3.1.1 Let us construct a STBC for n = 2. Then, the allowed values of m are

x2y, where x and y are any positive integers. By the above corollary, x2−ωl
m is irreducible

over Q(ωm), where (l, m) = 1. Let the signal set be 4-PSK signal set. So, m should be

such that Q(ωm) contains the 4-PSK signal set (for example, m = 4). Then, the STBC

we obtain is,

C =






 f0 ωl

mf1

f1 f0


 | f0, f1 ∈ {1,−1, j,−j}



 .



Chapter 3. High-Rate, Full-Diversity STBCs from Field Extensions 41

The size of C is 16 and the rate of the code is 1. If we choose m = 4, then l = 1 or 3 and

hence ωl
m = j or −j. If we choose some other M-PSK signal set, the value of m should be

chosen appropriately, i.e., m should be chosen such that the M-PSK signal set is a subset

of Q(ωm). which implies, m should be a multiple of M .

From the above example, it is clear that the value of m, though independent to a large

extent, should be a multiple of the size of the PSK signal set over which the STBC is

being constructed. However, if the signal set chosen is a QAM signal set, then m should

be 4x, where x is any positive integer and depends only on n, as any QAM signal set is

a finite subset of Q(ω4x), for any x.

Example 3.1.2 Suppose we need STBCs over the 6-PSK signal set S6 = {1, ω, ω2, ω3, ω4, ω5},
for five antennas (n=5). Then, we can choose m = 30, then we get the code given by (3.1)

where n = 5, γ is a primitive 30-th root of unity and fi, i = 0, 1, 2, 3, 4 ∈ S6. Notice that

this code is not rate-optimal since γ is not in S6. Now, we wish to have code over a lattice

constellation, say 16-QAM, then our choice of m = 30 is not sufficient since it is not a

multiple of 4 and hence Q(ωm) does not contain the 16-QAM. The choice m = 60 will

include the entire lattice in Q(ωm) (where now γ is a 60-th primitive root of unity) and

hence this code is of full-rank rate-one STBC over any lattice constellations from which

fi, i = 0, 1, 2, 3, 4 come from.

3.2 High-rate (> 1) codes from cyclotomic field ex-

tensions

Consider a rate-one code for n antennas over Q(ωm) and let Q(ωl) ⊂ Q(ωm), where l

divides m. Then, every element of Q(ωm) can be written as
∑

b∈B

lbb, where B is the basis

of the field Q(ωm) seen as vector space over Q(ωl) and lb ∈ Q(ωl). In (3.1), replacing fi
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with
∑

b∈B

fi,bb, we have a code C

C =








P

b∈B f0,bb γ
P

b∈B fn−1,bb · · · γ
P

b∈B f1,bb
P

b∈B f1,bb
P

b∈B f0,bb · · · γ
P

b∈B f2,bb

.

.

.

.

.

.
.
.
.

.

.

.
P

b∈B fn−1,bb
P

b∈B fn−2,bb · · ·
P

b∈B f0,bb


 | fi,b ∈ Q(ωl), i ∈ [0, n− 1]





(3.2)

Clearly, C is a rate-|B| code over any finite subset of Q(ωl). For example if m = 8 and

l = 4, we get 2 × 2, rate 2, full-rank STBC’s over any finite subset of Q(ω4), i.e., over

lattice constellations. Thus, if we want a rate R > 1, (R-an integer) n × n, full-rank

STBC over the signal set SM , then we do the following:

• Choose m such that it has all primes of R and M divides m. Then, using the

irreducible polynomial xR − ωm, extend the field Q(ωm) to the field Q(ωmR).

• Construct the n× n full-rank STBC over Q(ωmR) using the constructions given in

the previous section, i.e., construct a n× n full-rank rate-one STBC over any finite

subset of Q(ωmR).

• Replace each entry of the codeword matrices with a linear combination of the basis

of Q(ωmR) over Q(ωm). Thus, we have a rate R, full-rank code over SM given by

C =








PR−1

i=0
f0,iωi

mR γ
PR−1

i=0
fn−1,iωi

mR · · · γ
PR−1

i=0
f1,iωi

mR
PR−1

i=0
f1,iωi

mR

PR−1

i=0
f0,iωi

mR · · · γ
PR−1

i=0
f2,iωi

mR

.

.

.

.

.

.
. .

.
.
.
.

PR−1

i=0
fn−1,iωi

mR

PR−1

i=0
fn−2,iωi

mR · · ·
P

b∈B f0,iωi
mR


 | fk,i ∈ SM





(3.3)

where γ is an mR-th primitive root of unity and mR is a positive integer such that

it has all the primes of n.

Clearly, with the above constructions, the rate is upper bounded by the degree of the

polynomial xR−ωm and also the value of γ depends on the value of R. In the rest of this

subsection, we give another method of constructing STBC’s with arbitrary rate, where γ

is independent of the rate R and hence, as will be seen in the sequel, we can have better

coding gain.



Chapter 3. High-Rate, Full-Diversity STBCs from Field Extensions 43

Consider the rational function field Q(ωm, z) over Q(ωm) in the indeterminate z. The

elements of Q(ωm, z) are of the form a(z)/b(z), where a(z) and b(z) 6= 0 are polynomials

over Q(ωm). Then, from Theorem 2.2.4 we have that xn − z is irreducible over Q(ωm, z).

Hence we have the STBC obtained by using the polynomial xn − z,

C =








f0(z) zfn−1(z) · · · zf1(z)

f1(z) f0(z) · · · zf2(z)
...

...
. . .

...

fn−1(z) fn−2(z) · · · f0(z)



| fi(z) ∈ Q(ωm)[z], i = 0, 1, . . . , n− 1




(3.4)

Note that, in the above STBC the entries in the matrices are polynomials instead of the

rational functions of polynomials. Now each of fi(z) =
∑R−1

k=0 fi,kz
k, where fi,k ∈ Q(ωm).

Here, R can be any integer and hence the rate which is equal to R is arbitrary (this is

because we can have polynomials with any degree as the extension of Q to Q(z) is infinite

dimensional). z can be any transcendental number. If θ is an algebraic number, then

from [69] (§4.12), ejθ is a transcendental number. Thus, we can take ejθ as z in the above

construction. The following example shows that we can achieve better performance in

terms of coding gain with codes with rate larger than one.

Example 3.2.1 Consider a rate 2, 2× 2 full-rank STBC C over 4-PSK signal set.

C =





1√
2


 f0,0 + f0,1z f1,0z + f1,1z

2

f1,0 + f1,1z f0,0 + f0,1z







where fi,k ∈ 4 − PSK for i, k = 0, 1. The size of the code is 256 and hence the bit rate

is 4 bits per channel use. The scaling factor 1/
√

2 is used to make the average power per

antenna per channel use equal to one. Coding gain of this code is at least equal to 0.136

(z ≈ ej0.52, coding gain might be more than this for some other z). Now consider a rate 1,

2×2 full-rank STBC C ′ over M-PSK signal set. Then, to obtain bit rate 4 bits per channel

use, M should be equal to 16. Coding gain of this rate-one code is 0.052 approximately.

Clearly, the coding gain of the rate 2 code is about 2.5 times the coding gain of rate-one
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code.

Consider the rate 2 STBC over 4-PSK for 2 antennas, obtained from algebraic exten-

sions. We have m = 4 and R = 2. So, γ = ω8. By manually computing the coding gain,

it is found that coding gain of this code is at most 0.13, which is lesser than the coding

gain obtained from transcendental extensions.

3.3 Coding gain of STBCs from Field Extensions

In this section we discuss the coding gain of STBCs obtained from both the cyclotomic

and non-cyclotomic field extensions.

Let A(c, e) be the difference of the two codeword matrices c, e in an STBC C and let

B(c, e) = A(c, e)∗A(c, e). Let ak, k = 0, 1, . . . , v− 1 denote the v non-zero eigen values of

B(c, e), where v is the rank of A(c, e). In our case B(c, e) have full-rank, v = n. Then,

the coding gain of a STBC C is given by the minimum of | ∏n−1
k=0 ak |1/n for all possible

pairs c and e of codeword matrices of the code. That is,

G = min
c,c′∈C

| det(B(c, c′)) |1/n (3.5)

Theorem 3.3.1 If C = {f0I + f1M + f2M
2 + · · ·+ fn−1M

n−1|fi ∈ S ⊂ F}, where M is

an (2.1), then coding gain is

G = min
c,c′∈C

∣∣∣∣∣NK/F

(
n−1∑

i=0

(fi − f ′
i)α

i

)∣∣∣∣∣

2/n

where NK/F (x) denotes the norm of the element x from K to F , c =
∑n−1

i=0 fiM
i and

c′ =
∑n−1

i=0 f
′
iM

i.

Proof: Let f(x) = xn + an−1x
n−1 + · · · + a1x + a0 be the minimal polynomial of α

over F . Let L be a normal closure of K/F and σi, i = 0, 1, . . . , n− 1 be the distinct F−
homomorphisms from K to L. Let p(x) be the minimal polynomial of k =

∑n−1
i=0 (fi−f ′

i)α
i

over F of degree m ≤ n. Then, it is easy to see that m divides n and that every root of
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p(x) is of the form σi(k) for some 0 ≤ i < n. Thus, the polynomial g(x) =
∏n−1

i=0 (x−σi(a))

and the polynomial p(x) have same roots. Since, g(x) ∈ F [x], the only irreducible factor

of g(x) is p(x) and hence we have g(x) = p(x)n/m. Now, since the minimal polynomial

of k divides the characteristic polynomial χ(x) of λk = (f0 − f ′
0)I + (f1 − f ′

1)M + (f2 −
f ′

2)M
2 + · · · + (fn−1 − f ′

n−1)M
n−1, and share the same irreducible factors over F , χ(x)

must have p(x) as the only irreducible factor. Thus, χ(x) = p(x)n/m = g(x) (since degree

of χ(x) is n). And since determinant of λk is the coefficient of the constant term in the

characteristic polynomial, we get

detλk =
n−1∏

i=0

σi(k) = NK/F (k).

Thus, the coding gain is G = minc,c′∈C | NK/F (k) |2/n.

The above theorem gives coding gain expression for STBCs obtained using arbitrary field

extensions. When, the field extension is a cyclotomic extension, we have the following

corollary to the above theorem.

Corollary 3.3.1 If the code C is as in the (3.1), then

G = min
c,c′∈C

∣∣∣∣∣
n−1∏

j=0

(
n−1∑

i=0

(fi − f ′
i)γ

i
j

)∣∣∣∣∣

2/n

where γi for i = 0, 1, . . . , n − 1 are the nth roots of γ, c = c([f0, f1, . . . , fn−1], γ) (the

codeword matrix with (i, 1)-th component as fi−1) and c′ = c([f ′
0, f

′
1, . . . , f

′
n−1], γ) (the

codeword matrix with (i, 1)-th component as f ′
i−1).

Proof: The F -homomorphisms ofK into the normal closure ofK/F are given as σi : γ0 7→
γi for all i = 0, 1, 2, . . . , n−1, where γi are the n-th roots of γ. Thus, from Theorem 3.3.1,

we have G = minc,c′∈C
∣∣NK/F (

∑n−1
i=0 (fi − f ′

i)γ
i
0)
∣∣2/n

= minc,c′∈C

∣∣∣
∏n−1

j=0

∑n−1
i=0 (fi − f ′

i)γ
i
j

∣∣∣
2/n

.

From the above theorem, if c and c′ have fk = f ′
k for all k except for some k′ ∈ [0, n− 1]
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then we have the coding gain as (assuming γ lies on unit circle)

G ≤
∣∣∣∣∣
n−1∏

i=0

(fk′ − f ′
k′)γk′

i

∣∣∣∣∣

2/n

≤| fk′ − f ′
k′ |2 .

Thus, the main factor which dominates the coding gain is the selection of S. From the

above theorem the coding gain for the STBC in Example 2.2.1 is

G = min
c,c′∈C

∣∣∣∣∣
n−1∏

i=0

(
n−1∑

k=0

(fk − f ′
k)γ

k
i

)∣∣∣∣∣

2/n

= 2.

Now, let us see the how the coding gain depends on γ. Let mopt be the smallest m such

that the prime factors of n are a subset of the prime factors of m and the signal set, SM

is subset of Q(ωmopt). Therefore, mopt = xM for some integer x. Now let m′ 6= mopt be

another integer such that the prime factors of n are subset of the prime factors of m′ and

the signal set is subset of Q(ωm′). Clearly, mopt < m′. The codeword matrices have the

entries of the form fi and γfi, where fi ∈ S. If x is not equal to one, then it is easy to see

that the minimum distance (which happens to be the distance between any fi ∈ S and

γfi) of the resulting signal set decreases if we add the points γS to the signal set. Now, if

we let γ to be ωmopt, then we claim that the decrease in the minimum distance is minimum

possible. This can be seen in the following way : as m increases from mopt, the point ωmfi

gets closer to the point fi and hence the minimum distance decreases more as m increases.

Though, the minimum distance is not the coding gain of the STBC, it is intuitive enough

to choose γ which keeps the minimum distance of the S ∪ γS as maximum as possible.

For instance, in Example 2.2.1 we have mopt = 4 and the corresponding coding gain is 2.

However, if we let m = 8 (or 12), the coding gain falls down to 1.53 (or 1.0). The same

holds true for QAM constellations too.

In codes with rate larger than one obtained from transcendental extensions, the degree

n of the irreducible polynomial xn−z is independent of the signal set we choose and hence

m should be chosen such that the signal set is invariant under the multiplication of ωm

so that the minimum distance of the signal set remains same. However, the entries of



Chapter 3. High-Rate, Full-Diversity STBCs from Field Extensions 47

the codeword matrices are polynomials in z (any transcendental number), and hence, the

coding gain depends on z also. It is very difficult to see how the coding gain and z are

related. In example 3.2.1, the coding gains as a function of z are as follows: G(ej0.1) =

0.001, G(ej0.3) = 0.027, G(ej0.5) = 0.121, G(ej0.52) = 0.136, G(ej0.7) = 0.019, G(ej0.9) =

0.116, G(ej1.1) = 0.093, G(ej1.3) = 0.073, G(ej1.5) = 0.005, G(ej1.7) = 0.017, G(ej1.9) =

0.107, G(ej2.1) = 0.01, G(ej2.3) = 0.014, G(ej2.7) = 0.084, G(ej2.9) = 0.015 and G(ej3.1) =

0.0001.

In general, it is very difficult to obtain the exact value of coding gain for any STBC.

In such cases, a good lower bound on the coding gain will be helpful. In the following

subsection, we will obtain lower bounds on the coding gains of some of the STBCs in our

constructions.

3.3.1 Lower bounds on the coding gain

In this subsection, we obtain lower bounds on the coding for some special cases. We

then show that under certain special cases, the lower bound matches with the maximum

coding gain and hence the specific STBCs constructed are optimal in the sense of the

coding gain.

Let n be the number of transmit antennas and S be the signal set over which we

want to construct the STBCs. Then, let m be such that there exists a monic irreducible

polynomial f(x) of degree n over the field F = Q(S, ωm), with coefficients from Z[ωm].

Let α be a root of the polynomial f(x) and K = F (α) be a Galois extension of F . Then,

clearly, the algebraic norm of any element

k = f0 + f1α+ f2α
2 + · · ·+ fn−1α

n−1

where fi ∈ Z[ωm], is

NK/F (k) =

n−1∏

i=0

(
f0 + f1σi(α) + · · ·+ fn−1σi(α

n−1)
)
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where σi, i = 0, 1, 2, . . . , n− 1 are n distinct automorphisms of K fixing F . We then have

the following lemma:

Lemma 3.3.1 With the assumptions on F , K, k and f(x), the algebraic norm NK/F of

k belongs to the set Z[ωm].

Suppose that the the signal set S is such that it is carved out from the set Z[ωm].

Then, the coding gain of the STBC obtained using the minimal polynomial f(x) and the

signal set S is

G = min
k 6=k′

∣∣NK/F (k − k′)
∣∣2/n

where k− k′ =
∑n−1

i=0 (fi − f ′
i)ωm takes values from the set Z[ωm]. Thus, G ∈ Z[ωm]. But

the set Z[ωm] forms a lattice and hence a minimum Euclidean distance. Thus,

G ≥ d2
min of the lattice Z[ωm].

Thus, we have proved the following proposition.

Proposition 3.3.1 Let C be an STBC over a signal set S carved from Z[ωm], obtained

using the polynomial f(x) ∈ Z[ωm][x]. Then, the coding gain of the code C is lower bounded

by the minimum squared Euclidean distance d2
min of the lattice Z[ωm]. In particular, if the

signal set S has two neighboring points of Z[ωm] with distance between them equal to dmin,

then the coding gain is equal to d2
min.

From the later half of the above proposition, it is clear that under the given conditions

the STBCs from field extensions achieve the maximum coding gain and hence are optimal

in the sense of coding gain.

Corollary 3.3.2 Let S be a QAM constellation and C be an STBC over S, obtained

using an irreducible polynomial over Z[j]. Then, coding gain of the code C is equal to the

minimum squared Euclidean distance of the QAM constellation S.

Proof: Let f and f ′ be two points from the QAM constellation. Then, f − f ′ belongs

to the sublattice 2Z[j] of the lattice Z[j]. Thus, the norm of the element k − k′, where
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k =
∑n−1

i=0 fiα
i and k′ =

∑n−1
i=0 f

′
iα

i, belongs to the sublattice 2Z[j]. Thus, the coding gain

is lower bounded by the minimum squared Euclidean distance of the sublattice which is

equal to 4.

3.4 Capacity of STBC’s from cyclotomic extensions

In this section we study the maximum mutual information achieved by the STBCs ob-

tained from cyclotomic field extensions. The analysis can be extended to the STBCs

obtained from non-cyclotomic field extensions.

Let x be the transmitted vector using nt transmit antennas and y be the received

vector using nr receive antennas. Then, we have

y =

√
SNR

nt
Hx + w (3.6)

where y ∈ Cnr×1, x ∈ Cnt×1, H ∈ Cnr×nt is the channel matrix, w ∈ Cnr×1 is the additive

white Gaussian noise. The entries in the channel matrix and the transmitted vector are

assumed to have unit variance, i.e.,

Etr(HHH) = ntnr and E{f∗f} = nt

When the channel is known at the receiver, the resulting channel capacity is [1]

C(nt, nr, SNR) = E
{

log det

(
Inr +

SNR

nt

HHH

)}
(3.7)

If X is the transmitted codeword matrix, then

Y =

√
SNR

nt
HX + W

The transmitted signal matrix in our STBC constructions is as in (3.1). And if H =
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(hi,j)i∈[0,nr−1],j∈[0,nt−1], we have

ŷ =

√
SNR

nt
Ĥ[f0 f1 · · · fn−1]

T + ŵ

where ŷ = vec(Y), ŵ = vec(W) and

Ĥ =




c0 = c([h0,0, h0,1, . . . , h0,nt−1], γ)

c1 = c([h1,0, h1,1, . . . , h0,nt−1], γ)
...

cr−1 = c([hnr−1,0, hnr−1,1, . . . , hnr−1,nt−1], γ)




In the above equation, recall that cj are n× n matrices as in (3.1), with fi = hi,j. It can

be checked easily that eigen values ai,k of ci are given by

ai,k =

n−1∑

l=0

hl,iγ
l
k, for k = 0, 1, 2, . . . , n− 1

Then, the ci can be written as PiΛiP
−1
i , where Pi is the eigenvector matrix and Λi is the

eigenvalue matrix. It can be easily seen that,

Pi = diag(1, γ0, γ
2
0 , . . . , γ

n−1
0 )DFTn (3.8)

Now, the capacity, denoted by Cγ(nt, nr, SNR), of these codes is given by replacing H

with Ĥ and Rf = Inr in (3.7), which is

Cγ(nt, nr, SNR) =
1

nt
E log det

(
Inrnt +

SNR

nt
ĤĤH

)
(3.9)

where the normalizing factor 1/nt in front of the expectation is for the nt channels uses we

have in our STBC. The term ĤĤH in the capacity expression is equal to (c∗i cj)i,j∈[0,r−1].

Computing the determinant of Intnr +
√

SNR

nt
ĤĤH is very difficult for any nr number of

receive antennas. So, let us see the case when we have only one receive antenna. Then,

removing the subscript corresponding to the receive antennas in Ĥ, we have ĤĤH =
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PΛP−1P−1H
ΛHPH . From (3.8), we have ĤĤH = (1/nt)P |Λ|2PH . Thus,

det

(
Int +

√
SNR

nt

ĤĤH

)
= det

(
P−1

(
Int +

√
SNR

nt

ĤĤH

)
P

)

= det

(
Int +

√
SNR

nt

|Λ|2
)

Thus, the capacity is

Cγ(nt, nr = 1, SNR) = E





log




nt−1∏

k=0


1 +

∣∣∣∣∣
nt−1∑

i=0

hiγ
i
k

∣∣∣∣∣

2





1/nt





≤ E



log

(
nt−1∏

k=0

(
1 +

nT −1∑

i=0

|hi|2
))1/nt





= C(nt, nr = 1, SNR)

Thus, the STBCs from field extensions do not maximize the mutual information. Now,

let us see what the capacity is for rate more than one codes. In this case the transmitted

signal matrix X is given as in either (3.3) or (3.4). Thus, assuming the signal points the

constellation to be independent and to ensure unit power transmitted per antenna per

channel use, we have Rf = 1
R
IntR. Let f̂ = [f0(z)f1(z) . . . fnt−1(z)]

T . Then, Rf̂ = Int.

Since, the covariance matrix is same in both the cases (rate-one and rate more than

one), the capacity remains unchanged. Indeed, the capacity remains unchanged, as we

have computed it for the input distribution to have Rf = Int, and in both the cases the

codeword matrices remain same in the sense of their structure.

We have plotted the capacity for the 2 × 2 code from cyclotomic extensions and the

capacity for Alamouti’s code as a function of SNR in Figure 3.1. From this plot it can be

seen that the Alamouti code has more capacity (by about 1/2 a bit at 30dB SNR with

one receive antenna). However, as number of receive antennas increase, one sees that the

difference is coming down from the Figure 3.2. So, it seems asymptotically (as number of

receive antennas tend to infinity), the capacities match in both the cases. Indeed, from the

expression ( . (3.9)) of capacity in our case, we can see that the cross product terms like
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Figure 3.1: Comparison of mutual informations of STBCs from field extensions and the
capacity of the channel.

hi,jhk 6=i,l 6=j of ĤĤH vanish and the term
∑1

i=0

∑r−1
j=0 |hi,j|2 remains. So the determinant

of Intnr + SNR

2
ĤĤH turns out to be (1 + SNR

2

∑1
i=0

∑nr−1
j=0 |hi,j|2)2 as nr tends to infinity.

Thus, the capacity is E
{

log
(
1 + ρ

2

∑1
i=0

∑r−1
j=0 |hi,j|2

)}
as r tends to infinity, which is the

same as the capacity achieved by Alamouti’s code [23].

3.5 Finite-Signal-Set Capacities of STBCs from Field

Extensions

In the previous section, we have shown that the capacity of the STBCs from field exten-

sions remains same for any rate R. This is because, when we compute the capacity of the
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Figure 3.2: Comparison of mutual informations achieved by Alamouti code and STBCs
from field extensions

channel for these STBCs we do not assume any finite signal set, but assume the signal

space to be the entire complex space. However, if we restrict the signal space to be a finite

subset of the complex space, we get different capacities. For instance, the capacities of 8

QAM and 8 PSK signal sets for a AWGN channel are different at low SNRs (approach

the same value asymptotically) [45]. Similarly, in this section we obtain the capacities

of some of our high-rate codes and show that they achieve the asymptotic value at an

SNR lower than the rate-1 codes achieve, the asymptotic values being the same. Also,

we compare the capacity of these high-rate codes with the capacity of V-BLAST for 2

transmit and 2 receive antennas.
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From [46], the capacity of a continuous output discrete memoryless channel is

C = max
q(0),q(1),··· ,q(N−1)

N−1∑

k=0

q(k)

∫ ∞

−∞
p(x/ak) log2

{
p(x/ak)∑N−1

i=0 q(i)p(x/ai)

}
dz (3.10)

where a0, a1, . . . , aN−1 are the discrete channel inputs, q(k) denotes the a priori probability

associated with ak and x denotes the received symbol when ak is transmitted, i.e., x =

ak + w, where w is Gaussian noise with zero mean and variance σ2. And p(./.) denotes

the a posteriori distribution at the receiver. In our case, if the transmitted vector is si at

ith channel use and the channel matrix is H, we have for the ith channel use,

xi =

√
ρ

n
Hsi + wi (3.11)

where xi is received vector, ρ is the SNR at each receive antenna and wi is the noise

vector whose components are independent zero mean complex Gaussian and of variance

σ2. If the number of transmit and receive antennas are n and t respectively, H is a t× n
matrix with entries which are zero mean complex Gaussian and unit variance. It can be

viewed as a AWGN channel with input Hs. Thus, our set {a0, a1, . . . , aN−1} of discrete

inputs in (3.10) will be

{ak|k = 0, 1, . . . , N − 1} =

{√
ρ

n
Hs|s ∈ Sn

}
(3.12)

where S denotes the input signal set. Notice that the ak’s are column vectors now and

the value of N depends on the channel matrix. Assuming uniform distribution on the

signal set S, the distributions qk’s of ak’s can be computed easily, since the signal set is

a finite set. By substituting expectation for the integral term and x = ak + w in (3.10),

we have the following expression for the capacity for a given channel matrix H :

C(H) =

N−1∑

k=0

q(k)E

{
log2

{
p(w)∑N−1

i=0 q(i)p(ak + w/ai)

}}
. (3.13)

Notice that the maximization with respect to q(k) is removed, since we assume the signal
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set to have uniform distribution. Substituting the Gaussian distributions for p’s in the

above equation, we have

C(H) =

N−1∑

k=0

q(k)E

{
log2

{ √
| detL|e−w

∗
w

2σ2

σ
∑N−1

i=0 q(i)e−(ak+w−ai)∗L−1(ak+w−ai)

}}
(3.14)

where L is the covariance matrix of the vector ak + w − ai. So, the capacity of the

channel when the input is discrete is obtained by taking expectation of C(H) over H.

The expectations are evaluated by Monte Carlo averaging.

For our STBCs, if F = c([f0, f1, . . . , fn−1], γ) is the transmitted codeword matrix, then

we have

X =

√
ρ

n
FH + W (3.15)

whereH is now a transpose of our channel matrix and similarly, X and W are [x1,x2, . . . ,xn−1]
T

and [w1,w2, . . . ,wn−1]
T respectively. If H = (hi,j), we have

X̂ =

√
ρ

n
Ĥ[f0 f1 · · · fn−1]

T + V̂ (3.16)

where X̂ = vec(X), V̂ = vec(V) and

Ĥ =




c0 = c([h0,0, h1,0, . . . , hn−1,0], γ)

c1 = c([h0,1, h1,1, . . . , hn−1,1], γ)
...

cr−1 = c([h0,r−1, h1,r−1, . . . , hn−1,r−1], γ)



.

So, to compute the capacity for our STBCs, we replace H in (3.11) by Ĥ and use the

same formulation from there onwards. Hence, we have

C = EC(H) =
1

n
E

N−1∑

k=0

q(k)E

{
log2

{ √
| detL|e−w

∗
w

2σ2

σ
∑N−1

i=0 q(i)e−(ak+w−ai)∗L−1(ak+w−ai)

}}
. (3.17)

The term 1/n on the RHS is because we send the same information for every n channel

uses.
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Figure 3.3 shows the capacity of 16 QAM signal set when we use a rate-1 STBC given

in Example 3.1.1 and the capacity of 4 QAM signal set when we use a rate-2 STBC given

in Example 3.2.1 for one receive antenna. Though the asymptotic values are same in both

the cases, the rate-2 STBC achieves the asymptotic value at a lower SNR than the rate-1

code achieves. This motivates us to use high-rate codes instead of rate-1 codes.
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Figure 3.3: Capacity of 2 Tx and 1 Rx system

Figure 3.4 shows the capacity of 4 QAM signal set when we use a 2 × 2 V-BLAST

system and the capacity of rate-2 code of Example 3.2.1 with 4 QAM signal set. Though

the capacity of the rate-2 STBC is lower than the rate-2 V-BLAST at low SNRs, our

STBC approaches asymptotic value at a lower SNR than V-BLAST achieves. Also, the

capacity of rate-2 STBC is more than the capacity of rate-1 STBC. In Section 3.6 we

show that by going to rate-2 STBC, we get an improvement of 3.5 dB SNR per bit at
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Figure 3.4: Capacity of 2 Tx and 2 Rx system

10−5 BER.

3.6 Decoding and Simulation Results

Maximum Likelihood (ML) decoding of STBCs using exhaustive search is prohibitively

complex as the decoding complexity increases exponentially with number of transmit

antennas. Recently, Viterbo and Boutrous in [63] proposed sphere decoding which uses

the algorithm to find the closest lattice point to a given point [62]. The algorithm uses

the fact that the generator matrix of the lattice is of full column rank and searches the

lattice points enclosed in a sphere of radius C0 centered at the received point. At each

time, a lattice point of Euclidean norm less than C0 is found, and the radius of the sphere



Chapter 3. High-Rate, Full-Diversity STBCs from Field Extensions 58

is reduced to the norm of the newly found lattice point. We repeat this until we are left

with a sphere with no lattice points in it. The lattice point whose norm was the radius

of the last sphere, is the decoded lattice point, i.e., it is the closest lattice point to the

received point. If the sphere we started with did not have any lattice points then we

increase the radius and repeat the process. Damen et al. in [64], have shown that sphere

decoding can be applied for multiple antenna systems if the perfect CSI is known at the

receiver. It has been shown in [65] that sphere decoding achieves ML performance in a

significantly reduced complexity which is roughly cubic in n at high SNRs. Though PSK

constellations are not a subset of any lattice, we can still use the sphere decoder, known

as complex sphere decoder, as shown by Hochwald and Brink in [61].

In the case of our STBCs, (3.16) can be written as

ŷ =

√
SNR

n
Ĥ[f0(z), f1(z), . . . , fn−1(z)]

T + ŵ (3.18)

where f0(z), f1(z), · · · , fn−1(z) are (R − 1)th degree polynomials in the indeterminate z.

The above equation can be written as

ŷ =

√
SNR

n
H̃f̃ + ŵ (3.19)

where H̃ = [Ĥ zĤ · · · zR−1Ĥ] and f̃ = [f0,0, f1,0, . . . , fn−1,0, f0,1, . . . , f0,R−1, . . . , fn−1,R−1]
T

where fi,j is jth coefficient in fi(z). Now, when the rate R is equal to one, the equivalent

channel matrix, H̃, is of full column rank and hence we can use sphere decoding. However,

if the rate R is greater than one, then the equivalent channel matrix is not of full column

rank, and hence we cannot use sphere decoding. Instead, we can use the generalization

of sphere decoding [18],where one works with a projection of this lattice onto R2n. Here,

we take the worst case bounds for 2nR − 2n unknowns (2n is the rank of equivalent

channel matrix and we have 2nR unknowns) and use sphere decoding for the remaining

2n unknowns. The decoding complexity increases, but is still lower than the complexity of

exhaustive-search ML detection. The complexity can be reduced by intelligently choosing

values of these 2nR − 2n variables to get bounds on the remaining 2n variables. For
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this, we adopt the method of Schnorr-Euchner lattice point search strategy [67]. In this

strategy, the lattice point component nearest to the corresponding component in the

received point is chosen to obtain further bounds. A similar strategy is adopted in [68].

An alternative way of decoding is as follows : clearly, the set

Λ′ = (
R−1∑

j=0

zj)Λ =

{
fi(z) =

R−1∑

j=0

fi,jz
j |fi,j ∈ Λ

}

forms a lattice, where Λ is the lattice from which the constellation is chosen. For example,

Figure 3.5 shows the constellation S + e2.5jS where S is a 4-QAM signal set. Here Λ′

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 3.5: Constellation S + e2.5jS, for S = 4-QAM.

is the lattice containing the resultant signal set S + e2.5jS. So, using SD with Ĥ as the

equivalent channel matrix, we decode the received symbol to a nearest lattice point in

the lattice Λ′. Then, we can decode to the individual symbols, fi,j, using a look-up table.

Since, every R−tuple of fi,j’s uniquely determine a polynomial fi(z), it is still ML. The

decoding complexity now depends on the lattice Λ′ and hence z.
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We now present the simulation results for space-time block codes constructed using

field extensions. We have employed the sphere decoding algorithm [64] for our simulations.

We use the rate-1 STBC


 f0 jf1

f1 f0


, with f0, f1 coming from 16-QAM signal set for 4

bits per channel use and from 256-QAM for 8 bits per channel use. And for rate-2 STBCs

we used the one constructed in Example 3.2.1 with fi,j coming from 4-QAM for 4 bits

per channel use and from 16-QAM for 8 bits per channel use. Figure 3.6 shows plots

for 2 transmit and 2 receive antenna system with 4 bits per channel use. From the plot,

it can be seen that the though the LD code performs at better than rate-1 code, the

rate-2 code performs better than LD code at high SNRs. This is because, the LD codes

are constructed to maximize the mutual information and not the diversity. And from

5 10 15 20 25 30
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

B
E

R

2 Tx and 2 Rx with 4 bits per channel use

STBC from field ext. R = 1
STBC from field ext. R = 2
LD Code                   

Figure 3.6: Comparison of STBCs from field extensions with LD codes for 2-Tx and 2-Rx
with 4 bits per channel use.
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Figure 3.7: Comparison of STBCs from field extensions with LD codes for 2-Tx and 2-Rx
with 8 bits per channel use.

Figure 3.7, it is clear that though the rate-1 code performs better than LD code only at

very high SNRs, rate-2 code outperforms the LD code at medium and high SNRs. This

motivates the use of high rate codes.

3.7 Summary

In this chapter, we have given constructions of rate-1, full-rank STBCs for arbitrary num-

ber of transmit antennas over arbitrary finite subsets of Q(ωm), using algebraic extensions

of Q. We also gave constructions of high rate (≥ 1), full-rank STBCs over arbitrary signal

sets for arbitrary number of transmit antennas, using both algebraic and transcendental
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extensions of Q. We have obtained an expression for the coding gain of all these STBCs

and gave a lower bound on it for some specific cases. We have also shown that the STBCs

from field extensions do not maximize the mutual information. However, for one receive

antenna, the loss in the mutual information is very less. We have also shown that the

finite-signal-set capacity of the high-rate STBCs is better than that of the rate-1 STBCs.

We have presented simulation results to show that high-rate STBCs perform better than

rate-1 STBCs in terms of BER.



Chapter 4

Information-Lossless Designs from

Crossed-Product Algebras

In this chapter, we obtain designs using crossed-product algebras (defined in Section 4.2)

including division algebras and give a sufficient condition for the STBCs obtained using

them to be information-lossless. We give some classes of crossed-product algebras, from

which the STBCs obtained are information-lossless and also of full rank. The STBCs

constructed in this chapter include the STBCs constructed in [39,40,44] as a special case.

We present some simulation results for two, three and four transmit antennas to show

that our STBCs perform better than some of the best known codes and also that these

STBCs are very close to the capacity of the channel with QAM symbols as the input.

4.1 Introduction

In this section, we will first recall the expressions for the capacity of a Rayleigh fading

channel for nt transmit and nr receive antennas and then define the term Information-

Lossless (ILL) STBCs. Let x ∈ Cnt×1 be the transmitted vector for one time instant and

y ∈ Cnr×1 be the received vector. If H ∈ Cnr×nt is the channel matrix whose entries are

1Part of the results presented in this chapter are available in publications [39–42].

63
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iid with zero-mean, unit-variance, complex Gaussian, then we have

y =

√
SNR

nt

Hx + w (4.1)

where w ∈ Cr×1 is the additive noise vector whose entries are iid with zero-mean unit-

variance, complex Gaussian. We assume that the vector f has entries with unit variance

i.e., E(xHx) = nt. The channel matrix H is assumed to be known at the receiver but not

at the transmitter. Then, the resulting channel capacity is given by [1, 2]

C(nt, nr, SNR) = max
Rx≥0,tr(Rx)=nt

E
{

log2

(
det

(
Inr +

SNR

nt
HRxH

H

))}
(4.2)

where Rx is the covariance matrix of the vector x and Inr is the nr × nr identity matrix.

The capacity-achieving x is a zero-mean complex Gaussian vector with covariance matrix

say Rx,opt. Under the assumption that the distribution of H is rotationally invariant, the

optimizing covariance matrix is Rx,opt = Int. Thus,

C(nt, nr, SNR) = EH
{

log2

(
det

(
Inr +

SNR

nt
HHH

))}
. (4.3)

The above expression gives channel capacity when we transmit independent vectors at

every time instant i.e., there is no coding in time. However, if we use an nt× l STBC, we

transmit l vectors in l time instants which need not be independent of each other. So, if

the transmitted nt × l matrix over l time instants is X, then we have

Y =

√
SNR

nt
HX + W (4.4)

where Y, W are the received (r × l) and additive noise (r × l) matrices. Let the STBC

used in the above equation be of rate R symbols per channel use. Then, we have lR

independent variables describing the matrix X. Let us denote them by f1, f2, . . . , flR and
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let f = [f1, f2, . . . , flR]T . Suppose that we can rewrite (4.4) as

ŷ =

√
SNR

nt
Ĥf + ŵ (4.5)

where ŷ and ŵ are the matrices Y and W, respectively, arranged in a single column, by

serializing the columns. Notice that this can be done for any linear design. The size of

the matrix Ĥ is nrl× lR. Then, the capacity of this new channel Ĥ, known as equivalent

channel is given by (4.3) with nt, nr,H replaced with lR, lnr, Ĥ respectively (except for nt

in the term
√

ρ
n
). So, by introducing coding, the maximum mutual information between

the actual information vector f and the received matrix X (or x̂) is given by

CSTBC(nt, nr, SNR) =
1

l
EH
{

log2

(
det

(
Ilnr +

SNR

nt
ĤĤH

))}
(4.6)

where CSTBC(nt, nr, SNR) denotes the maximum mutual information when the STBC is

introduced. Clearly, this can at most be equal to C(nt, nr, SNR).

Definition 4.1.1 If the maximum mutual information when an STBC C is used for nt

transmit and nr receive antennas, is equal to the capacity of the channel for nt transmit and

nr transmit antennas given by C(nt, nr, SNR), then C is called an information lossless

STBC [22]. We call the design used to describe C as a capacity achieving design.

Though, an STBC might be an information-lossless STBC, it may still be far from achiev-

ing the channel capacity. When we say an STBC is information-lossless, we only mean

that there is no loss in the mutual information due to the structure of the design used

to describe the STBC. Note that a trivial code (e.g. V-BLAST [49]), that is, there is

no dependency between the entries of the codeword matrices, is an information lossless

code. But, it is known that V-BLAST doesn’t achieve capacity with simple ML decoding.

Thus, “information-losslessness” is a necessary condition of an STBC to achieve capacity,

but not a sufficient condition.

In [23], it is shown that the Alamouti code is the only rate-1, 2 × 2 design which

achieves capacity, among all the orthogonal designs and that too only for one receive
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antenna. In the same paper, a class of codes namely, Linear Dispersion (LD) codes were

introduced and these STBCs were constructed by optimizing for the mutual information

and the designs they construct achieve 90% of the channel capacity. In [22], a rate-2, 2×2

design based on number theory was proposed which achieves capacity for 2 transmit and

arbitrary number of receive antennas. In [34–37, 39, 40], full-rank, arbitrary rate STBCs

were constructed for arbitrary number of transmit antennas, over any finite subsets of

any subfields of C, using commutative and non-commutative (cyclic) division algebras

and have given a class of information-lossless STBCs. In [44], STBCs over QAM signal

sets are constructed using cyclic division algebras for 2, 3 and 4 transmit antennas.

Table 4.1 summarizes the important aspects of several well known STBCs along with

that of the codes of this chapter.

Table 4.1: Comparison of various known square STBCs

STBC or
the design

No. of
transmit
antennas

Rank Rate Capacity Signal
set (finite
subset of)

Decoding

ODs [6, 10] power of
2

full ≤ 1 achieves only
for n = 2, r = 1

C
single-symbol
decodable

LDC [23] arbitrary full ≤ 1 achieves 90% of
the possible

Z[j] sphere
decodable

Damen et
al. [22]

2 full 2 achieves for any
r

Z[j] sphere
decodable

DAST [18] arbitrary full 1 away from ca-
pacity

Z[j] sphere
decodable

Sethuraman
et
al. [39, 40]

arbitrary full arbitrary away from ca-
pacity

any sub-
field of
C

sphere
decodable

TAST [21] arbitrary full ≤ n close to capac-
ity

Z[j] sphere
decodable

Galliou et
al. [43]

arbitrary full n claim to maxi-
mize mutual in-
formation

Z[j] sphere
decodable

Belfiore et
al. [44]

2, 3 and
4

full n away from ca-
pacity

Z[j] sphere
decodable

Proposed
in this
chapter

arbitrary full arbitrary achieve capac-
ity

any sub-
field of
C

sphere
decodable
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The remaining part of this chapter is organized as follows: In Section 4.2, we give

a brief introduction to crossed-product central simple algebras. The main principle and

construction of the STBCs from such algebras are given in Section 4.3. Also it is shown

that the well known Alamouti code and quasi-orthogonal designs can be obtained from

crossed-product algebras, which in general need not be of full-rank. In Section 4.4, we

give a sufficient condition for our STBCs to be information-lossless and show that under

certain conditions, the STBCs from cyclic algebras satisfy this sufficient condition, i.e.,

these STBCs are information-lossless. In Section 4.5, we restrict ourselves to those crossed-

product algebras which are division algebras. We give some classes of division algebras

using which construction of full-rank STBCs is illustrated with examples. In the same

section, we show that the STBCs arising from these division algebras are information-

lossless. Decoding of the codes obtained in this chapter is discussed in Section 4.6. Finally,

in the same section, we present simulation results to show that our codes perform better

than the best known codes and approach the capacity of the channel with QAM input.

Throughout the chapter, we take the number of transmit antennas equal to nt = n.

4.2 Crossed-Product Algebras

In this section we give a brief introduction to crossed-product algebras. Let F be a field.

Then, an associative F -algebra A is called a F -central simple algebra if the center of A

is F and A is a simple algebra i.e., A does not have non-trivial two-sided ideals. Clearly,

any field has no non-trivial two sided ideals and hence are central simple algebras, the

center being the field itself. In the following example we give another famous example of

central simple algebras.

Example 4.2.1 Consider the matrix algebra Mn(F ) of n × n matrices over a field F .

Let I be a non-zero ideal of Mn(F ). If U ∈Mn(F ), then we have

U =
n−1∑

i=0

n−1∑

j=0

ei,jui,j =
n−1∑

i=0

n−1∑

j=0

ei,pVeq,jv
−1
p,qui,j
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where ei,j is the standard basis of Mn(F ) over F , i.e., ei,j is an n×n matrix with (i, j)-th

as the only non-zero component, and V is a non-zero element, with vp,q as a non-zero

component, of the ideal I. From the LHS of the above expression, the element U also

belongs to the ideal I. Thus I = Mn(F ) and the algebra Mn(F ) is a simple algebra. It is

easy to check that F is the center of this algebra and hence Mn(F ) is an F -central simple

algebra.

Henceforth A will denote a central simple algebra. It is well known that the dimension

[A : F ] of A over its center F is always a perfect square, say n2 [54, 55]. The square root

of [A : F ] is called the degree of A. The algebra A is a division algebra if every element

of A is invertible in A. It is known that all division algebras are central simple algebras.

By a subfield K of A, we mean F ⊂ K ⊂ A. Let K be a maximal subfield of A, i.e.,

K ⊂ A and K is not contained in any other subfield of A. Also, let K be such that

the centralizer of K in A is K itself. Then, K is called a strictly maximal subfield and

it is well known that [K : F ] = n, the degree of the algebra A. When A is a division

algebra, then every maximal subfield is its own centralizer in A and thus [K : F ] = n for

every maximal subfield K. We will always consider central simple algebras which have at

least one strictly maximal subfield as a subfield of the complex field C. In addition, let

the extension K/F be a Galois extension and let G = {σ0 = 1, σ1, σ2, . . . , σn−1} be the

Galois group (σ0 = 1 is the identity map and the identity element of G) of K/F . Then,

from [54][Noether-Skolem theorem], there exists a set UG = {uσi
: σi ∈ G} ⊂ A such that

σi(k) = u−1
σi
kuσi

∀ k ∈ K and σi ∈ G. (4.7)

We can always normalize the set UG such that uσ0 = 1. It can be seen easily that the

uσi
are linearly independent over K. Since |UG| = |G| = [K : F ] = n, UG is a basis of

A over K and called a Noether-Skolem basis. Thus, A can be seen as a right K-space of

dimension n over K, i.e.,

A =
⊕

σi∈G

uσi
K. (4.8)
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In the above form of A, addition and equality are component-wise. From (4.7), we have

σi(σj(k)) = u−1
σi
u−1

σj
kuσj

uσi
= (σjσi)(k) = u−1

σjσi
kuσjσi

.

From the above expression, uσjσi
(uσj

uσi
)−1 commutes with every element of K and hence

belongs to the centralizer ofK. Since, the centralizer ofK isK itself, we have uσjσi

(
uσj

uσi

)−1 ∈
K, i.e., uσj

uσi
= uσjσi

φ(σj, σi), where φ(σi, σj) = u−1
σiσj

uσi
uσj
6= 0 ∈ K. From the associa-

tivity of A, we have uσh
(uσi

uσj
) = (uσh

uσi
)uσj

which implies that

φ(σh, σiσj)φ(σi, σj) = φ(σhσi, σj)σj(φ(σh, σi)).

The above condition is called the cocycle condition and any map from G× G to K\{0}
satisfying the cocycle condition is a cocycle. Thus, the map φ : G × G 7→ K\{0} is a

cocycle. With uσ0 = 1, we have φ (σi, σ0) = φ (σ0, σi) = φ (σ0, σ0) = 1 for all σi ∈ G.

Now, with the above development, it is easy to see that the multiplication between

two elements of A, say a =
∑n−1

i=0 uσi
kσi

and a′ =
∑n−1

j=0 uσj
k′σj

, is

(
n−1∑

i=0

uσi
kσi

)(
n−1∑

j=0

uσj
k′σj

)
=

n−1∑

l=0

uσl
k′′σl

where k′′σl
=
∑

σiσj=σl
φ(σi, σj)σj(kσi

)k′σj
. The algebra A with the decomposition as in

(4.8) with addition and multiplication defined as above is called the crossed product of K

and G with respect to φ and is denoted (K,G, φ).

Definition 4.2.1 An F -central simple algebra A is called a crossed-product algebra if it

can be written as a crossed product, i.e., if it has a strictly maximal subfield Galois over

the center F .

Example 4.2.2 Consider the set of Hamiltonians, given by H = {a+ib+jc+kd|a, b, c, d ∈
R}, where R is the real field, i2 = j2 = k2 = −1 and ij = k. Every element h =

a+ib+jc+kd ∈ H has a unique inverse given by (a−ib−jc−kd)/(a2+b2+c2+d2), and thus

H is a division algebra and hence also a central simple algebra. The center of this algebra
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is the real field R and [H : R] = 4. The sets C0 = {a+ ib|a, b ∈ R},C1 = {a+ jc|a, c ∈ R}
and C2 = {a + kd|a, d ∈ R} are the maximal subfields of H. Notice that each of the Ci’s

is an isomorphic copy of the complex field C. Thus, we will identify one of them, say C1

with the complex field C. It can be seen that [C : R] = 2 and [H : C] = 2. With C as a

maximal subfield, {1, i} is a basis of H over C. If {σ0 = 1, σ1 = σ} is the Galois group of

C/R, then it is easy to see that (σ is the complex conjugation)

σ(c = r1 + jr2) = i−1(r1 + jr2)i = −ir1i− ijr2i = r1 − jr2.

Thus, UG = {uσ0 = 1, uσ1 = i} forms a Noether-Skolem basis of H over C. Similarly, one

can check that {1, k} form a Noether-Skolem basis of H over C. With UG as a basis of H

over C, it is easy to see that φ(σ0, σ0) = φ(σ1, σ0) = φ(σ0, σ1) = 1 and φ(σ1, σ1) = −1.

Thus, H is a crossed-product algebra.

Suppose we have a Galois extension K of a field F with the Galois group G. Then,

we can construct an F -central simple algebra which has K as a strictly maximal sub-

field as follows: Let φ be a map from G × G to K∗ satisfying the cocycle condition

(φ(σ, τγ)φ(τ, γ) = φ(στ, γ)γ(φ(σ, τ)) for all σ, τ, γ ∈ G). Then consider the algebra

A = (K,G, φ) =
⊕

σ∈G

uσK

where equality and addition are component-wise and where uσ are symbols such that

(i) σ(k) = u−1
σ kuσ and (ii) uσuτ = uστφ(σ, τ). It can be seen with simple computations

that this algebra is a simple algebra with center F and hence an F -central simple algebra.

And that this algebra is a crossed-product algebra is obvious from its construction.

In the next section, we construct some more crossed-product algebras and construct

STBCs from these crossed-product algebras. But we shall first see a class of central simple

algebras of which the set of Hamiltonians is a special case.

Example 4.2.3 Let Q be the field of rational numbers and F be a subfield of the complex

field. Consider a four dimensional F -space A = {f0 +y1f1 +y2f2 +y3f3|f0, f1, f2, f3 ∈ F}
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with basis y0 = 1, y1, y2, y3. With 1 as the multiplicative identity and multiplication of any

two basis elements defined as follows, it is easy to check that the space A also forms a

ring:

y2
1 = a, y2

2 = b, y1y2 = −y2y1 = y3

where a, b are any two non-zero elements of F . Thus, A is an F -algebra and is called

a generalized Quaternion algebra. It is easy to check that the center of this algebra is F .

Now let us see whether A has any strictly maximal subfields. Clearly, if there exists one

then it should be of degree 2 over F , as A is of degree 4 over F . So, it is sufficient to

consider the degree 2 extensions of F contained in A. The set of elements of the form

f0 + y1f1 forms a field, namely F (y1). Clearly, [F (y1) : F ] = 2. Also, the centralizer of

F (y1) is F (y1). Thus, F (y1) is a strictly maximal subfield. Similarly, F (y2) and F (y3)

are strictly maximal subfields of A. Also, it is easy to check that F (y1)/F, F (y2)/F and

F (y3)/F are all Galois extensions. Let K = F (y1), then the Galois group of K/F is

G = {σ0 = 1, σ1 = σ : y1 7→ −y1}. Since K/F is Galois, there exists a Noether-Skolem

basis of A over K. Since

σ(f0 + y1f1) = (y2)
−1(f0 + y1f1)y2 =

y2

b
(f0 + y1f1)y2 = f0 +

y2y1y2

b
f1 = f0 − y1f1,

we have UG = {uσ0 = 1, uσ1 = y2} as a basis of A over K. Also φ(σ0, σ0) = φ(σ0, σ1) =

φ(σ1, σ0) = 1 and φ(σ1, σ1) = b. It would be interesting to see if this algebra is a division

algebra too. It is clear that when a = b = −1, it is a division algebra (subset of Hamilto-

nians). We shall find for what other values of a and b this algebra is a division algebra.

Any element x in A will be of the form x = f0 + y1f1 + y2f2 + y3f3 and we will denote

the element f0 − y1f1 − y2f2 − y3f3 with x̄. Clearly, xx̄ = f 2
0 − af 2

1 − bf 2
2 + abf 2

3 ∈ F . If

x 6= 0 implies xx̄ 6= 0, then xx̄(xx̄)−1 = x (x̄(xx̄)−1) = 1 which implies x−1 = x̄(xx̄)−1 and

thus x is invertible. Suppose a, b are such that the equation d2
0 = ad2

1 + bd2
2 does not have

non-zero solution in F . Then xx̄ = 0 will imply that x = 0. Therefore, xx̄ 6= 0 if x 6= 0.

Thus, with a, b as above, the algebra A is a division algebra. And if d2
0 = ad2

1 + bd2
2 has a

non-zero solution in F , then A is not a division algebra. With F = R and a = b = −1,
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we get the set of Hamiltonians.

4.3 STBCs from Crossed-Product Algebras

In the previous section, we have seen that if an algebra A has a strictly maximal subfield

K which is Galois over the center F , then we can view A as a right K-space i.e., the

action of scalar multiplication is given by right multiplication. In this section, we use this

property and construct rate-n, full-rank STBCs.

Consider the map L : A 7→ EndK(A) given by L(a) = λa, where λa(u) = au for

all u ∈ A. Since, the scalar multiplication is via right and the action of λa gives left

multiplication, these actions commute. That is (λa(u))k = (au)k = a(uk) = λa(uk). This

means, that λa is a K-linear transform of A. Clearly, L is a ring homomorphism from A

to EndK(A) i.e., λa+a′ = λa + λa′ and λaa′ = λaλa′ (this is because λaa′(u) = (aa′)u =

a(a′u) = λa(λa′(u)). Since A is a simple algebra, i.e., {0} and A are the only ideals of A, L

is injective. That is, a−a′ 6= 0⇒ λa−a′(u) = λa(u)−λa′(u) 6= 0. If A is a division algebra,

then, since a− a′ is invertible, say its inverse is a′′, its image λa−a′ is also invertible (since

λ(a−a′)a′′(u) = u). Thus, the image of L is also a division algebra.

Now, since A is a right K-space, we can view the elements of EndK(A) as matrices

over K, with respect to a basis. We have seen in the previous section that the set UG

forms a basis for the algebra A over its maximal subfield K. With respect to this basis,

we shall find the matrix representation of λa. For this, let a =
∑

σi∈G uσi
kσi

. To find the

matrix representation of λa, it is sufficient to find the action of λa on each of the basis

elements. Thus, λa(uσj
) is

λa(uσj
) =

∑

σi∈G

uσiσj
φ(σi, σj)σj(kσi

) =
∑

σl∈G

uσl
k′σl

where k′σl
=
∑

σiσj=σl
φ(σi, σj)σj(kσi

). Recall that φ(σi, σj) = u−1
σiσj

uσi
uσj
∈ K. From the

above equation, if the rows and columns of the matrix of λa, denoted by Ma, are indexed
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with the elements of G, then the (σi, σj)
th entry of Ma is φ(σiσ

−1
j , σj)σj

(
kσiσ

−1
j

)
, i.e.,

Ma =




kσ0 δ0,1σ1(kσ0σ−1
1

) δ0,2σ2(kσ0σ−1
2

) · · · δ0,n−1σn−1(kσ0σ−1
n−1

)

kσ1 δ1,1σ1(kσ1σ−1
1

) δ1,2σ2(kσ1σ−1
2

) · · · δ1,n−1σn−1(kσ1σ−1
n−1

)

kσ2 δ2,1σ1(kσ2σ−1
1

) δ2,2σ2(kσ2σ−1
2

) · · · δ2,n−1σn−1(kσ2σ−1
n−1

)
...

...
...

. . .
...

kσn−1 δn−1,1σ1(kσn−1σ−1
1

) δn−1,2σ2(kσn−1σ−1
2

) · · · δn−1,n−1σn−1(kσn−1σ−1
n−1

)




(4.9)

where δi,j = φ(σiσ
−1
j , σj). This implies, L is an embedding of the algebra A into Mn(K),

the set of n × n matrices over K, as shown in Figure 4.1. Thus, we have the following

M (K)
n

K
F

L

L(A)

A

Figure 4.1: Embedding of a crossed-product algebra into the set of n × n matrices over
K.

theorem:

Proposition 4.3.1 With A, K, F , G and φ as above and in addition if A is a division

algebra, then the set of matrices of the form as in (4.9) have the property that the difference

of any two such matrices is invertible.

From the above proposition it is clear that if K is a subfield of C and if we restrict ki to

some finite subset S of K, we will get a finite set of n×n matrices and the STBC defined

by this set of matrices will be a rate-n STBC and it will be of full-rank if A is a division

algebra. We normalize these matrices with a scaling factor such that the expected power
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transmitted by every transmit antenna is unity per channel use. In the above case, the

normalizing factor will be n/

√(
n+

∑n−1
i=0

∑n−1
j=1 |δi,j|2

)
(under the assumption that ki

have unit variance).

Example 4.3.1 Consider the set H of Hamiltonians of Example 4.2.2. We have seen

that H is a division algebra with R as its center and C as a maximal subfield and hence

a crossed-product algebra. With UG = {uσ0 = 1, uσ1 = i} as one of the possible bases, the

cocycle with respect to this basis is φ(σ0, σ0) = φ(σ1, σ0) = φ(σ0, σ1) = 1 and φ(σ1, σ1) =

−1. And the matrix representation of the map λd, where d = cσ0 + icσ1 , is

Md =


 cσ0 −c∗σ1

cσ1 c∗σ0


 .

The STBC defined with the above matrix is nothing but the well known Alamouti code.

Example 4.3.2 (Example 4.2.3 continued) Recall that the crossed-product algebra A(a, b) =

F⊕y1F⊕y2F⊕y3F is a division algebra under certain conditions on a and b. Let F = Q.

Then, a = b = −x, x > 0 ∈ Q satisfy the condition that f 2
0 = af 2

1 + bf 2
2 ⇒ f0 = f1 =

f2 = 0. Thus, the crossed-product algebra A(a, b) is a division algebra with Q as its center

and K = Q(y1), (y2
1 = −x), as a maximal subfield. The Galois group of Q(y1)/Q is

{1, σ : y1 7→ −y1}. The set {1, y2}, (y2
2 = −x), forms a Noether-Skolem basis of A(a, b)

seen as a Q(j)−space. With this basis, we have φ(1, 1) = φ(1, σ) = φ(σ, 1) = 1 and

φ(σ, σ) = −x. With this φ, the matrix representation of k0 + y2k1 ∈ A(a, b) over K is


 k0 −xσ(k1)

k1 σ(k0)


 .

The field K can be seen as an n-dimensional F -vector space. Let B = {t0, t1, . . . , tn−1}
be a basis of K over F . Then, in (4.9), if we replace each of kσj

’s with the corresponding

F -linear combination of ti’s, say kσj =
∑n−1

i=0 fσj ,iti, we get a rate-n STBC for n transmit
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antennas, over any finite subset of F . And since F is the fixed field of G, we have

Ma =
1√
P




n−1∑

i=0

f (i)
σ0
ti β

(1)
0

n−1∑

i=0

f (i)
µ0,1

σ1(ti) · · · β
(n−1)
0

n−1∑

i=0

f (i)
µ0,n−1

σn−1(ti)

n−1∑

i=0

f (i)
σ1
ti β

(1)
1

n−1∑

i=0

f (i)
µ1,1

σ1(ti) · · · β
(n−1)
1

n−1∑

i=0

f (i)
µ1,n−1

σn−1(ti)

n−1∑

i=0

f (i)
σ2
ti β

(1)
2

n−1∑

i=0

f (i)
µ2,1

σ1(ti) · · · β
(n−1)
2

n−1∑

i=0

f (i)
µ2,n−1

σn−1(ti)

...
...

. . .
...

n−1∑

i=0

f (i)
σn−1

ti β
(1)
n−1

n−1∑

i=0

f (i)
µn−1,1

σ1(ti) · · · β(n−1)
n−1

n−1∑

i=0

f (i)
µn−1,n−1

σn−1(ti)




(4.10)

where µi,j = σiσ
−1
j , β

(j)
i = φ(σiσ

−1
j , σi) and P is a scaling factor to normalize the average

total power of a codeword to n2. It is equal to
(∑n−1

i=0 |ti|2
) (
n +

∑n−1
i=0

∑n−1
j=1 |δi,j|2

)
/n2

under the assumption that σj preserves the modulus of ti. Throughout the chapter, we

assume that |φ(σi, σj)| = |ti| = 1 for all 0 ≤ i, j ≤ n − 1 unless specified explicitly.

From now on we use this matrix for Ma instead of the one in (4.9). For instance, in

Example 4.3.1, if we replace each of ci with the corresponding linear combination over R,

i.e., ci = ri,0 + jri,1, we have a rate-2, full-rank STBC over any finite subset of R whose

codewords are of the form

1√
2


 f

(0)
σ0 + jf

(1)
σ0 −(f

(0)
σ1 − jf (1)

σ1 )

f
(0)
σ1 + jf

(1)
σ1 f

(0)
σ0 − jf (1)

σ0


 .

Now, since the crossed-product algebra (K,G, φ) is a central simple algebra for any K

and φ, we get rate-n STBCs for arbitrary number of transmit antennas and over any a

priori specified signal set as follows: If S is the signal set over which we want the STBC to

be and n is the number of transmit antennas, then take F = Q(S) and let K be an n-th

degree Galois extension of F , with Galois group G. Let φ be a map from G × G to K∗

satisfying the cocycle condition, for example φ(σ, τ) = 1 for all σ, τ ∈ G. Then, we have a

crossed-product algebra using which we can construct rate-n STBCs. However, it is well

known that not every crossed-product algebra is a division algebra. For instance, consider
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a generalized Quaternion algebra given in Example 4.2.3. If the equation d2
0 = ad2

1 + bd2
2

has non-zero solutions for d0, d1, d2 ∈ F , we have seen that it is a not a division algebra.

Thus, the rate-n STBC constructed using the crossed-product algebra A need not be of

full-rank. However, by choosing the variables in the matrix given in (4.10) such that the

element a comes from a subalgebra of A, which is a division algebra, we can make our

STBC a full-rank STBC. But in this process, we might lose some of the rate. The following

example illustrates one such method, from which we get rate-1, full-rank STBCs.

Example 4.3.3 Let S be the signal set of interest and n be the number of transmit an-

tennas. Then, taking F = Q(S) and K = F (α), such that K/F is an n-th degree Galois

extension, we construct the crossed-product algebra (K,G, φ), where φ is a cocycle. Thus,

we get an STBC with codewords as in (4.10). However, this need not be of full rank, in

general. So, let f
(j)
σ0 come from S and let f

(j)
σi = 0, for all i 6= 0, then we get a rate-1,

full-rank STBC over S, with codewords of the form




n−1∑

i=0

f (i)
σ0
ti 0 0 · · · 0

0
n−1∑

i=0

f (i)
µ1,1

σ1(ti) 0 · · · 0

0 0

n−1∑

i=0

f (i)
µ2,2

σ2(ti) · · · 0

...
...

...
. . .

...

0 0 0 · · ·
n−1∑

i=0

f (i)
µn−1,n−1

σn−1(ti)




The coding gain of this STBC is

Cg = min
c6=c′

∣∣NK/F (k)
∣∣2/n

where NK/F (k) denotes the algebraic norm of the element k ∈ K from K to F and k is the

first entry on the diagonal of the difference matrix c−c′. Thus, this STBC and the STBCs

constructed in [39] using field extensions, have the same rank and coding gain. Indeed,
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it can be checked that the above code is a unitary transformation of the code from field

extensions. In particular if K/F is cyclic and a cyclotomic extension, then the unitary

matrix U, where the above code is U times the code from the field extension K/F , is

U =




1 γ0 γ2
0 · · · γn−1

0

1 γ1 γ2
1 · · · γn−1

1

1 γ2 γ2
2 · · · γn−1

2

...
...

...
. . .

...

1 γn−1 γ2
n−1 · · · γn−1

n−1




where γi, i,= 0, 1, . . . , n− 1 are the n roots of xn − γ.

In the above example, though the crossed-product algebra is not a division algebra, we

obtained a full-rank STBC by appropriately assigning the values to the variables of the de-

sign such that the resultant algebra (which is a subalgebra of the crossed-product algebra

A) of the matrices is a division algebra. Another way of obtaining full-rank STBCs from

crossed-product algebras is by choosing the signal sets appropriately. The next example

which gives us the well known quasi-orthogonal design [16], illustrates this method of

obtaining full-rank STBCs. In Section 4.5, we construct crossed-product algebras which

are division algebras and hence the resulting STBCs are full-rank STBCs.

Example 4.3.4 (Quasi-orthogonal designs) Let F = R(x), where x is an indetermi-

nate and K = F (j,
√
x), where j =

√
−1. Clearly, K/F is a Galois extension, with Galois

group G = 〈σ1, σ2〉, where σ1 : j 7→ −j, σ2 :
√
x 7→ −√x. The maps σ1 and σ2 act as

identity on
√
x and j respectively. Let y1, y2 be two commuting symbols. Then, consider

the algebra

A = (K,G, φ) = K ⊕ y1K ⊕ y2K ⊕ y1y2K

where φ(σ1, σ1) = φ(σ1σ2, σ1) = −1 and φ(1, τ) = φ(σ2, σ2) = φ(σ1σ2, σ2) = 1 for all

τ ∈ G. It is easy to check that this φ satisfies the cocycle condition. All other properties

like yi form a Noether-Skolem basis can be checked easily. Now, with this φ, the STBC
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we obtain will have codewords of the form




k0 −σ1(k1) σ2(k2) −σ1(σ2(k3))

k1 σ1(k0) σ2(k3) σ1(σ2(k2))

k2 −σ1(k3) σ2(k0) −σ1(σ2(k1))

k3 σ1(k2) σ2(k1) σ1(σ2(k0))




where ki = f
(0)
i + f

(1)
i j + f

(2)
i

√
x + f

(3)
i j
√
x. This STBC is not a full-rank STBC. Now,

suppose f
(2)
i = f

(3)
i = 0 for i = 0, 1, 2, 3. Then, σ1(ki) = k∗i (complex conjugate of ki) and

σ2(ki) = ki. Thus, we have a STBC with codewords of the form




k0 −k∗1 k2 −k∗3
k1 k∗0 k3 k∗2

k2 −k∗3 k0 −k∗1
k3 k∗2 k1 k∗0




where ki now come from arbitrary finite subset of the complex field. This is none other

than the quasi-orthogonal design of the form


 X Y

Y X


 given in [16], where X and Y

are Alamouti codes. By changing the cocycle map φ accordingly, we can get the other

quasi-orthogonal designs too. A simple computation tells that the rank of this STBC is

2. However, if we restrict k0, k1 and k2, k3 to come from two algebraically independent

signal sets, then the resulting STBC will be a full-rank STBC (in [15], the two signal sets

are such that one is rotated version of the other, which is a special case of selecting two

algebraically independent signal sets).

From the preceding example, it is clear that by sacrificing the division property of a

division algebra, we can obtain quasi-orthogonal designs. In the rest of this section,

we describe what a cyclic algebra is and construct STBCs from cyclic algebras. The

cyclic algebras are important as they constitute building blocks for other crossed-product

algebras constructed in this chapter.

An F -central simple algebra is called a cyclic algebra, if A has a strictly maximal
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subfield K which is a cyclic extension of the center F . Clearly, a cyclic algebra is a crossed-

product algebra. Let σ be a generator of the Galois group G. If uσi , i = 0, 1, . . . , n− 1 is

a Noether-Skolem basis for the algebra A over the field K, then we have

σi(k) = u−1
σi kuσi = u−1

σ (uσi−1kuσi−1) uσ =
(
ui

σ

)−1
k
(
ui

σ

)

which implies uσi = ui
σ. Also,

φ(uσi , uσj) = u−1
σi+juσiuσj =

(
ui+j modulo n

σ

)−1 (
ui+j

σ

)
=





1 if i+ j < n

δ if i+ j ≥ n

where un
σ = δ. Since, the cocycle now can be described by just one element δ and similarly

G can be described by σ, we denoted the crossed-product algebra (K,G, φ) with (K, σ, δ).

Thus, with z = uσ, we have

A = (K, σ, δ) =

n−1⊕

i=0

ziK

where zn = δ and kz = zσ(k). It is easy to see that the algebras in Example 4.2.2 and 4.2.3

are cyclic algebras. Since the group multiplication is same as addition of the exponents

of σ, we can replace σi with i, and use σi only if necessary. Using the above expressions,

(4.10) reduces to (we use the notation fi,j for f
(j)
i to make the notation simple)

1√
n




n−1∑

i=0

f0,it
i δσ

(
n−1∑

i=0

fn−1,it
i

)
δσ2

(
n−1∑

i=0

fn−2,it
i

)
· · · δσn−1

(
n−1∑

i=0

f1,it
i

)

n−1∑

i=0

f1,it
i σ

(
n−1∑

i=0

f0,it
i

)
δσ2

(
n−1∑

i=0

fn−1,it
i

)
· · · δσn−1

(
n−1∑

i=0

f2,it
i

)

n−1∑

i=0

f2,it
i σ

(
n−1∑

i=0

f1,it
i

)
σ2

(
n−1∑

i=0

f0,it
i

)
· · · δσn−1

(
n−1∑

i=0

f3,it
i

)

...
...

...
. . .

...
n−1∑

i=0

fn−1,it
i σ

(
n−1∑

i=0

fn−2,it
i

)
σ2

(
n−1∑

i=0

fn−3,it
i

)
· · · σn−1

(
n−1∑

i=0

f0,it
i

)




.

(4.11)
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The scaling factor before the matrix is to normalize the power transmitted by each trans-

mit antenna per channel use to unity, under the assumptions that |δ| = |σj(ti)| = |ti| = 1

for all 0 ≤ i, j ≤ n− 1.

Example 4.3.5 Let n = 2 and let S be a QAM signal set. Then F = Q(j).

(a) Clearly, the polynomial x2 − j is irreducible in F [x]. Thus, K = F (
√
j) is a cyclic

extension of F . The generator of the Galois group is given by σ :
√
j 7→ −√j. Now, let

δ(|δ| = 1) be any element in F . Then, we have the STBC C given by

C =






 k0 δσ(k1)

k1 σ(k0)


 |k0, k1 ∈ K



 . (4.12)

However, viewing K as a vector space over F , with the basis {1,√j}, we have a STBC

over any finite subset of F with codewords given by

1√
2


 f0,0 + f0,1

√
j δσ(f1,0 + f1,1

√
j)

f1,0 + f1,1

√
j σ(f0,0 + f0,1

√
j)


 =

1√
2


 f0,0 + f0,1

√
j δ(f1,0 − f1,1

√
j)

f1,0 + f1,1

√
j (f0,0 − f0,1

√
j)




where fi,j ∈ S ⊂ F for i, j = 0, 1 and the scaling factor 1/
√

2 is to ensure that the average

power transmitted by each antenna per channel use is one.

(b) In the above example, since {1,√j} is a basis of K over F , every element k ∈ K can

be written as a + b
√
j. It is easy to see that the set {1 +

√
j, 1 − √j} forms a basis of

K over F , since a + b
√
j can be written uniquely as a+b

2
(1 +

√
j) + a−b

2
(1 − √j). Thus,

expanding each ki in (4.12), with respect to this newly formed basis, we have a STBC with

codewords given by

1

2


 f0,0(1 +

√
j + f0,1(1−

√
j) δ(f1,0(1−

√
j)− f1,1(1 +

√
j))

f1,0(1 +
√
j) + f1,1(1−

√
j) (f0,0(1−

√
j)− f0,1(1 + sqrtj))


 .

(c) It is easy to check that the polynomial x2 − 2 is irreducible in F [x] and hence, K =

F (
√

2) is a cyclic extension of F , of degree 2. Proceeding as above, we have a STBC with
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codewords of the form

1√
3


 f0,0 + f0,1

√
2 δ(f1,0 − f1,1

√
2)

f1,0 + f1,1

√
2 (f0,0 − f0,1

√
2)


 .

4.4 Mutual Information

In this section, we give a condition under which our designs from crossed-product alge-

bras achieve capacity, i.e., the STBCs from the crossed-product algebras are information-

lossless. We will first obtain the equivalent channel matrix Ĥ for our STBCs (l = n and

R = n). Let X be a codeword matrix of the form given in (4.10). First by serializing the

columns of F, we have

vec(HX) =




H 0r×n · · · 0r×n

0r×n H · · · 0r×n

...
...

. . .
...

0r×n 0r×n · · · H




︸ ︷︷ ︸
H




X0

X1

...

Xn−1




where vec(HX) denotes the vector obtained by serializing the columns of HX. And Xj

denotes the jth column of the matrix X. The vector X0 can be written as

X0 =
1√
P

Φ0f (4.13)

where Φ0 is an n×n2 block diagonal matrix, each of the diagonal entries is a 1×n vector

1√
P
t = 1√

P
[t0 t1 · · · tn−1] and f = [fσ0,0 fσ0,1 · · · fσ0,n−1 · · · fσi,0 · · · fσi,n−1 · · · fσn−1,0 · · · fσn−1,n−1]

T

is the information vector. Similarly, Xj can be written as

Fj =
1√
P

Φjf (4.14)
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where Φj is a matrix with ith row as

[
01×n 01×n · · · 01×n φ(σiσ

−1
j , σj)σj(t) 01×n · · ·01×n

]

where σj(t) is the vector [σj(t0) σj(t1) · · · σj(tn−1)]. The column at which the non-zero

vector φ(σiσ
−1
j , σj)σj(t) starts depends on the Galois group G of K/F . For instance, if

σiσ
−1
j = σl, then the column at which this non-zero vector starts is after l − 1 blocks of

the vector 01×n, i.e., at nlth column. Note that any two rows of Xj have the non-zero

vectors in completely disjoint set of columns. Moreover, they are always separated by an

integral multiple of n columns. For instance, if G is a cyclic group, then Φi will be

starts at starts at starts at starts at

0-th n(n-i-1)-th n(n-i)-th n(n-i+1)-th

col col col col

↓ ↓ ↓ ↓

Φi =




0 0 · · · 0 δσi(tn) 0 · · · 0

0 0 · · · 0 0 δσi(tn) · · · 0

...
...

...
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · δσi(tn)

σi(tn) 0 · · · 0 0 0 · · · 0

0 σi(tn) · · · 0 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · σi(tn) 0 0 · · · 0




← 0th row

← (i− 1)th row

← ith row
(4.15)

So, with Φ = [ΦT
0 ΦT

1 · · ·ΦT
n−1]

T , we have




X0

X1

...

Xn−1




=
1√
P

Φf .
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Then, (4.5) becomes

ŷ =

√
SNR

n

1√
P
HΦ

︸ ︷︷ ︸
bH

f + ŵ. (4.16)

Thus, the equivalent channel for our STBCs is 1√
P
HΦ. Note that from the structure of

each of Φj’s, the kth row of Φ contains the vector φ(σiσ
−1
j , σj)σj(t) as its non-zero vector,

where k = nj + i. And this non-zero vector starts at column nl, where σl = σiσ
−1
j . The

following theorem characterizes the information-losslessness of the STBCs from crossed-

product algebras with K as a strictly maximal subfield and a basis of K over the center

given as {t0, t1, . . . tn−1}.

Theorem 4.4.1 The design Ma, as in (4.10) constructed using a crossed product algebra

A = (K,G, φ) and the basis {t0, t1, . . . , tn−1}, with the assumptions that |σj(ti)| = |ti|,
|φ(i, j)| = 1 for all 0 ≤ i, j ≤ n− 1, achieves the channel capacity if

n−1∑

i=0

σj(ti) (σj′(ti))
∗ = 0 if j 6= j ′. (4.17)

Proof: We will first see what ΦΦH is. Since the (k, l)th entry of this product is the inner

product between kth and lth rows of Φ, we have

(ΦΦH)k,l =
n2−1∑

a=0

Φk,aΦ
∗
a,l.

From the structure of Φ, if the rows k and l 6= k come from the same Φj, then their

non-zero columns are disjoint and hence this inner product is zero. If k and l come from

different Φjs then either the columns of non-zero entries are disjoint or completely same.

So, we have

(ΦΦH)k,l =
n−1∑

a=0

φ(σiσ
−1
j , σj)σj(ta)

(
φ(σi′σ

−1
j′ , σj′)σj′(ta)

)∗

= φ(σiσ
−1
j , σj)φ(σi′σ

−1
j′ , σj′)

∗
n−1∑

a=0

σj(ta) (σj′(ta))
∗

= 0 (from the statement of the theorem). (4.18)
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If k = l, then we have

(ΦΦH)k,k =
n−1∑

a=0

|σj(ta)|2 = P.

Thus, ΦΦH = PIn2. Now from (4.6), with the equivalent channel Ĥ, we have the capacity

of our design as

CDA(SNR, nt = n, nr) =
1

n
EH
{

log2

(
det

(
Inrn +

SNR

nt

1

P
HΦΦHHH

))}

=
1

n
EH
{

log2

(
det

(
Inrn +

SNR

n
HHH

))}

=
1

n
EH
{

log2

(
det

(
Inr +

SNR

n
HHH

)n)}

= EH
{

log2

(
det
(
Ir +

ρ

n
HHH

))}
= C(nt = n, nr, SNR).

Corollary 4.4.1 The design Ma, as in (4.10) constructed using a division algebra D =

(K,G, φ) and the basis {t0, t1, . . . , tn−1}, with the assumptions that |σj(ti)| = |ti|, |φ(i, j)| =
1 for all 0 ≤ i, j ≤ n− 1, achieves the channel capacity if

n−1∑

i=0

σj(ti) (σj′(ti))
∗ = 0 if j 6= j ′. (4.19)

The above theorem gives a condition on the basis of a Galois extension for which the

STBC arising from the crossed-product algebra is information-lossless. Also, it assumes

that the basis elements have the property that |σj(ti)| = |ti| for all 0 ≤ i, j ≤ n− 1. Let

us now derive a sufficient condition on the basis when they don’t satisfy |σj(ti)| = |ti|. Let

{t′0, t′1, . . . , t′n−1} be such a basis of K over F . Now, every entry, ki, of (4.9) can be written

as
∑n−1

j=0 f
′
i,jt

′
i. Equating these two expansions of ki, we obtain a unique representation

of every f ′
i,j in terms of linear combination of fi,j over F . Thus, if Rf = In2 implies

Rf ′ = In2 under the assumption that power is normalized to the same value in both the

cases, the mutual information with the new basis is the same as the mutual information

with the previous basis. For instance, the STBC obtained in Example 4.3.5(a) uses a
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basis which satisfies (4.17) and hence is information lossless. And the STBC obtained in

Example 4.3.5(b) uses a basis which does not satisfy the property that |σ(ti)| = |ti|, but

still the STBC obtained is information-lossless, since

1

2


 f0,0(1 +

√
j + f0,1(1−

√
j) δ(f1,0(1−

√
j)− f1,1(1 +

√
j))

f1,0(1 +
√
j) + f1,1(1−

√
j) (f0,0(1−

√
j)− f0,1(1 + sqrtj))


 =

1

2


 f ′

0,0 + f ′
0,1

√
j δ(f ′

1,0 − f ′
1,1

√
j)

f ′
1,0 + f ′

1,1

√
j f ′

0,0 − f ′
0,1

√
j




where f ′
i,0 = fi,0 + fi,1 and fi,1 = fi,0 − fi,1, and Rf = Rf ′. Note that {1 +

√
j, 1− 2

√
j}

also forms a basis for K/F , but with this basis, Rf 6= Rf ′ and hence the STBC obtained

using this basis is not information-lossless.

Consider the STBC constructed in Example 4.3.5(c). Suppose, the extension K/F

has a basis {a1, a2}. Since a1, a2 are in K, let a1 = p1 + q1
√

2 and a2 = p2 +
√

2q2, with

pi, qi ∈ F . Then, it is easy to check that the equation

a1σ(a1)
∗ + a2σ(a2)

∗ = (p1 + q1
√

2)(p∗1 − q∗1
√

2) + (p2 + q2
√

2)(p∗2 − q∗2
√

2) = 0

does not have any solutions for p1, q1, p2, q2 in F . Thus, the extension K/F of Ex-

ample 4.3.5(c) does not have any basis satisfying (4.17) and hence the STBC is not

information-lossless.

Thus, if a basis does not satisfy the property that |σj(ti)| = |ti|, for all i and j,

then the STBC obtained using such a basis will be information-lossless if there exists

a basis satisfying all the assumptions and conditions given in Theorem 4.4.1 and such

that covariance matrix is mapped to itself under the new basis. The following lemma is

towards proving that the STBCs obtained in this chapter are information-lossless.

Lemma 4.4.1 Let F be a field containing a primitive nth root of unity. Let K/F be a

cyclic extension of degree n, where K = F (tn = t1/n), t ∈ F, |t| = 1 and σ a generator of
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the Galois group. Then,

n−1∑

i=0

tin
(
σk(tin)

)∗
=





n if k = 0

0 if k 6= 0
.

Proof: If k = 0, it is trivial. So, let k 6= 0. Then, proving that
∑n−1

i=0 t
i
n

(
σk(tin)

)∗
= 0 is

same as proving
∑n−1

i=0 (t∗n)i
(
σk(tin)

)
= 0. So, we have

n−1∑

i=0

(t∗n)i
(
σk(tin)

)
=

n−1∑

i=0

[
(t∗n)

(
σk(tn)

)]i

=

n−1∑

i=0

[
(t∗n)

(
ωk

ntn
)]i

=

n−1∑

i=0

(
ωk

n

)i
= 0.

Then, we have the following theorem

Theorem 4.4.2 Let F = Q(S, ωn, t), |t| = 1 and K = F (tn = t1/n) be a cyclic extension

of F with G = 〈σ〉 as the Galois group. Let A be the crossed-product algebra (K, σ, δ)

with |δ| = 1. Then, the STBCs constructed using the cyclic algebra A as in Section 4.3

are information-lossless.

The proof of Theorem 4.4.2 follows from Lemma 4.4.1 and Theorem 4.4.1. From the above

theorem, STBCs in the examples of Section 4.3, namely Examples 4.3.5(a),(b) 4.5.3, 4.5.2

and 4.5.4, are information-lossless with the assumption that |t| = 1, |δ| = 1. However,

if |t| 6= 1 and |δ| 6= 1, the information loss increases as ||t| − 1| and ||δ| − 1| increase.

Figure 4.2 gives the capacity of the designs from cyclic algebras for various values of |t|
and |δ|. It can be seen that the loss in the mutual information is very less compared to

the information loss of 2× 2 COD, namely Alamouti code. Figure 4.3 gives the capacity

of the designs from cyclic algebras for various values of |t|.
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Figure 4.2: Comparison of capacities for various values of |t| and |δ|. The plain solid curve
is the capacity of the channel too. Also, Rf 6= Rf ′ in the cases where |t| 6= 1 or |δ| 6= 1

4.5 Full-rank STBCs from Crossed-Product Division

Algebras

We have seen in Section 4.2 that not all crossed-product algebras are division algebras.

In this section, we identify some classes of crossed-product algebras which are division

algebras and hence the STBCs from these algebras are of full-rank. We will first see when

a cyclic algebra is a cyclic division algebra as cyclic division algebras constitute building

blocks of other division algebras constructed in this chapter. We will only give a brief

introduction and for more details on them the reader can refer to [39, 40].
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Figure 4.3: Comparison of capacities for various values of |t|. The plain solid curve is the
capacity of the channel too.

4.5.1 Cyclic division algebras

In Chapter 2, we have given a brief introduction to cyclic division algebras. In this

subsection, we will discuss in more detail about cyclic division algebras and the STBCs

from them.

Let F be a field and K an extension of F , such that [K : F ] = n. Also, let the

extension K/F be a cyclic extension, i.e., the Galois group of the extension be a cyclic

group generated by a single element, say σ. Let δ be a transcendental element over K.

Then, we have the following algebra:

(K(δ), σ, δ) = K(δ)⊕ zK(δ)⊕ z2K(δ)⊕ · · · ⊕ zn−1K(δ)
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where z is some symbol which satisfies the relations

kz = zσ(k) for all k ∈ K and zn = δ.

The above algebra has F (δ) as its center and has no nontrivial two sided ideals. Then,

we recall the following theorem Chapter 2.

Theorem 4.5.1 ( [39, 40, 55]) With F,K, n, z and σ as above, the algebraD = (K(δ), σ, δ)

is a cyclic division algebra.

From the above theorem, we have a cyclic division algebra, whenever we have a cyclic

extension K/F and a transcendental element δ over F . We now give a general method

of obtaining a cyclic extension. Towards finding such a method, we state the following

lemma from [56].

Theorem 4.5.2 Let F be a field containing a primitive nth root of unity. Then, K/F is

cyclic of degree n if and only if K is the splitting field over F of an irreducible polynomial

xn − a ∈ F [x].

Let S be the signal of interest and n be the number of transmit antennas. Then consider

the field F = Q(S, ωn, ωm), where m is such that the polynomial xn − ωm is irreducible

in F [x]. We can always find such m as S is a finite subset of C. However, depending

on the structure of S, the difficulty in finding such m varies. Let K = F (ωmn). To be

able to use Theorem 4.5.2 it is sufficient to show that K is the splitting field of xn − ωm.

The roots of this polynomial are ωmnω
i
n for i = 0, 1, . . . , n− 1. Since K contains ωmn, all

these roots also lie in K. Thus, K contains the splitting field of xn − ωm. Since K is the

smallest subfield containing F and ωmn, K itself is the splitting field of xn−ωm. Thus, by

Theorem 4.5.2 K/F is a cyclic extension. We give some examples to illustrate the above

construction.

Example 4.5.1 Let n = 2 and F = Q(j), K = F (
√
j). Clearly, K is the splitting field

of the polynomial x2 − j ∈ F [x] and hence K/F is cyclic of degree 2. Note that x2 − j is

irreducible over F , since its only roots are ±√j and none of them is in F . The generator
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of the Galois group is given by σ :
√
j 7→ −√j. Now, let δ be any transcendental element

over K. Then, (K(δ)/F (δ), σ, δ) is a cyclic division algebra. Thus, we have the STBC C
given by

C =






 k0 δσ(k1)

k1 σ(k0)


 |k0, k1 ∈ K



 .

However, viewing K as a vector space over F , with the basis {1,√j}, we have a STBC

over any finite subset of F with codewords as follows

1√
2


 f0,0 + f0,1

√
j δσ(f1,0 + f1,1

√
j)

f1,0 + f1,1

√
j σ(f0,0 + f0,1

√
j)


 =

1√
2


 f0,0 + f0,1

√
j δ(f1,0 − f1,1

√
j)

f1,0 + f1,1

√
j (f0,0 − f0,1

√
j)




where fij ∈ S ⊂ F for i, j = 0, 1 and the scaling factor 1/
√

2 is to ensure that the average

power transmitted by each antenna per channel use is one.

In the above example S can be any finite subset of F and hence, we have an STBC over

any QAM constellation (since F = Q(j)). From the structure of this STBC, we can

see that it has a structure similar to the STBC proposed in [22]. Indeed, these two are

similar in the sense of their capability of achieving the capacity, which will be shown in

the next section. The code presented in [22] is of full rank for QAM constellations, as

is the case with our code. However, we get STBC’s for 2 antennas over any signal set,

by choosing appropriate m. Say for instance, we want codes over 8PSK. In this case,

we can take m = 8. However, the restriction on the choice of m affects the coding gain.

This restriction on m is due to the signal set and n. And moreover, finding m such that

the polynomial xn − ωm is irreducible over F depends on S, which might turn out to

be involved sometimes. So, we next give constructions of cyclic extensions which do not

depend on the signal set and n. But first we present an example for n = 3 transmit

antennas.

Example 4.5.2 Let n = 3 and suppose, we want S to be a QAM signal constellation.
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So, let F = Q(j, ω3). Then, the polynomial x3 − ω3 is irreducible in F [x]. This is

because, if it is reducible, then it should have a linear factor, which implies that this

polynomial has a root in F , which is not true. Thus, K = F (ω9) is a cyclic extension

of F and σ : ω9 7→ ω9ω3 is a generator of the Galois group. Now, let δ (|δ| = 1) be any

transcendental element over K. Then, (K(δ), σ, δ) is a cyclic division algebra. Thus, we

have the STBC C with codewords of the form (obtained in a similar way as in the previous

example)

1√
3




f0,0 + f0,1ω9 + f0,2ω
2
9 δ(f0,0 + f0,1ω9ω3 + f0,2ω

2
9ω

2
3) δ(f0,0 + f0,1ω9ω

2
3 + f0,2ω

2
9ω3)

f1,0 + f1,1ω9 + f1,2ω
2
9 f0,0 + f0,1ω9ω3 + f0,2ω

2
9ω

2
3 δ(f0,0 + f0,1ω9ω

2
3 + f0,2ω

2
9ω3)

f2,0 + f2,1ω9 + f2,2ω
2
9 f0,0 + f0,1ω9ω3 + f0,2ω

2
9ω

2
3 f0,0 + f0,1ω9ω

2
3 + f0,2ω

2
9ω3




where fi,j ∈ S ⊂ F for i, j = 0, 1, 2.

We now give a construction of cyclic extensions which are independent of n and S to

a large extent, in the following corollary.

Corollary 4.5.1 Let F = Q(S, t, ωn), where t is a transcendental element over Q(S).

Then, K = F (tn = t1/n) is a cyclic extension of F , and the degree of extension is n.

The above corollary gives us a cyclic extension for any n and signal set S. The irreducible

polynomial used to obtain the extension in the above corollary is xn − t and that this is

a irreducible polynomial over F is proved in Chapter 2. So, the difficulty of finding an

irreducible polynomial over F of degree n is overcome. Using the above corollary, we give

some examples.

Example 4.5.3 Let n = 2 and F = Q(S, t), where t (|t| = 1) is transcendental over

Q(S). Then, K = F (t2 =
√
t) is cyclic extension of F of degree 2. The generator of the

Galois group is given by σ : t2 7→ −t2. Now, let δ(|δ| = 1) be any transcendental element

over K. Then, (K(δ)/F (δ), σ, δ) is a cyclic division algebra. Thus, we have the STBC C
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with the codewords given by:

1√
2


 f0,0 + f0,1t2 δσ(f1,0 + f1,1t2)

f1,0 + f1,1t2 σ(f0,0 + f0,1t2)


 =

1√
2


 f0,0 + f0,1t2 δ(f1,0 − f1,1t2)

f1,0 + f1,1t2 (f0,0 − f0,1t2)




where f0,0, f0,1, f1,0, f1,1 ∈ S ⊂ F . From the STBC construction in this example, it is clear

that we have two degrees of freedom, i.e., both t2 and δ can be chosen arbitrarily (almost),

while the STBC in Example 4.5.1, we could choose only δ arbitrarily. This implies that

the best coding gain possible for the STBC of Example 4.5.1, is less than the best possible

with this example. Indeed, by computer search, we found that the best coding gain possible

for the STBC in this example is at least 0.26 while the best coding gain possible for the

STBC in Example 4.5.1 is only 0.22. Thus, this example shows that the dependence of

the signal set and n have little effect on the constructions when F/Q is infinite, while the

effect of the signal set and n is considerable when F/Q is finite.

Example 4.5.4 Let n = 4 and S be the signal set. Then, with F = Q(ω4 = j, S, t) and

K = F (t4 = t1/4), we have K/F cyclic and σ : t4 7→ jt4 is a generator of the Galois

group. Thus, we have a full-rank STBC for 4 antennas as follows :

C =





1√
4




g0,0 δg1,3 δg2,2 δg3,3

g0,1 g1,0 δg2,3 δg3,2

g0,2 g1,1 g2,0 δg3,3

g0,3 g1,2 g2,1 g3,0








where gi,j =
∑3

l=0 fj,l(j
it4)

l and fi,j ∈ S ⊂ F for i, j = 0, 1, 2, 3.

STBCs from Brauer’s division algebras

We give a construction of another class of cyclic division algebras due to Brauer [60, 69].

Let l and n be any two positive integers having same set of prime factors and such that l

divides n. Let E be a field containing ωl and such that xn−ωl is irreducible in E[x]. Let

K = E(x0, x1, . . . , xn−1), where xi are independent transcendental elements over E. Let
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σ : xi 7→ xi+1 mod n be an automorphism of K, fixing every element of E and F be the

fixed field of σ. Since, the order of σ is n, the extension K/F is cyclic with Galois group

〈σ〉. Consider the following algebra

B = (K, σ, ωl) =
⊕

ziK

where z is some symbol satisfying kz = zσ(k) and zn = ωl. Then, we have the following

theorem due to Brauer.

Theorem 4.5.3 ( [60, 69]) With the notation as above, the algebra B = (K, σ, ωl) is a

cyclic division algebra of index n, with center F .

Type-I STBCs from Brauer division algebras:

Let S be the signal set over which we want the STBC. Then, let E = Q(S, ωl). Assume,

in addition, that xn − ωl is irreducible in E[x]. Then, F , the fixed field of σ will contain

E. With δ = ωl and σ : xi 7→ xi+1 mod n, we get a STBC with codewords as in (4.9), with

ki ∈ F [x0, x1, . . . , xn−1]. Since F contains E, we can restrict the coefficients of the poly-

nomials ki to come from E and in particular S only, to obtain a STBC over S. The STBC

obtained this way is full-rank. And the symbol rate of this STBC depends on the degree

of the polynomials ki. If the degree is restricted to d, then the rate will be

d∑

i=0

n+i−1Cn−1

symbols per channel use. We call the STBCs constructed this way type-I STBCs from

Brauer division algebras. The following theorem, namely Lindemann-Weierstrass Theo-

rem, suggests a method to find n algebraically independent transcendental numbers.

Theorem 4.5.4 ( [69]) If u1, u2, . . . , un are algebraic numbers that are linearly indepen-

dent over Q, then the exponentials eu1 , eu2, . . . , eun are algebraically independent over the

field of algebraic numbers.

We illustrate this construction with an example.

Example 4.5.5 Let n = 3 and S be a QAM signal set. Then, let E = Q(j, ω3). It

is easy to see that x3 − ω3 is irreducible in E[x]. Let x0, x1, x2, (say ej, ej
√

2, ej
√

3), be
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three independent transcendental elements over E and K = E(x0, x1, x2). Then, B =

(K, σ, ω3) = K+zK+z2K is a cyclic division algebra of index 3. Thus, we have a STBC

with codewords as follows :




k0(x0, x1, x2) ωlk2(x2, x0, x1) ωlk1(x1, x2, x0)

k1(x0, x1, x2) ωlk0(x2, x0, x1) ωlk2(x1, x2, x0)

k2(x0, x1, x2) k1(x2, x0, x1) k0(x1, x2, x0)




where ki(x0, x1, x2) is a polynomial in x0, x1, x2 with coefficients from S. If we allow the

degree of these polynomials to be 1, then we have a symbol rate of 4. However, if we allow

the degree of the polynomials to be any positive integer d, then the symbol rate will be
∑d

i=0
2+iC2.

If n = 2 in the above example, it is not possible to obtain a STBC over a QAM signal set,

from Brauer division algebras. This is because, our E will be Q(j) and the polynomial

x2 + 1 is not irreducible in E[x], which is a necessary condition for constructing a Brauer

division algebra. However, if the signal set is a 5-PSK signal set, we can obtain a STBC

for 2 transmit antennas.

Type-II STBCs from Brauer division algebras:

Till now, we have constructed STBCs using Brauer division algebra viewing the field K as

an extension of E. However, if we view K as an extension of F (which we have been doing

till the last subsection), we get a different STBC. Let ωn ∈ E. Since, K/F is cyclic, there

exists an element t ∈ K, such that K = F (t). Let us define t = x0+x1ωn+. . .+xn−1ω
n−1
n .

Clearly, σ maps t to tω−1
n and hence tn ∈ F . Thus, K = F (t). Now, expanding each

entry ki in (4.9) as
∑n−1

j=0 fi,jt
j, we get a STBC with codewords of the form as in (4.11).

STBCs obtained this way will be called type-II STBCs from Brauer division algebras.
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Example 4.5.6 (Example 4.5.5 contd.) Expanding each ki as
∑2

j=0 fi,jt
j, and con-

sidering only degree zero polynomials in F , we get a STBC with codewords as follows.




2∑

j=0

f0,jt
j ω3

2∑

j=0

f2,jt
jω2j

3 ω3

2∑

j=0

f1,jt
jωj

3

2∑

j=0

f1,jt
j

2∑

j=0

f0,jt
jω2j

3 ω3

2∑

j=0

f2,jt
jωj

3

2∑

j=0

f2,jt
j

2∑

j=0

f1,jt
jω2j

3

2∑

j=0

f0,jt
jωj

3




where fi,j ∈ S ⊂ E ⊂ F .

It is shown at the end of this section that the type-I STBCs from Brauer division algebras

are not information-lossless if |xi| = 1 and might be information-lossless if |xi| 6= 1, while

the type-II STBCs are information-lossless under certain conditions.

Coding gain of STBCs from cyclic division algebras

We conclude this subsection, giving a closed form expression for coding gains of STBCs

constructed in this subsection. Let K/F be a cyclic extension and let NK/F (k) denote

the algebraic norm from K to F , of an element in k ∈ K.

Proposition 4.5.1 Let C be the rate-n STBC constructed from the cyclic division algebra

(K(δ), σ, δ). Let the codewords of C be as in (4.11). Then, the coding gain of the code C
is

Cg = min
f 6=f ′

∣∣(−1)n−1NK/F (∆kn−1) + . . .+NK/F (∆k0)
∣∣2/n

where f = [f0,0, . . . , f0,n−1, . . . , fn−1,0, . . . , fn−1,n−1] and f ′ = [f ′
0,0, . . ., f

′
0,n−1, . . ., f

′
n−1,0,

. . ., f ′
n−1,n−1] are two distinct information vectors. And ∆ki =

∑n−1
j=0

(
fi,j − f ′

i,j

)
ti.

Proof: Follows from Proposition 16.2b of [55] (page 298) and the definition of coding

gain.
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4.5.2 STBCs from tensor-product division algebras

In the last few subsections, we have seen how to construct cyclic division algebras and

STBCs from them. In this section, we construct division algebras from some known

division algebras and hence construct STBCs from them. One of such constructions is

given by tensor product (see appendix for definitions and properties of tensor products)

of two division algebras as in the following theorem:

Theorem 4.5.5 ( [54]) Let D1 and D2 be two division algebras with the same center F .

If [D1 : F ] is relatively prime to [D2 : F ] then D1 ⊗F D2 is a division algebra with F as

the center.

So, given any two division algebras, D1 and D2 with the same center and relatively prime

indices, the tensor product D1 ⊗F D2 of them is also a division algebra with the same

center. So, the index of D1 ⊗F D2 is
√

[D1 : F ][D2 : F ]. If both D1 and D2 are cyclic

division algebras, then the resulting tensor product division algebra is also a cyclic division

algebra. The following example illustrates the construction of STBCs from such a tensor

product division algebra obtained from two cyclic division algebras.

Example 4.5.7 Suppose, we want an STBC over a QAM signal set for 6 transmit anten-

nas. Then, let F = Q(j, ω3). Let K1 = F (
√
j) and K2 = F ( 3

√
j). Let δ be a transcendental

element over F . Obviously, δ is a transcendental element over K1 and K2 also. Then,

from Theorem 4.5.1, the crossed-products algebras D1 = (K1(δ), G1, δ) = K1(δ)⊕ z1K1(δ)

and D2 = (K2(δ), G2, δ) = K2(δ)⊕ z2K2(δ)⊕ z2
2K2(δ) are division algebras where G1 and

G2, the Galois groups of K1(δ)/F (δ) and K2(δ)/F (δ), are given by G1 = {σ1,0 = 1, σ1,1 :
√
j 7→ −√j} and G2 = {σ2,0 = 1, σ2,1 : 3

√
j 7→ 3

√
jω3, σ2,2 : 3

√
j 7→ 3

√
jω2

3}. And z1 and z2

are elements of D1 and D2 respectively such that

z2
1 = δ and k1z1 = z1σ1,1(k1) ∀ k1 ∈ K1(δ)

and

z3
2 = δ and k2z2 = z2σ2,1(k2) ∀ k2 ∈ K2(δ).
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It is easy to see that K(δ) = K1(δ) ⊗F K2(δ) is a maximal subfield of D = D1 ⊗F D2

and that the Galois group of K(δ)/F (δ) is G = {σ0 = 1, σ1 = σ1,1, σ2 = σ2,1, σ3 = σ2,2 =

σ2
2,1, σ4 = σ1,1σ2,1, σ5 = σ1,1σ2,2}. Note that G is a cyclic group with σ4 as a generator.

Also, the set {uσ0 = 1, uσ1 = z1⊗1, uσ2 = 1⊗z2, uσ3 = 1⊗z2
2 , uσ4 = z1⊗z2, uσ5 = z1⊗z2

2}
forms a Noether-Skolem basis of D over K(δ). Thus,

D = K(δ) + uσ1K(δ) + uσ2K(δ) + uσ3K(δ) + uσ4K(δ) + uσ5K(δ)

And the cocycle φ is given in the following table:

φ(σi, σj) σ0 σ1 σ2 σ3 σ4 σ5

σ0 1 1 1 1 1 1

σ1 1 δ 1 1 δ δ

σ2 1 1 1 δ 1 δ

σ3 1 1 δ δ δ δ

σ4 1 δ 1 δ δ δ2

σ5 1 δ δ δ δ2 δ2

.

Substituting the above φ in (4.9), we get an STBC with codewords of the form as follows:

1√
6




k0 δσ1(k1) δσ2(k3) δσ3(k2) δ2σ4(k5) δ2σ5(k4)

k1 σ1(k0) δσ2(k5) δσ3(k4) δσ4(k3) δσ5(k2)

k2 δσ1(k4) σ2(k0) δσ3(k3) δσ4(k1) δ2σ5(k5)

k3 δσ1(k5) σ2(k2) σ3(k0) δ2σ4(k4) δσ5(k1)

k4 σ1(k2) σ2(k1) δσ3(k5) σ4(k0) δσ5(k3)

k5 σ1(k3) σ2(k4) σ3(k1) σ4(k2) σ5(k0)




where ki = fi,0+fi,1

√
j+fi,2

3
√
j+fi,3

3
√
j
2
+fi,4

√
j 3
√
j+fi,5

√
j 3
√
j
2
and fi,j ∈ S(QAM) ∈ F .

The above example shows how to construct STBCs from the tensor product division

algebra of two cyclic division algebras (note that it is not necessary that we use cyclic
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division algebras only) with relatively prime indices. This can be extended to tensor

product of any number of division algebras with relatively prime indices using the following

corollary.

Corollary 4.5.2 Let Di, i = 0, 1, 2, . . . , s − 1 be s F -division algebras with the index of

Di as pαi
i , where pi, i = 0, 1, 2, . . . , s− 1, are distinct primes and αi are positive integers.

Then, the algebra D =
⊗

F Di is an F -division algebra.

Using the above method of constructing division algebras, we cannot construct division

algebras from known division algebras of not relatively prime degrees. For instance, we

cannot construct division algebras of degree 4 from two division algebras of degree 2. The

following theorem helps us in such cases, where we construct a division algebra which is

isomorphic to the tensor product of two cyclic division algebras with some constraints.

However, we do not use the language of tensor product in constructing the division algebra.

Theorem 4.5.6 Let δ1, δ2, x, and y be algebraically independent elements over a field L

containing n1-th and n2-th primitive roots of unity, where n1 and n2 are positive integers.

Let F = L(x, y) and K = F (x1 = x1/n1 , y1 = y1/n2 , δ1, δ2). Clearly, K(δ1, δ2) is a Galois

extension of F (δ1, δ2), with the Galois group as G = 〈σx, σy〉, where σx : x1 7→ x1ωn1x1

and acts as identity on the other three variables, and where similarly, σy : y1 7→ ωn2y1 and

acts as identity on the other three variables. Consider the associative algebra

D = (K(δ1, δ2), G, φ) =
⊕

0≤i<n1
0≤j<n2

ui
σx
uj

σy
K(δ1, δ2)

where uσx and uσy are two symbols commuting with each other and satisfying

un1
σx

= δ1; un2
σy

= δ2

kuσx = uσxσx(k) and kuσy = uσyσy(k).

for all k ∈ K(δ1, δ2). Then, D is a division algebra.
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Proof: To prove that D is a division algebra, it is sufficient to show that every non-zero

element in D is invertible. Let d =
∑n1−1

i=0 ui
σx

(∑n2−1
j=0 uj

σy
ki,j

)
∈ D (we use i, j as the

subscript of k instead of uσi
x
uσj

y
to make the notations simpler). And let λd be the left

regular representation of d over K(δ1, δ2), i.e., λd : a 7→ da for all a ∈ D. Then, we have

λd =




η0 δ1σx(ηn1−1) δ1σ
2
x(ηn1−2) · · · δ1σ

n1−1
x (η1)

η1 σx(η0) δ1σ
2
x(ηn−1) · · · δ1σ

n1−1
x (η2)

η2 σx(η1) σ2
x(η0) · · · δ1σ

n1−1
x (η3)

...
...

...
. . .

...

ηn1−1 σx(ηn1−2) σ2
x(ηn1−3) · · · σn1−1

x (η0)




where ηi is

ηi =




ki,0 δ2σy(ki,n2−1) δ2σ
2
y(ki,n2−2) · · · δ2σ

n2−1
y (ki,1)

ki,1 σy(ki,0) δ2σ
2
y(ki,n2−1) · · · δ2σ

n2−1
y (ki,2)

ki,2 σy(ki,1) σ2
y(ki,0) · · · δ2σ

n2−1
y (ki,3)

...
...

...
. . .

...

ki,n2−1 σy(ki,n2−2) σ2
y(ki,n2−3) · · · σn2−1

y (ki,0)




.

Notice that ki,j are rational functions of polynomials of the two variables δ1 and δ2.

However, we can assume ki,j are polynomials in δ1 and δ2 instead of rational functions

in them, as we can take the LCM of all ki,j and factor it out. Let ρd(δ1, δ2) denote the

determinant of λd. Since δ1 and δ2 are algebraically independent of each other, it is

sufficient to show that ρd(δ1, δ2) is not a zero polynomial to show that d is invertible, For

this let us assume that there exists some j for which k0,j 6= 0. If there doesn’t exist any

j for which k0,j 6= 0, then we can factor out uσx from d and since uσx is invertible, it is
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sufficient to prove that d/uσx is invertible. Thus, we have

ρd(0, δ2) = det(λd)|δ1=0 = det




η0 0 0 · · · 0

η1 σx(η0) 0 · · · 0

η2 σx(η1) σ2
x(η0) · · · 0

...
...

...
. . .

...

ηn1−1 σx(ηn1−2) σ2
x(ηn1−3) · · · σn1−1

x (η0)




.

In the above expression, η0 can become zero matrix when δ1 is set to zero. This can

happen only if δ1 divides k0,j for all j. If ki,j has δ1 as a factor for all i and j, then it

is sufficient to prove that d′ = d/δ1 is invertible. So, without loss of generality, we can

assume that there exists a ki,j which does not have δ1 as a factor. Let m be the smallest

integer such that δ1 does not divide km,j for some j. Then

d′ = un1−m
σx

dδ−1
1 =

n1−1∑

i=0

ui
σx

(
n2−1∑

j=0

uj
σy
k′i,j

)

has the property that there exists some j such that δ1 does not divide k′0,j. Also notice

that all k′i,j are again polynomials only and not rational functions. And to prove d is

invertible it is enough to prove that d′ is invertible. So we can assume that there exists

a j such that δ1 does not divide k0,j. Now, since (K(δ1, δ2), σ2, δ2) is a cyclic division

algebra with center F (δ1, δ2, x1), we have det(η0) 6= 0. Thus, we have

ρd(0, δ2) =

n1−1∏

i=0

det(σi
x(η0)) =

n1−1∏

i=0

σi
x(det(η0)) 6= 0.

This implies ρd(δ1, δ2) is not a zero polynomial because δ1 and δ2 are independent tran-

scendental elements over K.

If S is the signal set of interest, then we take L = Q(S). Obtaining 4 algebraically inde-

pendent transcendental elements over L is not a difficult task as according to Lindemann-

Weierstrass Theorem [69], we have that for any two algebraic numbers a1 and a2 linearly

independent of each other over Q, the numbers ea1 and ea2 are algebraically independent
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transcendental numbers. Thus, we can take eja1, eja2 , eja3 and eja4 for x, y, δ1 and δ2

respectively. We could use eai instead but we will see that having all of them on the unit

circle will give us information-lossless STBCs.

In Theorem 4.5.6, K(δ1, δ2) is a cyclic Galois extension of F (δ1, δ2), if n1 and n2 are

relatively prime to each other. We give an example to show how to obtain STBC from

the division algebra of Theorem 4.5.6.

Example 4.5.8 Let S be the signal set of interest, say a QAM signal set. Let n = 4,

i.e, we want STBC for four transmit antennas. Then, we take F = Q(j, x, y), where

x and y are two transcendentals independent over Q(j). Then K = F (
√
x,
√
y) is a

Galois extension of F with the Galois group G = 〈σx, σy〉, where σx :
√
x 7→ −√x and

σy :
√
y 7→ −√y. Then, from Theorem 4.5.6, the algebra

(K(δ1, δ2), G, φ) = K(δ1, δ2)⊕ uσxK(δ1, δ2)⊕ uσyK(δ1, δ2)⊕ uσxuσyK(δ1, δ2)

is a division algebra, where δ1, δ2 are independent transcendentals elements over K. And

φ(σx, σx) = φ(σxσy, σx) = δ1; φ(σy, σy) = φ(σxσy, σy) = δ2;

φ(σx, σy) = 1; and φ(σxσy, σxσy) = δ1δ2.

Substituting for φ in (4.10), we have an STBC with codewords of the form

1√
P




k0,0 δ2σy(k0,1) δ1σx(k1,0) δ1δ2σxσy(k1,1)

k0,1 σy(k0,0) δ1σx(k1,1) δ1σxσy(k1,0)

k1,0 δ2σy(k1,1) σx(k0,0) δ2σxσy(k0,1)

k1,1 σy(k1,0) σx(k0,1) σxσy(k0,0)




(4.20)

where ki,j = f
(0)
i,j + f

(1)
i,j

√
x + f

(2)
i,j

√
y + f

(3)
i,j

√
xy and f

(l)
i,j ∈ S ⊂ Q(j) ⊂ F . Thus, we have

an STBC over a QAM signal set for 4 transmit antennas.

Corollary 4.5.3 Let xi, i = 0, 1, . . . , s − 1, be s transcendental elements over a field L

containing ni-th primitive roots of unity, where ni, i = 0, 1, 2, . . . , s−1 are positive integers.
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Assume in addition that xi, i = 0, 1, 2, . . . , s − 1 are independent of each other. Let

F = L(x0, x1, . . . , xs−1) and K = F (t0 = x
1/n0

0 , t1 = x
1/n1

1 , . . . , ts−1 = x
1/ns−1

s−1 ). Clearly, K

is a Galois extension of F , with the Galois group as G =
〈
σx0 , σx1 , · · · , σxs−1

〉
. Let δi, i =

0, 1, 2, . . . , s−1 be s commuting indeterminates (one can assume them to be transcendental

elements over F , independent of each other). Also, let uσxi
, i = 0, 1, 2, . . . , s − 1 be s

symbols commuting with each other and satisfying

uni
σxi

= δi and kuσxi
= uσxi

σxi
(k) ∀ k ∈ K(δ0, δ1, . . . , δs−1).

Then, the algebra

D = (K(δ1, δ2, . . . , δs−1), G, φ)

is a division algebra.

Thus, given an abelian group G, we have constructed a division algebra which is a crossed

product of a field K and the group G with respect to some cocycle φ. Such constructions

are called generic constructions of abelian crossed-product algebras.

Example 4.5.9 Let S be the 8-PSK signal set, and n = 6, i.e., we want STBC for 6

transmit antennas. Then, let F = Q(ω8, ω3, x1, x2) (|xi| = 1), where x1 and x2 are two

transcendental elements independent over F . Then K = F (
√
x1, 3
√
x2) (n1 = 2, n2 = 3) is

a Galois extension of F (x1, x2) with Galois group G = 〈σx1 , σx2〉 where σx1 :
√
x1 7→ −

√
x1

and σx2 : 3
√
x2 7→ ω3

3
√
x2. Let δ1, δ2 (|δi| = 1) be two independent transcendental elements

over K. Then, from Theorem 4.5.6,

D = (K(δ1, δ2), G, φ) =
⊕

0≤i≤1

⊕

0≤j≤2

ui
σx1
uj

σx2
K(δ1, δ2)

is a division algebra, where uσx1
and uσx2

are symbols satisfying

u2
σx1

= δ1; kuσx1
= uσx1

σx1(k); u3
σx2

= δ2 and kuσx2
= uσx2

σx2(k).

Proceeding in a similar manner as in Example 4.5.8, we get a STBC with codewords as
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follows:

1√
6




k0,0 δ2σx2(k0,2) δ2σ
2
x2

(k0,1) δ1σx1(k1,0) δ1δ2σx1σx2(k1,2) δ1δ2σ
2
x2
σx1(k1,1)

k0,1 σx2(k0,0) δ2σ
2
x2

(k0,2) δ1σx1(k1,1) δ1σx1σx2(k1,0) δ1δ2σ
2
x2
σx1(k1,2)

k0,2 σx2(k0,1) σ2
x2

(k0,0) δ1σx1(k1,2) δ1σx1σx2(k1,1) δ1σ
2
x2
σx1(k1,0)

k1,0 δ2σx2(k1,2) δ2σ
2
x2

(k1,1) σx1(k0,0) δ2σx1σx2(k0,2) δ2σ
2
x2
σx1(k0,1)

k1,1 σx2(k1,0) δ2σ
2
x2

(k1,2) σx1(k0,1) σx1σx2(k0,0) δ2σ
2
x2
σx1(k0,2)

k1,2 σx2(k1,1) σ2
x2

(k1,0) σx1(k0,2) σx1σx2(k0,1) σ2
x2
σx1(k0,0)




(4.21)

where ki,j = f
(0)
i,j + f

(1)
i,j

3
√
x2 + f

(2)
i,j

3
√
x2

2 + f
(3)
i,j

√
x1 + f

(4)
i,j

3
√
x2
√
x1 + f

(5)
i,j

3
√
x2

2

√
x1, with

f
(l)
i,j ∈ 8− PSK ⊂ F . Thus, we have an STBC over the 8-PSK signal set for 6 transmit

antennas.

Example 4.5.10 Let S be the 8-PSK signal set, and n = 12, i.e., we want STBC for 12

transmit antennas. Then, let F = Q(ω8, ω3, x0, x1, x2) (|xi| = 1), where x0, x1 and x2 are

transcendental elements independent over F . Then K = F (
√
x0,
√
x1, 3
√
x2) (n0 = 2, n1 =

2, n2 = 3) is a Galois extension of F (x0, x1, x2) with Galois group G = 〈σx0 , σx1 , σx2〉
where σx0 :

√
x0 7→ −

√
x0, σx1 :

√
x1 7→ −

√
x1 and σx2 : 3

√
x2 7→ ω3

3
√
x2. Let δ0, δ1 and δ2

(|δi| = 1) be independent transcendental elements over K. Then, from Theorem 4.5.6,

D = (K(δ1, δ2), G, φ) =
⊕

0≤h≤1
0≤i≤1
0≤j≤2

uh
σx0
ui

σx1
uj

σx2
K(δ1, δ2)

is a division algebra, where uσx0
, uσx1

and uσx2
are symbols satisfying

u2
σx0

= δ0; u2
σx1

= δ1; u3
σx2

= δ2 and kuσxi
= uσxi

σxi
(k).

Proceeding in a similar manner as in Example 4.5.8, we get a STBC with codewords as

follows:

1√
12


 η0 δ0σx0(η1)

η1 σx0(η0)


 (4.22)
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where

ηh =




kh,0,0 δ2σx2(kh,0,2) δ2σ
2
x2

(kh,0,1) δ1σx1(kh,1,0) δ1δ2σx1σx2(kh,1,2) δ1δ2σ
2
x2
σx1(kh,1,1)

kh,0,1 σx2(kh,0,0) δ2σ
2
x2

(kh,0,2) δ1σx1(kh,1,1) δ1σx1σx2(kh,1,0) δ1δ2σ
2
x2
σx1(kh,1,2)

kh,0,2 σx2(kh,0,1) σ2
x2

(kh,0,0) δ1σx1(kh,1,2) δ1σx1σx2(kh,1,1) δ1σ
2
x2
σx1(kh,1,0)

kh,1,0 δ2σx2(kh,1,2) δ2σ
2
x2

(kh,1,1) σx1(kh,0,0) δ2σx1σx2(kh,0,2) δ2σ
2
x2
σx1(kh,0,1)

kh,1,1 σx2(kh,1,0) δ2σ
2
x2

(kh,1,2) σx1(kh,0,1) σx1σx2(kh,0,0) δ2σ
2
x2
σx1(kh,0,2)

kh,1,2 σx2(kh,1,1) σ2
x2

(kh,1,0) σx1(kh,0,2) σx1σx2(kh,0,1) σ2
x2
σx1(kh,0,0)




where kh,i,j =
∑1

a=0

∑1
b=0

∑2
c=0 f

(a,b,c)
h,i,j

√
x0

a√x1
b 3
√
x2

c, with f
(a,b,c)
h,i,j ∈ 8−PSK ⊂ F . Thus,

we have an STBC over the 8-PSK signal set for 12 transmit antennas.

4.5.3 Rates beyond n symbols per channel use

Till now, we have constructed rate-n, full-rank STBCs using division algebras. Recall

that the division algebras we used are the ones with center a transcendental field over

Q. Consider the case of the STBCs from cyclic division algebras. The division algebras

we considered are of the form (K(δ), σ, δ) where K(δ) is a cyclic extension of F (δ), with

δ a transcendental element over F . Recall that F is a field extension of Q such that it

contains the signal set S. Now the codeword matrices with this division algebra will be

of the form (4.11) with fσi,j coming from F (δ), since the center is F (δ). And an element

of F (δ) will be of the form a(δ)/b(δ), where a(δ) and b(δ) are polynomials in δ. So,

each entry in (4.11) is of the form a(δ)/b(δ). But since, two different pairs of (a(δ), b(δ))

can give rise to the same a(δ)/b(δ), we assume that the entries of (4.11) are of the form

a(δ) only. Thus, if fσi,j,l come from the signal set S, then our codeword matrices are of

the form (4.11), with fσi,j =
∑

l fσi,j,lδ
l, where the subscript l can range from 0 to any

positive integer. With this, our STBC constructed from the division algebra (K(δ), σ, δ)

can have arbitrary rate. For instance, the STBC constructed in Example 4.5.1, will have
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the codewords of the form as below:

1√
2



∑

l f0,0,lδ
l +
∑

l f0,1,lδ
l
√
j δ

(∑
l f1,0,lδ

l −∑l f1,1,lδ
l
√
j
)

∑
l f1,0,lδ

l +
∑

l f1,1,lδ
l
√
j

∑
l f0,0,lδ

l −∑l f0,1,lδ
l
√
j


 .

In a similar way, STBCs constructed from other division algebras, as in Section 4.5.2,

can have arbitrary rate. But note that in the case of non-cyclic division algebras, each

entry of the codeword matrix is a polynomial in more than one transcendental element.

Though, we have arbitrary-rate STBCs, for the purpose of clarity, we concentrate only

on the rate-n STBCs constructed till the previous subsection.

4.5.4 Mutual Information

In this section, we show that, under certain conditions, our designs arising from the

division algebras we have discussed so far achieve capacity, i.e., the STBCs from these

division algebras are information-lossless.

Mutual information of STBCs from Brauer division algebras

We show that the type-I STBCs from Brauer division algebras are not information-lossless.

Recall from Subsection 4.5.1, that in Brauer division algebras, i.e., (K, σ, ωl), σ takes xi

to xi+1 mod n. Thus, the LHS of (4.17) is

n−1∑

i=0

xi+j mod n (xi+j′ mod n)∗ =

n−1∑

i=0

xi+j mod n

xi+j′ mod n
(if |xi| = 1 ).

Since the xi’s are independent transcendental elements over E, the above expression will

not be equal to zero and hence the type-I STBCs from Brauer division algebras are not

information-lossless.

The type-II STBCs from Brauer division algebras are information-lossless if |t| = 1.

This condition that |t| = 1 can be met, by choosing x1, x2, . . . , xn−1 arbitrarily and then

choosing x0 such that t = x0 +ωnx1 + · · ·+ωn−1
n xn−1 lies on unit circle. Figure 4.4 shows

the capacities of both the type-II and type-II STBCs constructed from Brauer division
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Figure 4.4: Comparison of capacities of type-I and type-II STBCs from Brauer division
algebras. The plain solid curve is the capacity of the channel for 2-transmit and 2-receive
antennas. And the plain dashed curve is the capacity of the channel for 4-transmit and
4-receive antennas.

algebras. It can be seen from the figure that the information loss in type-I STBCs is less

than the loss due to the Alamouti code.

Mutual information of STBCs from tensor-product division algebras

In the following theorem, we show that the STBCs constructed in Subsection 4.5.2 are

information-lossless.

Theorem 4.5.7 Let K,F, xi, δi be as in Theorem 4.5.6 with |xi| = |δi| = 1 for all 0 ≤ i ≤
s − 1. Then, the STBC arising from the division algebra D = (K(δ0, δ1, . . . , δs−1), G, φ)

is information-lossless.
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Proof: It is sufficient to prove that

∑

i0,...,is−1

[
σj0

0 . . . σ
js−1

s−1

(
(x′0)

i0 . . . (x′s−1)
is−1
)]∗ [

σ
j′0
0 . . . σ

j′s−1

s−1

(
(x′0)

i0 . . . (x′s−1)
is−1
)]

= 0

(4.23)

if (j0, j1, . . . , js−1) 6= (j ′0, j
′
1, . . . , j

′
s−1). Since, each of σi’s act as identity on x′j if i 6= j,

and σi(x
′
i) = x′iωni

, LHS of (4.23) can be written as

∑

i0,...,is−1

{[
(x′0)

i0ωi0j0
n0

]
· · ·
[
(x′s−1)

is−1ωis−1js−1
ns−1

]}∗ {[
(x′0)

i0ωi0j′0
n0

]
· · ·
[
(x′s−1)

is−1ω
is−1j′s−1
ns−1

]}
.

Since |xi| = 1 for all i, the above expression can be written as

∑

i0,...,is−1

[
ωi0(j′0−j0)

n0

]
· · ·
[
ω

is−1(j′s−1−js−1)
ns−1

]
.

Expanding the above sum with respect to each variable, we have

∑

i0



ω

i0(j′0−j0)
n0

∑

i1


ωi1(j′1−j1)

n1
· · ·


ωis−2(j′s−2−js−2)

ns−2

∑

is−1

ω
is−1(j′s−1−js−1)
ns−1







 = 0.

The rest follows from Theorem 4.4.1.

From the above theorem, it follows that the designs of Examples 4.5.8, 4.5.9 and 4.5.10

achieve capacity.

Theorem 4.5.8 Let Di, i = 0, 1, 2, . . . , s− 1 be s number of crossed-product division al-

gebras.Let each of the STBCs arising from these division algebras be information-lossless.

Then the STBC arising from the division algebra D = D0 ⊗F D1 ⊗F · · · ⊗F Ds−1 is also

information-lossless if |φi(., .)| = 1 for all i = 0, 1, 2, . . . , s − 1, where φi is a cocycle for

the division algebra Di.

The above theorem can be proved in a similar manner as in Theorem 4.5.7.
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4.6 Decoding and Simulation Results

Maximum Likelihood (ML) decoding of our STBCs in general involves exhaustive search

which increases exponentially with the number of transmit antennas. In [63], sphere

decoder was proposed, which uses the algorithm to find the closest lattice point to a given

point [62]. This algorithm uses the fact that the column rank of the generator matrix of

the lattice, is at least the number of dimensions in the lattice. Damen et al. in [64], have

shown that sphere decoder can be applied for multiple antenna systems if perfect CSI is

known at the receiver. If f is the transmitted vector from n antennas, we have

x =

√
ρ

n
Hf + w (4.24)

where x is the received r × 1 vector (r receive antennas), H is the n× r channel matrix

and w is the AWGN. Then, the lattice representation of the system model is given by

x′ =

√
ρ

n
H ′f ′ + w′ (4.25)

where

x′ = [Re(xT )Im(xT )]T ,

f ′ = [Re(̃fT ) Im(̃fT )]T ,

H ′ =


 Re(H) −Im(H)

Im(H) Re(H)


 ,

w′ = [Re(w)T Im(w)T ]T .

Since, the channel matrix H is of full rank almost surely, the equivalent channel ma-

trix, H ′, is also of full rank. Hence, the sphere decoder can be applied whenever f is

from a constellation which is a subset of a lattice. Hence, SD achieves ML performance

with a significantly reduced complexity which is roughly cubic in n at high SNRs [65].

Though PSK constellations are not a subset of any lattice, we can still use the sphere

decoder, known as complex sphere decoder, as shown by Hochwald and Brink in [61]. The
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algorithm for the case of a PSK constellation searches through the phase angles of the

constellation points instead of the lattice point coordinates and since the phase angles of

the constellation points are integer multiples of 2π/M (for M-PSK), the search is over a

finite set. The complexity of complex sphere decoder is less than the complexity of the

sphere decoder for lattice constellations. This is because we search for n points in the

case of complex sphere decoder, while we search for 2n points in the case of lattice sphere

decoder.

In our case, the equivalent channel model is

x̂ =

√
ρ

n

1√
P
HΦ

︸ ︷︷ ︸
bH

f + ŵ.

Since, the rank of the matrix H is min(nr, n2) and the matrix Φ is invertible, the rank

of the matrix Ĥ is also the min(nr, n2). Now, since the rate of our STBCs is n, we can

use the sphere decoder efficiently if min(nr, n2) ≥ n2, which implies that the number of

receive antennas is at least the number of transmit antennas. However, if the number of

receive antennas is less than the number of transmit antennas, we can use the generalized

sphere decoder proposed in [66], which involves more computational complexity. However,

we can still use the sphere decoder if we decrease the rate of our STBC. If the number

of receive antennas is r, then the rate of our STBC has to be r for efficient use of sphere

decoder.

4.6.1 Capacity approaching codes

In this section, we present simulation results for 2,3 and 4 transmit antennas with 2, 3 and

4 receive antennas respectively, over 4-QAM and 16-QAM signal sets. Figure 4.5 shows

the plots for 2 transmit and 2 receive antennas. We used the STBC of Example 4.3.5,

with δ = e0.5j . This value of δ is chosen arbitrarily. It can be seen from the figure that

with our code, we gain by about 3 dB over the uncoded case at 10−4 BER and by about

0.75 dB, at 10−6 BER, over the STBC of [22](named as B2,φ), which is known to be one
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Figure 4.5: Comparison of STBCs with 2 transmit and 2 receive antennas

of the best codes. By choosing δ to maximize the coding gain, we can further improve

the performance of our STBC.

Figure 4.6 shows the plots for 3 transmit and 3 receive antennas. The STBC we used

is from Example 4.5.2. We gain by about 4 dB over the uncoded case at 10−4 BER.

Figure 4.7 shows the plots for 4 transmit and 4 receive antennas. We used the

following STBC (obtained with F = Q(j) and K = F (ω16)):

C =





1√
4




g0,0 δg1,3 δg2,2 δg3,3

g0,1 g1,0 δg2,3 δg3,2

g0,2 g1,1 g2,0 δg3,3

g0,3 g1,2 g2,1 g3,0








where gi,j =
∑3

l=0 fj,l(j
iω16)

l and fi,j ∈ S ⊂ F for i, j = 0, 1, 2, 3 and δ = e0.5j (chosen

arbitrarily). We gain by about 5 dB, at 10−5 BER, over the uncoded and by about
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0.8 dB, at 10−6 BER, over the STBC of [43], which is claimed to maximize the mutual

information.

Figure 4.8 shows the performance of the STBCs obtained using the division algebras of

Section 4.5.2. The division algebra construction-1 curve is for the STBC of Example 4.5.8,

with x1 = ej
√

2, x2 = ej
√

3 and δ1 = ej
√

5, δ2 = ej
√

7. These values are chosen arbitrarily.

The division algebra construction-2 curve is for the same STBC with x1 = ej
√

2, x2 = ej
√

3

and δ1 = ej
√

0.23, δ2 = ej
√

0.26. The values of x1 and x2 are chosen arbitrarily, while the

values of δ1 and δ2 are chosen to be close to the value of δ in STBC used in Figure 4.7.

We can see that the STBC, where the parameters x1, x2, δ1 and δ2 are chosen arbitrarily,

performs better than the STBC of [43] by about 0.25 dB, but is poorer than the STBC

constructed from cyclic division algebra by about 0.5dB. However, the STBC, for which

the x1, x2 are chosen arbitrarily and δ1, δ2 are chosen close to δ, performs better than the

STBC of [43] by about 0.9 dB, and better than the STBC from cyclic division algebra by
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about 0.1dB. We could perform even better by choosing a better x1, x2, δ1 and δ2.

From these simulation results and [61], it can be seen that our codes are approximately

1 dB away from the capacity of the channel with QAM symbols as input.

4.7 Summary

In this chapter,

• Using crossed-product algebras, we have constructed arbitrary rate STBCs over

apriori specified arbitrary finite subsets of the complex field C. In particular, when

the crossed-product algebras are division algebras, we get full-rank STBCs.

• We have shown that Alamouti code and the quasi-orthogonal design of [16] are

special cases of our constructions.

• We have also shown that our constructions give STBCs with rank and coding gain
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same as that of the STBCs obtained using field extensions [39].

• We have given a sufficient condition for our STBCs under which they are information-

lossless.

• We have identified two classes of division algebras that are crossed-product alge-

bras and constructed rate-n, full-rank STBCs from these crossed-product division

algebras. These STBCs include the STBCs of [39, 40] as special cases.

• We have proved that the STBCs obtained from the crossed-product division algebras

in this chapter, are information-lossless.

• We have presented simulation results to show that we perform better than the best

known codes and can do even better if the best codes from division algebras are

used. Also, the simulation results show that we are about 1 dB away from the

capacity of the channel with QAM as the input [61].



Chapter 5

Asymptotic-Information-Lossless

Designs and Diversity-Multiplexing

Tradeoff

In this chapter, we introduce the notion of Asymptotic-Information-Losslessness and then

discuss its significance in the context of diversity-multiplexing tradeoff of a given scheme.

The content of this chapter is organized as follows: In the next section, we present

in brief, an introduction to the diversity-multiplexing tradeoff of any given scheme and

discuss the tradeoff achieved by some well known schemes. In Section 5.2, we define

asymptotic-information-lossless STBCs and show that asymptotic-information-losslessness

is a necessary condition for achieving the optimal diversity-multiplexing tradeoff. In the

same section, we discuss the tradeoff achievability of some well known codes like STBCs

from OD and QOD. We obtain lower bound on the diversity-multiplexing tradeoff for the

STBCs obtained from field extensions [39] and non-commutative division algebras [39,40]

in Section 5.3 and 5.4 respectively. In Section 5.5, we present simulation results for 2,

3, and 4 transmit antennas and show that the DA codes achieve the optimal diversity-

multiplexing tradeoff.

1Part of the results presented in this chapter are available in publications [57–59].
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5.1 Introduction and Preliminaries

In this section, for the sake of completeness, we shall recall some basics of MIMO systems.

Let C be an nt × l STBC for nt transmit antennas. Then, if X ∈ C is the codeword

transmitted, we have

Y =

√
SNR

nt
HX + W (5.1)

where Y ∈ Cnr×l is the received matrix, H ∈ Cnr×nt is the channel matrix with entries

independent complex Gaussian with zero mean and unit variance and W ∈ Cnr×l is

the additive noise with entries independent complex Gaussian with zero mean and unit

variance. Under the assumption that E [tr(XX∗)] = ntl, the average signal-to-noise (SNR)

at each receive antenna is SNR. We have seen in Chapter 2, that at high SNRs, the pair-

wise error probability that the received matrix Y is decoded to a codeword matrix X′ 6= X

is

P (X→ X′) =

(
Λ∏

i=1

λ2
i

)−nr

SNR
−nrΛ

where λ1, λ2, , . . . , λΛ are the Λ non-zero singular values of ∆ = X−X′. The gain due to the

spatial diversity provided by nt transmit and nr receive antennas is, quantitatively, termed

as diversity gain of the code C, d, and is equal to the negative of the exponent of SNR

in the above expression. The value of d, intuitively, corresponds to the number of paths

with independent fades that a symbol passes through. Note that, here the diversity gain

is defined under the assumption that the data rate is fixed for all SNRs. Full-rank STBCs

have been constructed by several authors and some of the important and well known

constructions are Orthogonal Designs (OD) [5,6,8,10], Coordinate Interleaved Orthogonal

designs (CIODs) [7, 12] Quasi-orthogonal designs (QODs) [14–17], STBCs from division

algebras [34–37,39–41] and quaternionic lattices [43,44], Diagonal Algebraic STBCs [18],

Space-Time constellation rotation STBCs [19], Threaded Algebraic STBCs [21, 22] and

STBCs from maximal rank distance codes [47].

Another advantage due to the multiple transmit and receive antennas is based on

capacity analysis of the channel. At high SNRs, the capacity of a Rayleigh fading channel
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with nt transmit and nr receive antennas is

C(nt, nr, SNR) = min {nt, nr} log SNR +O(1).

From the above expression it is clear that the achievable data rate increases with SNR as

min{nt, nr} log SNR. Since, this value is min{nt, nr} times the capacity of a single-antenna

channel, a multiple-antenna channel can be viewed as min{nt, nr} parallel channels and

hence min{nt, nr} is the total number of degrees of freedom (independent information

symbols that can be communicated). Since the capacity increases linearly with log SNR,

it is expected that the rate of data transmission also increase linear with log SNR. This

advantage due to the multiple antennas is called spatial multiplexing [48]. If the data

rate increases with SNR as r log SNR, we say that a multiplexing gain of r is achieved.

Some of the schemes that exploit spatial multiplexing are Bell LAbs Space-Time (BLAST)

architectures [49] like Diagonal BLAST (D-BLAST) and Vertical BLAST (V-BLAST).

Though most of the research in designing good STBCs has been either in obtaining

the full-diversity codes or codes with maximum spatial multiplexing, it has been shown

recently in [50], that both diversity and spatial multiplexing can be obtained simultane-

ously but with a fundamental tradeoff between them. We will first give some necessary

definitions and then briefly discuss the optimal tradeoff curve obtained by Zheng and Tse

in [50].

Let C(SNR) be the code corresponding to the SNR level SNR and the data rate in bits

per channel use achieved by C(SNR) be R(SNR). Then, the set of all codes {C(SNR)} is

called a scheme.

Definition 5.1.1 ( [50]) A scheme {C(SNR)} is said to achieve a spatial multiplexing

gain r and diversity gain d if

lim
SNR→∞

R(SNR)

log SNR
= r and lim

SNR→∞

logPe

log SNR
= −d

where Pe is the error probability.
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Following the notation of [50], we use
.
= for exponential equality. Thus, 2R(SNR)

.
= SNR

r

and Pe
.
= SNR

−d. Similarly, we use
.
≥ and

.
≤ for exponential inequalities.

Though a scheme means a family of codes, one for each SNR level, a simple way of

describing a scheme is to give a design. We recall the definition of a design from Chapter 2.

Definition 5.1.2 A rate-k/l, n × l design over a subfield K of the complex field C, is

an n × l matrix M(x1, x2, . . . , xk) with entries K-linear combinations of k variables and

their conjugates. We call M a full-rank design over a field F if every finite subset of the

set E = {M(x1, x2, . . . , xk)|xi ∈ F, i = 1, 2, . . . , k}, is a full-rank STBC.

Restricting the variables xi to come from a finite subset, called the signal set or constel-

lation, of the field F , we get a full-rank STBC. Notice that though xi come from a signal

set, the complex symbols that are transmitted can be from a different set.

By changing the signal sets such that their size increases with SNR we get a scheme.

Thus, a scheme can be described by a design and a class of signal sets. For example, the

Alamouti code is a rate-1, 2 × 2 design over the field of complex numbers, C. Similarly,

the 4× 4 real orthogonal design is a rate-1, 4× 4 design over the real field R [6]. Designs

over other subfields of C have been studied in [37, 39, 40]. Thus, a design and a signal

set jointly constitute an STBC. By changing the signal sets such that their size increases

with SNR we get a scheme. Thus, a scheme can be described by a design and a class of

signal sets.

Zheng and Tse in [50] have obtained lower and upper bound on the optimal diversity-

multiplexing tradeoff curve. The upper bound is given by the exponent dout of the outage

probability. The lower bound for the case l ≥ nt + nr − 1 is again given by dout. Hence,

for the case l ≥ nt +nr−1, the optimal diversity-multiplexing tradeoff is d(r) = dout(r) =

(nt − r)(nr − r). For the case l < nt + nr − 1, the lower bound does not match with

the upper bound and hence there is no exact expression for the optimal tradeoff. When

nt = nr = 2 and l ≥ 2, however, it has been proved that the lower bound and the upper

bound coincide. Figure 5.1 shows these bounds for some cases.

We say a design achieves the optimal tradeoff if there exists a class of signal sets,

one for each SNR level, such that the scheme described by the design and the class of
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Figure 5.1: Optimal diversity-multiplexing tradeoff for some specific cases

signal sets achieves the optimal tradeoff. If a scheme is described by a full-rank design

over a field F and a class of signal sets which are subsets of F , then the maximum diversity

gain achieved by such a scheme is the diversity gain of any code in the scheme. This can

be seen as follows:

Pe(X)
.
≥
∑

X′ 6=X

P (X→ X′).

Since R
.
= r log SNR, where r = 0, the data rate is fixed and the number of codewords
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and the coding gain are independent of SNR and hence we have

Pe
.
= SNR

−ntnr .

Thus, a scheme which is a family of full-rank codes achieves the point (0, ntnr) of the opti-

mal diversity-multiplexing tradeoff. Schemes like V-BLAST achieve the point (min{nt, nr}, 0)

of the optimal tradeoff curve. It is also known that D-BLAST scheme achieves the op-

timal diversity-multiplexing tradeoff for n number of transmit and n number of receive

antennas, under the assumption that the leading and trailing zeros are ignored. However,

without any such assumptions, the D-BLAST achieves the point corresponding to zero

multiplexing gain, but not the point corresponding to the zero diversity gain. Figure 5.2

and Figure 5.3 show the tradeoff achieved by Alamouti and BLAST schemes respectively.

The tradeoff shown for the BLAST schemes is with successive nulling and canceling de-

tection. It is known that D-BLAST achieves the optimal tradeoff with minimum mean

square error detection, ignoring the initial and trailing zeros.
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Figure 5.2: The diversity-multiplexing tradeoff achieved by Alamouti scheme (a) 1 receive
antenna, (b) 2 receive antennas.

In [51], a scheme for 2 transmit and 2 receive antennas was constructed which achieves
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Figure 5.3: The diversity-multiplexing tradeoff achieved by BLAST schemes for 4 transmit
and 4 receive antennas (a) V-BLAST, (b) D-BLAST.

the optimal tradeoff for all 0 ≤ r ≤ 2. In [52], it has been shown that the lattice coding

and decoding achieve the optimal tradeoff.

5.2 Asymptotic-Information-Lossless Designs

In this section, we define Asymptotic-Information-Lossless (AILL) Designs and show that

it is a necessary condition for achieving the optimal diversity-multiplexing tradeoff. We

also give a sufficient condition under which a design is AILL.

If A is a n×m complex matrix, then let Â denote the 2n× 2m real matrix


 AI −AQ

AQ AI




where A = AI + jAQ. Similarly, if b is a n×1 complex vector, then b̂ denotes the 2n×1

real vector [bT
I bT

Q]T , where b = bI + jbQ.

Let X be a rate-k/l, nt × l design with a1, a2, . . . , ak as the variables. Let a =
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[a1 a2 · · · ak]
T . If X is the design used to describe an STBC, then the received ma-

trix is Y as in (5.1). We can rewrite (5.1) as

y =

√
SNR

nt




H 0 · · · 0

0 H · · · 0
...

... · · · ...

0 0 · · · H




︸ ︷︷ ︸
H




X1

X2

...

Xl




︸ ︷︷ ︸
x

+w.

where y and w are the column vectors obtained by serializing the columns of Y and W

respectively and Xi denotes the i-th column of X. Since the design X has the entries that

are complex linear combinations of the k variables and their complex conjugates, we can

rewrite the above equation as

ŷ =

√
SNR

nt
ĤΦâ

where Φ is a 2nl× 2k matrix such that Φâ = x̂. We call the matrix Φ as generator of X.

Then, we define the capacity of the design X as the capacity of the equivalent channel

H̃ = ĤΦ given by

CX(nt, nr, SNR,H) =
1

2l
log2

(
det

(
I2nrl +

SNR

nt
H̃H̃†

))
.

Clearly, EH [CX(nt, nr, SNR,H)] = CX(nt, nr, SNR) ≤ C(nt, nr, SNR).

Definition 5.2.1 We call X an asymptotic-information-lossless (AILL) design for nr

receive antennas if

lim
SNR→∞

C(nt, nr, SNR)

CX(nt, nr, SNR)
= 1.

Theorem 5.2.1 The design X is AILL design for nr receive antennas if and only if the

matrix H̃ has rank at least min{nt, nr} × 2l.

Proof: Let the rank of the matrix H̃ be τ and the singular value decomposition of H̃H̃T
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be UDVT . Then, we have

CX(nt, nr, SNR,H) =
1

2l
log2

(
det

(
I2nrl +

SNR

nt

UDV

))

=
1

2l
log2 (g(SNR)) ,

where g is a τ -th degree polynomial. Clearly, at high SNRs,

CX(nt, nr, SNR) =
τ

2l
log2 SNR +O(1).

Thus, if τ = min{nt, nr} × 2l, X is an AILL design and vice versa.

Since, the rank of the matrix Φ is bounded above by 2k, twice the number of variables

in the design, and if the design is AILL, then it is necessary but not sufficient that

k ≥ l × min{nt, nr}. The following example gives a design which satisfies the necessary

condition but still fails to be an AILL design.

Example 5.2.1 Let X be the 2 × 2 COD (the Alamouti code) given by


 x0 −x∗1
x1 x∗0


.

Then, the generator matrix of the design X is

Φ =




1 0 0 0

0 −1 0 0

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

0 0 0 1

0 0 −1 0




.

Clearly, the rank of the matrix Φ is equal to 2. Thus, the 2×2 COD is AILL for 1 receive

antenna and Asymptotic-Information-Lossy (AIL) for more than 1 receive antennas. For
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1 receive antenna, let H = [h1h2]. Then, Ĥ is

Ĥ =




h1I h2I 0 0 −h1Q −h2Q 0 0

0 0 h1I h2I 0 0 −h1Q −h2Q

h1Q h2Q 0 0 h1I h2I 0 0

0 0 h1Q h2Q 0 0 h1I h2I




It can be checked that ĤΦΦT ĤT is equal to (|h1|2 + |h2|2) I4. Thus, the capacity of the

2× 2 COD for 1 receive antenna is

CX(nt, nr, SNR, H) =
1

4
log2

(
1 + |h1|2 + |h2|2

)4

which is same the capacity of the channel. Thus, the 2× 2 COD is also ILL for 1 receive

antenna.

Example 5.2.2 Let nt = 2. Let X be the design [39]


 a0 + za1 δ(a2 + za3)

a2 + za3 a0 + za1




where z and δ are two independent transcendental elements over the rational number field

Q. This design is obtained using field extensions of Q(j) and is a full-rank design over

the field Q(j). Clearly, the number of variables in the design X is k = 4 and hence the

design satisfies the necessary condition k ≥ l × min{nt, nr}. The generator matrix Φ of
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this design is

Φ =




1 zI 0 0 0 −zQ 0 0

0 0 1 zI 0 0 0 −zQ

0 0 δI δIzI − δQzQ 0 0 −δIzQ − δQzI

1 zI 0 0 0 −zQ 0 0

0 zQ 0 0 1 zI 0 0

0 0 0 zQ 0 0 1 zI

0 0 δQ δIzQ + δQzI 0 0 δIzI − δQzQ

0 zQ 0 0 1 zI 0 0




.

Clearly, the rank of Φ is 4 and hence from Theorem 5.2.1, this design is AIL for 2 transmit

antennas. However, it is AILL for 1 receive antenna. Figure 5.4 shows the capacities of

the channel and the above design. Also, shown is the capacity of the Alamouti scheme for

2 receive antennas. It can be seen that while for 1 receive antenna, the loss in the capacity

of the above design is a constant independent of SNR at high SNRs, the loss in the capacity

for 2 receive antennas is increasing with SNR. The same is true with Alamouti, except

that for one receive antenna, the loss is zero.

It can be checked that except the Alamouti code, all other complex ODs (CODs) are AIL

for any number of receive antennas. The 2 × 2 COD is AILL for 1 receive antenna and

AIL for nr ≥ 2 receive antennas. Similarly, the QODs for nt = 2, 3, 4 are AILL for 1

receive antenna and AIL for nr ≥ 2 receive antennas. All other QODs and CIODs are

AIL for any number of receive antennas.

In [23], codes called Linear Dispersion (LD) codes were constructed to obtain maximum

mutual information. The number of variables were chosen to be min{nt, nr} × l. It can

be checked easily that for all the LD codes presented in [23], the rank of the matrix Ĥ is

equal to min{nt, nt} × l and hence all the LD codes of [23] are AILL designs.

Example 5.2.3 (Coordinate Interleaved Orthogonal Desings) An rate-k/p, n× p
Coordinate Interleaved Orthogonal Design (CIOD) in the k-variables xi, i = 0, 1, 2 . . . , k−
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1 is an n× p matrix given by


 Θn/2,n/2(x̃0, . . . , x̃k/2−1) 0

0 Θn/2,n/2(x̃k/2, . . . , x̃k−1)




where Θn/2,n/2(x0, x1, . . . , xn/2−1) is a rate-k/p generalized complex linear processing or-

thogonal design of size n/2 [6]. It has been shown that rate-1, n× p CIOD exists only for
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n = 2, 3, 4. They are


 x̃0 0

0 x̃1


 and




x̃0 x̃1 0 0

−x̃∗1 x̃∗0 0 0

0 0 x̃2 x̃3

0 0 −x̃∗3 x̃∗2



.

The CIOD for 3 transmit antennas can be obtained by removing a row from the CIOD

for 4 transmit antennas. It can be seen easily that CIODs are AILL designs for 2, 3 and

4 transmit antennas and 1 receive antennas. Thus, a CIOD for nt transmit antennas is

AILL if the QOD for nt transmit antennas is AILL.

nrAILL  for       = 1
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nrILL  for        = 2 nrILL  for        = 2

nrAILL  for        = 2

nrAILL  for       = 1

nrILL  for       = 1

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������
���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������
�������

���
���
���
���
���

	�	
	�	
	�	
	�	
	�	

Full−rank Designs

(eg. TAST, Galliou et al.)

(eg. Division algebras designs,
Yao et al.)

(eg. CIOD, FE designs,
DAST, ST−CR)

(eg. Alamouti)

(eg. CIODs)

(eg. LD designs)

Rank−defficient Designs

Damen et al.,
(eg. CPA designs

LD designs,V−BLAST)

Figure 5.5: Various ILL and AILL designs for nt = 2 transmit antennas. CPA designs
means the designs from crossed-product algebras [41]

Most of the well known designs like DAST [18], designs from field extensions [39] are

AILL for 1 receive antenna. Figure 5.5 and Figure 5.6 show various ILL designs and

AILL designs for nt = 2 and nt ≥ 3 transmit antennas. We have identified QODs and

CIODs as rank-deficient designs as they are designs over the complex field and are not full-

rank in general. However, the STBCs obtained from these designs are full-rank STBCs

under certain restrictions on the symbol constellations used.

Corollary 5.2.1 Let X be a rate-k/l, nt × l AILL design for any number of receive
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Figure 5.6: Various ILL and AILL designs for nt ≥ 3 transmit antennas. CPA designs
means the designs from crossed-product algebras [41]

antennas. Then, k ≥ ntl.

Example 5.2.4 Let nt = 2. Let X be the design [39,40]


 a0 + a1

√
j δ(a2 − a3

√
j)

a2 + a3

√
j a0 − a1

√
j




where δ (|δ| = 1) is a transcendental element over Q. This design is a full-rank design

over Q(j). The generator matrix Φ is

Φ =




1 1√
2

0 0 0 − 1√
2

0 0

0 0 1 1√
2

0 0 0 − 1√
2

0 0 δI
δI√
2
− δQ√

2
0 0 −δQ − δI√

2
− δQ√

2

1 − 1√
2

0 0 0 1√
2

0 0

0 1√
2

0 0 1 1√
2

0 0

0 0 0 1√
2

0 0 1 1√
2

0 0 δQ
δI√
2

+
δQ√

2
0 0 δI

δI√
2
− δQ√

2

0 − 1√
2

0 0 1 − 1√
2

0 0




.
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It is easy to check that the rank of the matrix Φ is 4 and hence is AILL for any number of

receive antennas. Also, it is clear that ΦΦT = I2n2
t

and can be checked that this design is,

in fact, an ILL design. This design is same as the design obtained in [44] with δ = 1+2j,

in which case the design is not ILL but continues to be AILL.

Analogous to the sufficient condition that full-rank designs achieve the point corre-

sponding to the zero multiplexing gain of the optimal diversity-multiplexing tradeoff, we

now give a necessary and sufficient condition for any design to achieve the point corre-

sponding to the zero diversity gain of the optimal diversity-multiplexing tradeoff. With

R = r log SNR as the data rate we have the codeword error probability given by

Pe(SNR)
.
= Pout,X(r) + P (error | no outage) ≥ Pout(r) (5.2)

where Pout,X(r) = P (CX(nt, nr, SNR) ≤ r log SNR). Clearly, Pout,X(r) is greater than or

equal to the channel outage probability Pout(r) given by P (C(nt, nr, SNR) ≤ R). From

(5.2) note that

dX(r) ≤ dout,X(r) ≤ dout(r)

where Pout,X(r)
.
= SNR

−dout,X(r) and Pout(r)
.
= SNR

−dout(r). This tells us that the optimal

diversity-multiplexing tradeoff curve is upper bounded by dout(r) [50]. Since, the number

of variables in the design X is k, the capacity of the design at high SNRs is equal to

s
l
log2 SNR + O(1), where s is the rank of the matrix Φ. Thus, as long as the data rate

is less than or equal to s
l
log2 SNR, it is possible to have a reliable communication using

the design X. But, if the data rate is greater than s
l
log2 SNR, no matter what the value

of SNR is, the error probability is bounded away from zero. Thus, intuitively the limiting

value of the multiplexing gain r, for which the diversity gain d(r) is zero, is less than or

equal to s
l
. We prove this formally in the following theorem.

Theorem 5.2.2 Let X be a rate-k/l, nt × l design which achieves optimal diversity-

multiplexing tradeoff for nr receive antennas. Then, X is an AILL design for nr receive

antennas. In other words asymptotic-information-losslessness is a necessary condition for

a design to achieve the optimal diversity-multiplexing tradeoff.
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Proof: We have

Pout,X (r) = P (CX(nt, nr, SNR,H) < r log SNR)

= 1− P (c ≥ r log SNR).

Let the ergodic capacity of the design X be τ log SNR and p(c) denote the probability

density function of c = CX(nt, nr, SNR,H). Then, we have

P (c ≥ r log SNR) =

∫

c≥r log SNR

p (c) dc

≤ 1

r log SNR

∫

c≥r log SNR

cp (c) dc

≤ τ

r
.

Thus,

Pout,X (r) ≥ 1− τ

r
.

Since X achieves the optimal diversity-multiplexing tradeoff, Pout,X (r)
.
= SNR

−(nt−r)(nr−r).

This indicates that for every value of r ∈ [0,min{nt, nr}], the value of τ
r
≥ 1. Thus,

τ = min{nt, nr}.
We now show that AILL is also a sufficient condition for a design to achieve the point

(0,min{nt, nr}) of the tradeoff curve.

Theorem 5.2.3 The design X achieves the point (min{nt, nr}, 0) of the diversity-multiplexing

tradeoff curve if and only if X is an AILL design for nr receive antennas.

Proof: Let X be an AILL design for nr receive antennas. Then, we have two cases:

Case 1. nr ≥ nt. Then, the generator matrix Φ of X has rank at least 2ntl. Let the

singular value decomposition Φ be Φ = UDVT . Then, the equivalent system model for

the design X is

ŷ =

√
SNR

nt

ĤUDVT â + ŵ
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If the number of variables k > ntl, we allow only ntl of the k variables to take values from

some constellation, while restrict the remaining to zero. Thus, without loss of generality

let k = ntl. To obtain the error probability, let us restrict ourselves to QAM signal

constellations. If the data rate R = r log SNR, then ai should take values from SNR
lr/k-

QAM. If dmin is minimum Euclidean distance of the SNR
lr/k-QAM constellation, then

the minimum Euclidean distance of the constellation of the vectors UDVT x̂ is at least

λmindmin, where λmin is the minimum among all the non-zero diagonal elements of the

diagonal matrix D. Also, it is easy to see that the number of nearest neighbors in the

constellation UDVT x̂ is a constant. Thus, we can view the system now as

ŷ =

√
SNR

nt
Ĥ̂̂x + ŵ

where ̂̂x = UDVT x̂. Now, entries of ̂̂x come from a constellation whose minimum distance

is greater than or equal to λmindmin and the number of nearest neighbors is a constant

independent of SNR. Using the technique of successive nulling and canceling of V-BLAST,

we have the equivalent system of the channel as

ŷi =

√
SNR

nt

gi
̂̂xi + ŵi i = 0, 1, 2, . . . , 2ntl − 1

where g2
i is the i-th decorrelator SNR gain and is a chi-squared distributed random variable

with 2j degrees of freedom where j = i mod nr. From [50], the pairwise error probability

for i-th decorrelator is

Pe(xi → x′i)
.
= P

(
SNR

nt
g2

i ||xi − x′i||2 < 1

)

.
= P

(
g2

i <
nt

SNR||xi − x′i||2
)
.

Since the minimum squared Euclidean distance of the SNR
lr/k-QAM is equal to SNR

−lr/k,

we have

Pe(xi → x′i)
.
= P

(
g2

i <
nt

SNR
1−lr/k

)
.
= SNR

−(1−lr/k).
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Since, the number of nearest numbers is a constant independent of SNR, the actual error

probability for i-th decorrelator is

P (i)
e (SNR)

.
= SNR

−(1−lr/k).

Since P
(1)
e (SNR) ≤ P ′

e(SNR) ≤∑i P
(i)
e (SNR), where P ′

e(SNR) is the error probability with

successive nulling and canceling detection, we have the actual error probability with ML

detection given by

Pe(SNR) ≤ P ′
e(SNR)

.
= SNR

−(1−lr/k).

Since, X is an AILL design, we have l/k = 1/nt. Hence, dX(r) is equal to zero when

r = nt, i.e., the point corresponding to zero diversity is (nt, 0).

Case 2. nt ≥ nr. In this case, we can assume that the design has nrl variables. Now, the

matrix ĤΦ is a 2nrl× 2nrl matrix with entries as linear combinations of the entries of Ĥ.

Hence, the entries of the matrix ĤΦ are Gaussian distributed and the rank of ĤΦ is 2nrl.

Following the method given in Case 1., we have the probability of error upper bounded

by

Pe(SNR)
.
≤ SNR

−(1−r/nr)

and hence the point (nr, 0) of the optimal tradeoff curve is achieved.

Since in any nt× l orthogonal design (nt 6= 2) X, the number of the variables is strictly

less than l, X is AIL and hence from the above theorem, all the orthogonal designs except

Alamouti scheme do not achieve the optimal tradeoff for any number of receive antennas.

Alamouti scheme has been shown to achieve the optimal tradeoff for 1 receive antenna.

Similarly, QODs for nt ≥ 5 do not achieve the optimal tradeoff for any number of receive

antennas. For nt = 2, 3, 4, the QODs achieve the point (0, 1) of the tradeoff curve for 1

receive antenna.

Corollary 5.2.2 If X is a full-rank design for nt transmit antennas, such that the STBCs

constructed using the design X are completely over a signal set S, i.e., entries of the code-

word matrices in the STBC are from the signal set S over which the STBC is constructed,
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then the design X does not achieve the point corresponding to the zero diversity gain of

the tradeoff curve for more than one receive antenna.

Remark 5.2.1 Let X be an ILL design and X′ be an AILL design but not ILL. Suppose,

both X and X′ achieve the optimal diversity-multiplexing tradeoff. Then, clearly, it is

preferable to use the design X to the design X′ because the former is ILL while the later is

not ILL. So, it is important to construct designs which not only achieve optimal diversity-

multiplexing tradeoff, but also are ILL.

5.3 Diversity-Multiplexing Tradeoff of Designs from

Field Extensions

Let X be a rate-k/nt nt × nt design obtained from the field extension of Q(S, z) using

a minimal polynomial of the form xn
t − γ, where γ ∈ Q(S, z) and S is the signal set of

interest. Then, the design X is of the form




f0(z) γfnt−1(z) · · · γf1(z)

f1(z) f0(z) · · · γf2(z)
...

...
. . .

...

fnt−1(z) fnt−2(z) · · · f0(z)




(5.3)

where fi(z) are polynomials of arbitrary degree. If every polynomial fi is of degree R− 1,

then the rate of this design is R. It can be checked that the generator matrix of this design

has rank nt. Thus, X is an AILL design only for 1 receive antenna. From Theorem 5.2.3,

the diversity-multiplexing tradeoff of this design for 1 receive antenna is lower bounded

by d(r) = 1 − r for 0 < r ≤ 1 and since the design is a full-rank design, we also have

d(0) = nt. Also note that the tradeoff achieved by this design is independent of the degree

of the polynomials fi. So, we can assume that all fi are degree zero polynomials over S.

Example 5.3.1 Let S be a QAM signal set and nt = 3. Then, the polynomial x3 − ω6 is
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irreducible in Q(S, ω3)[x] [39]. The design constructed using this irreducible polynomial is




f0 ω6f2 ω6f1

f1 f0 ω6f2

f2 f2 f0


 .

The lower bound on the tradeoff achieved by this design is d(r) = 1− r.

Notice that the lower bound we have from Theorem 5.2.3 when used for the designs

from field extensions is independent of the number of transmit and receive antennas.

We now obtain a tighter bound for the tradeoff achieved by X. Let C(SNR) be the

code obtained by restricting the variables fi to a finite subset S of the 2-dimensional

lattice Z[ωm] generated by 1 and ωm. The size of the signal set S is chosen to be SNR
r

such that the data rate of the code C(SNR) is r log SNR bits per channel use. If C,C′ ∈
C(SNR) and C 6= C′, then the determinant of C−C′ is given by the norm of the element
∑nt−1

i=0 (si−s′i)ωmnt, where si and s′i are the values taken by the variables fi in the codewords

C and C′ respectively [37, 39]. Since, the norm of any element in Z[ωmnt ] belongs to the

lattice Z[ωm], the minimum value of the determinants is lower bounded by the minimum

distance of the lattice Z[ωm] [37, 39]. Thus, the coding gain of the resulting STBC, with

the assumption that the signal set is scaled to have unit average energy, is SNR
−r. Then,

the pairwise error probability is given by

Pe(X→ X′)
.
= SNR

rntnrSNR
−nrnt = SNR

−nrnt(1−r).

Then, using the union bound, we have an upper bound on the probability of error given

by

Pe(SNR)
.
≤ SNR

ntrSNR
−nrnt(1−r).

Thus, for the case r ≤ 1, we have a lower bound on dX(r) given by dX(r) ≥ ntnr−rnt(nr+

1). Since there are SNR
ntr codewords and since the range of the determinant detC−C′

is SNR
r, we assume that there are SNR

r(nt−1) codewords such that the detC−C′ is the

minimum. Though, this need not be true in general, we have observed through numerical
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simulations that this is true for 2, 3 and 4 transmit antennas. Thus, the union bound can

be tightened as

Pe(SNR)
.

≤ SNR
r(nt−1)

SNR
−ntnr(1−r).

Thus, we have a lower bound on the tradeoff achieved by the design X given by
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Figure 5.7: Diversity-multiplexing tradeoff achieved by design from field extensions for 2
transmit and 1,2 receive antennas

dX(r) ≥ ntnr(1− r)− r(nt − 1).

Figure 5.7 and 5.8 show the tradeoff curve for nt = 2, nr = 1, 2 and nt = 3, nr = 1, 3

respectively.

5.4 Diversity-Multiplexing Tradeoff of Designs from

Division Algebras

In this section we consider cyclic division algebras only. The results of this section are

also valid for other division algebras also.
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Figure 5.8: Diversity-multiplexing tradeoff achieved by design from field extensions for 3
transmit and 1,3 receive antennas

Let X be the design obtained from a cyclic division algebra (K(δ), σ, δ), where K is

a cyclic extension of the field F = Q(S, ωn, t) and σ is a generator of the Galois group.

Then, the design X is of the form

1√
n




n−1∑

i=0

f0,it
i δσ

(
n−1∑

i=0

fn−1,it
i

)
δσ2

(
n−1∑

i=0

fn−2,it
i

)
· · · δσn−1

(
n−1∑

i=0

f1,it
i

)

n−1∑

i=0

f1,it
i σ

(
n−1∑

i=0

f0,it
i

)
δσ2

(
n−1∑

i=0

fn−1,it
i

)
· · · δσn−1

(
n−1∑

i=0

f2,it
i

)

n−1∑

i=0

f2,it
i σ

(
n−1∑

i=0

f1,it
i

)
σ2

(
n−1∑

i=0

f0,it
i

)
· · · δσn−1

(
n−1∑

i=0

f3,it
i

)

...
...

...
. . .

...
n−1∑

i=0

fn−1,it
i σ

(
n−1∑

i=0

fn−2,it
i

)
σ2

(
n−1∑

i=0

fn−3,it
i

)
· · · σn−1

(
n−1∑

i=0

f0,it
i

)




(5.4)

where fi,j ∈ F . Since the number of variables in the above matrix is n2, if the size of the

signal set S as a function of SNR is equal to SNR
r/n, the bit rate of the code in bits per

channel use will be 1
n

log2

(
SNR

r/n
)n2

= r log SNR.
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Theorem 5.4.1 The diversity-multiplexing tradeoff dDA(r) of the design from division

algebras satisfies

dDA(r) ≥ 1− r/min{nt, nr} and dDA(0) = n2.

If the number of receive antennas is 1, then the tradeoff achieved by the designs from

division algebras is same as that of achieved by the designs from field extensions.

Example 5.4.1 (Example 4.3.5 continued) The determinant of the design obtained

in Example 4.3.5 is

detX = NK/F

(
f0,0 +

√
jf0,1

)
− δNK/F

(
f1,0 +

√
jf1,1

)

where NK/F (x) is the algebraic norm of the element x ∈ K from K to F . If fk,l ∈ Z[j]

for all k and l, then the determinant belongs to the set Z[j]. Thus, the coding gain of the

STBC obtained from the design X is lower bounded by the minimum distance of the set

Zδ = Z[j] + δZ[j]. Since, δ is a transcendental element, it is very difficult to obtain the

minimum distance of the set Zδ. To avoid this difficulty, with δ ≈ ej, we let the entries f1,0

and f1,1 come from a signal set whose minimum distance is at least 4 times greater than

the maximum distance of the signal set from which the entries f0,0 and f0,1 take values.

To obtain a data rate of r log SNR, we use a constellation of size SNR
r/2 carved from Z[j]

for the entries f0,0 and f0,1, and for the entries f1,0 and f1,1 we use a constellation of size

SNR
r/2 carved from SNR

r/4Z[j]. With this selection of constellations, the minimum value

of the determinant is lower bounded by 1. Scaling the constellations such that the variance

of each entry in the design is 1, we have the coding gain of the design X lower bounded

by 1
SNR

r/2+SNR
r ≥ 1

2SNR
r . Thus, the pairwise error probability is given by

Pe(C→ C′)
.
≤
(

1

SNR
r/2 + SNR

r
SNR

)−4
.
≤ SNR

−4(1−r).

Since, the range of the determinant detC−C′ is SNR
r while the total number of possible

determinants is SNR
2r, we assume that each determinant occurs SNR

r times. Thus, using
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the union bound, we have the exact probability of error upper bounded as

Pe

.
≤ SNR

−4+5r

and thus, the tradeoff achieved by X is lower bounded by dX(r) ≥ 4− 5r.
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Figure 5.9: Diversity-multiplexing tradeoff achieved by design from division algebras for
(a) 2 transmit and 2 receive antennas, (b) 3 transmit and 3 receive antennas.

Figure 5.9 shows the lower bound on the tradeoff achieved by the designs from division

algebras for 2 and 3 transmit antennas. In the next section, we show by simulations that

the designs from division algebras achieve the optimal diversity-multiplexing tradeoff for

nt = 2, 3, 4 and nr = nt.

Example 5.4.2 In [44], cyclic division algebras from number fields were used to construct

STBCs for 2, 3 and 4 transmit antennas. The cyclic division algebras used in [44] for 2

transmit antennas is
(
Q(
√
j), σ, 1 + 2j

)
, where σ :

√
j 7→ −√j. The design obtained
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using this cyclic division algebra is

1√
2


 f0,0 + f0,1

√
j (1 + 2j)(f1,0 − f1,1

√
j)

f1,0 + f1,1

√
j (f0,0 − f0,1

√
j)


 . (5.5)

The determinant of the above matrix with fi,j ∈ Z[j] is lower bounded by 1
2
. Thus,

following the method used in Section 5.3, we obtain a lower bound on the tradeoff achieved

by the above design, given by

d(r) = 4− 3r.

In a similar manner, we can prove that the tradeoff achieved by the designs obtained using

cyclic division algebras from number fields for nt = 3 and nt = 4 satisfy

d(r) = ntnr − rnr − rnt + r.

The lower bound indicates that the tradeoff achieved is optimal for 0 ≤ r ≤ 1. In particular

using the procedure of [51] for nt = 2, we can show that the design in (5.5) achieves the

optimal diversity-multiplexing tradeoff.

5.5 Simulations

In this section, we present simulation results for 2, 3 and 4 transmit antennas to show

that DA codes achieve the optimal diversity-multiplexing tradeoff.

We have used the design obtained in Example 4.3.5 for 2 transmit and 2 receive

antennas.

Figure 5.10 shows the error probability curves for various data rates. It can be seen

that at high SNRs, the gap between two adjacent curves, with data rates differing by 4

bits per channel use, is 6 dB. This indicates that at d = 0, the data rate grows with SNR

as R = 2 log SNR. Thus, the point (2, 0) of the tradeoff curve is achieved. We have also

plotted the outage probabilities (dashed curves). It can be seen that curves for Pe match

with outage probability at high SNRs and hence the DA code for 2 transmit and 2 receive



Chapter 5. AILL Designs and Diversity-Multiplexing Tradeoff 139

antennas achieves the optimal tradeoff.

For 3 transmit antennas, we have used the design of Example 4.5.2. Figure 5.11 shows

the error probability curves for various data rates. At high SNRs, the gap between two

adjacent curves with data rates differing by 6 bits per channel use, is 6 dB. Thus, at

d = 0, the data rate grows with SNR as R = 3 log SNR. Also, outage probabilities we

have plotted coincide with error probability curves at high SNRs indicating that our code

achieves optimal diversity-multiplexing tradeoff. The design we have used for 4 transmit
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Figure 5.10: Error probability curves (solid) and outage probability curves (dashed)for 2
transmit and 2 receive antennas.

antennas is

C =
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Figure 5.11: Error probability curves (solid) and outage probability curves (dashed)for 3
transmit and 3 receive antennas.

where gi,j =
∑3

l=0 fj,l(j
iω16)

l and fi,j ∈ SNR
r/4 − QAM for i, j = 0, 1, 2, 3. Figure 5.12

shows the error probability curves and outage probability curves. It can be seen that at

high SNRs both the set of curves match which indicates that our scheme achieves optimal

tradeoff.

5.6 Summary

In this chapter we have defined Asymptotic-Information-Lossless designs for nr receive

antennas. We also obtained a necessary and sufficient condition under which a design is

AILL. We have shown that it is necessary for a design to be AILL to achieve the optimal

diversity-multiplexing tradeoff and have shown that “AILL” is also a sufficient condition

for which a design achieves the point (min{nt, nr}, 0) of the optimal tradeoff curve. It is
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Figure 5.12: Error probability curves (solid) and outage probability curves (dashed)for 4
transmit and 4 receive antennas.

shown that the well known codes like DAST, designs from field extensions and ST-CR are

AILL for 1 receive antennas. We have obtained a lower bound on the tradeoff achieved

by the designs from field extensions and have shown that the lower bound is close to

the optimal tradeoff for the case of 1 receive antenna. We have also obtained a lower

bound on the tradeoff achieved by the designs from division algebras. The lower bound

indicates that we achieve both the extreme points corresponding to zero diversity and

zero multiplexing gain of the optimal tradeoff curve. We have given simulations for 2, 3

and 4 transmit antennas and show that the designs from division algebras meet all the

points of the optimal tradeoff curve.



Chapter 6

Conclusions

6.1 Summary of the results

In this thesis we have constructed high-rate, full-diversity STBCs using both commutative

(field extensions) and non-commutative algebras.

For the STBCs from field extensions, we gave exact expressions for the coding gain.

We also obtained a lower bound on the coding gain of certain special cases. The lower

bound indicates that some of our STBCs are optimal in terms of coding gain. We also

gave capacity analysis and proved that the STBCs from field extensions are information-

lossy. On the other hand, however, we have shown by simulations that the finite-signal-set

capacity of our STBCs approaches that of the channel as the symbol rate is increased.

Finally, we presented simulation results to show that our codes perform better than some

of well known codes like ST-CR, in terms of bit error rate.

For the STBCs from non-commutative algebras, we restricted ourselves to those al-

gebras which were crossed-product algebras. We have given a general technique of con-

structing STBCs from crossed-product algebras, which include several well known codes

like Damen et al. [22], Alamouti Code, Quasi-Orthogonal Designs etc. A sufficient condi-

tion on the CPAs, under which these STBCs arising from them are information-lossless,

was obtained. We identified two classes of CPAs satisfying the sufficient condition. We

identified two classes of CPAs which were division algebras and hence the STBCs arising
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from them are full-diversity STBCs. We presented some simulation results to show that

our codes perform better than well known codes in terms of bit error rate.

In Chapter 5, we introduced the notion of Asymptotic-Information-Losslessness. We

derived a necessary and sufficient condition under which a design is AILL and showed

that many well known codes like DAST, ST-CR are AILL for 1 receive antennas, while

codes like TAST, Damen et al. [22], STBCs from quaternionic lattices [44] are AILL for

any number of receive antennas. We then, showed that any AILL design achieves the

point corresponding to the zero diversity gain of the optimal diversity-multiplexing trade-

off. A lower bound the diversity-multiplexing tradeoff achieved by the STBCs from field

extensions was obtained, which indicates that the STBCs from field extensions achieve

the maximum multiplexing gain for 1 receive antenna only. Similarly, we obtained a lower

bound on the tradeoff achieved by the STBCs from division algebras. The lower bound

indicates that they achieve both maximum diversity gain and maximum multiplexing for

any number of transmit and receive antennas. We explicitly showed by simulations that

STBCs from division algebras achieve the optimal diversity-multiplexing tradeoff for n

transmit and n receive antennas, n = 2, 3 and 4.

6.2 Directions for further research

• In Chapter 3, we have shown that our high-rate codes do not admit sphere decoding

but admit the generalized sphere decoding. It would be interesting to know if there

are any good decoding algorithms which can be used for our high-rate codes.

• We have studied primarily cyclotomic field extensions in constructing STBCs us-

ing field extensions in Chapter 3. Code constructions using non-cyclotomic field

extensions may yield some interesting codes.

• We have discussed capacity only for codes from cyclotomic field extensions in Chap-

ter 3. It will be interesting to see the capacity of the codes obtained using non-

cyclotomic field extensions also.
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• We have seen in Chapter 4, that we can construct the Alamouti code and 4×4 quasi-

orthogonal design of [16] using crossed-product algebras. It would be interesting to

see if we can construct orthogonal designs other than Alamouti code and other

quasi-orthogonal designs like


 A B

−B∗ A∗


, using crossed-product algebras.

• It would be interesting to see if there exits a closed form expression for coding gain

of the STBCs arising from non-cyclic division algebras.

• We have used only abelian CPAs in constructing information-lossless STBCs. It

would be interesting to see if other crossed-product algebras give rise to better

information-lossless STBCs in terms of bit error rate performance.

• In Chapter 4, we obtained a sufficient condition on the CPAs, under which the

STBCs arising from them are ILL. It would be interesting to characterize all the

CPAs which satisfy the sufficient condition.

• We have shown that we can use the sphere decoder to decode our codes obtained

from crossed-product algebras when the number of receive antennas is greater than

or equal to the number of transmit antennas. It would be interesting to see if there

exist any simpler decoding algorithms when the number of receive antennas is less

than the number of transmit antennas.

• We have shown that AILL designs achieve the extreme point corresponding to the

zero diversity gain of the optimal tradeoff. It would be interesting to find necessary

and sufficient conditions for achieving other points on the tradeoff curve.

• In obtaining a lower bound on the tradeoff curve achieved by the designs from field

extensions and division algebras, we have found that STBCs having non-vanishing

coding gain as SNR increases, are very important. Thus, it would be interesting

to obtain designs with non-vanishing coding gain for arbitrary number of transmit

antennas. At the same time, the design should also be an AILL design.
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• All the designs corresponding to the well known STTCs are rate-1 designs. And

from the results of this paper, clearly, these designs can achieve optimal tradeoff

only for 1 receive antenna. Since, STTCs have the property that the coding is

lower bounded by the minimum squared Euclidean distance of the signal set used,

it would be interesting to find STTCs with higher symbol rates. For instance, if we

can find an STTC with rate-2 symbols per channel use, then the STTC can achieve

the optimal tradeoff for 2 receive antennas.



Appendix A

Preliminaries and Basics of Algebra

A.1 Ring homomorphisms

Definition A.1.1 Let R and R′ be two rings with identity. Then, a ring homomorphism

ψ from R to R′ is a map ψ satisfying the following properties:

• ψ(a+ b) = ψ(a) + ψ(b), ψ(ab) = ψ(a)ψ(b) ∀a, b ∈ R,

• ψ(0) = 0,

where the a + b is addition in R and ψ(a) + ψ(b) is the addition is R′. Similarly the

multiplication. The set of elements that map to zero under ψ is called the kernel of ψ and

is denoted kerψ.

A simple example of ring homomorphism is the complex conjugation in the complex field

C, i.e., ψ(c) = c∗, for c ∈ C.

A left ideal I of a ring R is an additive subgroup of R that satisfies the property that

ar ∈ I for all r ∈ R and a ∈ I. Similarly a right ideal I of a Ring R is an additive

subgroup of R that satisfies the property that ra ∈ I for all r ∈ R and a ∈ I. An ideal is

called two-sided ideal if it both left and right ideal.

A ring is called simple if it has no non-trivial two-sided ideals, i.e., the only ideals are

the sets {0} and the ring itself. Fields and matrix algebras are simple examples of simple

rings.
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The kernel of any ring homomorphism from R to R′ is a two-sided ideal of R. Thus,

when R is in particular a field, the kernel is zero or the entire field R. Thus, any non-

zero homomorphism of a field into any ring is an injective map. Any injective ring

homomorphism of a ring R into a ring R′ is called an embedding of R into the ring R′.

A.2 Algebraic and transcendental extensions of fields

Since in this thesis we consider only characteristic zero fields, we focus only on character-

istic zero fields. Let F and K be two such fields. Then, we call K an field extension of F

if F is a proper subfield of K and the extension is denoted as K/F .

Definition A.2.1 Let K be field extension of F . Then, an element α ∈ K is said to be

an algebraic element over F , if there exists a polynomial f(x) in F [x] satisfying k, i.e.,

f(α) = 0. If there doesn’t exist any such polynomial then α is said to be a transcendental

element over F .

For example, consider the real field R which is an extension of the rational number field Q.

Elements like
√

2,
√

5 are algebraic over Q, but elements like e, π etc are transcendental

elements over Q.

We call a field extension K of F , an algebraic extension of F if every element in K

is algebraic over F . Otherwise we call K as a transcendental extension. Thus R is a

transcendental extension of Q and the complex field C is an algebraic extension of R.

Every field extension K of F can be seen as a F -space, i.e., a vector space over F .

If the vector space dimension of K over F is finite, then K is called a finite extension

of F and otherwise an infinite extension of F . The vector space dimension is called the

degree of extension and is denoted [K : F ]. Every extension K of F of the form

K = F (α1, α2, . . . , αn) is a finite extension if each of the αi is an algebraic element over

F . The notation F (α1, α2, . . . , αn) means the smallest field containing both F and αi,

i = 1, 2, . . . , n. For example C/R is a degree 2 extension and R/Q is an infinite extension.
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If L is an extension of K of degree n and K/F is of degree m, then we have

[L : F ] = [L : K][K : F ].

Theorem A.2.1 (Primitive element theorem) Let K = F (α1, α2, . . . , αn) for some

αi ∈ K, i = 1, 2, . . . , n. Then, if αi, i = 1, 2, . . . , n are algebraic over F , there exists an

element α ∈ K such that K = F (α), i.e., K is a simple extension of F .

From the above theorem, it is clear that all finite extensions of F can be expressed as F (α)

for some algebraic element α over F . An automorphism of a field K is a bijective ring

homomorphism from K to K. Consider the set of all automorphisms of K. This set forms

a group under composition and is denoted Aut(K). If F is a subfield of K, then the set of

all automorphisms of K that act as an identity map on F are called automorphisms of K

fixing F . The set of all such automorphisms form a subgroup of Aut(K) and is denoted

AutF (K). Similarly, consider a subgroup H of Aut(K) and the set of all elements that

are fixed by every element in H. This set forms a field and is called the fixed field of H.

Then, we have the following theorem.

Theorem A.2.2 Let K be a finite extension of F of degree n. Then, the cardinality of

the group of automorphisms fixing F is less than or equal to n, i.e., |AutF (K)| ≤ n.

We say a polynomial f(x) over F splits in K if f(x) can be factored into linear factors

over K. If K is the smallest field over which the f(x) splits into linear factors, then K is

called splitting field.

We call a field extension K/F a normal extension if every irreducible polynomial

has either all its roots in K or is irreducible over K also. In other words, if K has a root

of a polynomial f(x) ∈ F [x], then, K splits the polynomial f(x). It is known that if K/F

is not a normal extension, then there exists a field L containing K, such that L/F is a

normal extension.

Let K/F a finite extension of degree n and L be the normal extension of F , such

that F ⊂ K ⊂ L. Then, it is known that there exist exactly n isomorphisms (injective

homomorphisms) of K onto subfields of L.
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Definition A.2.2 Let σi, i = 0, 1, 2 . . . , n − 1 denote the n distinct isomorphisms of K

into L. Then, the norm of an element k ∈ K into F , denoted NK/F (k), is defined as

NK/F (k) =
n−1∏

i=0

σi(k).

It is known NK/F (k) ∈ F for all k ∈ K.

In Theorem A.2.2 if |AutF (K)| = n, then we call the field extension K/F as a Galois

extension. The group of automorphisms AutF (K) fixing F is called the Galois group

of the extension K/F .

Theorem A.2.3 A finite extension K/F is a Galois extension if and only K/F is a

normal extension.

A Galois extension is called cyclic or abelian or solvable if the corresponding Galois group

is cyclic or abelian or solvable respectively.

A.3 Tensor products

To define tensor product of two algebras, we will first define tensor product of two vector

spaces. Since any algebra is a vector space, we will extend the definition of tensor product

of two spaces to tensor product of two algebras [55, Chap 9].

Definition A.3.1 Let V and W be two F -vector spaces. A tensor product of V and

W is an F -vector space V ⊗F W , together with a bilinear mapping V ×W 7→ V ⊗F W

denoted by (v, w) 7→ v ⊗F w such that

1. V ⊗F W is generated as an F -space by {v ⊗F w|v ∈ V, w ∈ W},

2. (Universality) if ψ : V ×W 7→ P is a bilinear map, where P is another F -space,

then there is an F -linear map κ : V ⊗F W 7→ P such that κ(v ⊗F w) = ψ(v, w).

The following sequence of theorems lists some of the useful properties of tensor products.

Theorem A.3.1 Let V and W be two F -vector spaces. Then,
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1. The homomorphism κ in the definition of tensor product V ⊗F W is unique.

2. If V ⊗F W and V ⊗′
F W are tensor products of V and W , then there is a unique

isomorphism φ : V ⊗F W 7→ V ⊗′
F W such that φ(v ⊗F w) = v ⊗′

F w for all v ∈ V
and w ∈ W .

From the above theorem, since any two tensor products of two vector spaces are isomorphic

to each other, we can write “a tensor product” of two vector spaces as “the tensor product”

of two vector spaces. The following theorem guarantees us the existence of the tensor

product of two vector spaces.

Theorem A.3.2 The tensor product of two F -vector spaces V and W exists.

Now, since F -algebras are F -vector spaces, we can define tensor product of two F -

algebras as the the tensor product of the corresponding vector spaces with a suitably

defined multiplication. The following theorem assures us of such a multiplication.

Theorem A.3.3 If A and B are F -algebras, then there is a multiplication operation on

A⊗F B that satisfies

(x1 ⊗F y1)(x2 ⊗F y2) = x1x2 ⊗F y1y2.

This multiplication is associative and 1A ⊗F 1B = 1A⊗F B.

Theorem A.3.4 Let K be a field containing F and A be an F -algebra. Then, A ⊗F K

is a K-algebra satisfying

(x⊗F k)(y ⊗F k
′) = xy ⊗F kk

′

for all x, y ∈ A and k, k′ ∈ K. The scalar operations by elements of K on A ⊗F K is

defined by

xk = x(1⊗F k)

for all x ∈ A⊗F K and k ∈ K.
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